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Abstract

Issues in Causal Inference and Applications to Public Health

By Megan Price

We present three examples of public health research problems for which causal inference
methods are better suited than commonly used traditional analytical methods. We expand
and generalize our causal inference approaches in systematic ways to provide insight into
their potential use beyond these specific motivating examples.

First is adjusting for confounding in observational studies. Although there is a growing trend
to use propensity score analyses to confirm results from traditional adjustment methods,
there has been little systematic comparison of propensity score and traditional regression
adjustment methods, particularly when the majority of confounders are dichotomous vari-
ables. This leaves open the question of how to interpret potentially conflicting results from
the two methods. We simulate comparison groups with higher and lower frequencies of
confounders, and compare the performance of traditional and propensity score methods in
terms of estimated treatment effect.

Next, we examine the performance of Frangakis and Rubin’s (2002) principle stratification
method for estimating treatment effects when outcome measures are ‘truncated’ by death.
In our example from the ProTECT study [Wright et al., 2007] of traumatic brain injury
patients, we have the added complication of missing mortality status due to loss to follow-
up. We are not aware of any other research that examines the performance of principle
stratification analyses when the post-randomization variable upon which stratification is
based is missing among some observations. We examine the sensitivity of causal effect esti-
mates to assumptions about the structure of the principle strata themselves versus possible
patterns of missingness, and show that, for our example, the former are more influential.

Last, there have been recent efforts to define a prognostic score for stroke and traumatic
brain injury patients, to enable tailoring of definitions of ‘favorable’ outcomes based on
a patient’s predicted outcome. We propose a new application of Hansen’s (2006, 2008)
prognostic scoring methods to this problem, and compare our prognostic score results to
those generated by prognostic models from the existing literature. We also conduct a formal
power analysis comparing analyses using outcomes based on a patient’s prognosis versus
traditional outcome measures.
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Chapter 1

Introduction

Causal inference is one of the most important, most subtle, and most neglected
of all the problems of Statistics.

[Dawid, 1979]

Problems involving causal inference have dogged at the heels of statistics since
its earliest days. Correlation does not imply causation, and yet causal conclu-
sions drawn from carefully designed experiments are often valid. What can a
statistical model say about causation?

[Holland, 1986]

1.1 Overview

Causal inference methods have been present in the literature for many years, and yet they are

both under-utilized and, all too frequently, improperly applied when they are implemented.

This paper presents three specific examples of public health research problems that can

(and should) be analyzed using causal inference methods, and then expands and generalizes

those methods in systematic ways to provide insight into their potential use beyond these

specific examples. Additionally, guidelines are provided for circumstances under which a

causal inference method may be preferred to a traditional method or vice versa, and the

1



specific ways in which results from the different methods may differ, enabling a researcher

to make informed analytical choices and correctly interpret potentially conflicting results.

Many research questions of interest in public health present unique methodological and an-

alytical problems to statisticians. In an ideal world, all research would be based on strongly

controlled and carefully designed experiments, enabling direct comparisons of groups and

estimation of causal effects. However, it is often impossible and/or unethical to structure

public health research in this way. For example, with many new treatments it is not clini-

cally defensible to randomize patients into treatment and control groups. Instead, patient’s

doctors must be able to make individualized treatment decisions. Or, a research question

may involve an exposure of interest, rather than a treatment effect, and a researcher may

have no control over which individuals are exposed to a high level of air pollution or a

potentially contaminated food. Therefore, much public health research is based on obser-

vational studies, where treatment and control (or exposed and unexposed) groups may not

be directly comparable. In fact, they may differ in systematic ways that could potentially

influence an estimation of treatment effect.

In other circumstances, randomization into treatment and control groups may be possible,

but patients may be so severely injured, or their illness so significant, that they die before

the primary outcome of interest can be measured. In this instance, the way in which

an outcome is missing (the observation has been truncated by death) is informative, and

analyses need to take this into account.

In yet another example, a researcher may be interested in designing a clinical trial with end

points targeted or individualized to a specific group of patients. By linking the definition of

a ‘good’ outcome to a patient’s prognosis prior to treatment, it may be possible to design

more efficient clinical trials, with the power to identify a significant treatment effect with

fewer patients.

All of these examples can be handled using the causal inference framework of counterfac-

tuals. What would that patient’s outcome have been if he or she had received treatment

instead of control? Would that patient have survived under both treatment and control,
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or just treatment? Is it possible for this patient to attain a certain functional status, or

based on his or her medical history is there a ‘ceiling’ past which this patient is unlikely

to improve? How does his or her observed outcome compare, not to the general patient

population, but to his or her initial prognosis of outcome?

The remainder of this chapter will establish the general causal inference framework (section

1.2) and the specific causal inference methods implemented throughout the rest of this

paper (sections 1.3 - 1.6). Chapter two summarizes the current literature on all three

methods. Chapter three presents two simulation studies comparing propensity score and

traditional regression methods for adjusting for confounding in observational studies. In

chapter four we present the results of an application of Zhang and Rubin’s [2003] principle

stratification technique for data that are truncated due to death. We look at the sensitivity

of causal estimates to various assumptions about both the principle strata structure as well

as the pattern of data missing due to loss to follow-up. Lastly, in chapter five we present

a power analysis comparing the newly developed sliding dichotomy method for designing

clinical trials in stroke and traumatic brain injury research to more traditionally defined

outcome measures. Data for this power analysis incorporate an application of Hansen’s

[2006] prognostic scoring methods to the development of predictive models.

1.2 Causal Inference - General

The counterfactual framework mentioned at the end of the previous section has been used

as a basic theory of causation in philosophy since the 1700s [Hume, 1748], but the most

well-known analysis is Lewis’s in 1973, updated and revised in 1999 [Menzies, 2008]. Al-

though the philosophical theory and analysis differs from how statisticians think of causal

effect analysis, we do rely on the philosophical notion of counterfactuals as “unactualised

possibilities” [Menzies, 2001]. More formally, Pearl describes the case with binary true/false

variables x and y and defines a counterfactual as “a probability statement about the truth

of y, had x been true, when it is known that y had been false when x was false [Lindley,

2002].” Although the specific mathematical model to estimate causal effects (Rubin’s causal

3



model) was not established until the 1970s [Rubin, 1974], the counterfactual language was

being used as early as 1918 by Fisher

If we say, ‘This boy has grown tall because he has been well fed,’ we are not
merely tracing out the cause and effect in an individual instance; we are sug-
gesting that he might quite probably have been worse fed, and that in this case
he would have been shorter.

The formalization of counterfactuals in statistical analyses was introduced by Neyman [1990]

in the context of agricultural experiments.

Causal inference is a challenging topic in statistics, where we have a much longer history

of declaring associations between variables with confidence, and tend to translate inference

into causal relationships with great trepidation. The first critical difference (of many)

between a traditional analysis resulting in association and an analysis resulting in a causal

link is the imposition of order on a set of variables. If x is a cause of y, then x should

occur chronologically prior to y. Additionally, if x is a cause of y, it becomes conceptually

problematic if y could also coherently be considered a cause of x [Holland, 1986].

Holland emphasizes the importance of “measuring the effects of causes” [1986] as the place

within concepts of causation that statistics has the most to offer. In setting up a model

for causal inference (referred to as ‘Rubin’s model’ in most literature), Holland begins with

a population U of individual units u ‘. . . on which causes or treatments may act.’ [1986]

Holland further defines an indicator variable S, with the value S(u) for a specific unit u

within the population equal to t for treatment and c for control, in the simplest example.

For consistency with later notation, we will instead use Z as the treatment indicator. The

outcome variable Y is specified as a ‘post-exposure variable’ (the only way that it could

be an effect of cause Z) and broken down into Yt(u) and Yc(u) for the result when unit u

receives treatment and control respectively. The key here is that both Yt(u) and Yc(u) refer

to the exact same population unit u. Therefore, “the causal effect of t (relative to c) on u

(as measured by Y )” [Holland, 1986] is typically defined to be

Yt(u)− Yc(u) (1.1)
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(though we could just as easily estimate alternative comparisons such as ratios). Unfortu-

nately, it is rarely possible to observe both treatment and control on the same unit (the

‘Fundamental Problem of Causal Inference’ according to Holland); or, as Rubin says [2005],

“[e]ach potential outcome is observable, but we can never observe all of them.”

Two possible solutions to this problem exist - the first, the ‘scientific solution’ is rarely

applicable in public health research. The scientific solution refers to laboratory-type exper-

iments where it is possible to control conditions such that one experiment conducted on a

machine u under treatment and another experiment conducted some time later on machine

u under control are considered directly comparable and the fundamental problem has been

overcome. The second, the ‘statistical conclusion’ is what we will be implementing for the

rest of this paper. The statistical solution refers to the average causal effect over all the us

in U , expressed as

E(Yt − Yc) (1.2)

which we cannot observe. Therefore, we assume equation 1.2 is equal to what we can observe

E(Yt)− E(Yc). (1.3)

Unfortunately, this estimation, and its interpretation, still rely on untestable assumptions.

In some instances, the average causal effect may answer the research question of interest.

In other cases, we may be interested in the estimated causal effect on an individual unit

u. Under the assumption of constant effect the effect of treatment is the same on every

unit, thus making the average causal effect applicable to each individual unit and making

it possible to draw causal inferences at the unit level.

1.2.1 Independence and the Stable-Unit-Treatment-Value Assumption

(SUTVA)

Estimation of the average causal effect implies that the population U is large and that the

decision to assign any one unit u to treatment or control is carried out in a random fashion
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such that the indicator variable Z is independent of Yt and Yc and all other population

variables. Then the following equations hold:

E(Yt) = E(Yt|Z = t) (1.4)

E(Yc) = E(Yc|Z = c). (1.5)

Only under SUTVA can we combine equations 1.4 and 1.5 to estimate the causal effect of

interest as defined in equation 1.2.

Rubin uses the Stable-Unit-Treatment-Value Assumption (SUTVA) as a useful decision

rule for determining “. . . which questions are formulated well enough to have causal answers

[Rubin, 1986].” The assumption is defined for any number N of units u, any number T

of treatments t, and some outcome Yt(u) for each treatment-unit combination. SUTVA is

then

. . . the a priori assumption that the value of Y for unit u when exposed to treat-
ment t will be the same no matter what mechanism is used to assign treatment t
to unit u and no matter what treatments the other units receive, and this holds
for all u = 1, . . . , N and all t = 1, . . . , T . SUTVA is violated when, for example,
there exist unrepresented versions of treatments (Yt(u) depends on which ver-
sion of treatment t was received) or interference between units (Yt(u) depends
on whether unit u′ received treatment t or t′) [Rubin, 1986].

We rely on SUTVA as a useful decision rule to respond to a frequently cited Holland claim

that “[f]or causal inference, it is critical that each unit be potentially exposable to any one

of the causes. As an example, the schooling a student receives can be a cause, in our

sense, of the student’s performance on a test, whereas the student’s race or gender cannot.”

As will be shown in later sections, we propose that when the cause under analysis is the

perception of an attribute such as race or gender, a conceptual paradigm within which this

attribute can be considered a cause has been established. To use Holland’s example, while

a student’s race may not itself be considered a cause of his or her test performance, the

causal effect of a teacher’s perception of race or gender on the design and grading of a

test may be validly estimated. Indeed, Rubin himself provides for this type of analysis
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in his application of SUTVA to sex discrimination. Rubin’s position is that as long as

units, treatments, and outcomes are well-defined, and in such a way that SUTVA applies,

causal effects of Holland’s so-called attributes (such as race and gender) may be estimated.

Rubin’s problem with potentially causal statements such as “If the females at firm f had

been male, their starting salaries would have averaged 20% higher,” is not the attempt to

draw causal conclusions regarding gender, but rather the lack of specificity in the definition

of the treatment ‘gender.’ If, on the other hand, one clarified the above statement to indicate

that the ‘treatment’ was “. . . replacing an ‘F’ with an ‘M’ on a job application form,” Rubin

sees no difficulty in estimating the causal effect of gender [1986].

