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Abstract

New Statistical Methods for Analyzing Microbiome Data

By

Ye Yue

Microbiome research has proliferated due to booming interests in the scientific community, in-
creasing power of high-throughput sequencing, and rapid advancement of data analytics. The anal-
ysis for microbiome data from sequencing studies is challenging because of high-dimensionality,
overdispersion, sparsity, compositionality, and experimental bias. In addition, microbiome studies
typically have small sample, complex traits of interest and confounding covariates. New methods
that can fully account for the complexities of data are needed.

In the first topic, we develop a new statistical method for testing mediation e↵ects of microbiome
at both the community and individual taxon levels. We have seen a rapidly growing volume of evi-
dence linking the microbiome and human diseases or clinical outcomes, as well as evidence linking
the microbiome and environmental exposures. Understanding whether and which microbes played
a mediating role between an exposure and a disease outcome are essential for researchers to develop
clinical interventions by modulating the microbes. Our new method allows an arbitrary number of
taxa to be tested simultaneously, supports di↵erent types of exposures and outcomes, and so on.

In the second topic, we extend the most commonly used distance-based method PERMANOVA
to testing microbiome mediation e↵ects at the community level. Use of distance matrices is a popular
approach to analyzing complex microbiome data. Our extension allows adjustment of confounders,
accommodates various types of exposures and outcomes, and provides an omnibus test that com-
bines the results from analyzing multiple distance matrices.

In the third topic, we develop a novel method for integrative analysis of datasets generated by
both 16 marker-gene sequencing and shotgun metagenomics sequencing. Many microbiome studies
have performed both experiments on the same cohort of samples. The two datasets often yield con-
sistent patterns; however, each is subject to distinct experimental biases in an experiment-specific
manner. These experimental biases, together with partially overlapping samples and di↵erential
library sizes between the two datasets, pose tremendous challenges when combining the datasets.
Our new method combines data from both experiments for di↵erential abundance tests, while ac-
counting for di↵erential experimental biases, assigning adaptive weights to each observation, and
accommodating samples and taxa unique to an experiment.
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Introduction
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1.1 Introduction to high-throughput microbiome data

Thanks to technological advances in high-throughput sequencing, microbiome research has prolif-

erated in the past decade and revealed di↵erences in human microbiome are associated with many

diseases and conditions such as inflammatory bowl diseases (Gevers et al., 2014), obesity and type

II diabetes (Hartstra et al., 2015), and even cancers (Marchesi et al., 2011) as well as with envi-

ronmental exposures such as diet (McDonald et al., 2018). Nowadays, the microbiome becomes a

particularly attractive target for establishing new biomarkers for disease diagnosis and prognosis,

and for developing low-cost, low-risk interventions.

Data in microbiome research is collected by two commonly used sequencing approaches which

are marker-gene sequencing and metagenome sequencing (Weinstock, 2012). Marker-gene sequenc-

ing targets and amplifies portions of the hypervariable regions of a specific gene, such as the 16S

ribosomal RNA (rRNA) gene, while metagenome sequencing sequences all of the microbial genes

from a sample. Microbiome data from sequencing studies are processed into a taxa count table. The

taxa count data are high-dimensional with typically many more taxa than samples. The data are

also sparse (having 50-90% zero counts), compositional (measuring relative abundances that sum

to one), and highly overdispersed. In addition, microbiome studies may have complex exposures

or outcomes that can be either continuous or discrete, as well as multivariate (comprising multi-

ple components such as categorical variables with more than two levels); the outcome can even be

censored survival times (Spencer et al., 2021; Jenq et al., 2015). These studies often have potential

confounding covariates, small sample sizes (e.g., 30–100) and complex designs (e.g., clustered data

(Hu and Satten, 2020), matched sets (Zhu et al., 2021), longitudinal sampling (Hu, Li, Satten and

Hu, 2022)). The capability to handle all these features is essential for any statistical method to be

practically useful.

Microbiome data analysis methods appear to be categorized into two groups. One group tests

the association between the variables of interest and the overall microbial compositions, such as

PERMANOVA (McArdle and Anderson, 2001), MiRKAT (Zhao et al., 2015), aMiSPU (Wu et al.,

2016), pairNM (Shi and Li, 2017), Linear Decomposition Model (LDM) (Hu and Satten, 2020) and

logistic compositional analysis (LOCOM) (Hu, Satten and Hu, 2022), which is called community-

level testing. The other one is taxon-level testing, which targets on the e↵ect or contributions of

the individual taxon. In microbiome research, there exist at least two biological models that explain

how microbial communities can change when comparing groups with di↵erent phenotypes or along a

phenotypic gradient. In one model, a significant portion of the taxa within the community undergoes
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changes. The null hypothesis, tested at the taxon level, assumes no di↵erential abundance and states

that the relative abundance of a taxon remains constant. Therefore, any observed changes in the

relative abundance of a taxon across conditions are of particular interest in this model. Various

methods can be utilized to test this hypothesis, including LDM (Hu and Satten, 2020) and methods

developed for RNA-Seq data , such as DESeq2 (Love et al., 2014), edgeR (Robinson et al., 2010)

and metagenomeSeq (Paulson et al., 2013), as well as the direct application of nonparametric tests

(such as the Wilcoxon rank-sum test) to relative abundance data or rarefied count data. In the

alternative model, it is posited that only a small subset of key taxa undergo changes, while the

remaining taxa exhibit variations in relative abundance due to compositional constraints. In this

case, the null hypothesis tested at the taxon level posits that the ratio of relative abundances at a

specific taxon, compared to a chosen null taxon, remains unchanged. Assessing whether the ratio

between the relative abundances of a taxon and the null taxon alters provides crucial insights within

this model. There are multiple methods available for testing this hypothesis, including the analysis

of composition of microbiomes ANCOM (Mandal et al. (2015), Kaul et al. (2017)), ANOVA-Like

Di↵erential Expression tool (ALDEx2) (Fernandes et al., 2014), WRENCH (Kumar et al., 2018),

Testing for Di↵erential Abundance in Compositional Counts Data (DACOMP) (Brill et al., 2020)

and LOCOM (Hu, Satten and Hu, 2022). Notably, the second model accounts for the compositional

constraint where a change in the relative abundance of one taxon implies a compensating change

in other taxa. Consequently, this model is commonly referred to as compositional analysis (Gloor

et al., 2017).

1.2 Mediation analysis of microbiome data

While most microbiome studies conducted so far have focused on bivariate associations between

the microbiome and the covariates of interest (e.g., environmental factors, clinical outcomes) (Bai

et al., 2019; Dunlop et al., 2021), increasing studies have emerged recently to elucidate the biological

mechanisms underlying the complex interplay between environmental exposures, the microbiome,

and clinical outcomes. In many cases, it is of interest to understand whether the microbiome

play a mediating role between an exposure and an outcome (Pope et al., 2017; Dolan and Chang,

2017; Wang et al., 2020), as depicted in Figure 1.1(a). For example, does diet have any e↵ect

on inflammatory bowel diseases that is mediated through the perturbation of the gut microbiome

(Dolan and Chang, 2017)? How does the change in the gut microbiome due to antibiotic exposure

cause the change in mouse body weight (Wang et al., 2020)?
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(a) (b)
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 	
	

Exposure	 Outcome 

Microbiome z M1 
M2 ---
MJ

T 0 

Figure 1.1: (a) Multiple microbes mediate the e↵ect of the exposure on the outcome. (b) T denotes
the exposure, (M1, . . . ,MJ) the microbes, O the outcome, and Z the confounders.

Compared to the test of bivariate associations, one challenge in the test of mediation is the

composite null hypothesis. Let T denote the exposure (or treatment), M = (M1, . . . ,MJ) the J

mediators, O the outcome, and Z the confounding covariates; using this notation, the mediation

relationships are shown in Figure 1.1(b). To claim a mediation e↵ect of a microbe, both the exposure-

microbe and microbe-outcome associations (given the exposure) are required to be significant. Thus,

the null hypothesis of no mediation at microbe j is a composite null that consists of no microbe-

outcome association, no exposure-microbe association, or neither:

T ! Mj !� O, T !� Mj ! O, or T !� Mj !� O,

which are referred to as the type-I, type-II, and type-III null hypotheses, respectively. It is highly

likely that di↵erent microbes are under di↵erent types of null. For example, antibiotic use may

perturb a large number of microbes but most of them do no modify mouse body weight, whereas

some microbes remain intact from antibiotic use but do interact with the body weight; of course,

there are microbes that are not associated with either factor. In this example, we have all three

types of null, and a valid analysis should acknowledge that.

1.2.1 Mediation analysis at both the taxon and community levels

In addition to the community-level mediation e↵ect of the microbiome, it is of particular importance

to identify the specific microbes that are responsible for the overall mediation e↵ect, which is essential

for researchers to develop clinical interventions to modify the outcome by modulating the mediating

microbes, e.g., through antibiotics or probiotics that directly modify the number of the microbes,

or prebiotics that modify microbial products such as metabolites (Berg et al., 2020; Quigley and

Gajula, 2020). The two existing methods, MedTest and MODIMA , are restricted to testing the

overall mediation e↵ect at the community level. Although other methods, namely CMM (Sohn and

Li, 2019) (and CMMB, the extension for binary outcomes (Sohn et al., 2022)), SparseMCMM (Wang



5

et al., 2020), and Zhang’s method (Zhang et al., 2021) attempt to identify individual mediating taxa,

they have no control of any error rate (e.g., the FDR).

LDM was originally developed to test associations between the microbiome and the covariates of

interest, providing a unified framework that allows for both community-level and taxon-level testing.

It is based on a linear model that regresses the microbiome data at each taxon on the sequentially

orthogonalized covariates that include first the confounding covariates that we wish to adjust for

and then the covariates that we wish to test. Specifically,

Y = X� + ✏,

where X is the design matrix of all covariates and the columns of X is grouped into K submodels,

i.e., X = (X1, X2, . . . , XK). Each submodel includes components that will be tested jointly, such as a

single covariate, multiple covariates, or multiple indicators for a categorical covariate. The submodels

are first processed into sequentially orthogonal, unit vectors by the Gram-Schmidt process, so that

the partition of the distance matrix is unambiguous. This requires that the covariates in X follow a

scientifically meaningful order; for example, the confounders should enter first. � is an r⇥ J matrix

that should be estimated, and ✏ is an r ⇥ J matrix of error terms with E(✏|X) = 0. For J models

considered for the columns of Y , the jth column of � represents the regression coe�cients specific

to the jth regression model. It allows an arbitrary number of taxa (including arbitrarily rare taxa)

to be tested simultaneously. The covariates can be continuous, discrete, or multivariate variables,

or even censored survival times; note that the survival times and censoring statuses are first fit by a

Cox model to be converted to the Martingale or deviance residuals, which are then used as a generic

continuous covariate in the LDM (Hu, Li, Satten and Hu, 2022). The taxon data can be at the

relative abundance scale, arcsin-root-transformed relative abundance scale, or the presence-absence

scale (Hu and Satten, 2021), and their results can be combined to provide omnibus tests (Zhu, Satten

and Hu, 2022). The inference of associations in the LDM is based on permutation (i.e., permuting

the orthogonalized covariates) to circumvent making parametric assumptions about the distribution

of the microbiome data. Thus, the inference is robust to sparse and overdispersed count data, as well

as small sample sizes, and the LDM always has good control of the FDR. Also, the permutation can

be conducted to preserve the sample structure (e.g., clustered data (Hu and Satten, 2020), matched

sets (Zhu et al., 2021)), so the LDM can accommodate certain complex designs. The covariate types,

taxon data scales, and sample structures that the LDM supports were summarized in Figure 1 of

(Zhu, Satten and Hu, 2022).
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1.2.2 Mediation analysis based on distance matrices

To circumvent the complexities of microbiome count data, a popular approach is to first summarize

the taxon-level data into a n ⇥ n distance (dissimilarity) matrix D calculated among n samples

that measures the pairwise dissimilarity in the microbiome profiles, and then base the analysis of

microbiome data on the distance matrix (Legendre and Anderson, 1999; McArdle and Anderson,

2001; Zhao et al., 2015; Alekseyenko, 2016; Zhang et al., 2017). This approach provides results at

the community-level, which is usually the first step in an analytical pipeline. Numerous distance

measures, with di↵erent properties, have been proposed to detect diverse patterns in microbiome

data; the most commonly used ones include Jaccard (Jaccard, 1912), Bray-Curtis (Bray and Curtis,

1957), and weighted or unweighted UniFrac (Lozupone and Knight, 2005; Chen et al., 2012). It is

well acknowledged that the optimal choice of a distance measure depends on the underlying variation

pattern in a particular dataset, which is unknown a priori. Therefore, it is a common practice to

construct an omnibus test that combines the results from analyzing di↵erent distance matrices.

Two existing methods, MedTest (Zhang et al., 2018) and MODIMA (Hamidi et al., 2019),

adopted such a distance-based approach to mediation analysis of microbiome data. Specifically,

MedTest uses the principal components (PCs) of a given distance matrix as multiple mediators and

tests their joint mediation e↵ects. MedTest considers microbiome “features” to be the eigenvectors

of the Gower-centered distance matrix �, denoted by u1, u2, . . . , uL, that are associated with the L

positive eigenvalues, denoted by �1,�2, . . . ,�L and it assumes that these microbiome features are

the units through which the microbiome exert the mediation e↵ect. Thus, MedTest adopts a test

statistic that is a sum of feature-specific mediation e↵ects, each weighted by �l (the percentage of

variance explained by that feature):

UMedTest =
LX

l=1

�l|uT
l
Tr||uT

l
Or|,

where |.| is the absolute value function, Tr is the residual of T after orthogonalizing against Z and

Or is the residual of O after orthogonalizing against (Z, T ). Note that uT
l
Tr and uT

l
Or are the

sample Pearson correlation coe�cients that measure the associations between the lth feature and

the exposure and the outcome, respectively; the sample Pearson correlation coe�cient does not

easily accommodate multivariate exposure or outcome variables. Because the null hypothesis of no

mediation is a composite null that consists of three types of null hypothesis. MedTest calculates the

maximum of the statistics corresponding to the three types of null hypotheses for the bth permutation
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replicate:

U(b)
MedTest = max

n LX

l=1

�l|uT
l
T (b)
r

||uT
l
Or|,

LX

l=1

�l|uT
l
Tr||uT

l
O(b)

r
|,

LX

l=1

�l|uT
l
T (b)
r

||uT
l
O(b)

r
|
o
,

where T (b)
r and O(b)

r are permuted vectors of Tr and Or, respectively. Finally, the p-value is obtained

as the proportion of U(b)
MedTest that are equal to or larger than the observed statistic UMedTest. The

power of MedTest may critically depend on whether the exposure-microbiome association and the

microbiome-outcome association coincide at the same set of PCs. Further, when the true mediators

in the community are rare taxa, the PCs may not e↵ectively capture the variation at these mediators.

However, the assumption that the exposure-microbiome association and the microbiome-outcome

association coincide at the same set of PCs may be overly optimistic. Also, the PCs may not capture

mediation e↵ects at rare taxa. Moreover, MedTest does not accommodate multivariate exposures

and outcomes in its current form.

In addition to the distance matrix D from the microbiome profiles, MODIMA also requires the

n⇥n distance matrices (usually the Euclidean distance) being calculated from the exposure data and

the outcome data, separately, which we denote by DT and DO. These distance matrices naturally

accommodate multivariate variables. Then, MODIMA uses the distance correlation (Székely and

Rizzo, 2009), dCor(DT , D), for measuring the exposure-microbiome association, which parallels the

Pearson correlation with the major di↵erence being that the centered product moment transforma-

tion is applied to the distance matrices rather than data vectors. MODIMA uses the partial distance

correlation (Székely and Rizzo, 2014), pdCor(DO, D|DT ), for measuring the microbiome-outcome

association conditional on the exposure, which parallels the Pearson partial correlation. MODIMA

adopts the test statistic

UMODIMA = dCor(DT , D)⇥ pdCor(DO, D|DT ),

and the statistic for the bth permutation replicate,

U(b)
MODIMA =

8
>><

>>:

dCor(D(b)
T

, D)⇥ pdCor(DO, D|DT ), if dCor(DT , D)  pdCor(DO, D|DT )

dCor(DT , D)⇥ pdCor(D(b)
O

, D|DT ), if dCor(DT , D) > pdCor(DO, D|DT ),

where D(b)
T

and D(b)
O

are obtained by permuting both rows and columns of the DT and DO matrices,

respectively. Finally, the p-value is calculated as the proportion of U(b)
MODIMA that are equal to or
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larger than the observed statistic UMODIMA. Note that, in this process, the confounding covariate

Z cannot be adjusted and MODIMA does not provide an omnibus test. Further, the MODIMA

paper pointed out a lack of correspondence between conditional independence and zero partial

distance correlation, e.g., a non-zero partial correlation in scenarios with conditionally independent

variables. It implies that MODIMA may generate false positive findings under the null hypothesis

of no mediation. Finally, neither MedTest nor MODIMA can handle censored survival times.