SUTVA is generally assumed to be true of randomized trials, in that the treatment assign-

ment mechanism is known, and is ‘ignorable’ (with slightly modified notation to maintain

consistency) in the sense that

P (Z|X,Yc, Yt) = P (Z|X,Yobs)

where Yobs is technically incomplete data, since the complete data Y consists of both ob-

served and unobserved potential outcomes [Rubin, 2005]. A slightly weaker version of this

assumption is applied to observational studies, where treatment assignment may be assumed

to be ‘strongly ignorable’ based on conditional independence assumptions, and defined by

Rosenbaum and Rubin [1983a] (with a slight modification to maintain consistent notation):

(Yt, Yc) ⊥ Z|X, 0 < P (Z = t|X) < 1 (1.6)

i.e., after adjusting for covariates the potential outcomes are independent of the treat-

ment assignment, and there do not exist values of x for which treatment (or control) is

assigned with certainty. See Rosenbaum [1984] for a discussion of the potential ramifica-

tions when this assumption does not hold and ways to test the applicability of assuming

strongly ignorable treatment assignment. This will be further addressed in chapter three

since these analyses primarily focus on the estimated size of the causal effect, and Rubin

warns, “. . . more careful consideration of the implications of SUTVA is required whenever
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sizes of causal effects are of interest or the null hypothesis regarding typical causal effects

are to be evaluated, because then actual values under more than one treatment must be

contemplated [1986].”

1.3 Propensity Scores - Confounding in Observational Studies

As mentioned in the previous section, conditional independence assumptions (1.6) are re-

quired to draw causal conclusions from observational data. One popular causal inference

method is the use of propensity scores to adjust for covariates X in 1.6. In essence, it sum-

marizes each patient’s covariates compared to the rest of the sample, and then evaluates

how similar or dissimilar that observation is to others who received treatment or control.

The goal behind propensity score analyses is that within subclassifications of the propen-

sity score, the distributions of covariates X are as similar as possible between treatment

and control groups. Another way to think about the propensity score is as teasing out the

analogous case-control study hidden in each observational study [Hansen, 2006]. One of the

features of propensity scores that also makes them similar to randomization (rather than

traditional adjustment for confounding) is a focus on the relationship between covariates

and treatment assignment regardless of the relationship between covariates and the outcome

of interest [Rubin and Thomas, 2000]. Put another way, propensity score methods differ

from traditional methods in that they “. . . adjust for confounding by modeling aspects of

the marginal association of the exposures of interest with the confounders rather than by

modeling the independent association of the confounders with the outcome [Robins et al.,

1992a].”

The propensity score is the coarsest function of X that fulfills the definition of a balancing

score, b(x), namely that for some dichotomous treatment indicator z the “. . . distribution

of x given b(x) is the same for treated (z = 1) and control (z = 0) units; that is, in Dawid’s

(1979) notation, x ⊥ z|b(x) [Rosenbaum and Rubin, 1983a].” The propensity score is then

formally defined as

e(xi) = P (Zi = t|Xi = xi) (1.7)
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See appendix for proof [Rosenbaum and Rubin, 1983a] that Z and X are conditionally

independent given e(x) and 0 < P (Z = t|e(x)) < 1.

For a dichotomous treatment indicator, and assuming Zis are independent given Xis this

can be written as:

P (Z1 = z1, . . . , ZN = zN |X1, . . . , XN = xN ) =
N∏
i=1

e(xi)zi{1− e(xi)}1−zi .

This makes it possible to estimate the average causal effect of interest (E(Yt−Yc)) because

under ignorable treatment assignment and propensity score e(x) (a specific balancing score)

“the expected difference in observed responses to the two treatments at [e(x)] is equal to

the average treatment effect at [e(x)], that is,

E{Yt|e(x), Z = t} − E{Yc|e(x), Z = c} = E{Yt − Yc|e(x)}.′′

([Rosenbaum and Rubin, 1983a]; with slightly modified notation for internal consistency)

1.3.1 Calculating a Propensity Score

In a randomized trial, the treatment assignment mechanism is known, and therefore the

propensity score e(x) has one known definition for that trial. In observational studies the

assignment mechanism must be estimated from the observed data, and therefore numerous

different definitions of e(x) may be suggested. Translated into Bayesian language, the

propensity score may be considered the “. . . posterior predictive probabilities of assignment

to treatment 1 for a unit with vector x of covariates [Rosenbaum and Rubin, 1983a].”

For the case of a dichotomous treatment assignment (only treatment and control groups),

the propensity score may be calculated based on a logistic regression model. All pre-

treatment covariates should be considered for this model, and any preferred model-building

procedure may be used (see chapter 3 of this paper, Rosenbaum and Rubin, 1984, D’Agostino Jr.,

1998, among others for specific examples). Once a preliminary model has been chosen, the

resulting balance of covariates between the treated and control groups should be assessed,
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and the propensity score model updated appropriately until sufficient balance is achieved.

Of course, propensity scores can only balance samples for observed covariates - only ran-

domization can plausibly account for unobserved covariates as well.

There is some debate in the literature regarding whether propensity score models should

include all potential confounding variables or only those that remain significantly associated

with the treatment or exposure indicator. As Miettinen [1976] states with regard to a

multivariate confounder score (a precursor to the propensity score)

[w]ith the initial, full model fitted to the data, the statistical significance of the
coefficients for many of the (potential) confounding factors is often found to be
quite low. In these situations there may be a temptation to reduce the model
in a stepwise fashion until all remaining terms have (nominally) ‘significant’
coefficients. Such reduction of the model would tend to defeat the purpose of
multivariate control of confounding, since ‘nonsignificance’ does not mean lack
of confounding, and the deletion of many ‘nonsignificant’ terms from the model
may lead to substantial confounding by the aggregate of the deleted factors.
Moreover, the deletion, even if not detrimental, would not serve a purpose of
parsimony analogous to that in other contexts. For, the (potential) confounding
factors are extraneous to the real issue - conditional association between the
exposure and the disease - and no inferences need to be made about these
controlled variates.

Miettinen’s point highlights the need to base propensity score model decisions on a combi-

nation of model goodness of fit and the balance checking techniques outlined in the following

section.

1.3.2 Checking Covariate Balance and Evaluating Quality of Propensity

Score Model

Propensity scores also provide a level of transparency that is not available from traditional

covariate adjustment methods. Propensity score methodology uses the language of ‘balance’

to refer to associations between treatment and other covariates. The stronger the associa-

tions, or the more associations that exist, the more out of balance the two groups are. If a

propensity score has been successfully calculated, an intermediate step to assess the newly
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achieved balance after adjusting for the propensity score informs a researcher as to whether

or not he or she has attained two comparable groups, prior to ever including the outcome

measure in analyses. If the dataset remains unbalanced, a new propensity score should be

calculated, and these steps repeated until adequate balance is achieved. It is inappropriate

to move on to the adjustment step in analyses prior to confirming that balance has been

achieved. Unlike traditional regression methods, which require the involvement of the out-

come measure from the beginning, repetitive calculations of propensity scores do not hinder

the final analysis of treatment effect on outcome. As Miettinen states in his summary of the

use of multivariate confounder scores [1976], “[t]he adequacy of the control of confounding

and the validity of the assessment of the residual association are largely matters of faith,

with little opportunity for direct verification, when the analysis is conducted completely

under a multivariate model.”

Unfortunately, very few studies explicitly address balance-checking and indeed may not

conduct this critical step, which leaves the possibility that when propensity score methods

are implemented, they may be applied incorrectly. Indeed, Ho et al [2007] argue that it is

the balance checking step, as opposed to any theoretical properties, that make propensity

scores a useful addition to a researcher’s analytical toolbox.

The propensity score tautology in our view is the main justification for using
this technology in practice . . . That is, it works when it works, and when it
does not work, it does not work (and when it does not work, keep working at
it) . . . The tautology thus provides a way to make irrelevant the knowledge of
whether we have satisfied the conditions necessary to use the theoretical results
about the true or consistently estimated score . . . At least given the current state
of the literature, only the propensity score tautology is useful in practice. Other
theoretical results have no bearing on practice.

The literature provides a number of balance checking techniques. In particular, Rosenbaum

and Rubin [1984] suggest comparing t-test results for the difference of means of continu-

ous covariates between treatment and control groups before and after subclassifying on the

propensity score. They also suggest simple bar charts to demonstrate the frequency distri-

butions of categorical covariates among the propensity score subclassifications. Love [2005]
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has numerous suggestions for a well-implemented propensity score method (mostly summa-

rized and updated from Rubin, 2001). These include comparing the standardized differences

between treatment and control groups before and after propensity score adjustment,

d =
100(xt − xc)√

s2t +s2c
2

for continuous variables and

d =
100(pt − pc)√
pt(1−pt)+pc(1−pc)

2

for dichotomous, which Love recommends should be less than 10%. He also suggests check-

ing the ratio of the variance of the logit of the propensity score for treatment versus control,

which should be close to one. As Rosenbaum and Rubin [1983a] point out, differing variance

structures between groups, both in terms of the propensity score itself and the distribution

of covariates, can actually increase bias. However, it is also worth noting that the major-

ity of Rubin’s guidelines for balance assessment assume continuous covariates, preferably

normally distributed, and he explicitly states [2001] that, “[w]ith markedly nonnormal co-

variates, analogous conditions for reliability of regression adjustment can be more complex.

An obvious condition with nonnormally distributed propensity scores is the overlap of dis-

tributions of the propensity scores in the two groups.”

Regardless of their distribution, propensity scores themselves should always be examined

between treatment and control groups to ensure sufficient overlap for comparison, i.e., for

each combination of covariates resulting in a given propensity score for a treated individual

there should exist a control individual with a similar combination of covariates and therefore

a similar propensity score. For extreme values of propensity score, where treatment and

control groups differ greatly, additional consideration should be given to the interpretation of

results. If a subsection of treated individuals lack comparable control individuals, estimated

treatment effects may be skewed. Some suggest omitting these observations, however this

obviously reduces sample size, and in some instances may simply be prohibited by the goals

of the analysis [Rubin, 2001].
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1.3.3 Propensity Score Adjustment

Traditional methods to adjust for confounding include regression adjustment (often re-

ferred to as epidemiologic models that include confounders in the final regression model)

and matching treatment and control individuals based on identical (or at least similar)

confounder values. However, both methods may be problematic in real world applications.

Rubin has repeatedly voiced concerns about the possibility for traditional regression adjust-

ment to actually add rather than reduce bias when response surfaces are nonlinear [1979],

and stated that vastly differing groups were problematic for regression methods: “[t]he

statistical literature has, for many years, warned that regression analysis cannot reliably

adjust for differences in observed covariates when there are substantial differences in the

distribution of these covariates in the two groups [2001].” As demonstrated by Cochran

as early as 1957, in cases where the two comparison groups of interest differ substantially,

regression adjustment merely pulls each group’s covariates toward a common mean, which

may not accurately represent either group’s covariate distribution. As for matching tech-

niques, Cochran noted [1972] that as the number of covariates on which it is desirable to

match increases, the number of subclassifications within which a sample must contain both

treatment and control observations increases exponentially and rapidly becomes untenable.

Therefore one of the primary advantages of the propensity score method is that it provides a

summary measure for a potentially large number of covariates, without the subclassification

difficulties of direct matching on covariate values. Depending on which adjustment method

is used, propensity score analyses may suffer from similar bias problems in the presence of

non-linear response surfaces as traditional methods.

Rosenbaum and Rubin have shown [1983a] that propensity score analyses can be used to

calculate an unbiased estimate of average treatment effect in observational studies. In their

initial paper [1983a], only three methods of adjustment were outlined - pair matching, sub-

classification, and covariance (regression) adjustment. Since then, these three methods have

been expanded and added to - observations may be weighted based on inverse probability

of treatment assignment (i.e., 1/propensity score) [Robins et al., 2000] or inverse odds ra-

tios [Hirano et al., 2003], and matching may be 1 : 1 or 1 : k (i.e., matching one treated
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individual to one control or matching one treated to any number k controls; Rosenbaum

and Rubin, 1985, Dehejia and Wahba, 1998, Ho et al., 2007).