PERMANOVA (McArdle and Anderson, 2001) is currently the most commonly used distance-

based method in analysis of microbiome data. PERMANOVA is based on a linear model of covariates

that partition a given distance matrix along each covariate. In particular, when the Euclidean

distance measure is used on the relative abundance data, it is the total variance of relative abundance

data across all taxa that is partitioned into variance explained by each covariate. Using the same

notation as in the LDM, we denote the design matrix of all covariates as X = (X1, X2, . . . , XK),

where the columns of X are grouped into K submodels. The n ⇥ n distance matrix D is often

Gower-centered (Gower, 1966) to become � = �0.5
�
I � n�1110

�
D2

�
I � n�1110

�
, where D2 is the

element-wise squared D, I is the identity matrix, and 1 is a vector of n ones. The “residual”

distance matrix after projecting o↵ all submodels except the kth one takes the form e�k =
⇣
I �

P

k
0=1,...,K,k

0 6=k

Xk0XT
k0

⌘
�
⇣
I �

P

k
0=1,...,K,k

0 6=k

Xk0XT
k0

⌘
by noting that XkXT

k
is the hat matrix for the

kth submodel. Then, PERMANOVA tests the e↵ect of the kth submodel by using the F -statistic

Fk /
Tr

h
XkXT

k
e�kXkXT

k

i

Tr

✓
I �

KP
k0=1

Xk0XT
k0

◆
e�k

✓
I �

KP
k0=1

Xk0XT
k0

◆� , (1.1)

where Tr(·) is the trace operation. PERMANOVA assesses the significance of the F -statistic via

permutation, particularly the Freedman-Lane permutation scheme (Freedman and Lane, 1983) as

implemented in ”permanovaFL”. The Supplementary Materials of (Hu and Satten, 2020) showed

that the Freedman-Lane scheme is equivalent to forming the following statistic for the bth permu-

tation replicate:

F (b)
k

/
Tr

h
X(b)

k
X(b)T

k
e�kX

(b)
k

X(b)T

k

i

Tr

✓
I �

KP
k0=1

X(b)
k0 X

(b)T

k0

◆
e�k

✓
I �

KP
k0=1

X(b)
k0 X

(b)T

k0

◆� , (1.2)

where X(b)
k

is a row-permuted version of Xk and thus the columns of X(b)
k

remain orthogonal. Note

that the residual distance matrices e�ks do not need to be recalculated for each replicate. In contrast,
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the permutation scheme implemented in adonis2 replaces all e�ks in Fk and F (b)
k

by the raw distance

matrix �.

PERMANOVA is very versatile. It can handle censored survival times. As proposed in (Hu, Li,

Satten and Hu, 2022), the survival times and censoring statuses are first fit by a Cox model (includ-

ing non-microbiome risk predictors as covariates) to be converted into the Martingale or deviance

residuals, which are then used as a generic continuous covariate in PERMANOVA. Because PER-

MANOVA bases its inference on permutation, it is robust to small sample sizes. The permutation

replicates can also be readily used to construct an omnibus test of multiple distance matrices, which

uses the minimum of the p-values obtained from analyzing each distance matrix as the final test

statistic and uses the corresponding minima from the permutation replicates to simulate the null

distribution. In addition, the permutation can be conducted in ways that preserve the correlation

found in the original data, so PERMANOVA can accommodate certain structures of samples such

as clustered samples (Hu and Satten, 2020) and matched sets (Zhu et al., 2021).

Although it was originally developed for testing microbiome associations, we find that we can

extend PERMANOVA to testing microbiome mediation e↵ects by using the idea of inverse regres-

sion and including both the exposure and the outcome as covariates whose F -statistics capture the

exposure-microbiome association and the microbiome-outcome association conditional on the ex-

posure, respectively. This extension of PERMANOVA would naturally inherit all the features of

PERMANOVA, some of which have been a focus of recent development, including adjustment of

confounders (Hu and Satten, 2020), test of multivariate covariates, test of censored survival times

(Hu, Li, Satten and Hu, 2022), and an omnibus test of multiple distance matrices (Tang et al.,

2016). Thus, the extension of PERMANOVA would be very appealing to researchers who routinely

use PERMANOVA.

In Topic 1, we focus on testing, rather than estimation, of mediation e↵ects at individual taxa with

a goal of controlling the FDR. This strategy is very common in the initial scan of high-dimensional

features in omic studies (Asher et al., 2009; Hu and Lin, 2010; Hu et al., 2015); “fine mapping”

of mechanistic mediators and formal estimation of their mediation e↵ects can be performed more

easily after the dimension is greatly reduced. We find that, the testing objective can be facilitated by

using inverse regression that regresses the microbiome data at each taxon on the exposure and the

exposure-adjusted outcome. We implement the inverse regression model using the LDM framework

(Hu and Satten, 2020; Zhu et al., 2021; Hu and Satten, 2021) that we developed originally for

testing microbiome associations. As the LDM was designed to specifically handle the microbiome
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data complexities (e.g., high-dimensionality, sparsity, and overdispersion), our LDM-based mediation

analysis naturally inherits these features. As the LDM models each taxon separately, our approach

allows di↵erent taxa to be under di↵erent types of null. Finally, like MedTest and MODIMA,

we also develop a global test of community-level mediation; our global test statistic is a coherent

combination of our taxon-specific statistics. The main advantage of our approach is that results for

individual taxa are available; neither MedTest and MODIMA provide taxon-specific results. In the

Method section, we first give the motivation for using inverse regression. Then, we consider four

ways of testing individual taxa for mediation and then a method that aggregates the taxon-level

information to test the overall mediation in a community. In the Numerical Studies section, we first

present simulation results in which we numerically compared the four ways of testing individual

taxa and selected the one with the best performance, and we compared our global test to existing

tests. Then, we present the application to a real study on murine microbiome. We conclude with a

Remarks section.

In Topic 2, we present PERMANOVA-med, the extension of PERMANOVA to testing the

community-level mediation e↵ect of the microbiome. We base PERMANOVA-med on our imple-

mentation of PERMANOVA through the function “permanovaFL” in our R package LDM (Hu and

Satten, 2020), which di↵ers from the “adonis2” implementation in the R package vegan in the per-

mutation scheme and outperformed adonis2 in many situations (Hu and Satten, 2020; Zhu et al.,

2021; Hu and Satten, 2021). All the features that PERMANOVA supports were summarized in

Figure 1.2. In the Method section, we first motivate the use of inverse regression and then show

how to extend PERMANOVA to PERMANOVA-med. In the Numerical Studies section, we present

extensive simulation studies in which we numerically compared PERMANOVA-med to MedTest and

MODIMA. We also demonstrate the wide applicability of PERMANOVA-med through 16 di↵erent

mediation analyses of the real data on melanoma immunotherapy response. We conclude with a

Remarks section.

1.3 Integrative analysis of 16S marker-gene and shotgun metage-

nomic sequencing data

The most widely used technologies for profiling microbial communities are 16S marker-gene se-

quencing (16S) and shotgun metagenomic sequencing (SMS) (Knight et al., 2018). The 16S method

employs primers that target a highly variable region of the 16S ribosomal RNA gene, which is then
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(Tang et al., 2016) 

…
 

Figure 1.2: Analyses supported by permanovaFL. Analysis types without a citation were introduced
in the original LDM paper Hu and Satten (2020). “Clustered” refers to analyses of clustered data
where traits of interest vary by cluster or vary both by and within clusters (some analyses may
require special structure or additional assumptions). “Matched sets” is a special type of clustered
data in which all traits of interest vary within sets.

PCR amplified, sequenced, and classified. This approach is well-tested, fast and cost e↵ective, and

provides a low-resolution view of a microbial community, typically at the genus level. On the other

hand, SMS extracts all microbial genomes within a sample, which are then fragmented, sequenced,

and assembled. This technique o↵ers detailed genomic information, including higher taxonomic res-

olution and additional functional capability, but it is 10 to 30 times more expensive to prepare and

sequence samples and much more challenging to conduct bioinformatics analysis.

Both 16S and SMS introduce experimental bias at every step of the experiment (i.e., DNA

extraction, PCR amplification, amplicon or metagenomic sequencing, and bioinformatics process-

ing), as each step preferentially measures (i.e., extracts, amplifies, sequences, and bioinformatically

identifies) certain taxa over others (McLaren et al., 2019). This bias systematically distorts the

measurements (e.g., taxon relative abundances) from their actual values. Moreover, the bias di↵ers

significantly between 16S and SMS, as they comprise di↵erent steps (e.g., PCR amplification vs.

no PCR) and even for the same step they adopt di↵erent protocols (e.g., bioinformatics pipelines)

(Nearing et al., 2021). As a result, each experiment leads to some taxa being underrepresented or

even entirely missed (Peterson et al., 2021). The complementary nature of these taxa suggests that

combing both 16S and SMS methods could enhance the profiling of complex microbial communities.

As it turns out, many microbiome studies have performed both 16S and SMS on the same
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cohort of samples. In Qiita, currently the largest open-source microbial study management platform

(https://qiita.ucsd.edu) (Gonzalez et al., 2018), 26 out of a total of 660 studies (as of June 2022

[update]) have both datasets. In fact, there should be more studies with both datasets, but they

may have only deposited the one used in the final publication. There are at least two scenarios

in which this occurs. In one scenario, a study initially performs 16S and later expands its aims to

investigate higher-resolution taxa or biological functions by performing SMS on all or a subset of

the samples. In another scenario, a study initially plans to perform SMS but adds 16S due to its

low cost.

The 16S data are routinely summarized into a taxa count table by the popular analysis platform

QIIME2 (Bokulich et al., 2018). Although there is less consensus, the SMS data can also be classified

into taxonomies using tools such as MetaPhlAn (Segata et al., 2012; Truong et al., 2015; Beghini

et al., 2021), Kraken (Wood and Salzberg, 2014; Wood et al., 2019), or more recently Woltka (Zhu,

Huang, Gonzalez, McGrath, McDonald, Haiminen, Armstrong, Vázquez-Baeza, Yu, Kuczynski et al.,

2022). Aside from the experiment-specific di↵erences mentioned earlier, a large number of studies

(Clooney et al., 2016; Hillmann et al., 2018; Mas-Lloret et al., 2020; Peterson et al., 2021; Durazzi

et al., 2021; Biegert et al., 2021; Zuo et al., 2022; de Vries et al., 2023) have found that taxonomic

profiles generated from 16S and SMS yield consistent patterns of microbiome signatures. Thus,

it is expected that an integrative analysis of both taxonomic profiles could enhance the power in

testing such patterns of microbiome signatures, particularly when assessing di↵erential abundance

at a given taxon level (e.g., genus) and the community level against sample-level covariates (e.g.,

environmental factors or clinical outcomes). To the best of our knowledge, there is currently no

statistical method available for performing such an integrative analysis.

LOCOM, a recent developed model by Hu et al. (Hu, Satten and Hu, 2022), is specifically

designed for microbiome data analysis from a single experiment. It enables compositional analysis

of di↵erential abundance at both the taxon level and the global level, e↵ectively addressing the

influence of experimental bias. Notably, LOCOM eliminates the need for pseudocounts which can

a↵ect the conclusions of a compositional analysis (Costea et al. (2014), Paulson et al. (2014)) and

does not rely on the assumption of a null reference taxon. The commonly used compositional

analysis methods, such as ANCOM and ANCOM-BC (Mandal et al. (2015), Kaul et al. (2017)), add

pseudocounts to address zero values in count data and are primarily designed for group comparisons.

However, these methods lack the capability to accommodate continuous traits of interest in the

analysis. The ALDEx2 method (Fernandes et al., 2014) utilizes a sampling process to sample nonzero

relative abundances that introduces noise to the data, potentially leading to a loss of statistical
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power. Furthermore, ALDEx2 relies on the clr transformation to identify di↵erentially abundant

taxa compared to the overall mean of all taxa, making it susceptible to the influence of outliers.

Both WRENCH (Kumar et al., 2018) and DACOMP (Brill et al., 2020) introduce the requirement

of choosing a set of null reference taxa for read count data normalization. Nevertheless, the selection

of this reference set poses a risk of including causal taxa, potentially impacting the performance.

Additionally, WRENCH is constrained to group comparisons and lacks the ability to account for

confounding covariates.

LOCOM employs logistic regression for testing di↵erential abundance of taxa and the whole

community. It starts with model

log(pij) = log(⇡0
j
) +XT

i
�j + �j + ↵i,

where pij is the expected value of the observed relative abundance for taxon j (j = 1, . . . , J) in

sample i (i = 1, . . . , n). The term ⇡0
j
represents the baseline relative abundance that characterizes

the true relative abundance of taxon j when the covariates Xi = 0. The coe�cient �j captures how

the true relative abundance of taxon j changes with Xi. The parameter �j is the taxon-specific bias

factor, reflecting how the relative abundance is influenced by distortions. Additionally, the term ↵i

represents the sample-specific normalization factor, ensuring the composition constraint
P

J

j
pij = 1.

Then, LOCOM introduces the variable µij , µij = pij/(pij + piJ) and utilizes the logistic model

log(
µij

1� µij

) = ✓j +XT

i
(�j � �J), 1  j  J � 1,

where ✓j = [log(⇡0
j
) � log(⇡0

J
)] + (�j � �J) are treated as nuisance parameters. LOCOM uses the

Firth-corrected score equation

Uj(✓j ,�j) =
nX

i=1

(Yij �Mijµij + hi(0.5� µij))

2

64
1

Xi

3

75 = 0 (1.3)

to estimate the parameters (✓j , �j) robustly, without relying on specific distributional assump-

tions in a standard logistic regression and addressing separation issues, where separation refers to

the situation where all (or nearly all) counts for a taxon are zero in one group (e.g., the case or

control group). In the estimating equation (1.3), Mij = Yij + YiJ , where Yij is the read count of

the jth taxon (j = 1, ..., J) in the ith sample. hi corresponds to the ith diagonal element of the

weighted hat matrix W
1

2

j
X(XTWjX)�1XTW

1

2

j
with the design matrix X and the diagonal weight
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matrix Wj = diag{M1jµ1j(1�µ1j), . . . ,Mnjµnj(1�µnj)}. To avoid relying on a specific taxon being

considered as null, LOCOM tests hypotheses at individual taxa with a null hypothesis centering by

the median

Hj0 : �j �meidanj0=1,...,J{�j0}.

The inference of associations in the LOCOM is performed through permutation to address overdis-

persion and small sample sizes. LOCOM partitions the covariate vector Xi into the trait of interest

Ti and the other covariates Ci. Then, it permutes the residual of the trait of interest obtained

by regressing the trait on the other covariates Ci and an intercept, denoted by T (b)
i

. LOCOM

constructs a new covariate vector X(b)
i

by combining T (b)
i

with Ci. Finally, it computes the permu-

tation coe�cients and test statistics based on this new covariate vector. LOCOM also provides a

community-level test by combining the P values from tests of individual taxa using the test statistic
P

J

j=1 p
(�1)
j

. LOCOM is flexible in handling both binary and continuous traits of interest, allowing

for the simultaneous testing of multiple traits. It is also robust against experimental bias, even when

bias factors vary between causal and non-causal taxa. Additionally, LOCOM o↵ers the capability

to adjust for potential confounding covariates.

In Topic 3, we propose a method, named LOCOM-I, to fill the significant gap of integrative

analysis of 16S marker-gene and shotgun metagenomic sequencing data. We extend LOCOM to

combining data from both 16S and SMS experiments, while allowing for di↵erential experimental

bias and assigning adaptive weights to each observation. Our method utilizes all available samples

and taxa, whether they overlap or not between the two experiments, and adopt a permutation

procedure that preserves any specific sample structure. To benchmark the performance of the new

method, we introduce two additional ad hoc approaches: pooling read counts and combining p-

values. In the Numerical Studies section, we present extensive simulation results and findings from

analyzing the ORIGINS and dietary studies found in Qiita. We conclude with a Remarks section.

.



Chapter 2

Topic 1: A new approach to testing

mediation of the microbiome at

both the community and individual

taxon levels
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2.1 Method

2.1.1 Motivation

Our starting point is the following classical model for multiple mediators (VanderWeele and Vanstee-

landt, 2014). For a continuous outcome and J continuous (potential) mediators with no exposure-

mediator and mediator-mediator interactions, the model specifies a linear model for each mediator

and a linear model for the outcome that includes the e↵ects of all mediators:

E(Mj |Z, T ) = ↵0,j + ↵T
Z,jZ + ↵1,jT, (2.1)

E(O|Z, T,M1, . . . ,MJ) = ✓0 + ✓TZZ + ✓1T +
P

J

j=1✓2,jMj , (2.2)

where the notation was introduced in Figure 1.1(b). It can be derived that the overall (total) me-

diation e↵ect through (M1, . . . ,MJ) takes the form
P

J

j=1 ↵1,j✓2,j (VanderWeele and Vansteelandt,

2014); note that ↵1,j characterizes the e↵ect of T on Mj given Z, and ✓2,j characterizes the e↵ect

of Mj on O given Z and T and all other Mjs. When the mediators are independent of one an-

other conditional on Z and T , each product term ↵1,j✓2,j can be interpreted as the mediation e↵ect

through a single mediator Mj . Even if the mediators are not conditionally independent, a non-zero

value of ↵1,j✓2,j indicates a non-zero contribution of Mj to the overall mediation e↵ect. Thus, our

objective can be achieved by testing whether ↵1,j✓2,j = 0 at each potential mediator. However,

the forward outcome model (2.2), although describing the mediation process in a natural order and

enabling intuitive forms for the mediation e↵ects, are not easily generalizable to an outcome that

is a discrete, multivariate, or censored-survival-time variable. In addition, model (2.2) does not

permit a large number of mediators, e.g., more mediators than samples, unless some regularization

is imposed.