When dividing the propensity score into categories, either to include as a categorical co-

variate in the final regression model or to determine subclasses of the sample itself within

which to conduct separate regression analyses, each researcher may make his or her own

decisions regarding how many subclasses to choose. However, the use of five subclasses has

become somewhat standard, as Cochran showed that when subclassifying on the covariates

themselves five groups is often sufficient to reduce bias by 90% [1968] and Rosenbaum and

Rubin have shown that five subclasses of the propensity score remove a similar amount of

bias [1984].

Despite this wide variety of possible adjustment techniques, the majority of analyses based

on propensity scores lack a discussion of how and why one technique was chosen over an-

other. Additionally, most studies in fields other than statistics appear to select Rosenbaum

and Rubin’s third method, regression adjustment, arguably for its simplicity [Shah et al.,

2005]. Propensity score regression adjustment involves simply including a single covariate

(the propensity score itself, either as a continuous, raw score or collapsed into categories)

in the final regression model instead of all the potential confounders individually used to

calculate the propensity score. Unfortunately, the risk of additional bias shown by Rubin

[1979] for traditional regression adjustment remains for propensity score regression adjust-

ment. D’Agostino [1998] again reminds us that propensity score regression adjustment

should always be conducted with great caution, since this method is particularly sensitive

to different variance structures between the treatment and control groups and nonlinear

response surfaces.

Fortunately, successful stratification into groups (subclassification) with fairly homogenous

propensity scores should result in very little bias, as shown by Rosenbaum and Rubin

[1983a]. Assuming that x is conditionally independent of z given some balancing score e(x),

then if treatment assignment is strongly ignorable and subclassifications based on e(x) are

perfectly homogeneous then the average treatment effect (weighted accordingly if the sample

size is unevenly allocated to the strata) is unbiased, since within strata E(Yt) − E(Yc) is
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calculated based on identical treated and control units. In the more realistic setting, where

strata are not exactly homogenous the remaining bias in x can be written as

Bs =
S∑
s=1

ws

∫
E(x|b)[P (b|z = 1, b ∈ Is)− P (b|z = 0, b ∈ Is)]db (1.8)

where b is some balancing score b(x), subclasses Is defined by the balancing score, and ws

is the direct adjustment weight for each subclass.

It is important to note that 1.8 is an estimate of the remaining imbalance in x between com-

parison groups, NOT an estimate of potential bias in the final estimate of treatment effect.

Equation 1.8 could be used to determine if an estimated propensity score had successfully

achieved balance between groups prior to calculating an estimate of treatment effect.

In chapter three we will look more closely at the bias problem in the context of comparing

the performance of traditional and propensity score methods while systematically altering

the balance of covariates to generate more and less similar comparison groups of interest.

1.4 Principle Stratification

There are many examples in public health, as well as in other fields, of outcome measures

that are referred to as missing, but would be more accurately described as truncated. For

example, a clinical trial where the outcome measure can only be assessed on those patients

who survive to a given endpoint, or an economic study where salary can only be assessed

for those who are employed [Zhang et al., 2006], or an education intervention study, where

the effect of the intervention on test scores can only be assessed for those who remain in

school [Zhang and Rubin, 2003]. All of these examples require a specific type of analysis

that accurately takes the truncation of the outcome measure into account.

All of these are also examples of a broader category of problems involving post-treatment

covariates. Section 1.2 introduced propensity scores as a way of adjusting for pre-treatment

variables, and chapter three will present a systematic analysis comparing propensity scores

to more traditional regression methods of adjustment. Unfortunately, such traditional meth-
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ods, when applied to post-treatment variables, do not result in causal estimates. Frangakis

and Rubin [2002b] introduced principle stratification, based on values of a post-treatment

variable, as a way of organizing the data such that causal estimates may be achieved. The

primary advantage of the principle stratification method is that the strata themselves are

not affected by treatment, and therefore can be treated as a pre-treatment covariate [Fran-

gakis and Rubin, 2002b]. Chapter four presents an application of principle stratification

to what is referred to as the ‘truncation due to death’ problem, but this method is also

frequently used to identify surrogate endpoints and to adjust for compliance problems.

Using a slight modification of the notation of Frangakis and Rubin [2002b], traditional

post-treatment covariate adjustment compares

P (Y obs
i |Sobsi = s, Zi = t) and P (Y obs

i |Sobsi = s, Zi = c) (1.9)

where Y is the primary outcome of interest, Z is the treatment indicator, and S is the post-

treatment covariate. Essentially, this compares the outcomes between the two treatment

groups within the same value of some post-treatment variable. However, it fails to take

into account that S, just like Y , can be defined in terms of unobserved potential values

(counterfactuals) depending on which treatment group a unit is in. In other words, if the

post-treatment variable S is affected by treatment, the above comparison will not be a

causal effect because the two groups Si(t) = s and Si(c) = s may not represent the same

group of units. Epidemiologists refer to this as post-treatment selection bias [Frangakis and

Rubin, 2002b].

Principle strata are then defined by the pair of counterfactuals (Si(t), Si(c)). Although

we cannot actually observe both, we form strata based on hypothetical groups of units

that would possess identical pairs of values to each other, though not necessarily identical

pairs of values under each treatment. So, for example, one principle strata may consist

of patients who would all develop pneumonia under treatment, but none of whom would

develop pneumonia under control. A separate, distinct strata would consist of patients who

would contract pneumonia under both treatment and control. Within any one principle
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strata, outcome comparisons between treatment groups result in causal estimates since

these comparisons are now being made within comparable subsets of units.

1.4.1 Truncation Due to Death

In public health research, when an outcome of interest is missing because a patient died

before it could be measured, some researchers treat this observation as simply missing, and

omit it from analyses, while others insert an outcome value corresponding to the lowest

or worst possible outcome. Both methods have advantages and disadvantages. In the

case of omitting the missing, this is an accurate reflection of lack of data, but produces

an obvious bias, not to mention reduces sample size. Assigning death the lowest outcome

value may be an accurate measure of the ‘value’ of death on the outcome scale, but it may

not. Ideally, an analysis would take into account the information provided by the fact that

an observation was truncated by death - although this results in a missing outcome value,

these data are not missing in the same sense as an observation that is lost to follow-up.

We know what happened to that patient, that patient died. It is this train of thought that

proposes that placing death on the lowest end of an outcome scale is misleading, since death

is not actually located on the same measurement scale as the outcome measure. As Rubin

states in reference to a quality of life (QOL) study, “[t]o assign a particular value to QOL

when dead is to assume we know how to trade off a particular QOL and being dead (and

out of misery). Not only do we not know how to do this, but the trade-off could vary by

individual, so we prefer simply to represent the actual truth at this point, and not bring in

such extraneous value judgements [2006].”

For example, in a study analyzing the effect of Progesterone on recovery from Traumatic

Brain Injury (TBI), the outcome of interest was a measure of functional status, but this

outcome was missing for several patients who died before functional status could be assessed

[Wright et al., 2007]. Although one could argue that death corresponds to a functional status

of zero, this does not necessarily represent the value judgements of individual patients.

Indeed, if asked, individual patients may rank death above (as ‘preferred’) to certain lower

levels of functional status, such as permanent vegetative state or severe disability. It is this
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philosophical argument, that individual patients may assign different values to death, and

this should be reflected in estimates of treatment effect, that motivates Zhang and Rubin’s

[2003] application of the principle stratification method to these types of problems.

When applied to the truncation due to death problem, principle strata described in the

previous section are composed of those who would survive under both treatment and control

(labeled LL), those who would die under both treatment and control (DD), those who would

live under treatment but die under control (LD), and those who would die under treatment

but live under control (DL). Zhang and Rubin [2003] argue that the only true causal effect

that can be estimated is that of treatment on outcome within any one strata. Remember

from section 1.2 that true causal effects can only be estimated when comparing outcomes on

a common subset of units. If principle stratification is not taken into account in problems

like these, we will erroneously draw comparisons between mixtures of multiple groups. For

example, if we compare outcomes among survivors only in the treatment and control groups,

we are actually comparing a mixture of the LL and LD groups among the treated individuals

and the LL and DL groups among the control individuals. This will not result in a valid

causal estimate of treatment on outcome since the LD and DL group member’s mortality

is clearly affected by treatment and therefore they differ fundamentally from the LL group.

Since complete identification of any of the principle strata is impossible, Zhang and Rubin

[2003] propose a method of bounding causal effect estimates, based on a weighted average

of the possible distribution of patients and outcomes among the four strata. Calculation

of causal effect bounds requires first formally defining the distribution of patients into the

four principle strata.

Slightly modifying Zhang and Rubin’s [2003] notation to maintain consistency with the

current example (and with the analysis of this example in chapter four), the four principle

strata are formally defined by their potential outcomes in Table 1.1.

Where Si(Z) is observed mortality status under treatment or control, Yi(Z) is observed

outcome (DRS) under treatment and control (which is sometimes a valid outcome measure

and sometimes truncated by death, indicated by *), and LL, LD, DL, and DD refer to

the principle strata - those who would live under both treatments, those who would live
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Table 1.1: Principle Strata
Prob. of Principle Stratum Membership Principle Stratum Si(t) Si(c) Yi(t) Yi(c)
πLL LL 1 1 ∈ < ∈ <
πLD LD 1 0 ∈ < *
πDL DL 0 1 * ∈ <
πDD DD 0 0 * *

under control but die under treatment, those who would die under control but live under

treatment, and those who would die regardless of treatment, respectively.

Instead, what we observe is Table 1.2

Table 1.2: Principle Strata - Observed
Observed Group % of population Principle Stratum Zi Si(Z) Y i(Z)
OBS(tL) PtL LL or LD 1 1 ∈ <
OBS (tD) PtD DD or DL 1 0 *
OBS (cL) PcL LL or DL 0 1 ∈ <
OBS (cD) PcD DD or LD 0 0 *

Once principle strata have been formally defined, the probability of any one individual

falling into any one of the principle strata must be bounded, based on the observed groups

listed above.

Zhang and Rubin’s [2003] original paper deriving these equations was based on an education

example where the principle strata consisted of those who would graduate or drop-out of

high school. We have modified their notation slightly to match our previously established

principle strata based on mortality status. First they use a series of simultaneous equations

to bound the proportion of individuals in the DL strata:

πLL + πLD =
∑
I(Zi = t)I(Sobsi = L)∑

I(Zi = t)
=

# in OBS(t, L)
#Assigned Zi = t

≡ PtL

πDL + πDD =
∑
I(Zi = t)I(Sobsi = D)∑

I(Zi = t)
=

# in OBS(t,D)
#Assigned Zi = t

≡ 1− PtL

πLL + πDL =
∑
I(Zi = c)I(Sobsi = L)∑

I(Zi = c)
=

# in OBS(c, L)
#Assigned Zi = c

≡ PcL

πLD + πDD =
∑
I(Zi = c)I(Sobsi = D)∑

I(Zi = c)
=

# in OBS(c,D)
#Assigned Zi = c

≡ 1− PcL
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Additionally, since the πs need to be proper probabilities and sum to one, we can say:

πLD = 1− πLL − πDD − πDL

and if πLD were known, it would be possible to solve for πLL (rearranging the third equation

above)

πLL = PcL − πDL

and πDD (rearranging the second equation above)

πDD = 1− PtL − πDL.

Solving this system of equations requires restricting at least one of the probabilities. Com-

bining the above three equations, and assuming πLD some known quantity, πDL can be

limited:

πLD = 1− (PcL − πDL)− (1− PtL − πDL)− πDL ⇒ πDL = πLD + PcL − PtL

so

max(0, PcL − PtL) ≤ πDL ≤ min(PcL, 1− PtL)

(though alternative probabilities could similarly be limited). Once the distribution of pa-

tients into the principle stata has been estimated, the causal effect within the principle

strata of interest (in this case, LL) can be estimated. The large sample bounds on Yz,s are

determined by estimating “. . . the maximum value of [Y LL(t)] is the average value of Y in

the [πLL\(πLL + πLD)] fraction of the [OBS(t,L)] group with the largest value of Y . . . . the

minimum value of [Y LL(t)] is the average value of Y in the [πLL\(πLL + πLD)] fraction of

the [OBS(t,L)] group with the smallest value of Y . [Zhang and Rubin, 2003].” Similar

calculations can be done for the control group, and then the lower bound of the average

causal effect is the difference between the minimum Y LL(t) and maximum Y LL(c) and the

upper bound is the difference between the maximum Y LL(t) and the minimum Y LL(c)(see

table 4.7 for large sample bounds). In other words, the treatment effect is estimated within
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the proportion of observed treatment patients who survive who would be expected to be

members of the LL strata.

1.4.2 Simplifying Assumptions

The stable-unit-treatment-value assumption described in section 1.1.4 is the first standard

assumption necessary to move forward with causal estimates in this case as well. Two

additional assumptions are not necessary to conduct causal estimates, but when applicable

may narrow the estimated bounds.

First is the monotonicity assumption (referred to as A1 in future chapters and sections),

which states that there is no ‘denier’ or DL group - i.e., no patients would die under

treatment but live if assigned to the control group. Under this assumption πDL = 0 so the

new estimations of the remaining πs are:

πLL = PcL

πLD = PtL − PcL

πDD = 1− PtL

This assumption may be conceptually appealing in clinical trails, since we obviously hope

that a treatment does no harm, but it may or may not actually reflect the observed data.

Second is referred to by Zhang and Rubin as ‘stochastic dominance’ or ‘ranked average

score.’ [2003] This is the case that the group of always survivors (LL) is on average healthier

than the rest of the sample, and therefore this subset should be considered to have at least

as good of an outcome as the DL group under control and the LD group under treatment.

Again, this assumption may or may not be applicable for any specific set of observed data

(and is referred to as A2 in future chapters and sections).

A third assumption is what Rubin refers to as the ‘exclusion’ assumption in the compli-

ance setting. It states that if a treatment has no effect on the intermediate measurement
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(mortality status, in our example) then it cannot have any effect on the primary outcome

of interest. In other words, if receiving treatment rather than control would not change a

patient’s likelihood of death, then we also have to assume that it would not change that

patient’s functional status or quality of life or similar outcome measure. Unfortunately, we

are primarily interested in estimating the causal effect of treatment within the group that

would always survive, so making this assumption negates the very hypothesis we are trying

to test! Rubin argues that although this assumption coupled with monotonicity results in

the ‘classical instrumental variables estimate,’ in the vast majority of cases where trunca-

tion due to death occurs, this assumption is simply not applicable [Rubin, 2006]. We will

not return to this assumption for the remainder of the paper.

In chapter four we apply Zhang and Rubin’s [2003] methodology to the progesterone study

mentioned earlier and assess the sensitivity of causal estimates to the principle strata struc-

ture assumptions suggested by Zhang and Rubin. Additionally, we extend their method to

include covariate and Bayesian analyses.

1.5 Sliding Dichotomy

In the late 1990s researchers began questioning if the reason phase III clinical trials were

failing to find successful treatments for ailments such as stroke and traumatic brain injury

(TBI) was not due to the absence of successful treatments but rather to poorly defined

or specified outcome measures resulting in under-powered trials [Barer, 1998, Maas et al.,

1999]. The reasoning was the patient populations were so heterogenous, that not only

were analyses often inadequately adjusting for these baseline differences but that outcome

measures themselves needed to be adjusted to patient characteristics. In the TBI literature

this resulted in the suggestion of a ‘sliding dichotomy’ by Murray et al [2005], which is

an elaboration of Barer’s 1998 suggestion. The idea is to develop a prognostic score for

individual patients, typically based on covariates such as age, medical history, and illness

severity, and use this prognostic score to define new endpoints. Rather than going as far as

patient-specific endpoints, Murray et al suggest dividing patients into ‘bands,’ each of which
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will have its own definition of a ‘good’ outcome (see figure 1.1). Traditionally, three ‘bands’

or groups are chosen based on tertiles of predicted probability of a favorable outcome.

This approach is clinically appealing, as it reflects the genuine assessment of a patient that

occurs in a hospital and is factored into treatment decisions. It also leads to the possibility

of better powered (i.e., more efficient) clinical trials. Currently, the standard in TBI or

stroke research is to design a phase III clinical trial such that it has 80% to 90% power

to detect a treatment effect resulting in a 10 percentage point increase in good outcomes.

However, this assumes that every patient enrolled in the trial has an equal probability of

improving past some threshold to a ‘good’ outcome and this is simply clinically untrue

[Murray et al., 2005].

There are two ways that the sliding dichotomy can be used to increase the power of a

study to detect a significant treatment effect, and therefore reduce the number of patients

that must be recruited. One option, suggested by Machado et al [1999] is simply to only

recruit patients with an ‘intermediate’ prognosis of good outcome, eliminating those at either

extreme end of the spectrum. This certainly more closely resembles the equal probability

of a good outcome implied by the standard design described above, but it also reduces the

generalizability of the study results.

Alternatively, one could define a sliding dichotomy, with different definitions of ‘good’ out-

come for groups of patients based on a prognostic score, and then design the study to recruit

a certain proportion of the patient population from each of a few groups, say those with

poor, intermediate, and good prognoses. This maintains the generalizability of the study

while also providing more personalized assignment of a ‘good’ outcome measure to improve

efficiency of the study [Young et al., 2003].

This does, however, present a new problem, which is how to define the prognostic score in

a statistically consistent, clinically relevant, way? Currently numerous prognostic models

exist in the stroke and TBI literature, but very few have been validated on multiple samples

[Perel et al., 2006].

Another gap in the current literature on this topic is a formal treatment of just how much of

23



Figure 1.1: Graphical Representation of Sliding Dichotomy - GOS categories on top row,
shaded regions indicate outcomes that would be considered ‘favorable’ or ‘unfavorable’ for
given prognostic category

a gain in power/sample size can be achieved by using a sliding dichotomy approach to define

favorable outcomes as compared to a traditionally defined favorable outcome. Currently

Machado et al [1999] and Young et al [2003] provide the most complete analyses of this

problem, which we explore in more depth in chapter five.

Within one specific research area, it may be possible to achieve a standard predictive model.

For example, Glasgow Outcome Scale (GOS) results at three months could always be used

to categorize patients into prognostic groups within which to define ‘good’ outcomes based

on change in GOS results at six months. Instead, one general method for estimating a

specific predictive model for each study may be preferable. Hansen has been working on

prognostic score theory, as an extension of his research in propensity scores [2006, 2008].

Although his motivation is to further balance potential confounders in observational studies,

as an assistant measure to the propensity score, we believe that his methods could readily

be applied to the sliding dichotomy problem. Additionally, the general theory underlying

Hansen’s development of prognostic scores (using only the control subjects within a sample

to build a model) has a long history of theoretical development [Peters, 1941, Belson, 1956,

Cochran, 1969, Rubin, 1984, Gastwirth and Greenhouse, 1995]. The unique application of

Hansen’s [2008] prognostic score method to develop predictive models to categorize patients
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into prognostic groups is developed in chapter five.

1.6 Prognostic Scores

The propensity score described in section 1.3 can be thought of as a summary of the associ-

ation between treatment assignment and a collection of covariates. Similarly, the prognostic

score can be thought of as a summary of the association between a potential outcome and a

collection of covariates [Hansen, 2008]. By conditioning on the regression of Yc on x (where

Yc is the outcome under control and x is a vector of covariates), essentially identifying those

covariates associated with outcome among the control group, one can achieve a type of

balance like that obtained by conditioning on the propensity score. This idea has its roots

in work by Peters [1941], Belson [1956], Cochran [1969], Rubin [1984], and Gastwirth and

Greenhouse [1995] who all suggested “. . . estimating the treatment effect as the treatment

group mean of yi − Ê(Yci|X = x) [Hansen, 2008].” In other words, the observed outcome

minus the predicted outcome based on parameters estimated from a regression model us-

ing only the control patients. Hansen [2008] defines these predictived outcome values as

prognostic scores Ψ(X).

Just as Hansen compares achieving propensity balance to identifying the randomized ex-

periment hidden in an observational study [2008], he likewise compares the application of

prognostic scores to scientific experimentation:

In a second experimental ideal, it is the process by which outcomes are gener-
ated that is repeatable, understood, and carefully controlled, not the process of
assigning units to treatment. Studies approaching this idea use experimental
control in the interest of removing associations between covariates and potential
outcomes, not treatment assignment. If in advance of studying a new experimen-
tal manipulation, an investigator conducts tests absent the new manipulation in
order to better understand accompanying conditions and their influence on the
outcome, then it is this second ideal that her procedure seeks to attain.

Hansen states that “[p]rinciples of sufficiency and of conditional independence support

a theory of prognostic balance that parallels Rosenbaum and Rubin’s [1983a] account of
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propensity balance, with a few important differences [2008].” In general, if

Yc⊥X|Ψ(X), XεA (1.10)

for any measurable set A, then Ψ(X) is a prognostic score, and achieves ‘prognostic balance’

along the outcome measure for given X in the same sense that a propensity score achieves

balance along the treatment assignment for given X. Unfortunately, this prognostic balance

cannot be checked across the entire sample (only the control observations), so unlike the

complete-sample balance checking that is possible with the propensity score, it may be

difficult to evaluate the quality of a prognostic score Ψ(X). However, it does still share the

favorable property that multiple models may be assessed without revealing the potential

treatment effect.

Hansen then defines the average causal effect of interest (1.2), absent effect modification, as

E(Yt − Yc) = E[E(Y |Z = t,Ψ(X))− E(Y |Z = c,Ψ(X))] (1.11)

if Yc⊥Z|X and P (Z = 1|Ψ(X)) < 1 with probability one (similar to the SUTVA conditions

for a propensity score e(x)).

Hansen suggests using the prognostic score as an additional tool for balancing observational

data, in much the same way as a propensity score is used - as a covariate in regression ad-

justment, as a matching metric, and/or for calculating weights. It is possible that adjusting

for a prognostic score could improve the analyses of TBI and stroke clinical trials, but we

are primarily interested in applying Hansen’s method to calculate predicted probabilities

for defining prognostic categories within which to specify different outcome cutpoints. This

work, in addition to a formal power analysis of the sliding dichotomy approach, is described

in chapter five.
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Chapter 2

Literature Review

2.1 Propensity Scores

The theoretical groundwork for propensity scores was laid by Rosenbaum and Rubin in

a series of papers [1983a, 1983b, 1984, 1984]. The method has been used in a variety

of fields over the past two decades [Imai and van Dyk, 2004, Grunkemeier et al., 2002],

with a growing body of literature expanding on these initial applications and analyzing the

performance of propensity score analyses under a variety of circumstances. However, there

currently still lacks a consensus regarding whether and how the estimated treatment effect

size differs between propensity score and traditional adjustment methods, particularly when

the confounders of interest are dichotomous.

Robins et al [1992b] generalized propensity scores from the case of two groups (treatment

and control or exposed and unexposed) to continuous, ordinal, or discrete treatments or

exposures. Drake [1993] conducted simulations to compare different model specifications

for the propensity model to traditional linear regression adjustment (with two normally dis-

tributed covariates), Dehejia and Wahba [1999] conducted a sensitivity analysis of propen-

sity score performance under varying model specifications and variable selections, Cepeda

et al [2003] and Austin et al [2007] compared propensity score analyses to traditional logistic

regression, and Kang and Schafer compared the performance of traditional and propensity
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score adjustment methods to doubly robust methods [2007].