2.1.2 Inverse regression model

The limitations of the forward outcome model motivated us to adopt the inverse regression model

that exchanges the positions of the outcome and mediators. Inverse regression is a commonly used

approach, which, for example, has been widely used in genetics studies of multiple phenotypes

(O’Reilly et al., 2012; Wu and Pankow, 2015; Majumdar et al., 2015). It has a key advantage of

accommodating di↵erent types of outcomes. Also, it allows a large number of microbial taxa to be

analyzed simultaneously by treating each taxon as the response variable in the regression, one at a

time.
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Here we assume that a mediating taxon acts through its relative abundance, so we let Mj denote

the relative abundance of taxon j, although our methodology can easily accommodate presence-

absence data (Mj taking value 1 or 0 indicating non-zero read count of taxon j in a sample). We

find that, by properly orthogonalizing the exposure variable T and outcome variable O, we can

obtain an inverse regression model that ”merges” both the mediator model (2.1) and the forward

regression model (2.2) into one regression. To this end, we define Tr to be the residual of T after

orthogonalizing against Z, and Or to be the residual of O after orthogonalizing against (Z, T ). We

consider the inverse regression model for taxon j

E(Mj |Z, T,O) = �0,j + �T
Z,jZ + �1,jTr + �2,jOr. (2.3)

We show in Appendix Text A1 that �1,j = ↵1,j and that �2,j = 0 and ✓2,j = 0 coincide. As a result,

testing

H0j : �1,j�2,j = 0 (2.4)

is equivalent to testing ↵1,j✓2,j = 0, i.e., whether there exists a mediation e↵ect through taxon j.

We can test (2.4) by obtaining the least-squares estimates from (2.3), denoted by b�1,j and b�2,j ,

forming the test statistic |b�1,j
b�2,j |, and using permutation to provide the null distribution of the

test statistic. All of these can be achieved by using the LDM framework with minor modifications.

2.1.3 Testing mediation e↵ects at individual taxa

As mentioned after equation (2.4), it is most natural to consider the following statistic for testing

the mediation e↵ect at taxon j:

Uj = |b�1,j
b�2,j |.

To provide a reference distribution for this statistic under the composite null of no mediation, we

calculate the following statistic under the bth (b = 1, . . . , B) permutation:

U(b)
j

= max
n
|b�1,j

b�(b)
2,j |, |b�

(b)
1,j

b�2,j |, |b�(b)
1,j

b�(b)
2,j |

o
,

where b�(b)
1,j and b�(b)

2,j are obtained by permuting Tr and Or, separately, to break the T -Mj association

given Z and the Mj-O association given (Z, T ), respectively, and they are directly available from the

LDM. The three product terms in U(b)
j

correspond to the test statistics under the type-I, type-II,

and type-III null hypotheses. Because U(b)
j

is the maximum of three statistics whereas Uj is not,
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U(b)
j

is inherently conservative in the sense that its distribution is more spread out than the true

distribution of Uj under a specific type of null (unknown). Finally, the permutation p-value for

taxon j is calculated to be pj = B�1
P

B

b=1 I{U
(b)
j

� Uj}, which is then corrected for multiple testing

by Sandve’s sequential stopping rule (Sandve et al., 2011) as implemented in the LDM. We refer to

this approach to testing individual taxa as LDM-med-product. However, it is unclear how to handle

multivariate exposures or outcomes, in which case there are more than one element in �1,j or �2,j .

A second way is to base the test statistic on the p-values p1,j and p2,j for testing �1,j = 0 and

�2,j = 0, respectively, which naturally accommodate multivariate exposures or outcomes and are

directly available from the LDM. Now we consider the test statistic

Zj = max(p1,j , p2,j),

and assess the significance of Zj by using the same permutation procedure as above and calculating

the statistic

Z(b)
j

= min
n
max(p1,j , p

(b)
2,j),max(p(b)1,j , p2,j),max(p(b)1,j , p

(b)
2,j)

o
,

where the null p-values p(b)1,j and p(b)2,j are based on the rank statistics of b�(b)
1,j and b�(b)

2,j , respectively,

among all permutation replicates (Westfall and Young, 1993). Note that max(p1,j , p2,j) can also be

directly used as an analytical p-value for testing a single mediator (Boca et al., 2014), but here we

choose permutation for inference because permutation is more robust and the permutation replicates

are readily available from the LDM. Similarly to U(b)
j

, the statistic Z(b)
j

is inherently conservative.

Finally, the permutation p-value is calculated to be pj = B�1
P

B

b=1 I{Z
(b)
j

 Zj} and corrected for

multiple testing by Sandve’s sequential stopping rule (Sandve et al., 2011) as implemented in the

LDM.We refer to this approach as LDM-med-maxP. In fact, this approach was found to be equivalent

to LDM-med-product in simple settings, for example, when all variables are normally distributed

(Boca et al., 2014). However, besides the conservative U(b)
j

and Z(b)
j

, the stringent correction of all

J tests in both LDM-med-product and LDM-med-maxP tends to make them even more ine�cient.

A third approach is to directly apply the MultiMed procedure (Sampson et al., 2018) to the LDM

p-values p1,j and p2,j , which was developed to improve the e�ciency of testing a large number of

mediators. The idea is to restrict the mediation testing to a subset of taxa that have relatively small

p1,j and p2,j . Here, we briefly describe this procedure; the theoretical properties that guarantee

the FDR control can be found in the original papers (Sampson et al., 2018; Bogomolov and Heller,

2018). First, for a nominal FDR level ↵, find the subset of taxa with relatively small p1,j to be
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!S1 = {j : p1,j < ↵/2}, and denote the cardinality of the subset by S1 = C(!S1). Similarly, find the

subset with relatively small p2,j to be !S2 = {j : p2,j < ↵/2} and denote S2 = C(!S2). Then, the

downstream testing of mediation is restricted to taxa at the intersection of the two subsets, which

can greatly alleviate multiple testing correction. For taxon j 2 !S1\!S2, define the subset-adjusted

p-value

pS,j = 2max(S2p1,j , S1p2,j).

Taxon j is declared to be a mediator if the FDR-adjusted p-value

pD,j = min
j0:pS,j0�pS,j

pS,j0/rank(pS,j0)  ↵.

We call this approach LDM-med-subset. Although the subset-based approach has shown to be more

e�cient than the approach based on the product of coe�cients (similar to our first approach) in the

context of controlling the family-wise error rate (Sampson et al., 2018), it is of interest to re-evaluate

these approaches in the context of controlling the FDR.

A fourth approach is to directly apply the HDMT procedure (Dai et al., 2022) to the LDM p-

values p1,j and p2,j , which was developed to overcome the conservativeness of a mediation test due to

the composite null. The core of the HDMT procedure is based on estimating the proportions of the

three types of null and then the underlying mixture null distribution of the statistic max(p1,j , p2,j).

We call this approach LDM-med-HDMT.

2.1.4 Testing the overall mediation e↵ect in a community

If every taxon in a community is under some type of null (not necessarily the same type), we

declare a null community with no mediation e↵ect. Recall that Zj = max(p1,j , p2,j) has frequently

been used as a p-value for testing a single mediator (Boca et al., 2014). Given these ”p-values”

at individual taxa, it is straightforward to construct a global test statistic by combining these ”p-

values”. Here we adopt the Harmonic mean method (Wilson, 2019) to aggregate Zjs, which is more

robust to the dependence structure among taxa than Fisher’s method. The harmonic mean of Zjs is

J/
�P

J

j=1 Z
�1
j

�
, where a smaller value corresponds to a stronger evidence against the null hypothesis.

To have a usual test statistic with a reverse directionality, we choose the statistic for the global test

to be

Zglobal =
JX

j=1

Z�1
j

.
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We assess the significance of Zglobal via permutation, since permutation is more robust and the

permutation replicates are readily available. The statistic based on bth permutation replicate is

Z(b)
global =

P
J

j=1

n
Z(b)
j

o�1
, where Z(b)

j
has been introduced earlier. Finally, the permutation p-value

for the global test is given by pglobal = B�1
P

B

b=1 I
n
Z(b)
global � Zglobal

o
. We call this test LDM-med-

global, which is a natural extension of LDM-med-maxP but is also compatible with LDM-med-subset

and LDM-med-HDMT in the sense that all are based on the p-values p1,j and p2,j .

2.2 Numerical Studies

2.2.1 Simulation studies

Our simulations were based on data on 856 taxa of the upper-respiratory-tract (URT) microbiome

(Charlson et al., 2010), and the mediator model (2.1) and the forward outcome model (2.2) as gen-

erative models. We focused on the sample size 100 but also considered 30 in some cases, because

our murine microbiome dataset has 36 samples. Suppose that the exposure variable Ti is binary and

that an equal number of samples were exposed (Ti = 1) and unexposed (Ti = 0). We considered

continuous outcomes as well as binary outcomes. In what follows, we number the taxa by decreasing

relative abundance so that taxon 1 is the most abundant. We considered three mediation mecha-

nisms, in which we assumed the mediating taxa were the top five most abundant taxa (taxa 1–5),

five less abundant taxa (taxa 51–55), and a mixture of the two sets (taxa 4–5 and 51–52); we refer to

them as M-common, M-rare, and M-mixed, respectively. In all scenarios, we selected taxa 6–10 to

be associated with the exposure but not with the outcome, and taxa 11–15 to be associated with the

outcome but not with the exposure, corresponding to the type-I and type-II null taxa, respectively.

To generate the read count data, we first set the baseline (when Ti = 0) relative abundances of all

taxa for all samples, denoted by ⇡i = (⇡i1,⇡i2, . . . ,⇡iJ), to the population means that were estimated

from the URT data. To induce the e↵ects of the exposure Ti on a set of associated taxa (e.g., the

mediating taxa or type-I null taxa), for those unexposed we kept ⇡i unchanged; for those exposed we

decreased ⇡ij for some of the associated taxa by a percentage, which equals �TM for the mediating

taxa and ↵TM (0 or 0.6) for the type-I null taxa, and we redistributed the decreased amount evenly

over the remaining of the associated taxa. This way ensures that the relative abundances of non-

associated taxa remain intact and the modified ⇡i satisfies the compositional constraint (unit sum).

Note that �TM captures the e↵ects of the exposure on the mediating taxa and ↵TM captures the

e↵ects of the exposure on the type-I null taxa. Specifically, in M-common, the increasing set of
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the mediating taxa was taxa 1–2 and the decreasing set was taxa 3–5; in M-rare, the two sets were

taxa 51–52 and 53–55; in M-mixed, the two sets were taxa 4 and 52 and taxa 5 and 51. Among

the type-I null taxa, the two sets were taxa 6–7 and 8–10. The modified ⇡i represents the mean

relative abundances conditional on the exposure value. Then, we introduced sample heterogeneity

by drawing the sample-specific composition ⇡i = (⇡i1,⇡i2, . . . ,⇡iJ) from the Dirichlet distribution

Dir(⇡i, ✓) with mean ⇡i (after modification) and overdispersion ✓ that was set to 0.02 (as estimated

from the URT data). Finally, we generated the read count data Mi = (Mi1,Mi2, . . . ,MiJ) using

the Multinomial distribution with mean ⇡i and the library sizes (sequencing depth) sampled from

N(10000, (10000/3)2) and left truncated at 500.

To generate the outcome that is influenced by the mediating taxa, denoted by M, and the type-II

null taxa, denoted by N , we partitioned each set of taxa into two subsets (M1 and M2, N1 and

N2) with approximately equal total relative abundance. In particular, we set M1 and M2 to be the

increasing and decreasing sets, respectively, that were determined earlier relative to the exposure and

have similar total relative abundance; we set N1 and N2 to be taxa 11–12 and 13–15, respectively.

To simulate a continuous outcome, we used the model

Oi = �TOTi + �MOscale

0

@
X

j2M1

⇡ij �
X

j2M2

⇡ij

1

A + ↵MOscale

0

@
X

j2N1

⇡ij �
X

j2N2

⇡ij

1

A + ✏i, (2.5)

where scale(.) is a scaling function that standardizes a variable to have mean 0 and standard deviance

1, �TO characterizes the direct e↵ect of the exposure on the outcome and was fixed at 0.2 here, �MO

characterizes the e↵ects of the mediating taxa on the outcome, ↵MO characterizes the e↵ects of

the type-II taxa and was fixed at 0 or 0.4, and the error term ✏i was drawn from N(0, 0.52). It

can be verified that the taxa that are neither mediators nor type-II null taxa were uncorrelated

with the outcome after controlling for Ti, owing to the counterbalancing e↵ects of taxa in M1 and

M2 (or N1 and N2) on the outcome. To simulate a binary outcome, we calculated the probability

Pr(Oi = 1|Ti,⇡i) = exp(µi)/{1+exp(µi)} with µi being the same linear predictor as in (2.5), without

the error term ✏i.

To simulate a confounder, we note that a confounder has e↵ects on the exposure, the microbiome,

and the outcome (Figure 1.1(b)). Thus, we first simulated the binary confounder Zi with 70%

”success” rate among the exposed and 30% among the unexposed. Then, we used the same decreasing

and increasing sets of the mediating taxa as determined earlier, now with the deduction percentage

�ZM = 0.3, and the same operation as for the exposure to further modify ⇡i for those with Zi = 1.

Finally, we modified the linear predictor in the outcome model (2.5) to include the term �ZOZi with
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Table 2.1: Type I error (at level 0.05) of the global tests in M-mixed with a continuous outcome and
no confounder, in 12 scenarios under the global null

Method
�TM �MO ↵TM ↵MO Type(s) of null LDM-med-global MedTest MODIMA
0.0 0.4 0.0 0.0 II 0.010 0.024 0.044

0.4 II 0.007 0.024 0.048
0.6 0.0 I, II 0.010 0.504 0.936

0.4 I, II 0.010 0.547 0.985
0.6 0.0 0.0 0.0 I 0.004 0.031 0.042

0.4 I, II 0.007 0.270 0.720
0.6 0.0 I 0.008 0.038 0.051

0.4 I, II 0.010 0.282 0.811
0.0 0.0 0.0 0.0 III 0.000 0.004 0.003

0.4 II 0.005 0.018 0.039
0.6 0.0 I 0.006 0.030 0.053

0.4 I, II 0.009 0.317 0.813

Note: MedTest is the omnibus test that combines results from analyzing the Bray-Curtis and Jaccard distances. MODIMA
is based on the Bray-Curtis distance. The parameters �TM and �MO determine the type of null that the pre-selected
mediating taxa reduce to; ↵TM controls the existence of the pre-selected type-I null taxa and ↵MO controls the existence of
the pre-selected type-II null taxa.

�ZO fixed at 0.7.

Prior to analysis, we filtered out taxa that were found in fewer than 5 subjects in the dataset,

which resulted in ⇠460 taxa remaining in analysis. For testing mediation e↵ects at individual

taxa, we compared our four approaches: LDM-med-maxP, LDM-med-product, LDM-med-subset,

and LDM-med-HDMT (using the asymptotic version as recommended because the proportions of

the type-I and type-II null taxa are small in all scenarios here). The sensitivity (proportion of the

truly mediating taxa that were detected) and empirical FDR were assessed at the nominal level of

10% based on 1000 replicates of data. Note that none of CMM, SparseMCMM, and Zhang’s method

worked for our simulated data, as they either gave errors (due to the large number of taxa or extensive

zero count data) or ran more than 10 hours. For testing the overall mediation e↵ect, we applied

LDM-med-global and compared it to MedTest and MODIMA whenever the latter were applicable.

For MedTest, we adopted the omnibus test based on both the Bray-Curtis and Jaccard distance

matrices, which would work well when mediating taxa are abundant and less abundant, respectively,

and thus form a complementary pair. For MODIMA, we chose Bray-Curtis, as MODIMA allows

one distance measure only and Bray-Curtis is the most commonly used distance in the literature

and was also frequently used in the MODIMA paper. The type I error and power were assessed at

the nominal level 0.05 based on 10000 and 1000 replicates of data, respectively.

2.2.2 Simulation results

For testing mediation at individual taxa, the subset approach (LDM-med-subset) had substantially

improved sensitivity over the product (LDM-med-product) and maxP (LDM-med-maxP) approaches

in all scenarios, while the latter two always had similar performance (Figures 2.1–2.5, A1–A2). As
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Figure 2.1: Simulation results in M-mixed with a continuous outcome and no confounder, in the
absence of type-I and type-II null taxa (↵TM = 0 and ↵MO = 0). The upper and middle panels
pertain to sensitivity and empirical FDR, respectively, of the four approaches to testing individual
taxa: LDM-med-product, LDM-med-maxP, LDM-med-subset, and LDM-med-HDMT, which are
based on the product of coe�cients as the test statistic, the maximum of coe�cient p-values as the
test statistic, a subset of promising taxa, and the HDMT procedure, respectively. The gray dotted
line in the middle panel represents the nominal level of 10% for the FDR. The lower panel pertains
to power of the proposed global test, LDM-med-global, and the existing global tests, MedTest and
MODIMA. The gray dashed line there represents the nominal level 0.05 for the type I error.
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Figure 2.2: Simulation results in M-mixed with a continuous outcome and a confounder, in the
absence of type-I and type-II null taxa. MODIMA was excluded because it does not allow adjustment
of confounders.
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Figure 2.3: Simulation results in M-mixed with a continuous outcome and no confounder, in the
presence of type-I and type-II null taxa (↵TM = 0.6 and ↵MO = 0.4). MedTest and MODIMA were
both excluded because they did not control the type I error (Table 2.1).
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expected, all three approaches yielded conservative empirical FDR in all scenarios. Although the

empirical FDR of the HDMT approach (LDM-med-HDMT) are less conservative (i.e., closer to the

nominal level), its sensitivity results are generally comparable to those from LDM-med-subset in all

scenarios. For these reasons, we always select LDM-med-subset as the recommended method for

testing individual taxa.

The type I error results of the global tests in M-common, M-rare, and M-mixed are summarized in

Tables 2.1 and A1. We considered 12 scenarios under the global null hypothesis, each corresponding

to a specific combination of the three types of null taxa in a simulated community. For example,

when (�TM,�MO,↵TM,↵MO) = (0, 0.4, 0, 0), the pre-selected mediating taxa reduced to the type-II

null taxa (�TM = 0 and �MO = 0.4), and both the pre-selected type-I and type-II null taxa reduced

to the type-III null taxa (↵TM = 0 and ↵MO = 0); here the type-III null taxa were viewed as a

special case of either the type-I or type-II null taxa whichever existed in the community, so this

community was determined to have type-II null taxa only. Clearly, MedTest and MODIMA easily

lost control of the type I error whenever the type-I and type-II null taxa coexisted in the community.

In all scenarios, LDM-med-global controlled the type I error; in fact, it was conservative as expected.

In scenarios that consist of a single type of null taxa, MedTest and MODIMA controlled the type

I error; then LDM-med-global appeared to have more conservative type I error than MedTest and

MODIMA because LDM-med-global still allowed di↵erent taxa to be under di↵erent types of null.

In the presence of a confounder (Table A2), LDM-med-global controlled the type I error even

when the confounder was not adjusted for, due to its conservativeness. As this provided no clue to

the extent of the confounding e↵ect and thus the capability of LDM-med-global in adjusting for the

confounding e↵ect, we considered a variant of LDM-med-global, called LDM-med-global⇤, that used

the information on the type of null for each taxon (only available in simulation). Specifically, we

modified Z(b)
j

to be max(p1,j , p
(b)
2,j), max(p(b)1,j , p2,j), or max(p(b)1,j , p

(b)
2,j) depending on the actual type

of null at taxon j. LDM-med-global⇤ yielded inflated type I error when the confounder was not

adjusted in the regression and type I error close to 0.05 when it was adjusted, demonstrating that

LDM-med-global⇤ (and hence LDM-med-global) was e↵ective in adjusting for confounders.

For evaluating power of the global tests, we started with the scenarios when there were neither

type-I nor type-II null taxa (↵TM = ↵MO = 0), under which MedTest and MODIMA were valid.

We also started with the simple case of a continuous outcome and no confounder. In M-common

(Figure A1), MedTest and MODIMA were more powerful than LDM-med-global, whereas in M-rare

(Figure A2), they were much less powerful than LDM-med-global, demonstrating that MedTest and

MODIMA were e↵ective in capturing mediation e↵ects in abundant taxa but in not rare ones. In
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M-mixed (Figure 2.1), the power of LDM-med-global crossed with that of MedTest and MODIMA;

LDM-med-global performed best when �MO was relatively large. The relative power of LDM-med-

global and MedTest remained largely unchanged when a confounder was introduced to M-mixed

(Figure 2.2); MODIMA was not included for comparison in this case because it cannot adjust for

the confounder. When the type-I and type-II null taxa were both introduced (Figure 2.3), they in-

validated both MedTest and MODIMA but minimally a↵ected the performance of LDM-med-global.

When we switched to a binary outcome (Figure 2.4), LDM-med-global lost power to MedTest and

MODIMA. We wanted to know whether the power loss was the price that LDM-med-global paid

in order to always allow di↵erent types of null at di↵erent taxa. To investigate this, we consid-

ered another variant of LDM-med-global, called LDM-med-global⇤⇤, that assumed the same type of

null (unknown) across all taxa as assumed in MedTest and MODIMA, and modified Z(b)
global to be

max
�P

J

j=1[max(p1,j , p
(b)
2,j)]

�1,
P

J

j=1[max(p(b)1,j , p2,j)]
�1,

P
J

j=1[max(p(b)1,j , p
(b)
2,j)]

�1
 
. Indeed, LDM-

med-global⇤⇤ gained substantially power over LDM-med-global and had comparable or even better

power than MedTest. Finally, when the sample size was reduced to merely 30 in the same scenario

as in Figure 2.1, we observed similar patterns of results in Figure 2.5 compared to Figure 2.1.

2.2.3 Murine microbiome study

We analyzed the data generated from a murine microbiome study (Schulfer et al., 2019), which was

conducted to explore whether the sub-therapeutic antibiotic treatment (STAT) would alter the gut

microbiome composition and whether the altered gut microbiome would a↵ect the body weight gain

later in life. We focused on male mice for this analysis. The male mice were first randomized into

the STAT and control groups, which was used as a binary exposure variable in our analysis. Then,

their fecal samples were collected longitudinally at days 21 and 28. Bacterial DNAs were extracted

from the fecal samples, sequenced for the 16S rRNA gene, and summarized into a taxa count table

that initially contained 149 genera. Samples with less than 1800 reads, and genera with less than

10% presence or 0.01% mean relative abundance were filtered out, so the final taxa count table for

our analysis included 41 genera and 36 mice (23 exposed to STAT and 13 unexposed); each mouse

had two microbiome measurements at both time points. The mice body weight (in grams) prior

to sacrifice was measured and used as a continuous outcome variable in our analysis. There were

no additional covariates to be adjusted, as all potential confounders had been well-controlled in the

randomized experiment.

It can be seen from Figure A3 that mice exposed to STAT were heavier than the control mice,
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Figure 2.4: Simulation results in M-mixed with a binary outcome and no confounder, in the absence
of type-I and type-II null taxa. LDM-med-global⇤⇤ is a variant of LDM-med-global that assumed
the same type of null (unknown) for all taxa as was assumed in MedTest. The sample size was
increased to 200 to obtain adequate power.
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Figure 2.5: Simulation results in the same scenario as in Figure 2.1 but with sample size 30.
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with a small Wilcoxon p-value 0.011. This motivated us to test whether this e↵ect of STAT on body

weight was mediated through the gut microbiome. For detecting individual mediating taxa (at the

nominal FDR level of 20%, which was relatively high because the total number of genera was small),

we applied LDM-med-subset and LDM-med-HDMT. For testing the overall mediation e↵ect of the

gut microbiome, we applied LDM-med-global, as well as MedTest, MODIMA, and SparseMCMM

whenever they were applicable. Note that, although the outcome distribution somewhat deviated

from the normal distribution (Figure A3), all methods should be robust to the deviation because

LDM-related tests treat the outcome as a covariate, and MedTest, MODIMA, and SparseMCMM

all base their inference on permutation.

All main results were summarized in Table 2.2. We first restricted our mediation analysis to the

cross-sectional microbiome data at day 28 only. LDM-med-subset detected seven significant media-

tors, [Ruminococus] (a species that is misclassified to the genus Ruminococcus and is now awaiting

to be formally renamed through the appropriate Code of Nomenclature), Candidatus Arthromitus,

Clostridiales, Clostridium, Ruminococcus, Dehalobacterium, and Oscillospira, among which the first

three genera were detected by LDM-med-HDMT. If the nominal FDR level of 10% were used, LDM-

med-subset would detect one mediator [Ruminococcus] while LDM-med-HDMT would detect none.

These results provided additional support for selecting LDM-med-subset over LDM-med-HDMT.

Although SparseMCMM identified six mediators (shown in their Table A9), two of which ([Ru-

minococus] and Clostridium) overlapped with our detection list, SparseMCMM had no control for

the FDR. To gain more insights into these results, we performed analysis of the bivariate associa-

tion between the exposure and the relative abundance of each taxon using the Wilcoxon rank-sum

test, and the bivariate association between each taxon and the outcome conditional on the expo-

sure using the standard linear regression (treating the outcome as the response variable, and the

exposure and taxon as covariates). We corrected multiple testing in each association analysis by the

Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) at the nominal FDR level of 20%.

As shown in Table A3, 25 taxa were detected to be associated with the exposure, including all seven

mediators detected by LDM-med-subset; five of the seven mediators were confirmed to be associ-

ated with the outcome, and the other two mediators ranked next but failed to pass the threshold

of significance here. Thus, the mediators identified by LDM-med-subset seem plausible. For testing

the community-level mediation, LDM-med-global produced a global p-value 0.0351. SparseMCMM

yielded a more significant global p-value 0.004. Both MedTest (the omnibus test of Bray-Curtis

and Jaccard distances) and MODIMA (based on the Bray-Curtis distance) produced non-significant

global p-values 0.379 and 0.133, respectively.
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Table 2.2: Mediation analysis of the murine microbiome dataset
Three analyses

Day 28 Days 21 & 28 Day 28
(continuous (clustered (multivariate

Method outcome) samples†) outcome‡)
Detected taxa LDM-med-subset [Ruminococcus]

⇤
[Ruminococcus] None

(FDR = 20%) Candidatus Arthromitus Candidatus Arthromitus
⇤

Clostridiales Clostridiales

Clostridium Clostridium
⇤

Ruminococcus

Dehalobacterium

Oscillospira

LDM-med-HDMT [Ruminococcus] [Ruminococcus] None
Candidatus Arthromitus Candidatus Arthromitus

Clostridiales Clostridiales

Clostridium

Global p-value LDM-med-global 0.0351 0.0387 0.633
MedTest 0.379 - -
MODIMA 0.133 - 0.177
SparseMCMM 0.004 - -

Note: [Ruminococcus] is a species that is misclassified to the genus Ruminococcus and is now awaiting to be formally
renamed through the appropriate Code of Nomenclature. ⇤: taxa that would have been detected at the nominal FDR level
of 10%. †: the microbiome data from days 21 and 28 tend to cluster within subjects, i.e., more correlated within subjects.
‡The weight gain outcome values were categorized into three categories by the 33rd and 66th percentiles. The detected taxa
are listed such that the common taxa generated from di↵erent analyses appear in the same rows.

We also performed mediation analysis of the longitudinal (clustered) microbiome data at both

days 21 and 28. Note that the outcome was observed only once per subject. While no other meth-

ods exist to analyze mediation of the microbiome data with correlations, LDM-related tests inherited

such a capability from the LDM (by setting perm.within.type=”none” and perm.between.type=”free”).

Here, a time variable (1/0) indicating day 28 was included as a covariate Z, as the microbiome com-

position was found to be significantly di↵erent between the two times (p-value 0.040 by the LDM

for analyzing the matched-pair data). The results of mediation analysis by LDM-related tests were

largely consistent with the previous results based on the data at day 28 only. We again performed

analysis of bivariate associations between the exposure and each taxon by applying the LDM to the

clustered data (adjusted for the time e↵ect); we performed analysis of bivariate associations between

each taxon and the outcome conditional on the exposure using the standard linear regression (re-

gressing the outcome variable on the exposure, the relative abundances of the taxon at days 21 and

28, and testing the joint e↵ect of the two relative abundance variables using the F -test). The results

were again largely consistent with the previous results on bivariate associations using the data at

day 28 only (Table A3).

Finally, to illustrate the capability of LDM-related tests to handle categorical outcome variables,

we converted the continuous outcome variable into a three-level categorical variable by the 33rd and

66th percentiles. For this type of outcome variables, only LDM-related tests and MODIMA were

applicable, none of which, however, identified any significant mediation e↵ect.



32

2.3 Remarks

We presented a new approach to mediation analysis of the microbiome that is based on inverse

regression and the LDM framework. We call the mediation framework based on the LDM LDM-

med, which consists of LDM-med-subset for testing the taxon-level mediation and LDM-med-global

for testing the community-level mediation. LDM-med o↵ers maximum robustness to the complex

features in the taxa count data (e.g., high-dimensionality, sparsity, and overdispersion), and provides

extensive flexibility to accommodate various exposures and outcomes and study designs. Specifically,

using the simulated and real data, we demonstrated the capabilities of LDM-med to deal with null

taxa under di↵erent types of null hypothesis of no mediation, continuous, binary, and multivariate

outcomes, clustered data with the exposure and outcome variables varying between the clusters, and

adjustment of confounding covariates. In addition, LDM-med could also handle clustered data with

the exposure and/or outcome variables varying within the clusters (Zhu et al., 2021), and perform

analysis at the presence-absence scale using a rarefaction-without-resampling approach (Hu and

Satten, 2021). In summary, LDM-med can be highly useful in practice.

We have added LDM-med to our existing R package LDM. The computation of LDM-med is as

e�cient as the LDM. For example, using a single-thread MacBook Pro laptop (2.9 GHz Quad-Core

Intel Core i7, 16GB memory), it took 46s to analyze one simulated dataset having 100 samples and

⇠460 taxa (after filtering); it took 126s to analyze one simulated dataset having 200 samples and

⇠700 taxa (after filtering). The murine dataset was at a smaller scale, consisting of 36 mice and 41

genera, so it took only 5s and 12s to analyze the data at day 28 only and the data at both day 21

and day 28, respectively.

LDM-med tests the marginal mediation e↵ect for each taxon, and thus the identified mediators

may not all be true biological mediators, which are called ”probable mediators” but not ”true

mediators” (Sampson et al., 2018). This compromise was made in order to obtain controlled FDR

for the detected mediators, which we deem as critical in the initial ”scan” of high-dimensional

features to generate ”targets” to follow up in the downstream mechanistic study. This strategy has

been very common in the analysis of high-dimensional omic data (Asher et al., 2009; Hu et al., 2015;

Sampson et al., 2018).
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3.1 Method

3.1.1 Motivation

Assuming a continuous outcome and a continuous mediator and further assuming no exposure-

mediator interaction and no unmeasured confounding, the classical mediation model (Baron and

Kenny, 1986) specifies a linear model for the mediator and a linear model for the outcome:

E(M |Z, T ) = ↵0 + ↵T
ZZ + ↵TT, (3.1)

E(O|Z, T,M) = ✓0 + ✓TZZ + ✓TT + ✓MM. (3.2)

Note that ↵T characterizes the e↵ect of T on M given Z, and ✓M characterizes the e↵ect of M on O

given Z and T . Then it can be shown that the mediation e↵ect is given by ↵T ✓M (VanderWeele and

Vansteelandt, 2009). However, it is unclear how to use the microbiome composition data, which are

represented by a distance matrix here, as a mediator. Also, the forward outcome model (3.2) is not

easily generalizable to an outcome variable that is discrete, multivariate, or censored survival time.

These limitations motivated us to adopt the inverse regression model that exchanges the positions

of the outcome and the mediator in model (3.2). Inverse regression is a commonly used approach to

testing associations (O’Reilly et al., 2012; Wu and Pankow, 2015; Majumdar et al., 2015). It has a key

advantage of accommodating di↵erent types of outcome variables including multivariate variables.

In what follows, we show that, by proper orthogonalization of the non-microbiome variables, the

inverse regression model we consider “merges” both models (3.1) and (3.2) into one regression model,

which fits nicely into the framework of PERMANOVA that takes the distance matrix as the response

variable. To be specific, we first sequentially orthogonalize variables Z, T , and O, and denote the

residual of T after orthogonalizing against Z by Tr and denote the residual of O after orthogonalizing

against (Z, T ) by Or. Then, we consider the inverse regression model

E(M |Z, T,O) = �0 + �T
ZZ + �TTr + �OOr. (3.3)

For now, we view M as a univariate continuous variable, just as in (3.1) and (3.2). Model (3.3)

implies that E(M |Z, T ) = �0 + �T
ZZ + �TTr, which is exactly model (3.1) after replacing T by

Tr. Thus, we easily obtain that �T = ↵T . Although it is well known that �O 6= ✓M , we see

that �O = 0 and ✓M = 0 coincide as they both capture the microbiome-outcome association given

(Z, T ). As a result, testing �T�O = 0 is equivalent to testing ↵T ✓M = 0, i.e., whether there exists a
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mediation e↵ect through M . We find that model (3.3) fits nicely into the PERMANOVA framework,

in which we view M as a distance matrix and the linear regression as a partition of M into additive

components corresponding to the orthogonal factors (Z, Tr, Or).

3.1.2 PERMANOVA-med: Extension of PERMANOVA to mediation

analysis

Following the same notation in (1.1) and (1.2), under model (3.3), we set submodels X1 = Z, X2 =

Tr, and X3 = Or and denote the PERMANOVA F -statistics for testing microbiome associations

with Tr and Or by FT and FO, respectively. Then, we propose to test the existence of a mediation

e↵ect by the microbiome, i.e., H0 : �T�O = 0, using the test statistic

UPERMANOVA-med = FTFO.

To claim a mediation e↵ect by the microbiome, both the exposure-microbiome and microbiome-

outcome associations (given the exposure) are required to be significant. Thus, the null hypothesis of

no mediation is a composite null that consists of no exposure-microbiome association, no microbiome-

outcome association, or neither. Accordingly, we construct the statistic for the bth permutation

replicate,

U(b)
PERMANOVA-med = max

n
F (b)
T

FO, FTF
(b)
O

, F (b)
T

F (b)
O

o
,

where the three product terms correspond to the statistics under the three types of null hypotheses.

Then, the p-value is obtained as the proportion of U(b)
PERMANOVA-med that are equal to or larger than

the observed statistic UPERMANOVA-med. Note that all the F -statistics needed for calculating the

p-value are directly available from PERMANOVA. As a result, our mediation analysis implemented

in the PERMANOVA framework naturally inherits all the features in PERMANOVA.

3.2 Numerical Studies

3.2.1 Simulation studies

Our simulations were based on data on 856 taxa of the upper-respiratory-tract (URT) microbiome

(Charlson et al., 2010), and the mediator model (3.1) and the forward outcome model (3.2) as gen-

erative models. We considered both binary and continuous exposure variables, continuous outcome

variables, and 100 or 200 sample size (n); note that both MedTest and MODIMA papers considered
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continuous exposures only. In what follows, we number the taxa by decreasing relative abundance

so that taxon 1 is the most abundant. We considered three mediation mechanisms, in which we

assumed the mediating taxa were the top five most abundant taxa (taxa 1–5), 100 relatively rare

taxa (taxa 51–150), and a mixture of abundant and relatively rare taxa (taxa 4, 5, 51, and 52),

which are referred to as M-common, M-rare, and M-mixed, respectively. We further assumed that

the mediating taxa played the role through their relative abundances in M-common and M-mixed

and through their presence-absence (0/1) statuses in M-rare.