Recent papers outside the statistics literature have compared traditional and propensity

score methods in specific case studies [Austin and Mamdani, 2006, Posner et al., 2001],

examined potentially biased results when estimating hazard and odds ratios using propen-

sity score methods [Austin et al., 2007], compared different propensity score methods to

each other [Kurth et al., 2006], and literature reviews have summarized recent usage of

traditional versus propensity score methods [Shah et al., 2005, Sturmer et al., 2006] and

summarized the use of propensity score methods in specific fields, providing some basic

guidelines for their implementation [Glynn et al., 2006].

The literature reviews by Shah and Sturmer focused on publications including both propen-

sity score and traditional methods, and compared whether or not a significant effect was

detected with each method. Between these two reviews, more than 200 publications were

summarized. Both reviews found few differences between traditional and propensity score

methods and claim that propensity score analyses have a tendency to be more conservative,

i.e., propensity score analyses detect a significant effect less often than traditional meth-

ods. Additionally, Sturmer [2006] looked at the size of the estimated treatment effects and

found only nine examples (13% of their literature review) in which estimated effect sizes

from propensity score methods differed from regression model estimates by more than 20%.

However, given the lack of detailed information provided by most articles regarding model

selection and propensity score estimation, it is difficult to determine how comparably these

two methods were carried out in individual cases.

Cook and Goldman [1989] also compared traditional and propensity score methods, with

respect to logistic regression, looking to test the hypothesis that propensity score analyses

had the potential to exaggerate significance levels when confounders were highly correlated

with the exposure of interest (which is the opposite of Drake’s [1993] findings regarding linear

regression). However, through both a case study and a series of simulations, they were able

to show that significance levels (as determined by p-values associated with the exposure

variable of interest) were distributed as expected, except in cases where the simulated

correlation between confounders and the exposure variable was so extreme as to be highly
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unlikely to occur in actual circumstances (squared multiple correlation coefficients of greater

than 0.9).

Since Rubin and Thomas suggested that more statistical work needed to be done to evaluate

the performance of propensity score methods [1997], many additional analyses have been

performed, but these appear to be overwhelmingly in the subset of propensity score meth-

ods involving matching. For example, in the same article where Rubin and Thomas make

their suggestion [1997] they conduct a simulation study on the performance of propensity

score matching in “. . . practical settings when the conditional variance is quadratic rather

than constant and the propensity score matching is not exact.” An earlier paper by Gu and

Rosenbaum [1993] compared different matching procedures and offered practical data anal-

ysis advice, and later Zhao [2004] also compared the performance and data requirements of

different matching metrics. Likewise, Hansen compares several different matching methods

for estimating the effect of coaching on SAT scores [2004]. Similar guidelines are needed

for regression adjustment analyses, since this method appears to be even more commonly

implemented outside of the statistics literature.

Also missing from the existing propensity score literature is any modeling that strays from

assumptions of normally distributed confounders. A notable exception is Rosenbaum and

Rubin’s [1983b] examination of the robustness of causal conclusions to the omission of a

binary covariate. This analysis is somewhat similar to the simulations in chapter three, ex-

cept that Rosenbaum and Rubin compare their results under varying assumptions regarding

the relationship between the omitted covariate and the outcome of interest and treatment

assignment, all under propensity score analyses. No comparison is made to traditional

adjustment methods under comparable circumstances.

2.2 Truncation Due to Death/Principle Stratification

The principle stratification approach is commonly applied to compliance issues in random-

ized trials [Jin and Rubin, 2008, Frangakis et al., 2002] but much less often applied to

truncation due to death problems. Indeed, although the principle stratification framework
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was not formalized until 2002 (Frangakis and Rubin), Imbens and Rubin [1997] used prin-

ciple stratification-type language in their labeling of complier, never-taker, always taker,

and defier groups in their compliance problem. Zhang and Rubin first applied the principle

stratification framework to the truncation due to death problem [2003], Imai later showed

that the bounds derived in the Zhang and Rubin paper are sharp bounds [2008], and Zhang,

Rubin, and Mealli extended this approach to include Bayesian analyses [2006]. In a journal

article summarizing two public lectures, Rubin [2006] outlined the principle stratification

approach and the kinds of truncation due to death problems to which it is suited. Mattei

and Mealli [2007] applied the principle stratification framework to a randomized trial of

breast self-examination, with the added complication of noncompliance. Matsuyama and

Morita [2006] use principle stratification to estimate the local average treatment effect of

chemotherapy in a clinical trial studying non-small-cell lung cancer. MacKenzie et al [2007,

2008] used an implied principle stratification approach to their truncation due to death

problem in assessing the impact of trauma-center care on functional outcome, but unfortu-

nately insufficient details were provided regarding how the principle strata (and treatment

effect) were estimated. The principle stratification approach has also been used to iden-

tify surrogate endpoints ([Frangakis and Rubin, 2002a, Mealli and Rubin, 2003, Weir and

Walley, 2006] among others).

Prior to developing their principle stratification approach, Frangakis and Rubin [1999] estab-

lished problems with standard intention to treat analyses in the presence of noncompliance

and resulting missing outcome data. Similarly, Chen, Liu, and Zhang [2005] outline alterna-

tive adjustment methods for post-randomization covariates and quantify the potential bias

of an estimate using traditional regression adjustment. Kurland, Johnson, and Diehr [2007]

summarize the different types of research questions that are best suited to unconditional,

fully conditional, partly conditional, and joint models of outcome data truncated by death.

Kurland et al mention principle stratification as an alternative to the models they describe.

Similarly, McConnell et al [2008] include an overview of principle stratification methods in

their review of possible approaches to the truncation due to death problem.

More commonly, the truncation due to death problem arises in longitudinal studies, where
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researchers approach the problem by modeling drop-out patterns both due to loss to follow-

up and death [Diehr et al., 1995, Pauler et al., 2003, Dufouil et al., 2004, Kurland and

Heagerty, 2005, Harel et al., 2007] . Methods include conditioning on mortality status and

time to death. Interestingly, in longitudinal studies it is fairly common to (attempt to)

take both loss to follow-up and truncation due to death into account, but in single time

point datasets (such as the ProTECT study analyzed in chapter four) with the application

of principle stratification, we are not aware of any analyses that attempt to take these two

types of ‘missing’ data into account.

Although not directly applicable to the problem presented in chapter four, Cheng and Small

[2006] develop confidence intervals for their causal bounds based on principle stratification

in a three-arm randomized trial with noncompliance. Developing confidence intervals for

our own point estimate bounds is an important next step, discussed in chapter four.

Lastly, Frangakis et al [2007] have begun to broaden the category of missing covariates in

this type of problem, and propose a principle stratification framework for when input data

(rather than outcome measures) are missing due to truncation due to death.

The literature also includes several alternative methods for analyzing this type of problem.

Although initially based on the principle stratification framework, Egleston et al [2007] and

O’Malley and Normand [2005] develop an alternative method (to Zhang and Rubin, 2003)

for estimating treatment effects under truncation due to death/noncompliance based on

maximum likelihood estimation. Robins [1998] suggests alternative methods to handling

noncompliance using structural nested models, non-nested marginal structural models, and

continuous-time structural nested models. Hayden, Pauler, and Schoenfeld [2005] develop

an alternative estimate of the survivor average causal effect, not explicitly involving principle

stratification. Other researchers have begun to include a death category in their outcome

measure, and Diehr et al [2005] review the appropriateness of this choice for a few commonly

used quality of life and functional status scales.
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2.3 Prognostic Scores/Sliding Dichotomy

Much work in this area has been conducted in both the stroke and traumatic brain injury

(TBI) literature, because these two fields utilize many of the same functional outcome scales

and similar definitions of favorable outcomes. Additionally, both fields suffer from similar

challenges in detecting significant treatment effects in clinical trials.

As mentioned in section 1.5, Barer [1998] initially suggested that stroke mega-trials might

be missing treatment effects due to poorly operationalized outcome measures. Barer argued

that “. . . a standard method of classifying stroke patients into severity groups” within which

separate ‘good’ outcome measures could be defined, could contribute to better designed,

and thus smaller, more efficient, clinical trials. In 1999, Maas et al provided “. . . an overview

of the results of recent trials of neuroprotective agents in head injury” and echoed Barer’s

conclusions regarding stroke research: “. . . the failure to find statistically significant benefit

from various neuroprotective agents in recent trials in head injury does not necessarily

mean that such agents are ineffective but may in part be caused by problems in the design

and analysis of clinical trials.” Maas et al [1999] recommend more research into predictive

modeling to “. . . discover the benefits for design of future trials.” Machado, Murray, and

Teasdale [1999] likewise evaluated the design of clinical trials in head injury research and

concluded that trials targeted at patients with an intermediate prognosis could greatly

reduce the required sample size to detect a significant treatment effect. Young, Lees, and

Weir [2003, 2005] conducted simulations to show that patient-specific cut points resulted in

more power to detect treatment effect, as compared to standard cutpoints uniformly applied

across the patient population.

Although the Stroke Treatment with Ancrod Trial (STAT) study did not formally employ a

sliding dichotomy method of assessing outcome, it did include patients with prior disabilities,

and for that subset of patients, recovery to at least their pre-(most recent) stroke functional

status (as measured by the Barthel Index) was considered a favorable outcome [Sherman

et al., 2000]. However, since this was not the primary aim of the study, the results and

discussion fail to address whether including a flexible definition of ‘favorable’ for this subset
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of patients contributed to the study’s ability to detect a significant treatment effect and/or

implications for future studies.

The previously mentioned research into more efficiently designed clinical trials has prompted

new work on developing and applying predictive models. Mukherjee et al. [2000] developed

a mathematical outcome prediction model for head injury consisting of Glasgow Coma Scale

(GCS) motor score, brain stem reflexes, and reaction level scale, however the focus here was

more on family counseling than designing future trials (i.e., predictive models designed to

better inform families about what to expect in the coming days, weeks, and months). An-

drews et al [2002] compare decision tree analysis versus logistic regression for identifying

predictive variables. Mendelow et al [2003] proposed a formal sliding dichotomy approach

for their International Surgical Trial in Intracerebral Haemorrhage (STICH) trial, which

consisted of assigning patients to good or poor prognosis groups, with a separate definition

of favorable outcome for the two groups. The prognostic score was defined as a linear com-

bination of GCS, age, and volume of intracerebral hemorrhage. In 2005 they reported the

results of this study, and unfortunately, even with the “. . . more sensitive prognosis-based

outcome assignment,” and a sample size that exceeded “. . . the total number of patients in all

nine previous randomised controlled trials” the results were still inconclusive as to whether

surgery improved outcome for patients suffering intracerebral hemorrhage. Weimar et al

[2004] set out to externally validate a prognostic model of functional outcome (defined by

the Barthel Index) for patients suffering acute cerebral ischemia. Their model included age

and National Institutes of Health Stroke Scale and was validated on 1,307 patients from the

stroke data bank of the German Stroke Foundation. Three years later, Weimar et al [2006]

used the same model in a simulation of various inclusion thresholds to identify optimum

criteria for acute stroke trials. Rather than propose one specific recommendation, Weimar

et al present a summary of sample size versus enrollment time trade-offs for different combi-

nations of prognostic thresholds. Saver and Yafeh used a sliding dichotomy approach (called

‘baseline severity-adjusted end points’) to confirm the affect of tPA on outcome for stroke

patients in the National Institute of Neurological Disorders and Stroke tissue plasminogen

activator trial [2007]. Hukkelhoven et al [2005] developed and validated a predictive model
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for functional status (as defined by Glasgow Outcome Scale (GOS)) among patients suffer-

ing a TBI. Their model included age, motor score, pupil reaction, hypotension, hypoxia,

computed tomography (CT) classification, and traumatic subarachnoid haemorrhage and

was assessed in terms of discrimination and calibration. Internal validity was checked using

bootstrapping and external validity was carried out using data from the European Brain

Injury Consortium and the Traumatic Coma Data Bank. Hukkelhoven et al also compared

the performance of their model to three other prognostic models from the literature [Choi

et al., 1991, Signorini et al., 1999, Andrews et al., 2002] and their model appeared to have

better discriminative ability. King, Carlier, and Marion [2005] used GOS at 3 months, hy-

potension, diffuse axonal injury, and pupil response to predict 12 month GOS among TBI

patients. Hernandez et al [2004] developed a predictive model for GOS at six months for TBI

patients including age, motor score, pupil reaction, CT classification, traumatic subarach-

noid hemorrhage, hypoxia, hypotension, glycemia, and hemoglobin. However, their model

has not been validated and they do not propose it as a method of developing prognostic

bands for the sliding dichotomy approach. Instead, they simply propose measuring and

adjusting for these baseline covariates in future studies as a way to increase power/reduce

sample size. One year later, Murray et al [2007] essentially confirmed their predictive model

results (strongest predictors were age, GCS motor score, pupil response, CT classification,

and traumatic subarachnoid hemorrhage), this time with an eye toward applying the sliding

dichotomy method. Additional analyses that year by Marmarou et al. [2007] and McHugh

et al. [2007] looked more specifically at the predictive value of pupil reactivity and secondary

insults such as hypoxia, hypotension, and hypothermia.