Specifically, for a binary exposure Ti, we assigned half of the samples Ti = 1 and the other half

Ti = 0. For a continuous exposure Ti, we sampled Ti from the Beta(2, 2) distribution. We initially

set the baseline relative abundances of all taxa for all samples to the population means that were

estimated from the real data, which we denote by ⇡i = (⇡i1,⇡i2, . . . ,⇡iJ). To induce the e↵ects of the

exposure on the mediating taxa, we decreased ⇡ij by the percentage �TMTi (2 [0, 1]) for taxa 3–5 in

M-common and taxa 5 and 51 in M-mixed, and then redistributed the decreased amount evenly over

the remaining mediating taxa, i.e., taxa 1–2 in M-common and taxa 4 and 52 in M-mixed. In M-rare,

we set ⇡ij for the mediating taxa to 0 with the probability �TMTi independently, and increased ⇡ij of

the most abundant taxon by the total mass that had been set to 0 (which did not a↵ect the presence-

absence statuses of the most abundant taxon as it was always present). This way of modifying ⇡i

did not change the relative abundances of non-associated taxa (except for the most abundant taxon

in M-rare) and the modified ⇡i still satisfied the compositional constraint (unit sum). Note that

�TM characterizes the exposure-microbiome (T-M) association and �TM = 0 corresponds to no T-M

association. Next, we drew the sample-specific composition ⇡i = (⇡i1,⇡i2, . . . ,⇡iJ) from the Dirichlet

distribution Dir(⇡i, ✓), where the overdispersion parameter ✓ was set to 0.02 (as estimated from the

real data). Then, we generated the read count data using the Multinomial distribution with mean

⇡i and library size (sequencing depth) sampled from N(10000; (10000/3)2) and truncated at 2000.

Finally, we scaled each read count by the library size to obtain the observed relative abundance,

denoted by Mij for taxon j in sample i.

In M-common and M-mixed, we generated the continuous outcome Oi from the following model

that allows di↵erent directions for the e↵ects of di↵erent taxa on the outcome:

Oi = �TOTi + �MOscale

0

@
X

j2A1

Mij �
X

j2A2

Mij

1

A+ ✏i, (3.4)

where A1 and A2 are the “increasing” and “decreasing” subsets of mediating taxa as determined

above and ✏i ⇠ N(0, 0.52). In M-rare, we let A1 and A2 to include taxa 51–100 and taxa 101–150,
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Table 3.1: Type I error (at the level 0.05) in analysis of simulated data without a confounder
Scenario Exposure �TM �TO n PERMANOVA-med MedTest MODIMA
M-common Binary 0.2 0.1 100 0.012 0.021 0.017

0.4 0.1 100 0.044 0.049 0.046
0.4 0.8 100 0.044 0.049 0.086
0.4 0.8 200 0.046 0.052 0.126

Continuous 0.4 0.1 100 0.009 0.016 0.013
0.6 0.1 100 0.026 0.032 0.025
0.6 0.8 100 0.026 0.032 0.040
0.6 0.8 200 0.048 0.045 0.072

M-mixed Binary 0.4 0.1 100 0.014 0.019 0.017
0.6 0.1 100 0.039 0.043 0.040
0.6 0.8 100 0.039 0.043 0.047
0.6 0.8 200 0.048 0.049 0.068

Continuous 0.6 0.1 100 0.004 0.010 0.007
0.8 0.1 100 0.011 0.016 0.013
0.8 0.8 100 0.011 0.016 0.016
0.8 0.8 200 0.027 0.033 0.038

M-rare Binary 0.2 0.1 100 0.039 0.041 0.042
0.4 0.1 100 0.050 0.028 0.041
0.4 0.8 100 0.050 0.028 0.088
0.4 0.8 200 0.052 0.023 0.125

Continuous 0.6 0.1 100 0.045 0.046 0.042
0.8 0.1 100 0.044 0.034 0.039
0.8 0.8 100 0.044 0.034 0.082
0.8 0.8 200 0.049 0.026 0.125

Note: The type I error results were generated at �MO = 0 (i.e., no M-O association), and thus the same for datasets using
di↵erent sets of taxa for generating the M-O association.

respectively, and replaced Mij in (3.4) by I(Mij 6= 0). We also considered a modification of the

microbiome-outcome (M-O) association by restricting A1 and A2 to a subset of originally selected

taxa, i.e., taxa 4 and 5 in M-common, taxa 51 and 52 in M-mixed, and taxa 101–150 in M-rare.

We simulated a binary confounder Zi in settings with a binary exposure. Note that a confounder

is associated with the exposure, the microbiome, and the outcome simultaneously. First, we gen-

erated Zi = 1 with probability 0.7 among samples with Ti = 1 and with probability 0.3 among

those with Ti = 0. Then, we used the same operation as used for simulating the T-M association,

except that we replaced �TMTi by �ZMZi with �ZM = 0.6, to further modify ⇡ij based on Zi for the

mediating taxa that had been modified based on Ti. Finally, we added the term �ZOZi with �ZO =

0.7 to model (3.4).

We applied PERMANOVA-med and compared it to MedTest and MODIMA, for testing the

mediation e↵ect of the microbiome in the simulated data. In M-common and M-mixed, all tests

were based on the Bray-Curtis distance. In M-rare, all tests were based on the Jaccard distance.

The type I error and power of all tests were assessed at the nominal level 0.05 based on 10000 and

1000 replicates of data, respectively.
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Table 3.2: Type I error (at the level 0.05) in analysis of simulated data with a binary exposure and
a binary confounder

Scenario �TM PERMANOVA-med MedTest MODIMA
M-common 0.2 0.008 0.014 0.242

0.4 0.035 0.040 0.385
M-mixed 0.4 0.006 0.015 0.056

0.6 0.020 0.029 0.103
M-rare 0.2 0.026 0.036 0.279

0.4 0.046 0.035 0.238

Note: �TO = 0.1, �MO = 0, and n = 100. MODIMA does not allow adjustment of confounders.

3.2.2 Simulation results

We first present results for the simulated data without a confounder. The power of the PERMANOVA-

med, MedTest, and MODIMA with varying values of �MO, �TM, �TO, and sample size n are displayed

in Figures 3.1, 3.2, and 3.3 for M-common, M-mixed, and M-rare, respectively. The numerical values

of the type I error rates (when �MO = 0) shown in these figures are also listed in Table 3.1.

In M-common with a binary exposure, when the same abundant taxa (taxa 1–5) were used to

generate both the T-M and M-O associations (Figure 3.1(a)), MedTest was slightly more powerful

than PERMANOVA-med, possibly because the top PCs used by MedTest e↵ectively captured both

the T-M and M-O associations. When a subset of taxa (taxa 4 and 5) were used for generating

the M-O association (Figure 3.1(b)), the power of MedTest declined much more quickly than the

power of PERMANOVA-med, as the PCs that captured the T-M association (e.g., PC1) may not

coincide with the PCs that captured the M-O association (e.g., PC2). MODIMA seemed to be very

powerful in some cases (e.g., Figure 3.1(a)), but its performance was sensitive to the value of �TO.

In particular, MODIMA generated inflated type I error when �TO was enlarged to 0.8 and especially

when n was also increased from 100 to 200.

In M-common with a continuous exposure, which tended to result in more complex variation

patterns in the data than a binary exposure, MedTest (and MODIMA) lost the advantage in power

to PERMANOVA-med, even when taxa 1–5 were used for both the T-M and M-O associations

(Figure 3.1(c)). Again, MedTest lost further, considerable power to PERMANOVA-med when taxa

4 and 5 were used for the M-O association (Figure 3.1(d)) and MODIMA yielded inflated type I

error when �TO and n were both large.

As expected, PERMANOVA-med always had significantly higher power than MedTest in M-

mixed (Figure 3.2), and the power di↵erence was more pronounced in M-rare (Figure 3.3), since

PCs became less e�cient in capturing variations in less abundant taxa. In M-rare, MODIMA was

uniformly less powerful than PERMANOVA-med, even its type I error was clearly inflated.

Finally, when a confounder was added to the simulated data, MODIMA, without the capability
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to adjust for the confounding e↵ect, produced very inflated type I error (Table 3.2). Note that,

PERMANOVA-med and MedTest always controlled the type I error below the nominal level, with

(Table 3.2) or without (Table 3.1) the confounder.

3.2.3 Real data on melanoma immunotherapy response

The real data (Spencer et al., 2021) we used were generated from a cohort of 167 melanoma patients,

who received immune checkpoint blockade (ICB) treatment and were classified as 106 responders

and 61 non-responders. Their progression-free survival times (in days) were observed for 61 patients,

censored for 49 patients, and missing for 57 patients. Their gut microbiome were profiled via shotgun

metagenomic sequencing to generate a taxa count table including 225 taxa (lowest taxon known for

a feature, up to species). These patients were further asked to complete a lifestyle survey, which

included assessment of dietary fiber intake and use of probiotic supplements within the past month;

110 provided data for probiotic use, 94 provided data for dietary fiber intake, and 89 provided data

for both.

Spencer et al. (Spencer et al., 2021) found in this dataset that higher dietary fiber intake was

associated with significantly improved progression-free survival, with the most pronounced bene-

fit observed in patients with su�cient dietary fiber intake and no probiotic use. They also found

marginal significance for the association of dietary fiber intake and response to ICB. In addition,

the influence of the gut microbiome on immunotherapy response has been demonstrated in numer-

ous human cohorts as well as in preclinical models (Routy et al., 2018; Matson et al., 2018), and

the human gut microbiome is itself shaped by diet (McDonald et al., 2018) and medication use

(Maier et al., 2018). Given this interplay between diet and medication use, gut microbiome, and

immunotherapy response, a natural question that arose was then whether some e↵ect of dietary fiber

intake and probiotic use on immunotherapy response in this dataset was mediated through the gut

microbiome.

We performed a variety of mediation analyses using this dataset. For the outcome, we considered

both the progression-free survival and the response to ICB, the former of which is a possibly censored

survival time variable and the latter is a binary variable. For the exposure, we considered the dietary

fiber intake (su�cient or insu�cient), the probiotic use (no/yes), and the four-level categorical

variable defined by both dietary fiber intake and probiotics use. Following (Spencer et al., 2021),

we additionally compared patients with su�cient dietary fiber intake and no probiotic use to all

other three groups. We selected body mass index (BMI), prior treatment, lactate dehydrogenase
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(a) Binary exposure, taxa 1–5 for the M-O association
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(b) Binary exposure, taxa 4 and 5 for the M-O association
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(c) Continuous exposure, taxa 1–5 for the M-O association
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(d) Continuous exposure, taxa 4 and 5 for the M-O association
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Figure 3.1: Simulation results in analysis of simulated data under M-common.
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(a) Binary exposure, taxa 4, 5, 51, and 52 for the M-O association
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(b) Binary exposure, taxa 51 and 52 for the M-O association
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(c) Continuous exposure, taxa 4, 5, 51, and 52 for the M-O association
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(d) Continuous exposure, taxa 51 and 52 for the M-O association
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Figure 3.2: Simulation results in analysis of simulated data under M-mixed.
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(a) Binary exposure, taxa 51–150 for the M-O association
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(b) Binary exposure, taxa 101–150 for the M-O association
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(c) Continuous exposure, taxa 51–150 for the M-O association
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(b) Continuous exposure, taxa 101–150 for the M-O association

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

βTM = 0.6, βTO = 0.1, n = 100

βMO

Po
we

r

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

βTM = 0.8, βTO = 0.1, n = 100

βMO

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

βTM = 0.8, βTO = 0.8, n = 100

βMO

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

βTM = 0.8, βTO = 0.8, n = 200

βMO

Figure 3.3: Simulation results in analysis of simulated data under M-rare.
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Table 3.3: P -values from 16 mediation analyses of the data on melanoma immunotherapy response

PERMANOVA-med MedTest MODIMA
Outcome Exposure n BC J Omni BC J Omni BC J Omni

No adjustment of covariates

Progression-free Fiber intake 89 0.808 0.965 0.958 - - - - - -
survival Probiotics 110 0.913 0.716 0.899 - - - - - -

Fiber + probiotics (4 levels) 89 0.777 0.975 0.953 - - - - - -
Su�cient fiber + no probiotics 89 0.717 0.965 0.910 - - - - - -

Response to ICB Fiber intake 94 0.727 0.955 0.903 0.624 0.636 0.837 0.384 0.935 -
Probiotics 110 0.888 0.589 0.794 0.978 0.698 0.898 0.915 0.381 -
Fiber + probiotics (4 levels) 89 0.620 0.980 0.827 - - - 0.430 0.947 -
Su�cient fiber + no probiotics 89 0.490 0.955 0.697 0.276 0.626 0.455 0.441 0.947 -

Adjusting for BMI, prior treatment, LDH, stage

Progression-free Fiber intake 89 0.786 0.990 0.936 - - - - - -
survival Probiotics 110 0.983 0.788 0.947 - - - - - -

Fiber + probiotics (4 levels) 89 0.770 0.995 0.935 - - - - - -
Su�cient fiber + no probiotics 89 0.725 0.980 0.903 - - - - - -

Response to ICB Fiber intake 94 0.870 0.920 0.975 0.832 0.935 0.966 - - -
Probiotics 110 0.973 0.433 0.630 0.911 0.539 0.773 - - -
Fiber + probiotics (4 levels) 89 0.760 0.975 0.928 - - - - - -
Su�cient fiber + no probiotics 89 0.644 0.925 0.850 0.453 0.973 0.682 - - -

Note: BC: Bray-Curtis; J: Jaccard; Omni: the omnibus test that combines the results from analyzing
the Bray-Curtis and Jaccard distances; n: sample size; �: not applicable.

level (LDH), and stage as potential confounders based on our analysis of bivariate associations, and

we performed each mediation analysis with and without adjustment of these confounders. In all 16

mediation analyses, we applied PERMANOVA-med, MedTest, and MODIMA whenever they were

applicable. For each method, we constructed tests based on the Bray-Curtis and Jaccard distance

measures separately, as well as the omnibus test of both distance measures (except for MODIMA).

All results of p-values were summarized in Table 3.3. None of the p-values were significant at

the 0.05 level, possibly due to the small sample sizes. Nevertheless, Table 3.3 demonstrated the

wide applicability of PERMANOVA-med and the limited capabilities of MedTest and MODIMA.

Specifically, neither MedTest nor MODIMA can handle censored survival times (the progression-

free survival); MODIMA cannot adjust confounders (BMI et al.) nor provide an omnibus test (that

combines Bray-Curtis and Jaccard); MedTest cannot handle multivariate exposures (the four-level

categorical variable).

3.3 Remarks

We presented PERMANOVA-med, an extension of PERMANOVA to mediation analysis of micro-

biome data. Through extensive simulation studies, we observed that PERMANOVA-med did not

uniformly outperform MedTest. However, the scenarios in which PERMANOVA-med did outper-

form seemed more realistic and more general, e.g., scenarios with a mixture of abundant and less

abundant mediating taxa, relatively rare mediating taxa, or di↵erent sets of taxa associated with
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the exposure and the outcome. Even in the single scenario that PERMANOVA-med lost power

to MedTest (Figure 3.1(a)), the power loss was relatively small. The power comparison between

PERMANOVA-med and MODIMA was more di�cult, as MODIMA often lost control of the type I

error. Nevertheless, there were many more scenarios in which PERMANOVA-med had higher power

than MODIMA than scenarios when it was the opposite.

The main advantage of PERMANOVA-med over MedTest and MODIMA is its wide applicability

to a variety of mediation analyses of microbiome data, which was achieved by using our existing

function permanovaFL. Through analysis of the simulated data and the real data, we have illustrated

most features in Figure 1.2 that are supported by permanovaFL, such as multivariate exposures,

survival outcomes, and omnibus tests of multiple distance measures. Although we did not cover

clustered or matched-set data in this article, these types of data are emerging rapidly in recent years

and may also call for mediation analysis. PERMANOVA-med is well positioned to accommodate

such data in its current form. Further, PERMANOVA-med is not constrained to analysis of micro-

biome data but applicable to any high-dimensional data (e.g., genomic, epigenomic, metabolomic,

proteomic, and cytokine data) that can be summarized into distance matrices. PERMANOVA-med

has been added to the existing function “permanovaFL” in our R package LDM, which is available

on GitHub at https://github.com/yijuanhu/LDM (accessed on 1 May 2022).

Caution is required in interpreting results from PERMANOVA-med (as well as MedTest and

MODIMA). Strictly speaking, a significant p-value from PERMANOVA-med only means that the

microbiome are associated with both the exposure and the exposure-adjusted outcome. External

information on causal direction is needed to declare that the microbiome truly mediate the e↵ect

of the exposure on the outcome. Although the causal directions in the exposure–outcome and

exposure–microbiome relationships may be evident in many cases, the causal direction between the

microbiome and the outcome is often less clear because the change of microbiome may well be a

consequence of the change of outcome rather than a cause.

PERMANOVA-med is limited to testing the mediation e↵ect by the microbiome at the commu-

nity level. Using the idea of inverse regression, we have also extended the LDM, called LDM-med, to

testing microbiome mediation at both the community and individual taxon levels; some of those re-

sults mirror the results we obtained here. Aside from the capability of LDM-med to detect individual

mediating taxa, a major di↵erence between the two works is how we define the mediation e↵ect by

the microbiome. In the current work, we declare a mediation e↵ect whenever the exposure perturbs

some part of the microbial community and some part of the community influence the outcome; the

two parts do not necessarily overlap (e.g., involving di↵erent taxa). This definition is reasonable
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here because, in distance-based analysis, a microbial community is viewed as a whole interconnected

entity. The definition of microbiome mediation in LDM-med was more stringent. Because the main

focus there was to detect individual taxa that act as mediators, only taxa that are first a↵ected

by the exposure and then influence the outcome were declared to be mediating taxa, and only a

community that has mediating taxa in it was declared to have a global mediation e↵ect. In practice,

how to choose between PERMANOVA-med and LDM-med depends on what type of mediation is of

most interest.

PERMANOVA-med is limited to testing the mediation e↵ect by the microbiome at the commu-

nity level. We have previously developed LDM-med to testing microbiome mediation at both the

community and individual taxon levels; some of those results mirror the results we obtained here.

Aside from the capability of LDM-med to detect individual mediating taxa, a major di↵erence be-

tween the two works is how we define the mediation e↵ect by the microbiome. In the current work,

we declare a mediation e↵ect whenever the exposure perturbs some part of the microbial community

and some part of the community influence the outcome; the two parts do not necessarily overlap

(e.g., involving di↵erent taxa). This definition is reasonable here because, in distance-based analysis,

a microbial community is viewed as a whole interconnected entity. The definition of microbiome

mediation in LDM-med was more stringent. Because the main focus there was to detect individual

taxa that act as mediators, only taxa that are first a↵ected by the exposure and then influence the

outcome were declared to be mediating taxa, and only a community that has mediating taxa in it was

declared to have a global mediation e↵ect. In practice, how to choose between PERMANOVA-med

and LDM-med depends on what type of mediation is of most interest.



Chapter 4

Topic 3: Integrative analysis of 16S

marker-gene and shotgun

metagenomic sequencing data

improves e�ciency of testing

microbiome hypotheses
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Figure 4.1: Illustration of the data structure (left) and strategies to analyze the data (right). The
shaded area indicates the data for overlapping sample and taxa between the 16S and SMS taxa count
tables. New EE is Equation (4.2) or (B3) in this manuscript. LOCOM EE is the Firth-corrected
score equation in the LOCOM paper (Hu, Satten and Hu, 2022).

4.1 Method

4.1.1 Motivation

To motivate our method, we characterize the taxa count data generated from 16S and SMS for

the same cohort of samples. First, we investigate the overlap of samples and genera between the

two taxa count tables for the 26 studies found in Qiita. Table B1 shows that, in most cases, there

is partial overlap of samples and genera between the two tables, although the sample overlap is

typically substantial; this data structure is schematically depicted in Figure 4.1 (left). Note that

the library sizes in the two tables can di↵er by orders of magnitude, ranging from 1.4 to 1500 fold.

Then, we compare the observed relative abundances between 16S and SMS for overlapping samples at

overlapping genera, using the ORIGINS data (more information about this dataset is provided in the

Results section). Figures 4.2 and B1 demonstrate that there are systematic di↵erences in observed

relative abundances at many genera even for the second most abundant genus Haemophilus, and

there are many zeros at some genera from either experiment, such as Gemella from 16S; both features

can be explained by di↵erential experimental bias in the two experiments. Besides the systematic

di↵erences at the taxon level, there are also random di↵erences at the sample level due to variation in

sample handling (Nearing et al., 2021), although the agreement tends to be higher for more abundant

genera. In what follows, we first present methodologies for the data from overlapping samples and

taxa, and then show how to accommodate the data from samples and taxa that are unique to only

one experiment.
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Figure 4.2: Scatter plot of observed relative abundances from 16S (x-axis) and SMS (y-axis) for the
top 1–25 most abundant genera (ordered by decreasing abundance) in the ORIGINS data. The ⇢
value is the Pearson correlation coe�cient. The red line is the 45� reference line. The black line
depicts a fitted linear regression. The observed relative abundances are subcompositions among the
125 overlapping genera in the 152 overlapping samples.
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4.1.2 Integrative analysis of 16S marker-gene and shotgun metagenomic

se- quencing data

Let Yik,j be the read count of the jth taxon (j = 1, . . . , J) in the ith sample (i = 1, . . . , n), generated

from the kth experiment (k = 1, 2). Let Zi be a vector of q covariates of the ith sample, which include

the (possibly multiple) traits of interest that we wish to test and other (confounding) covariates that

we wish to adjust for, but excluding the intercept. We consider the following log-linear model that

relates the expected value of the observed relative abundances and true relative abundances, allowing

experiment-specific bias factors:

log(pik,j) = I(k = 1)�1,j + I(k = 2)�2,j + log(⇡i,j) + ↵ik, (4.1)

where ⇡i,j is the true relative abundance of taxon j in sample i irrespective of any experiment, pik,j is

the expected value of the observed relative abundance from the kth experiment, I(.) is the indicator

function, �1,j and �2,j are taxon- and experiment-specific bias factors that describe how the observed

relative abundance is distorted by experimental bias, and ↵ik is the sample-specific normalization

factor that ensures the composition constraint
P

J

j=1 pik,j = 1 for any i and k. We followed (Zhao

and Satten, 2021) to introduce the e↵ects of covariates Zi on taxon j by replacing log(⇡i,j) with

log(⇡0
j
) + ZT

i
�j , where �j contains the e↵ect sizes and ⇡0

j
is the true relative abundance of taxon j

when Zi = 0. Like LOCOM, instead of fitting the multivariate logistic regression (4.1) to all taxa

simultaneously, we fit individualized logistic regressions to each pair of taxa at a time. We choose

one taxon (without loss of generality, the Jth taxon) that has the largest mean relative abundance

(across both tables) to be the reference taxon, and compare all other taxa to the reference taxon

using individualized logistic regressions. Because the most abundant taxa can always be e↵ectively

captured by any experiment, our selection criterion would result in a reference taxon that is among

the top abundant taxa in each table. Specifically, we consider the subcomposition within taxa j and

J : µik,j = pik,j/(pik,j + pik,J), and use (4.1) and log(⇡i,j) = log(⇡0
j
) + ZT

i
�j to obtain a standard

logistic regression

log {µik,j/(1� µik,j)} = ⌘k,j + ZT
i
�j

for each j (j = 1, 2, . . . , J � 1) separately, where the intercept ⌘k,j =
⇥
log(⇡0

j
)� log(⇡0

J
)
⇤
+ I(k =

1)(�1,j � �1,J) + I(k = 2)(�2,j � �2,J) but is considered as a free parameter without the need to

distinguish the baseline relative abundances from the bias factors.
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We propose to estimate (⌘1,j , ⌘2,j ,�j) by solving the estimating equation (EE)

Uj(⌘1,j , ⌘2,j ,�j) =
X

i=1,...n,k=1,2

!ik,j

✓
Yik,j

Yik,j + Yik,J

� µik,j

◆

2

66664

I(k = 1)

I(k = 2)

Zi

3

77775
= 0, (4.2)

where !ik,j is the weight for the observation of sample i from experiment k. The EE of LOCOM

(1.3) can be viewed as a special case of Equation (4.2) when !ik,j is set to Yik,j + Yik,J and all

observations are from one experiment. When !ik,j = Yik,j +Yik,J , the summation in Equation (4.2)

is at the “count” level, and observations with small Yik,j and Yik,J tend to contribute less. In fact,

Equation (4.2) with these weights corresponds to score equations for read count data that follow the

Binominal distribution (i.e., read assignments are independent of each other). Thus, these weights

are optimal when there is minimal overdispersion in the count data (i.e., limited correlation between

the read assignments). Additionally, these weights are reasonable for a taxon when the observations

from one experiment have sparse count data (e.g., due to extraction or amplification ine�ciency)

and should contribute less than the observations from the other experiment, which yielded abundant

count data.

On the other hand, taxa count data are notoriously overdispersed, and the amount of information

quickly reaches a plateau as long as there is moderate coverage of reads. In this case, it is sensible

to use !ik,j = 1, which puts the summation in Equation (4.2) at the “relative abundance” level and

treats the two observations of the same sample equally. These weights are particularly important

when the library size of SMS is orders of magnitude (e.g., 10 times) higher than that of 16S (Table

B1); Equation (4.2) would have been dominated by information from SMS if the count weights were

used. Even when the overall library sizes are comparable between the two experiments, there could

be substantial variation in read coverage at di↵erent taxa due to experimental bias. Since we have

no a priori knowledge as for which weighting scheme works better for which taxa, we adopt the

approach in which we first obtain results from tests with each weighting scheme separately for each

taxon and then construct an omnibus test that combine these results.

The development of tests with a given weighting scheme generally follows the methodologies of

LOCOM. We first estimate �j by solving Equation (4.2) or the bias-corrected estimating equation

(derived in Appendix B) when taxon j has sparse count data. Let �j,1 be the e↵ect size in �j

that corresponds to the trait of interest. Because we have no a priori knowledge about whether the

reference taxon is null or causal (i.e., associated with the trait), we cannot test whether �j,1 = 0
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directly for the hypothesis that taxon j is null. Instead, we make the assumption that more than half

of the taxa are null taxa, which implies that medianj0=1,...,J�j,1 corresponds to �j⇤,1 for a certain null

taxon j⇤, and test whether �j,1�medianj0=1,...,J�j,1 = 0. To this end, we adopt the median-adjusted

estimate of �j,1 as the test statistic, and calculate the p-value using Potter’s permutation scheme

for logistic regression (Potter, 2005), which is based on shu✏ing the trait residuals after regressing

out the other covariates. To preserve the correlations between the 16S and SMS observations from

the same samples in the permutation replicates, we shu✏e as a whole the trait residuals for each

pair of 16S and SMS observations, which have identical values as the pair of observations share the

same covariate values. The taxa with adjusted p-values, calculated using the Benjamini-Hockberg

procedure (Benjamini and Hochberg, 1995) for correcting multiple comparisons, below the nominal

FDR level are declared as di↵erentially abundant. For testing the global hypothesis that there

are no di↵erentially abundant taxa in the community, we adopt the Harmonic Mean (HM) of the

taxon-specific p-values as the test statistic and assess the significance using the existing permutation

replicates. The two test methods (each includes the taxon-level tests and a global test) with the

count weights and equal weights are referred to as New-count and New-equal, respectively. Finally,

we construct an omnibus test for each taxon that uses the smaller p-value of the two tests as the test

statistic, thus allowing the optimal weighting scheme to be selected at each taxon, and we assess its

significance using the existing permutation replicates; the omnibus global test is based on the HM

of the taxon-specific omnibus p-values. We refer to the test method as New-omni.

Next, we extend our methodologies to accommodate the data for samples and taxa that are

unique to one experiment. For an overlapping taxon, when there are samples sequenced by only

one experiment, we make a small modification to Equation (4.2) to allow this sample to contribute

to the summations accordingly. For a non-overlapping taxon, we use the LOCOM EE to estimate

�j . In fact, when a taxon is identified by both experiments but has increasing zero counts in one

experiment, Equation (4.2) applied to this taxon converges to the LOCOM EE (with weights !ik,j).

This implies that the non-overlapping taxon can be considered as a special case of an overlapping

taxon with all zero data from one experiment. Then, the estimates of �j from all (overlapping and

non-overlapping) taxa are pooled to calculate the median and the test statistics. Care should be

taken to preserve the sample structure when generating permutation replicates. The permutation

procedure should be stratified to restrict the shu✏ing of trait residuals in one stratum of samples

that are sequenced in both experiments, one stratum of samples sequenced in one experiment only,

and one stratum sequenced in the other experiment only. This permutation scheme is illustrated in

Figure 4.1 (right).
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Finally, we develop a filter to exclude very rare taxa that can jeopardize the validity of our

method. Note that the filter in LOCOM removes rare taxa present in fewer than 20% of samples.

We continue to apply this filter to non-overlapping taxa that utilize the LOCOM EE. For overlapping

taxa, a sample with a non-zero count from either experiment (i.e., based on the pooled read count)

contributes to the 3rd equation of (4.2), making it reasonable to retain the taxon if more than 20%

of such samples exist. Moreover, we keep the taxon as long as it passes the LOCOM filter applied

to either the 16S part of the data or the SMS part of the data, since Equation (4.2) reduces to the

LOCOM EE in the worse-case scenario when the data from one experiment consist entirely of zeros.

As benchmarks, we consider two alternative approaches to integrative analysis. One naive ap-

proach is to first create a “pooled” taxa count table consisting of the union of samples and the union

of taxa, pool the reads for overlapping samples and taxa, and fill in zeros for taxa unidentified by

an experiment and for samples only sequenced by that experiment. Then, LOCOM can be applied

to the pooled table. We refer to this approach as Com-count. The zero-filling strategy may create

spurious associations for non-overlapping taxa when samples filled with zeros have a di↵erent dis-

tribution of trait values from other samples. Moreover, Com-count shares the same drawbacks as

New-count in cases when the count weights are suboptimal, because Com-count can be equivalently

obtained from New-count by forcing the use of a common intercept and restricting analysis to the

data for overlapping samples and taxa. Lastly, the LOCOM filter applied to the pooled table is

more stringent than the new filter above, i.e., retaining fewer taxa for analysis.

Another approach is to apply LOCOM separately to the two taxa count tables and then combine

the two p-values for overlapping taxa into a single p-value using a p-value combination method.

The resulting p-values, along with directly output p-values from LOCOM for non-overlapping taxa,

are used to detect di↵erentially abundant taxa and also combined into one p-value for testing the

global hypothesis. At each taxon, the two p-values from the same sample are expected to exhibit

a strong (positive) correlation; at the global level, the p-values across interacting taxa may also be

correlated. Therefore, we opt for the Cauchy (Liu and Xie, 2020) or HM (Wilson, 2019) combination

method, which accounts for such correlations, and we use the same method for both levels of p-value

combination. This integrative analysis approach is referred to as Com-p-C or Com-p-HM. Note

that the HM and Cauchy methods generate p-values based on asymptotic theories, while our new

method assesses the significance of the HM statistics via permutation. Com-p-C and Com-p-HM

are inherently unable to produce an overall p-value that is more significant than the most significant

member p-value, whereas the new methods can. Additionally, Com-p-C and Com-p-HM combine

p-values without considering the direction of association in each dataset, whereas the new methods
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tend to strengthen the signal if it is consistent across both datasets and disregard the signal if it

is contradictory. Furthermore, taxa that fail to pass the LOCOM filter based on either taxa count

table are completely missed by this approach, but they still have a good chance of passing the new

filter based on the pooled data, especially when the sample overlap is substantial.

4.2 Numerical Studies

4.2.1 Simulation studies

Our simulations are based on data on 856 taxa of the upper-respiratory-tract (URT) microbiome by

Charlson et al. (Charlson et al., 2010). We fixed the sample size to 100 unless otherwise specified

and considered a binary trait Ti throughout the simulations. In some cases, we also simulated a

continuous confounder Ci by drawing values from U [�1, 1] for samples with Ti = 0 and from U [0, 2]

for those with Ti = 1. We used the two sets of causal taxa (i.e., taxa that are associated with

the trait) employed in (Hu, Satten and Hu, 2022), namely, a random sample of 20 taxa with mean

relative abundances greater than 0.005, as observed in the URT data, and the five most abundant

taxa; we refer to these sets as M1 and M2, respectively. While M1 and M2 comprise moderately

abundant and very abundant causal taxa, respectively, we also considered a set of rare causal taxa

by randomly sampling 50 taxa with mean relative abundances between 0.0005 and 0.001; we refer

to this set as M3. When a confounder was present, we randomly sampled 5 taxa with mean relative

abundances greater than 0.005 to be associated with the confounder.

We assumed that the 856 taxa form the complete set of underlying taxa in the community and

generated bias factors �1,j and �2,j for 16S and SMS, respectively. We set �1,j and �2,j to a very

small value of �5 to create missingness for specific taxa in each experiment. Specifically, in M1

and M3, we selected two sets of five non-overlapping causal taxa to be missing in 16S and SMS. In

M2, the two sets included two taxa each. Additionally, we sampled 20% of non-causal taxa to be

missing in each experiment. We set �1,j and �2,j for the most abundant taxon j to 1, reflecting its

e�cient capture by both experiments. For all other taxa, we independently drew �1,j and �2,j from

N(0, 0.52).

We then simulated read count data for the 856 taxa across two experiments, taking into account

the e↵ects of the trait and confounder as well as the influences of bias factors. First, we drew

the baseline relative abundances (⇡(0)
i,1 ,⇡

(0)
i,2 , . . . ,⇡

(0)
i,J

) of all taxa for each sample from the Dirichlet

distribution Dirichlet(⇡̄, ✓), where ⇡̄ contains the mean relative abundances and ✓ is the overdis-
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persion parameter estimated from fitting the Dirichlet-Multinomial (DM) model to the URT data.

Notably, the parameter ✓ controls sample heterogeneity in baseline relative abundances, excluding

the overdispersion in the process of generating count data; thus, we set ✓ to 0.01, which is half of the

total overdispersion (0.02) estimated from the URT data. Then, we formed the expected value of

the observed relative abundances obtained from the kth experiment, pik,j , by spiking in the causal

taxa and confounder-associated taxa, then imposing bias factors on all taxa, and finally normalizing

the relative abundances to have a sum of 1, resulting in the following equation:

pik,j =
exp

⇥
I(k = 1)�1,j + I(k = 2)�2,j + �1,jTi + �2,jCi)

⇤
⇡(0)
ij

P
J

j0=1 exp
⇥
I(k = 1)�1,j0 + I(k = 2)�2,j0 + �1,j0Ti + �2,j0Ci

⇤
⇡(0)
ij0

. (4.3)

Here �1,j = 0 for null taxa, and �2,j = 0 for confounder-independent taxa. For simplicity, we

set �1,j = � for all causal taxa, which is referred to as the e↵ect size, and fixed �2,j = log(1.5)

for all confounder-associated taxa. Subsequently, we generated the read count data for sample i

obtained from the kth experiment using the DM model with mean (pik,1, pik,2, . . . , pik,J), overdis-

persion parameter ⌧k, and library size drawn from N(⌫1, (⌫1/3)2) and N(⌫2, (⌫2/3)2) for 16S and

SMS, respectively, with left truncation at 2,000. We fixed ⌫1 = 10, 000 and varied ⌫2 to achieve the

depth ratio ⌫1:⌫2 = 1:1 or 1:10. The parameter ⌧k controls the extend to which the observed relative

abundances from the kth experiment deviate from their expected values pik,j . We set ⌧1 = ⌧2 = ⌧

without loss of generality and varied ⌧ between 0.01 and 0.001 corresponding to large and small

deviation.