Despite the presence of many proposed predictive models for both TBI and stroke studies,

it was not until 2005 that Murray et al. fully formalized the sliding dichotomy method,

and specified two crucial questions - “. . . is it accepted that the concept of relating outcome

for a given patient to that which would be expected, given the baseline prognosis, does

give a clinically relevant estimate of treatment effect?” “. . . how many prognostic bands

should be used and how should they be defined?” It is this latter question that is proving

most challenging in both the stroke and TBI research communities. Counsell and Dennis

34



[2001] conducted a systematic review of predictive models for patients with acute stroke

and concluded that “[n]one of the existing prognostic models have been sufficiently well

developed and validated to be useful in either clinical practice or research.” Perel et al

[2006] conducted a systematic review of existing predictive models in the TBI literature

covering 53 reports and 102 models and concluded that “. . . 68% did not justify the rationale

to include the predictors, 11% conducted an external validation and only 19% of the logistic

models presented the results in a clinically user-friendly way.” Overall, GCS, age, and pupil

reactivity were the most commonly used predictors. Perel et al considered Hukkelhoven’s

[2005] model to be among the most clinically useful and methodologically sound, so his will

be one of the predictive models compared to our prognostic score approach in chapter five.
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Chapter 3

Confounding in Observational

Studies: Comparing Propensity

Score and Traditional Regression

Analyses

3.1 Background

In non-randomized studies, groups may not be comparable due to systematic differences in

the distribution of covariates unrelated to the treatment or exposure of interest. Tradition-

ally, such confounding is addressed in an epidemiologic model by including these covariates

in the final outcome regression model or by matching members of comparison groups of in-

terest according to the sets of unbalanced covariates. Unfortunately, both solutions may be

problematic under many real world circumstances (see section 1.3), and so the propensity

score method was introduced by Rosenbaum and Rubin [1983a] as a potential alternative

method for adjusting for confounding in observational studies.

The propensity score is the probability of treatment assignment (or exposure) given a set
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of covariates, and is defined as (1.6) from section 1.3,

e(xi) = P (Zi = 1|Xi = xi)

where Z represents exposure (or treatment assignment) and X represents a vector of co-

variates. Once the propensity score has been estimated, the probability that an individual

observation received treatment can be used to adjust the final outcome model in a variety

of ways (see 1.3.3).

Although Rosenbaum and Rubin introduced the propensity score more than two decades

ago, and since then it has been used in a wide variety of fields [Imai and van Dyk, 2004,

Grunkemeier et al., 2002], no consensus currently exists as to whether and how results based

on propensity score analyses differ from those based on traditional regression adjustment.

Austin et al [2007] emphasize the importance of clearly specifying the performance of the two

methods: “. . . several applied studies have estimated treatment effects using both propensity

score and regression methods. Assuming that one of the analytic methods was added as a

test of robustness of the findings of the initial analytic approach, this indicates that many

applied researchers incorrectly believe propensity score methods and regression methods to

be estimating the same treatment effect.” More recently, Shadish et al [2008] point out that

“. . . the practice of propensity score analysis in applied research may be yielding adjustments

of unknown or highly variable accuracy. For a method as new as propensity score analysis,

this is not surprising, and points to the need for more clarity about best propensity score

practice.” In particular, Drake’s [1993] findings that the bias from propensity score analyses

“. . . declines with increasing treatment effect and increases with increasing covariate effects

on treatment as well as on the response” motivate a more thorough analysis of propensity

score performance when covariate characteristics are varied.

Unfortunately, covariate characteristics are rarely varied in studies of the performance of

propensity scores. As described briefly above and in more detail in section 2.1, recent

propensity score research has focused on the parametric form of the propensity score and/or

outcome regression models, different propensity score adjustment methods, and the poten-
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tial sensitivity of such analyses to unmeasured confounders. The vast majority of these

analyses assume continuous, normally distributed confounders and, with the exception of

Drake [1993], do not assess the sensitivity of such analyses to varying levels of associa-

tion between confounders and treatment assignment. In contrast, we are interested in the

effect of the distribution of potential confounders on the estimated effect size from propen-

sity score and traditional analyses, specifically when such confounders are dichotomous.

By conducting two different types of simulations, we examined the performance of both

traditional and propensity score regression adjustment methods when the distributions of

potential confounders were varied to produce more and less similar comparison groups of

interest (and thus stronger and weaker associations between confounders and treatment

indicator). The first is referred to as a ‘pseudo-simulation’ in that existing data were re-

peatedly resampled to generate new samples with known covariate distributions of interest

but an unknown treatment effect size. The second is referred to as a ‘full simulation’ in

that all variables were generated from chosen distributions and datasets were created with

a known treatment effect size. We hope that by examining the sensitivity of estimates of

treatment effect size to varying distributions of confounders and specifically to dichotomous

confounders this work further contributes to ‘best propensity score practice.’

We are particularly interested in how these two methods perform when the confounders of

interest are dichotomous variables, since this represents both a gap in the existing literature

and a category of confounders frequently found in public health research. The majority of

the theoretical results in this area assume normally distributed, or at least continuous, co-

variates, thus simplifying tests of similar variance structures (a key part of balance-checking

techniques for propensity score analyses; see section 1.3.2). Rosenbaum and Rubin state

[1983a] that traditional regression adjustment and propensity score regression adjustment

should result in the same point estimate for treatment effect if the discriminant is a mono-

tone function of the propensity score (i.e., if the covariance matrices in the treated and

control groups are equal). Since this assumption is likely to be violated, to some degree, in

observational studies, we are interested in determining if one method consistently produces

a less biased estimate when the covariance matrices differ. Since the variance of dichoto-
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mous variables depends upon the frequency of those covariates (i.e., variance = npq) we are

particularly interested in how the two methods perform as the frequencies of dichotomous

variables change, since this is inevitably also changing the variance structure of the two

groups, which Rubin [1979] has clearly shown to increase the risk of adding bias to the final

treatment effect estimate rather than reducing bias.

Lastly, most evaluations of the performance of propensity score methods report the percent

of bias reduction, which is of course an important feature of the method. However, for

analytical users of the method, bias reduction resulting from varying parameter estimates

does not necessarily directly translate to the estimated effect size or the distribution of

covariates. At the moment, data analysts are left to determine if their data resembles that

used or generated in a given paper reporting bias results, but without any clear guidelines.

We hope to develop a clear set of guidelines regarding the performance of traditional versus

propensity score methods with regard to the distributions of dichotomous covariates and the

estimated effect size. By focusing on the estimated effect size we are returning to important

points made by Rubin [2001] and D’Agostino [1998] regarding the use of propensity scores in

designing observational studies, an area of application that appears to be mostly neglected

in the literature. If propensity scores do indeed produce more accurate estimates of effect

size, this can help in the design of future studies by reducing the required sample size,

increasing power, and generally reducing the cost of conducting a study.

3.2 Bias

As mentioned in section 1.3.3, bias reduction can be measured in terms of the remaining

difference in x after adjustment or bias in the estimated treatment effect τ̂ (if true treatment

effect τ is known).

It has been well established that both traditional regression adjustment methods and

propensity score regression adjustment methods will produce unbiased estimates of treat-

ment effect under a certain set of assumptions. Cochran [1973], Rosenbaum [1983a, 1984],

and Rubin [1973, 1979, 1983a, 1984] all contributed to quantifying the bias that may remain
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(and the possibility of increased bias) in an estimate of treatment effect from traditional

regression adjustment when these assumptions are minorly violated. Rubin showed [1979]

that the treatment effect estimate

τ̂ = (yt − yc)− β̂(xt − xc)

where β̂ is the traditional ordinary least squares estimate, has conditional bias given xij

wt. − wc. − (xt. − wc.)
Sxw
Sxx

where wij = W (xij) from E(Y |x) = α + W (x). In large samples, τ̂ ≈ Et(W (X)) −

Ec(W (X)) − ηc where Ez() is expectation taken across the distribution of x in treatment

group z, and c is the pooled slope of W (X) on the discriminant. Rubin defines X in the

treated population as

X ∼ N

(η
0

 ,

σ2 0

0 ξ2

)

and in the control

X ∼ N

(0

0

 ,

1 0

0 1

).
He then defines

W (X) = W (u, v) = exp
[
a
( 2

1 + σ2

)1/2
(u− η/2) + b

( 2
1 + ξ2

)1/2
v
]

where a and b are allowed to vary to generate moderately nonlinear response surfaces.

Combining the above, Rubin writes

ηc = aB[Et(W (X))(σ2/(1 + σ2)) + Ec(W (X))/(1 + σ2)]

where B = η/
(

1+σ2

2

)1/2, showing that for σ2
t 6= 1 and/or ξ2 6= 1 combined with negative

values of a, bias in the estimated treatment effect τ̂ may actually be increased.

As far as we are aware, there is no mathematical quantification of the bias remaining after
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propensity score regression adjustment, though clearly it should be similar to that found in

traditional regression but substituting a different function of x and a different parameter

estimate.

Alternatively, bias can also be measured in terms of the remaining imbalance in x. After

developing their propensity score, Rosenbaum and Rubin [1983a] showed that the initial

bias in X is B = E(X|Z = t)−E(x|Z = c) and that after adjusting for stratification based

on propensity score subclass the remaining bias is:

Bs =
S∑
s=1

ws

∫
E(X|b)[P (b|Z = t, bεIs)− P (b|Z = c, bεIs)]db

where b is some balancing score b(x), subclasses Is defined by the balancing score, and ws

is the direct adjustment weight for each subclass.

3.3 Variance Structure

As mentioned in previous sections, we are particularly interested in the performance of

traditional and propensity score regression adjustment methods under varying distributions

of dichotomous covariates since the difference in frequency of dichotomous covariates in

treatment and control groups directly affects the variance structure of these covariates.

Rubin typically limits his analyses of both traditional and propensity score methods to cases

where the ratio σ2
t /σ

2
c is between 0.5 and 2. Love, in his ‘Strategies for Using Propensity

Methods Well’ [2005] echoes this rule of thumb for both the variance of the logit of propensity

scores themselves as well as the variance of the individual covariates. Tangential to our

research into the estimated treatment effect size from these two methods, we were interested

in assessing whether this rule of thumb also applies well to dichotomous variables. One way

to formalize this question is to re-write the variance ratio above in terms of variance for

dichotomous variables:

0.5 <
ntpt(1− pt)
ncpc(1− pc)

< 2
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where nz is the sample size for treatment group z and pz is the probability of some dichoto-

mous covariate outcome for treatment group z. For the simplified case where nt = nc we

can then write the question as for what value of a does the following hold true

0.5 <
pt(1− pt)
apt(1− apt)

< 2

where the probability in the control group is written in terms of the probability in the

treated group (pc = apt), and do these bounds on the ratio of variances result in ‘good’

implementations of propensity score methods with dichotomous variables? For example, in

terms of the magnitude of the imbalance between comparison groups, a frequency of 5% in

one group and 15% in another is obviously less imbalanced than 5% in one and 90% in the

other, yet the former technically violates the variance ratio rule of thumb while the latter

does not! (see figure 3.1) Of course, this is a simplified version of the question, and bounds

would also need to be considered for a variety of values of r for nt = rnc.

Figure 3.1: Ratio of Variances for Dichotomous Variables, Highlighted Where 0.5 <
pt(1−pt)
apt(1−apt)

< 2 violated; rows and columns correspond to potential values of pt and pc = apt

3.4 Motivating Example

This problem was originally motivated by analysis of data from the Coverdell Stroke Reg-

istry [Reeves et al., 2007], which was used as the basis for initial simulations. Wave I data
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were used, which included four states (MI, MA, OH, and GA) treated as strata and multiple

hospitals within each state treated as clusters. Although this complicated data structure

does present additional analytical challenges, it also motivates the application of propensity

score methods - the degrees of freedom for any analysis of complex survey data are deter-

mined by the number of primary sampling units (in our case, clusters), not the total number

of individuals in the dataset. Although we are fortunate that this specific dataset contains

many clusters, the number of covariates that it is reasonable to include in any analysis of

complex survey data can become limited rather quickly.

The Coverdell Stroke Registry includes four stroke types (Ischemic, Transient Ischemic

Attack, Intra-cranial Hemorrhage, and Sub-arachnoid Hemorrhage). Approximately 63%

of patients had an Ischemic stroke, and this subpopulation forms the basis of our analyses.

The population is predominantly white (75%) and we are interested in the causal effect of

race on length of hospital stay following a stroke.

Some causal inference researchers object to the use of race, gender, and other non-manipulable

attributes as factors of interest, based primarily on Paul Holland’s argument that “each unit

be potentially exposable to any one of the causes.” [Holland, 1986] We argue that as stud-

ies are beginning to manipulate an individual’s perception of race [Grogger and Ridgeway,

2006] and gender [Goldin and Rouse, 2000] this provides a conceptual framework for the es-

timation of the causal effect of these attributes. Another similar argument is that possible

covariates for the propensity score model are typically limited to pre-treatment (or pre-

exposure) variables, and technically there are no variables that were measured before race

was determined. However, continuing with the idea of the perception of race, it is possible

that other demographic and medical history variables could be noted on a medical chart

while omitting race, therefore there is a pool of variables that could be known to a doctor

prior to his/her perception of a patient’s race. In this way, we fit Rubin’s requirement of

well-defined units, treatments, and outcomes (see section 1.2.1 - SUTVA). Throughout this

chapter we hope the reader will tolerate a minor abuse of notation as we refer to race as

the treatment Z of interest.

Of course, we also have to consider SUTVA, and in this case the clustering within hospitals
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is probably a minor violation in the sense that there could be ‘interference between units.’

[Rubin, 1986] Since our ‘treatment’ or ‘cause’ of interest is race, it is plausible that we would

expect to see a higher frequency of the same race clustered within any one hospital, and

of course both patient characteristics and potential outcomes may be linked to hospitals.

Given the large number of clusters in our dataset, we do not believe that this minor violation

will strongly affect our analyses, however looking for ways to take this clustering effect into

account should be considered for future analyses.

3.4.1 Methods - Pseudo-simulation

As mentioned in section 3.1, this first round of simulations is based on a re-sampling of

existing data to create datasets with known covariate distributions of interest but unknown

treatment effect sizes. Based on the pool of variables described above, propensity scores

were calculated using logistic regression with race as the outcome. Possible covariates con-

sidered for this model included basic demographic and medical history information (age,

residence, mode of arrival to emergency department (ED), diabetes, etc.), several of which

were significantly associated with race (i.e., imbalanced between the two groups), see table

3.2. Covariates chosen for this model (using a combination of stepwise model selection and

checking for covariate balance post-propensity score adjustment) were hypertension, hyper-

lipidemia, coronary artery disease (CAD), and afibrillation; these were used to calculate a

propensity score for each observation.

Interestingly, the originally selected ‘best model’ based solely on stepwise model selection

(which included age, HDL, hypertension, hyperlipidemia, triglycerides, diabetes, and LDL)

left a non-trivial amount of imbalance between black and white patients in eight of the

originally 11 imbalanced covariates. This emphasizes the need to evaluate propensity score

model results on their balancing performance in addition to simply the overall quality of

the model itself.

Balance was assessed in several ways - the binary race indicator was regressed on each

covariate both before and after adjusting for the calculated propensity scores, and the

44



Wald F test values were compared (see Table 3.1). The standardized differences were

calculated for each covariate before and after propensity score adjustment, the ratio of the

variances of the propensity scores for black and white patients was calculated, and the ratio

of the variances of the residuals from regressing each covariate on race after adjusting for

propensity score was compared between black and white patients. Lastly, the frequency of

the dichotomous covariates within each propensity score quintile was summarized using bar

graphs and the overlap of the propensity score values among black and white patients was

checked (see Figure 3.2). This is a critical step since a small amount of remaining imbalance

in a variable that is strongly related to the outcome of interest can result in large bias in

the final causal estimate [Ho et al., 2007].

Figure 3.2: Distribution of black and white patients among propensity score quintiles

As with any model selection, our ‘final’ propensity model was not perfect. Of the 11 covari-

ates originally significantly associated with race, adjusting for our propensity score based

on hypertension, hyperlipidemia, CAD, and afibrillation left four covariates still unbalanced

(see Table 3.1). However, based on the balance-checking methods described above, and the

clinical relevance of the balanced versus unbalanced covariates, we decided that this model

was our best choice. Additionally, two of the remaining significant covariates did indicate a
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decrease in Wald F values, just not enough of a decrease to no longer be significantly asso-

ciated with race. Last, the four remaining significantly associated covariates, diabetes, age,

HDL, and triglycerides, all showed no association with length of stay in our initial univari-

ate analyses. Therefore, we believe that despite the remaining imbalances the possibility of

additional bias is low.

Table 3.1: Covariate Balance
Pre-Adjustment Wald F Post-Adjustment Wald F

Hypertension 11.8 1.9
Hyperlipidemia 8 0.8
CAD 26.8 0.3
Afibrillation 9.8 0.5
Diabetes 8.6 12.3
Myocardial Infarction 5.4 0.02
Age 49.4 57.4
HDL 23.4 12.6
LDL 2.2 2.4
Total cholesterol 3.2 3.2
Triglycerides 12.7 10.3

Using the covariates identified by propensity score analyses, we built a traditional linear

regression model, with length of stay as the outcome, race as the primary covariate of

interest, and controlling for hypertension, hyperlipidemia, CAD, and afibrillation. Stepwise

model building indicated other significant variables - dysphagia screening, diagnosis of stroke

by the emergency department team, diabetes medication, anti-thrombotics prescribed at

discharge, stroke team present in the emergency department, prior stroke, and mode of

arrival to emergency department.

Therefore two linear regression equations form the basis of our comparisons - the traditional

model as described above, and a second model including most of the same covariates, ex-

cept replacing hypertension, hyperlipidemia, CAD, and afibrillation with a single covariate

representing quintiles of propensity score.

In essence, what we are interested in determining is if the estimated treatment effect β̂2
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from this model:

ŷ = β̂0 + β̂1(ê(x)) + β̂2 race+

β̂3 dysphagia+ β̂4 diagnosis+ β̂5 diabmed+ β̂6 antithrom+

β̂7 stroketeam+ β̂8 prior stroke+ β̂9 arrival mode

(3.1)

(where e(x) = logit(P (race = 1)) = α0 + α1htn + α2hlip + α3CAD + α4afib) differs in a

statistically significant way from the estimated treatment effect β̂5 from this model:

ŷ = β̂0 + β̂1 htn+ β̂2 hlip+ β̂3CAD + β̂4 afib+ β̂5 race+

β̂6 dysphagia+ β̂7 diagnosis+ β̂8 diabmed+ β̂9 antithrom+

β̂10 stroketeam+ β̂11 prior stroke+ β̂12 arrival mode

(3.2)

Another way to look at this is through the equation for the estimated treatment effect

itself. Following our slightly modified version of Rubin’s notation [1979] from section 3.2,

the general form of the estimated treatment effect under traditional regression adjustment

(which is unbiased if response surfaces are parallel) is:

τ̂ = (Y t − Y c)− β̂TR(Xt −Xc) (3.3)

and we wish to determine if that differs significantly from

τ̂ = (Y t − Y c)− β̂PS(e(Xt)− e(Xc)) (3.4)

Rosenbaum and Rubin show in their proof of Corollary 4.3 [1983a] that under large sample

theory, 3.4 is unbiased when E{Yt|Z = t, e(x)} = E{Yt|e(x)} (again with slightly modified

notation).

Starting from the distributions of hypertension, hyperlipidemia, CAD, and afibrillation

among black and white patients in our original dataset, we systematically increased and

decreased the proportion of patients with each of these characteristics, to generate more
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and less similar study populations in which to compare the results of our two models.

More specifically, we held the rate of each covariate steady within the black population (for

ease of computation) and altered the rate in white patients from 5% to 95% by increments

of 5%. Covariates were altered one at a time, independently of each other. Within each

rate, 1,000 samples were generated, and new propensity scores were estimated for each

sample, based on our previously selected ‘best’ model. Propensity score quintiles were

used as a categorical variable in the linear regression model. The predicted marginal mean

length of stay was used to estimate treatment effect size. First the predicted marginal

mean length of stay was estimated for black and white patients from each model. Then

the difference between black and white patients was calculated, and the difference from the

propensity score model was subtracted from the difference from the traditional model. This

‘difference of differences’ was averaged across all 1,000 samples for each rate, generating

a mean difference between methods for all 19 possible distributions for each of the four

covariates. The 25th and 975th of the ordered differences were also recorded to form a 95%

empirical probability interval for each difference.

A second set of analyses was also conducted, nearly identical to the first, except that instead

of including the propensity score quintiles as a covariate in the linear regression model,

five separate models were estimated, one for each quintile. A weighted average difference

between black and white patients was calculated, based on the frequency distribution of

the quintiles, and this weighted average was compared to the average estimated from the

traditional analyses. Although the quintiles should have all had an equal distribution (20%

of the sample in each category) due to the large variation across simulations, the propensity

score did not always divide neatly in this manner (e.g., when very many or very few patients

were recorded as having hypertension, some propensity score categories contained fewer than

20% of the observations).
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3.4.2 Results

Prior to adjusting for any potential confounders, white patients spent an average of 5.3 days

in the hospital (SE = 0.4) and black patients spent an average of 6.5 days in the hospital

(SE = 0.4) following a stroke. This difference was statistically significant (p-value = 0.007).

In the original dataset, 72% of white patients had hypertension, 29% hyperlipidemia, 34%

CAD, and 18% afibrillation. Among black patients 83% had hypertension, 21% hyperlipi-

demia, 19% CAD, and 10% afibrillation (Table 3.2).