We began with the complete-overlap case, where data from both experiments were collected for

all 100 samples. We then moved to a partial-overlap case by collecting data from both experiments

for 40 samples (15 cases and 25 controls), from 16S only for 40 samples (30 cases and 10 controls),

and from SMS only for 20 samples (5 cases and 15 controls), which resulted in a dataset with a total

of 100 samples, 50 cases and 50 controls, and varying case-control ratios across the three strata of

samples. We applied New-omni, New-equal, New-count, Com-count, Com-p-C, and Com-p-HM for

the integrative analysis of 16S and SMS data, using LOCOM to analyze each dataset separately as a

reference. In the partial-overlap case, we also compared the proposed permutation scheme based on

three strata of samples for New-omni, New-equal, and New-count to two alternative schemes: one

that combined samples sequenced by only one experiment into a single stratum (two strata), and

another that pooled all samples together (one stratum). We evaluated the sensitivity and empirical

FDR of each method for testing individual taxa at the nominal FDR level of 20%, as well as type

I error and power for testing the global association at the nominal level of 0.05. The type I error
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results were based on 10,000 replicates of simulated data, while all other results were derived from

1,000 replicates.

4.2.2 Simulation results

To confirm that the simulated data captured the important features of the ORIGINS data shown in

Figures 4.2 and B1, we presented similar scatter plots for the simulated data based on the sample

size (n = 152) of the ORIGINS data and ⌧ = 0.001 in Figures B2 and B3. From the simulated

data, we observed that the range of observed relative abundances at each taxon as governed by the

overdispersion parameter ✓, the deviation of the fitted line from the 45� reference line as determined

by the bias factors �1,j and �2,j , and the agreement of individual data points along the fitted line

as impacted by the overdispersion parameter ⌧ , all resemble those of the real data. Similarly, we

presented scatter plots for the simulated data based on the sample size (n = 76) of the dietary data

and ⌧ = 0.01 in Figures B4 and B5, and found patterns comparable to those in the dietary data

shown in Figures B6 and B7.

We concentrate on the results for the complete-overlap case, which provide the most information

on method comparison. The type I error results (at � = 0) from the global tests are shown in Figure

4.3 and B8, while the global power, sensitivity, and FDR for testing individual taxa across various

values of � are displayed in Figures 4.4, B9–B11. As expected, New-count and Com-count produced

very similar results throughout, so we will focus on the results of New-count in the following com-

parison. All methods, except Com-p-HM, controlled the type I error at the nominal level, whereas

Com-p-HM yielded inflated type I error in every scenario. This is not surprising, as Com-p-HM as

well as Com-p-C rely on asymptotic theories, while all other methods are based on permutation.

Due to its inflated type I error, Com-p-HM was excluded in the figures for power comparison. In

addition, Com-p-HM demonstrated similar sensitivity and FDR as Com-p-C when testing individual

taxa, so we will focus on the results of Com-p-C only.

All integrative analyses showed a significant improvement in e�ciency for testing hypotheses

about the microbiome compared to analyses of a single dataset, at both the taxon and global levels.

The increase in sensitivity of detecting causal taxa is substantial, as each experiment failed to capture

certain causal taxa but the combination of both experiments provided better coverage. The boost

in global power is less pronounced, because both the HM and Cauchy statistics are dominated by

a few of the smallest p-values and less influenced by the total number of causal taxa. In all cases,

New-omni exhibited the highest or nearly highest power and sensitivity.
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Figure 4.3: Type I error rate (y-axis) of global tests at the nominal level of 0.05 (gray dashed line),
based on data simulated with completely overlapping samples, an overdispersion of ⌧ = 0.01, and a
depth ratio of 1:10.

In our detailed comparison of various methods for integrative analysis, we will focus on sensitivity,

as power di↵erences are generally small. We begin by confirming that all methods controlled the

FDR at the nominal level across all scenarios. Among all integrative analyses, New-omni consistently

achieved the highest or nearly highest sensitivity in all cases, which was driven at times by New-equal

and at other times by New-count. Specifically, New-equal had higher sensitivity than New-count

in M1 and M2 with an overdispersion of ⌧ = 0.01 and a depth ratio of 1:10, which was expected

as the large overdispersion encouraged observations to be weighted equally, regardless of a 10-fold

di↵erence in coverage. New-count had higher sensitivity than New-equal in M3 because, in cases of

sparse coverage of reads, every read mattered. Com-p-C lost sensitivity to New-omni in M3 with

⌧ = 0.01 because, in the presence of the large overdispersion, some causal taxa failed the LOCOM

filter based on any single dataset but passed the new filter based on pooled data. The sensitivity

loss disappeared when ⌧ was decreased to 0.001. Indeed, there were approximately 5 causal taxa

missed by Com-p-C in a typical replicate of data with ⌧ = 0.01 and only around one when ⌧ = 0.001.

Com-p-C also lost some sensitivity to New-omni in M2 when ⌧ = 0.001.

The same patterns of results persisted when a confounder was simulated (Figure B12). We

confirmed that the confounding e↵ect was substantial, leading to highly inflated type I error if it

was not controlled for (Figure B13, upper panel). All methods (except for Com-p-HM) yielded

proper type I error after adjusting for the confounder (Figure B13, lower panel). Results for the

partial-overlap case are displayed in Figures 4.5 and 4.6. In this general case, Com-count failed to

control the type I error. The permutation scheme based on three strata of samples is the only one

among all schemes that led to the correct type I error.
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Figure 4.4: Power (upper panel) for testing the global association and sensitivity (middle panel) and
empirical FDR (lower panel) for testing individual taxa, based on data simulated with completely
overlapping samples, an overdispersion of ⌧ = 0.01, and a depth ratio of 1:10.



58

N
ew
−o
m
ni
(3
)

N
ew
−e
qu
al
(3
)

N
ew
−c
ou
nt
(3
)

N
ew
−o
m
ni
(2
)

N
ew
−e
qu
al
(2
)

N
ew
−c
ou
nt
(2
)

N
ew
−o
m
ni
(1
)

N
ew
−e
qu
al
(1
)

N
ew
−c
ou
nt
(1
)

C
om

−c
ou
nt

C
om

−p
−C

C
om

−p
−H

M
16
S

SM
S

M1

0.0

0.1

0.2

0.3

0.4

0.5

N
ew
−o
m
ni
(3
)

N
ew
−e
qu
al
(3
)

N
ew
−c
ou
nt
(3
)

N
ew
−o
m
ni
(2
)

N
ew
−e
qu
al
(2
)

N
ew
−c
ou
nt
(2
)

N
ew
−o
m
ni
(1
)

N
ew
−e
qu
al
(1
)

N
ew
−c
ou
nt
(1
)

C
om

−c
ou
nt

C
om

−p
−C

C
om

−p
−H

M
16
S

SM
S

M2

0.0

0.1

0.2

0.3

0.4

0.5

N
ew
−o
m
ni
(3
)

N
ew
−e
qu
al
(3
)

N
ew
−c
ou
nt
(3
)

N
ew
−o
m
ni
(2
)

N
ew
−e
qu
al
(2
)

N
ew
−c
ou
nt
(2
)

N
ew
−o
m
ni
(1
)

N
ew
−e
qu
al
(1
)

N
ew
−c
ou
nt
(1
)

C
om

−c
ou
nt

C
om

−p
−C

C
om

−p
−H

M
16
S

SM
S

M3

0.0

0.1

0.2

0.3

0.4

0.5

Figure 4.5: Type I error rate (y-axis) of global tests at the nominal level of 0.05 (gray dashed line),
based on data simulated with partially overlapping samples, an overdispersion of ⌧ = 0.01, and a
depth ratio of 1:10. The methods annotated with “(3)”, “(2)” and “(1)” used permutation schemes
that are based on 3 strata, 2 strata, and 1 stratum, respectively.

4.2.3 ORIGINS data

We analyzed data generated from the Oral Infections, Glucose Intolerance, and Insulin Resistance

Study (ORIGINS) (Demmer et al., 2015) to investigate the association between periodontal bacteria

and prediabetes status (yes or no) among diabetes-free adults, without adjusting for any other risk

factors. One subgingival plaque sample was collected from each participant and sequenced by either

16S, SMS, or both. We downloaded both 16S and SMS taxa count tables with study ID 11808

from Qiita. The 16S table contains 271 samples linked with meta data and having adequate (i.e.,

greater than 5,000) library sizes, as well as 234 genera after quality control (QC)(i.e., excluding

genera found in less than 5 samples). The SMS table includes 183 samples linked with meta data

and having adequate library size, as well as 756 genera after QC. In total, there are 302 distinct

samples (56 cases and 246 controls) and 864 distinct genera, among which 152 samples (47 cases

and 105 controls) and 125 genera have both 16S and SMS data. The mean library sizes generated

from 16S and SMS are 26,950 and 176,321, respectively, resulting in a depth ratio of 1:6.5.

We began by analyzing the data for overlapping samples and genera to compare di↵erent methods.

We applied the same methods (except for Com-p-HM) as in the simulation studies and summarized

their global p-values and detected genera at the nominal FDR level of 10% in Table 4.1 (upper

panel). At the nominal level of 0.05, the analysis of a single 16S or SMS dataset, as well as Com-p-

C, produced non-significant global p-values, whereas New-omni, New-equal, New-count, and Com-

count yielded significant ones. The genera detected by New-omni encompassed all those identified

by either New-equal, New-count, 16S or Com-count, with the exception of Butyrivibrio. Both the



59

M1 M2 M3

1.4 1.6 1.8 2.0 2.2

0.
2

0.
4

0.
6

0.
8

Po
we

r o
f g

lo
ba

l t
es

t

1.8 2.0 2.2 2.4 2.6

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Se
ns

iti
vi

ty

1.8 2.0 2.2 2.4 2.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FD
R

New−omni
New−equal
New−count
Com−p−C
Com−p−HM
16S
SMS

1.2 1.3 1.4 1.5 1.6

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

1.4 1.5 1.6 1.7 1.8

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

1.4 1.5 1.6 1.7 1.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5 6 7 8 9

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exp(�) exp(�) exp(�)

Figure 4.6: Power (upper panel) for testing the global association and sensitivity (middle panel)
and empirical FDR (lower panel) for testing individual taxa, based on data simulated with partially
overlapping samples, an overdispersion of ⌧ = 0.01, a depth ratio of 1:10.
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analysis of the SMS data alone and Com-p-C were unable to detect any genera. For more detailed

results of the detected genera, e.g., p-values, adjusted p-values, and observed relative abundances,

refer to Table B2 and Figures B14–B15. Overall, the relative performance of these methods in this

context aligns with their performance in the simulation studies.

We proceeded to analyze the full data for scientific discovery and summarized the results in

Tables 4.1 (lower panel). Once again, New-omni, New-equal, New-count yielded significant global p-

values, while the other methods did not. New-omni detected all three genera, Butyrivibrio, Gemella,

and Ignavigranum, that were detected by either New-equal or New-count, whereas the analysis of

the SMS data alone and Com-p-C failed to detect any genera. Note that discrepancies in the list

of detected genera are expected, considering the large number of genera found unique to a single

dataset. Further details about the detected genera can be found in Table B3 and Figure B16.

Specifically, Butyrivibrio was captured by both sequencing platforms and assigned non-significant,

yet small, p-values in the analyses of individual datasets. As its abundance consistently appeared

lower in prediabetic participants across both datasets, this trend was deemed significant by New-

omni. Indeed, Butyrivibrio is known to produce short-chain fatty acids such as butyrate, which has

been found to improve insulin sensitivity in mice (Gao et al., 2009). Gemella was not e↵ectively

captured by 16S sequencing and was subsequently excluded from the analysis of the 16S data. Nev-

ertheless, the SMS data revealed that it was fairly abundant (1.5% on average) and significantly

more abundant in prediabetic participants, resulting in its detection by New-omni. This finding is

plausible, as Gemella have been linked to various infections, including those a↵ecting heart valves

(La Scola and Raoult, 1998), brain membranes (Ruo↵, 2002), and bloodstreams (Woo et al., 2003).

Ignavigranum was completely missed by 16S sequencing and its detection by New-omni was solely

driven by its di↵erential abundance in the SMS dataset. Chelonobacter exhibited significant di↵er-

ential abundance in the 16S dataset, but this signal was not replicated in the SMS dataset, leading

to a non-significant result by New-omni.

4.2.4 Dietary data

We also analyzed data from Amato et al. (Amato et al., 2019) to test the influence of host dietary

niche (folivore vs. non-folivore) on the gut microbiome of wild non-human primates, while controlling

for host phylogeny (categorized as ages, lemurs, new world monkeys, and old world monkeys).

One fecal sample was collected for each animal and sequenced by either 16S, SMS, or both. We

downloaded both 16S and SMS taxa count tables with study ID 11212 from Qiita, the features
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Table 4.1: Global test p-value and detected di↵erentially abundant genera in the analysis of the
ORIGINS data

Method Global p-value Detected genera
Data for overlapping samples and genera

New-omni 0.0345 Pseudoalteromonas, Actinomyces, Capnocytophaga, Lonepinella
Campylobacter, Gemella, Kocuria

New-equal 0.0436 Pseudoalteromonas, Actinomyces, Capnocytophaga, Lonepinella
New-count 0.0261 Campylobacter,Gemella, Kocuria

Com-count 0.0226 Campylobacter,Gemella, Butyrivibrio

Com-p-C 0.106 None
16S 0.0689 Campylobacter

SMS 0.170 None
Full data

New-omni 0.0340 Ignavigranum, Gemella, Butyrivibrio

New-equal 0.0262 Ignavigranum, Butyrivibrio

New-count 0.0388 Ignavigranum, Gemella

Com-p-C 0.245 None
16S 0.0682 Chelonobacter

SMS 0.0866 None

Note: Com-count is invalid for analyzing data from partially overlapping samples and thus not applied to the full data. The
nominal FDR level is 10%.

Table 4.2: Global test p-value and detected di↵erentially abundant genera in the analysis of the
dietary data

Data for overlapping samples and genera Full data
Method Global p-value Detected genera Global p-value Detected genera
New-omni 0.0001 54 0.0003 353
New-equal 0.0001 46 0.0001 331
New-count 0.0001 30 0.0001 270
Com-count 0.0006 27 NA NA
Com-p-C 0.00213 36 0.00196 195
16S 0.0001 24 0.0001 57
SMS 0.0002 23 0.0003 154

Note: See Note in Table 4.1.

of which are listed in Table B1. In particular, there are 172 distinct samples (94 folivore and 78

non-folivore) and 2062 distinct genera, among which 76 samples (40 folivore and 36 non-folivore)

and 236 genera have data from both 16S and SMS. The ratio of 16S to SMS mean library sizes is

1:9.8.

Table 4.2 shows that all methods yielded highly significant global p-values and detected a large

number of genera with di↵erential abundance between folivore and non-folivore animals at the nom-

inal FDR level of 10%, in both analyses of the data for overlapping samples and genera and the full

data. In both cases, New-omni detected the most genera, exceeding the total detections by both

16S and SMS. Figure B17 displays the Venn diagrams of detected genera by various methods using

the full data. The genera detected by New-omni nearly encompass the union of those detected by

New-count and New-equal. New-omni detected 185 new genera that were missed by both 16S and

SMS, while Com-p-C detected only 8 new genera.
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4.3 Remarks

Integrative analysis of 16S and SMS data is a new problem that no one has addressed before. In

this article, we have presented and compared several approaches to this problem, and New-omni

consistently performed the best or nearly the best in all scenarios. Therefore, we choose New-omni

as the preferred method and name it LOCOM-I. LOCOM-I inherits many features from LOCOM.

The inference is based on permutation and thus valid for small sample sizes. It allows testing a

trait that is binary, continuous, or multivariate (e.g., a categorical trait with more than two levels),

permits testing of multiple traits simultaneously, and supports adjustment of confounding covariates.

It is worth noting that New-equal depends entirely on relative abundance data without need

to know the original read count data. This is an important feature because some bioinformatics

programs for processing shotgun metagenomic data, such as Kraken, output relative abundance

data only. In this case, New-equal is applicable while New-count is not, and New-omni should take

the results from New-equal.

We have implemented LOCOM-I in the existing R package LOCOM, which is available on GitHub

at https://github.com/yijuanhu/LOCOM.
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Appendices



Appendix A

Topic 1



Text A1

Because Or is orthogonal to (Z, T ), it follows from the inverse regression model (2.3) that

E(Mj |Z, T ) = EOr {E(Mj |Z, T,Or)} = �0,j + �T
Z,jZ + �1,jTr,

which is the mediator model (2.1) except that Tr is used in place of T . Since Tr is the residual of T

after orthogonalizing against Z, the coe�cients for T and Tr should be the same, i.e., �1,j = ↵1,j .

If we assume that the mediators M1,M2, . . . ,MJ are independent of each other conditional on

(Z, T ), then from the forward outcome model (2.2) that models the joint e↵ects of all mediators, we

obtain the forward outcome model that models the marginal e↵ect of mediator Mj :

E(O|Z, T,Mj) = ✓0 + ✓TZZ + ✓1T + ✓2,jMj . (A1)

Comparing (A1) with the inverse regression model (2.3), we find that the positions of O (or Or)

and Mj are exchanged and it is well known that �2,j 6= ✓2,j in this case. However, both �2,j in

(2.3) and ✓2,j in (A1) capture the association between O and Mj conditional on (Z, T ), so �2,j = 0

and ✓2,j = 0 coincide. This result easily extends to cases when the mediators M1,M2, . . . ,MJ are

correlated, because our approach focuses on testing marginal mediation e↵ects instead of conditional

mediation e↵ects.
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Figure A1: Simulation results in M-common with a continuous outcome and no confounder, in the
absence of type-I and type-II null taxa.
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Figure A2: Simulation results in M-rare with a continuous outcome and no confounder, in the
absence of type-I and type-II null taxa.
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Figure A3: Distribution of the body weight values in the murine microbiome dataset.



Table A1: Type I error (at level 0.05) of the global tests in M-common and M-rare with a continuous
outcome and no confounder, in 12 scenarios under the global null

�TM �MO ↵TM ↵MO Type(s) of null LDM-med-global MedTest MODIMA

M-common 0.0 0.4 0.0 0.0 II 0.004 0.028 0.048

0.4 II 0.005 0.028 0.048

0.6 0.0 I, II 0.010 0.577 0.995

0.4 I, II 0.009 0.610 0.997

0.6 0.0 0.0 0.0 I 0.008 0.026 0.063

0.4 I, II 0.010 0.102 0.767

0.6 0.0 I 0.012 0.030 0.059

0.4 I, II 0.014 0.092 0.750

0.0 0.0 0.0 0.0 III 0.000 0.004 0.003

0.4 II 0.005 0.018 0.039

0.6 0.0 I 0.006 0.030 0.053

0.4 I, II 0.009 0.317 0.813

M-rare 0.0 0.4 0.0 0.0 II 0.002 0.010 0.013

0.4 II 0.003 0.020 0.039

0.6 0.0 I, II 0.009 0.085 0.233

0.4 I, II 0.009 0.297 0.827

0.6 0.0 0.0 0.0 I 0.002 0.019 0.008

0.4 I, II 0.006 0.055 0.139

0.6 0.0 I 0.008 0.044 0.051

0.4 I, II 0.011 0.332 0.807

0.0 0.0 0.0 0.0 III 0.000 0.004 0.003

0.4 II 0.005 0.018 0.039

0.6 0.0 I 0.006 0.030 0.053

0.4 I, II 0.009 0.317 0.813

Note: see the Note to Table 2.1.

Table A2: Type I error (at level 0.05) of the global tests in M-mixed with a confounder and a
continuous outcome, in 3 scenarios under the global null

�TM �MO LDM-med-global LDM-med-global⇤ MedTest
Adjusting for the confounder 0.0 0.4 0.007 0.073 0.026

0.6 0.0 0.004 0.069 0.020
0.0 0.0 0.001 0.042 0.005

Not adjusting for the confounder 0.0 0.4 0.023 0.119 0.034
0.6 0.0 0.016 0.108 0.032
0.0 0.0 0.001 0.024 0.006

Note: we set ↵TM = 0.0 and ↵MO = 0.0. LDM-med-global⇤ is a variant of LDM-med-global that
uses the information on the type of null for each taxa (only available in simulations). The type I
error rates 0.073 and 0.069 after adjusting for the confounder were slightly inflated, due to the small
sample size 100, and was reduced to 0.067 and 0.055 when the sample size was increased to 200.



Table A3: Bivariate association analyses of the murine microbiome dataset
Day 28 Days 21 & 28

Exposure–microbiome
Detected taxa (FDR = 20%) Candidatus Arthromitus Candidatus Arthromitus

Turicibacter Turicibacter

Clostridium.1 Clostridium.1

RF39 RF39

Dehalobacterium Dehalobacterium

Clostridiales Clostridiales

Ruminococcus Ruminococcus

Clostridiaceae Clostridiaceae

rc4-4 rc4-4

Oscillospira Oscillospira

Dorea Dorea

[Ruminococcus] [Ruminococcus]

Allobaculum Allobaculum

Enterococcus Enterococcus

Lactobacillus

[Mogibacteriaceae] [Mogibacteriaceae]

Rikenellaceae

Erysipelotrichaceae Erysipelotrichaceae

Anaeroplasma

Clostridium Clostridium

Adlercreutzia Adlercreutzia

Coprococcus

Akkermansia Akkermansia

Ruminococcaceae

Coriobacteriaceae

Anaerostipes

Enterobacteriaceae

Microbiome–outcome | exposure
Detected taxa (FDR = 20%) [Ruminococcus] [Ruminococcus]

Clostridium

Candidatus.Arthromitus

Ruminococcus

Clostridiales
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Bias correction for generalized estimating equations

To simplify, we omit the index j for taxon j and introduce the notation U = Uj , ✓ =
�
⌘1,j , ⌘2,j ,�T

j

�T
,

Xik =
�
I(k = 1), I(k = 2), ZT

i

�T
, and Mik = Yik,j + Yik,J . With this notation, we rewrite the esti-

mation equation (4.2) as follows:

U(✓) =
X

i=1,...n,k=1,2

!ik

✓
Yik

Mik

� µik

◆
Xik = 0. (B1)

Let b✓ be the estimate of ✓ that solves Equation (B1). By taking a Taylor series expansion up to the

2nd order and using ⌦ to denote outer product, we obtain

U(b✓) = 0 ⇡ U(✓) + J(✓)(b✓ � ✓) +
1

2
(b✓ � ✓)TK(✓)(b✓ � ✓), (B2)

where

J(✓) = @U(✓)
@✓

= �
X

i,k

!ikµik

�
1� µik

�
Xik ⌦Xik

and

K(✓) =
@J(✓)
@✓

= �
X

i,k

!ikµik

�
1� µik

��
1� 2µik

�
Xik ⌦Xik ⌦Xik.

We calculate the expected value of the right hand side of (B2), taking into account that E
⇥
U(✓)

⇤
= 0

and that J(✓) and K(✓) are not functions of the data Yik, to obtain

0 = J(✓)E(b✓ � ✓) +
1

2
E
n
(b✓ � ✓)TK(✓)(b✓ � ✓)

o
.

Let b(✓) = E(b✓ � ✓) be the asymptotic bias in b✓, and let ⌃(✓) = E(b✓ � ✓)(b✓ � ✓)T be the variance-

covariance matrix of b✓. Follow from Firth (Firth, 1993), we obtain the bias-corrected estimating

equation as

U⇤(✓) = U(✓) + J(✓)b(✓) = U(✓)� 1

2
trace

h
K(✓)⌃(✓)

i
. (B3)

When the weight !ik = Mik, U(✓) resembles the score function for read count data that follow

the Binomial distribution. In this case, the model-based variance-covariance estimator �J(✓)�1 is

a reasonable estimator for ⌃(✓), as adopted by LOCOM. When !ik = 1, U(✓) significantly deviates

from a score function, and we estimate ⌃(✓) using the robust sandwich estimator

J(✓)�1

2

4
X

i,k

!2
ik

✓
Yik

Mik

� µik

◆2

Xik ⌦Xik

3

5 J(✓)�1.



The model-based estimator might not be consistent in the presence of overdispersion in the read

count data, and the sandwich estimator may not perform well with finite samples. However, it is

important to note that we use these estimators solely for the purpose of bias correction. In the end,

we depend on permutation replicates to make valid inferences.
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Figure B1: Continuation of Figure 4.2 with the top 26–50 most abundant genera in the ORIGINS

data.
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Figure B2: Scatter plot of observed relative abundances from 16S (x-axis) and SMS (y-axis) for the

top 1–25 most abundant genera (ordered by decreasing abundance) in the data simulated with 152

completely overlapping samples (the sample size as in Figure 4.2), an overdispersion of ⌧ = 0.001,

and a depth ratio of 1:10. Find additional information in the caption of Figure 4.2.
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Figure B3: Continuation of Figure B2 with the top 26–50 most abundant genera in the simulated

data.
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Figure B4: Scatter plot of observed relative abundances from 16S (x-axis) and SMS (y-axis) for the

top 1–25 most abundant genera (ordered by decreasing abundance) in the data simulated with 76

completely overlapping samples (the sample size as in Figure B6), an overdispersion of ⌧ = 0.01,

and a depth ratio of 1:10. Find additional information in the caption of Figure 4.2.
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Figure B5: Continuation of Figure B4 with the top 26–50 most abundant genera in the simulated

data.
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Figure B6: Scatter plot of observed relative abundances from 16S (x-axis) and SMS (y-axis) for

the top 1–25 most abundant genera (ordered by decreasing abundance) in the dietary data. Find

additional information in the caption of Figure 4.2.
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Figure B7: Continuation of Figure B6 with the top 26–50 most abundant genera in the dietary data.
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Figure B8: Type I error rate (y-axis) of global tests at the nominal level of 0.05 (gray dashed line),

based on data simulated with completely overlapping samples, (upper panel) an overdispersion of

⌧ = 0.01 and a depth ratio of 1:1, (middle panel) ⌧ = 0.001 and a depth ratio of 1:10, and (lower

panel) ⌧ = 0.001 and a depth ratio of 1:1.



M1 M2 M3

1.4 1.6 1.8 2.0 2.2

0.
2

0.
4

0.
6

0.
8

1.
0

Po
we

r o
f g

lo
ba

l t
es

t

1.8 2.0 2.2 2.4 2.6

0.
2

0.
4

0.
6

0.
8

Se
ns

iti
vi

ty

1.8 2.0 2.2 2.4 2.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FD
R

New−omni
New−equal
New−count
Com−count
Com−p−C
Com−p−HM
16S
SMS

1.2 1.3 1.4 1.5 1.6

0.
2

0.
4

0.
6

0.
8

1.
0

1.4 1.5 1.6 1.7 1.8

0.
2

0.
4

0.
6

0.
8

1.4 1.5 1.6 1.7 1.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

5 6 7 8 9

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

10 20 30 40 50

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exp(�) exp(�) exp(�)

Figure B9: Power (upper panel) for testing the global association and sensitivity (middle panel) and

empirical FDR (lower panel) for testing individual taxa, based on data simulated with completely

overlapping samples, an overdispersion of ⌧ = 0.01, and a depth ratio of 1:1.
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Figure B10: Power (upper panel) for testing the global association and sensitivity (middle panel) and

empirical FDR (lower panel) for testing individual taxa, based on data simulated with completely

overlapping samples, an overdispersion of ⌧ = 0.001, and a depth ratio of 1:10.
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Figure B11: Power (upper panel) for testing the global association and sensitivity (middle panel) and

empirical FDR (lower panel) for testing individual taxa, based on data simulated with completely

overlapping samples, an overdispersion of ⌧ = 0.001, and a depth ratio of 1:1.
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Figure B12: Power (upper panel) for testing the global association and sensitivity (middle panel) and

empirical FDR (lower panel) for testing individual taxa, based on data simulated with completely

overlapping samples, a confounder, an overdispersion of ⌧ = 0.01, and a depth ratio of 1:10.
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Figure B13: Type I error rate (y-axis) of global tests (at the nominal level of 0.05) without adjusting

for the confounder (upper panel) and with adjustment (lower panel), based on data simulated with

completely overlapping samples, a confounder, an overdispersion of ⌧ = 0.01, and a depth ratio of

1:10.
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Figure B14: Observed relative abundances (RA) for the detected genera in the analysis of the ORIGINS

data for overlapping samples and genera. The first column displays the same scatter plots as those in Figures

4.2 and B1. In the second and third columns, the p-values are from the analysis of individual 16S and SMS

datasets, as given in Table B2. The last column shows the average of observed relative abundances from 16

and SMS, along with the p-values generated by New-omni.
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Figure B15: Continuation of Figure B14 for the remaining detected genera.
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Figure B16: Observed relative abundances (RA) for the detected genera in the analysis of the full ORIGINS

data. The observed relative abundances were calculated based on the full 16S or SMS taxa count table. The

p-values are from the analysis of individual 16S and SMS datasets, as given in Table B3.



4 9
27 239 83

4New−count New−equal

New−omni

19
1

11

26

11

131

185

16S SMS

New−omni

11 1
34 12 141

816S SMS

Com−p−C

Figure B17: Venn diagram of detected genera at the nominal FDR level of 10% in the analysis of

the full dietary data.



Table B1: Studies in Qiita that have both 16S and SMS datasets.

Qiita 16S data SMS data Overlapping

Study n of n of n of Mean n of n of n of Mean n of n of Depth

ID sam OTU genus depth sam species genus depth sam genus ratio

11479 654 5786 403 19305 1145 3899 1412 26346 638 200 1 : 1.4

10285 26 3217 468 30879 14 3716 1165 46094 14 203 1 : 1.5

10768 23 1386 253 2348 12 795 309 5445 12 77 1 : 2.3

⇤
11808 271 1853 234 26950 183 3346 756 176321 152 125 1 : 6.5

11841 279 4919 497 37290 81 1712 832 259345 54 132 1 : 7.0

†
11212 153 9464 524 17072 95 8391 1778 167100 76 236 1 : 9.8

11405 2467 7503 807 39813 1389 7090 1954 466774 1379 404 1 : 11.7

11896 93 1363 273 44588 96 4446 1271 536085 90 155 1 : 12.0

12201 571 17206 1487 22011 382 7925 2076 309328 95 609 1 : 14.1

13114 474 30621 1998 13349 758 11623 2896 195518 364 866 1 : 14.6

11926 94 2525 266 18510 96 3234 1181 294455 94 125 1 : 15.9

10394 1401 2960 621 44342 768 6217 1784 765228 709 275 1 : 17.3

11624 573 5891 790 24035 191 4710 1299 431808 57 337 1 : 18.0

11358 955 21070 1430 23690 40 4233 1324 773541 40 472 1 : 32.7

11444 40 3053 210 40430 40 3024 1047 1345136 40 125 1 : 33.3

11326 576 6335 400 17142 655 6666 1929 589432 119 235 1 : 34.4

11484 96 9486 580 313924 150 8283 2290 11044777 31 327 1 : 35.2

11166 1539 34564 1896 89076 90 11240 2778 6222788 79 913 1 : 70.0

13241 96 3254 547 31007 96 5784 1578 2170533 96 271 1 : 70.0

11149 61 2313 233 29507 84 4544 1375 3320517 24 139 1 : 112.5

13692 205 5427 439 45287 222 9458 2354 7315192 202 263 1 : 161.5

11673 288 8720 997 25068 96 5307 1606 4567862 77 415 1 : 182.2

2338 192 6589 968 82125 6 7704 1913 15932826 6 448 1 : 194.0

11549 70 2447 196 12168 40 3931 1259 4709817 38 112 1 : 387.1

10283 102 4712 376 54484 50 3960 1341 23960223 47 224 1 : 439.8

11546 360 5770 526 21289 382 5628 1766 33312236 306 285 1 : 1564.8

Note: n–number. “sam”–sample. ⇤–the ORIGINS study. †–the dietary study. The studies are

ordered by depth ratio, which is the ratio of mean depths in the 16S and SMS data.



Table B2: P -values and adjusted p-values for the detected genera in the analysis of the ORIGINS

data for overlapping samples and genera

Method Gemella Actino- Campy- Kocuria Pseudo- Capnocy- Lonepi- Butyri-

myces lobacter alteromonas tophaga nella vibrio

p-value

New-omni 0.000947 0.00132 0.00137 0.00358 0.00363 0.00389 0.00553 0.0175

New-equal 0.557 0.000684 0.573 0.283 0.00205 0.00195 0.00311 0.0207

New-count 0.000474 0.187 0.000684 0.00195 0.0105 0.263 0.00542 0.00963

Com-count 0.000500 0.374 0.00090 0.0133 0.0501 0.248 0.0165 0.0005

Com-p-C 0.00491 0.201 0.00257 0.0647 0.183 0.347 0.0852 0.0300

16S NA 0.131 0.00172 NA NA 0.794 NA 0.0157

SMS 0.00491 0.368 0.00509 0.0647 0.183 0.127 0.0852 0.261

Adjusted p-value

New-omni 0.0447 0.0447 0.0447 0.0636 0.0636 0.0636 0.0774 0.1900

New-equal 0.9080 0.0670 0.9080 0.9000 0.0670 0.0670 0.0761 0.3380

New-count 0.0335 0.5970 0.0335 0.0636 0.1470 0.6290 0.1330 0.1470

Com-count 0.0245 0.7200 0.0294 0.2020 0.3510 0.6570 0.2020 0.0245

Com-p-C 0.236 0.682 0.236 0.415 0.652 0.818 0.481 0.288

16S NA 0.634 0.093 NA NA 0.967 NA 0.212

SMS 0.229 0.862 0.229 0.531 0.660 0.660 0.565 0.730

Note: “NA” means that the genus failed to pass the LOCOM filter. The nominal FDR level is 10%.



Table B3: P -values and adjusted p-values for the detected genera in the analysis of the full ORIGINS

data

Method Butyrivibrio Gemella Ignavigranum Chelonobacter

p-value

New-omni 0.00042 0.00052 0.00014 0.189

New-equal 0.00022 0.260 0.00010 0.112

New-count 0.00590 0.00026 0.00018 0.135

Com-p-C 0.120 0.00058 0.00062 0.0015

16S 0.0711 NA NA 0.00075

SMS 0.313 0.00058 0.00062 0.727

Adjusted p-value

New-omni 0.0763 0.0763 0.0616 0.617

New-equal 0.0484 0.6800 0.0440 0.559

New-count 0.1620 0.0572 0.0572 0.521

Com-p-C 0.499 0.136 0.136 0.191

16S 0.465 NA NA 0.0637

SMS 0.741 0.125 0.125 0.945

Note: See Note in Table B2.
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Székely, G. J. and Rizzo, M. L. (2014), ‘Partial distance correlation with methods for dissimilarities’,

The Annals of Statistics 42(6), 2382–2412.
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