Table 3.2: Potential Confounders
Black White p-value

Hypertension 83% (694/862) 72% (1762/2514) 0.0002
Hyperlipidemia 21% (169/862) 29% (706/2514) 0.008
CAD 19% (156/862) 34% (784/2514) 0.0001
Afibrillation 10% (80/849) 18% (433/2501) 0.003
Diabetes 40% (326/862) 30% (722/2514) 0.003
Pre-Hospital GCS 58% (166/263) 64% (459/675) 0.4
Gender (male) 42% (383/860) 44% (1134/2513) 0.6
Resident (nursing home) 4% (35/852) 6% (153/2479) 0.2
Arrival mode (ambulance) 46% (358/792) 46% (1075/2348) 0.9
Prior stroke 36% (324/862) 36% (902/2514) 0.9
Smoker 24% (255/862) 24% (569/2514) 0.97
Myocardial Infarction 10% (98/862) 14% (345/2514) 0.03
Congestive Heart Failure 16% (124/862) 15% (355/2514) 0.5
Prosthetic Valve 1% (11/862) 2% (60/2514) 0.3
Age (SE) 65 (1) 73 (1) < 0.0001
HDL (SE) 49 (1) 44 (1) < 0.0001
LDL (SE) 127 (4) 118 (5) 0.08
Total cholesterol (SE) 202 (4) 192 (4) 0.05
Triglycerides (SE) 132 (6) 178 (7) < 0.0001

Applying the two models to our original dataset, the difference in length of stay between

black and white patients was estimated to be 1.53 days based on traditional linear regression,

1.54 days based on linear regression including the propensity score as a covariate, and 1.79

days when calculating a weighted average across individual linear regression analyses for

each propensity score quintile. Stratifying by propensity score quintiles frequently resulted

in a larger estimated effect size throughout simulations. This was primarily driven by a

much larger estimated effect size in the highest quintile, and will be addressed further in
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later sections.

As might be expected from the similar results in our original dataset, when propensity score

was included as a covariate, few simulations indicated a statistically significant difference

between traditional and propensity score analyses (i.e., 95% empirical probability inter-

vals included 0) - the majority of significant differences were detected in the hypertension

simulations (8 out of 19 rate comparisons produced significant results) and one significant

difference was detected among the hyperlipidemia simulations. None of the simulations for

the remaining two covariates (CAD and afibrillation) indicated a statistically significant

difference between methods.

The differences within the hypertension simulations were consistently negative, indicating

that the estimated effect size of race was consistently larger in the propensity score anal-

yses (estimated difference between methods was one tenth of a day or less). Interestingly,

significant differences were not detected among a single grouping of rates - i.e., it was not

only when black and white patients were most or least similar along hypertension rates that

propensity score methods differed from traditional. Instead, significant differences were de-

tected when white patients were simulated to have hypertension rates of 5%, 10%, 50%,

55%, 60%, 75%, 80% and 85% (compared to the constant hypertension rate of 83% among

black patients).

In contrast, when hypertension regression analyses were stratified by propensity score quin-

tile, results were intuitive - significant differences were consistently detected when black

and white patients were least similar - when white patients were simulated to have rates

between 5% and 25%. Additionally, this represents a reduction in the number of significant

differences between the two methods (eight when including propensity score as a covariate,

five when stratifying by quintiles; see tables 3.3 and 3.4).

Interestingly, this reduction in the number of significant differences when analyzing hyper-

tension is opposite from the effect found in the other three covariates. In general, more

differences were observed when regression models were stratified by propensity score - the

weighted average effect across propensity scores differed significantly from the tradition-
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ally estimated effect size in approximately 30% of the simulations. These differences were

observed in each of the four covariates and ranged from about half a day to a one day

difference in estimated effect size between the two methods, with propensity score analyses

consistently estimating a larger difference between black and white patients. The greatest

number of significant differences were detected in the afibrillation simulations (10 out of 19;

compared to zero in covariate adjustment analyses; see appendix for full simulation results)

but these were distributed somewhat inconsistently. Black patients were held steady with a

rate of 10% and significant differences between the methods were detected for rates within

the white patient population of 30%, 35%, 50%, 55%, and 70%-95%.

For hyperlipidemia and CAD simulation results were intuitive - significant differences be-

tween the two methods were detected when black and white patients were most different.

Black patients had a rate of hyperlipidemia of 21%, and significant differences between

the methods were detected when white patients were simulated to have rates of 70% and

above. Similarly, black patients had a rate of CAD of 19% and significant differences were

detected when white patients were simulated to have rates of 70% to 90%. Interestingly, a

significant difference was not detected when white patients were simulated to have a rate

of 95%, however this empirical probability interval was the widest of the 19 simulations, so

it is possible that the large difference between groups resulted in an unstable estimate.

3.4.3 Discussion

Typically, the success of a propensity score as a balancing score is assessed before proceeding

with the next step in data analysis. Since implementing this step in every single simulation

would have been time-prohibitive, several simulations were arbitrarily selected to assess

balance between groups after controlling for propensity score. As described in section 3.4.1,

we already know that ideal balance was not achieved for this dataset, so what we were

checking here was if the already identified remaining imbalance was changing significantly

between simulations. For this second round of balance checking we used two methods -

first we estimated the association between race and each of the potential confounders after

controlling for propensity score quintiles in logistic regression and second by estimating the
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Table 3.3: Simulation results - Hypertension (83% among black patients) - Comparing
traditional and propensity score regression adjustment

Simulated rate in white patients Mean difference 95% empirical probability interval
5% -0.13 (-0.25, -0.03)
10% -0.14 (-0.28, -0.02)
15% -0.1 (-0.24, 0.02)
20% -0.05 (-0.17, 0.05)
25% -0.06 (-0.18, 0.04)
30% -0.1 (-0.22, 0.02)
35% -0.03 (-0.17, 0.10)
40% -0.02 (-0.14, 0.08)
45% -0.03 (-0.12, 0.07)
50% -0.07 (-0.14, -0.01)
55% -0.08 (-0.14, -0.03)
60% -0.07 (-0.12, -0.03)
65% -0.04 (-0.09, 0.003)
70% -0.03 (-0.11, 0.03)
75% -0.07 (-0.12, -0.04)
80% -0.06 (-0.09, -0.03)
85% -0.08 (-0.17, -0.03)
90% -0.05 (-0.12, 0.006)
95% 0.005 (-0.03, 0.05)

association between race and each of the potential confounders within each propensity score

quintile. In some cases there was additional remaining imbalance as compared to our original

dataset. Nevertheless, we consider the comparison of even these cases to be informative - a

highly imbalanced sample, one that cannot be brought into balance by a propensity score,

is also going to present complications to a traditional regression analysis. Furthermore,

additional remaining imbalance was found in both simulations where a significant difference

between the two methods was detected and simulations where a significant difference was

not detected. Therefore, we do not believe that instances of failure in terms of balance

scores affected the estimated difference between propensity score and traditional analysis

methods. Lastly, as noted in section 1.3.2, the majority of balance-assessment rules of thumb

are based on the assumption of normally distributed covariates, which was not the case in

our dataset, so it is difficult to know precisely what cut-off values to use in concluding that

a covariate is balanced or unbalanced. Throughout our original dataset and simulations, we

do achieve adequate overlap of propensity score values between black and white patients,

which further bolsters our belief that any remaining imbalance or added bias is minimally
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Table 3.4: Simulation results - Hypertension (83% among black patients) - Comparing
traditional regression adjustment to stratifying by propensity score

Simulated rate in white patients Mean difference 95% empirical probability interval
5% -0.59 (-0.20, -0.60)
10% -0.55 (-0.66, -0.16)
15% -0.53 (-0.78, -0.07)
20% -0.62 (-0.91, -0.17)
25% -0.65 (-1.14, -0.06)
30% -0.38 (-1.29, 0.25)
35% -0.38 (-0.82, 0.11)
40% -0.41 (-0.85, 0.09)
45% -0.51 (-1.10, 0.09)
50% -0.4 (-1.08, 0.15)
55% -0.32 (-0.93, 0.22)
60% -0.06 (-0.76, 0.54)
65% 0.4 (-0.09, 0.81)
70% -0.14 (-1.16, 0.81)
75% -0.29 (-1.08, 0.43)
80% -0.19 (-0.93, 0.45)
85% -0.14 (-0.67, 0.52)
90% -0.14 (-0.72, 0.38)
95% 0.33 (-0.50, 0.79)

affecting our conclusions regarding comparing traditional and propensity score regression

adjustment methods.

The significant differences detected between methods in the initial simulations regarding

hypertension warrant further examination. Within the rates where a significant difference

was detected, the distribution of the propensity score differed substantially, leading us to

believe that hypertension may be interacting with one (or more) of the other covariates. A

necessary next step in this research would be to repeat simulations altering more than one

covariate at a time, while accounting for covariance. This also makes good clinical sense,

since a patient with hypertension may indeed also be more likely to have coronary artery

disease or hyperlipidemia or afibrillation or some combination. Additionally, interaction

terms should be considered between the potential confounders and race and alternative

rate distributions should be considered, perhaps altering rates within both black and white

populations.

Another potential modeling concern in our simulations is that after selecting the ‘best’
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propensity score and final regression models, these remained the same throughout simu-

lations. It is feasible that as the distributions of covariates changed, were model building

steps to be repeated, a different combination of covariates would be selected. However,

since our primary interest here is in comparing propensity score and traditional regression

methods, even if the performance of our models suffered across simulations, this should not

have affected our overall comparison of the two methods, as we kept both models consistent

for both methods throughout simulations.

The larger estimated effect sizes observed when stratifying by propensity score quintiles

appear to be primarily driven by results in the last propensity score quintile. This warrants

further investigation since even when simulating one of the potential confounders to have

a low rate, the last quintile always contained the highest rates of the remaining potential

confounders. Therefore, using propensity score analyses, the largest treatment effect was

estimated when there was the highest incidence of potential confounding. Unfortunately,

the question remains whether this indicates that propensity score analyses are correctly

identifying a true treatment effect in the presence of increased noise (and traditional regres-

sion analyses controlling for potential confounders are underestimating the true treatment

effect by mistaking it for noise) or propensity score analyses are giving too much weight

to the larger estimated treatment effect in the last quintile. A common concern when this

occurs is that lack of overlap between the two groups is to blame. Fortunately in our case,

there are plenty of black and white patients in all five propensity score categories, so we do

not believe lack of overlap to be contributing to a misleading estimate of treatment effect.

Lastly, in some ways this particular comparison is skewed slightly in favor of traditional

analyses simply because of the limited number of covariates involved. One of the main

advantages to propensity score techniques is that they are applicable in cases where the

number of potential confounders makes traditional methods (either matching or regression

adjustment) impossible.
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3.4.4 Conclusion

Even when controlling for the same variables, propensity score analyses do produce signifi-

cantly different results from traditional analyses, most frequently when treatment/exposure

groups differ the most in terms of distribution of potential confounders. Although the final

decision in terms of whether an effect (due to treatment or exposure) exists at all may be

the same, the estimated size of that effect does differ between the two methods. More specif-

ically, propensity score methods consistently estimate a larger effect size, at least within

this example, and stratifying by propensity quintiles seems to produce a larger difference

between the methods than simply controlling for quintiles in the regression equation. A

critical next step will be to simulate data with a known effect size, to determine in cases

where the two methods disagree, which is more closely approximating the correct effect size

(see full simulation study in the next section).

3.5 Full Simulation Study

3.5.1 Introduction

As noted several times in the previous sections, model selection is an imperfect and sub-

jective technique. There are numerous statistically defensible alternative models that could

have been chosen at two different stages in our analyses (both the propensity score model

with race as the outcome of interest and the final linear regression model with length of stay

as the outcome of interest). None of the potential propensity score models achieved perfect

balance between black and white patients. However, we believe we are justified in selecting

our imperfect model since a) this is reflective of the kinds of decisions and trade-offs that

must be made in real-world data analysis and b) based on the four balance-assessment tech-

niques described in section 3.4.1 we are convinced that our imperfect model reduced more

bias than it contributed. However, we did conduct identical analyses for alternative propen-

sity score models and occasionally produced conflicting results to the ones presented here.

Therefore, we believe that although this real world dataset has been useful in grounding our

55



comparison of two commonly used methods, it is now time to move to entirely simulated

data where we can control the true treatment effect. This second round of simulations is

therefore referred to as a full simulation; all variables are created from specifically chosen

random distributions and treatment effect sizes are known.

These simulations compare results from propensity score regression adjustment and tradi-

tional regression adjustment methods under combinations of ‘correct’ propensity score and

outcome models and ‘incorrect’ propensity score and outcome models, where treatment ef-

fect is known. In this case ‘correct’ models include all known confounders and ‘incorrect’

models omit one known confounder. Previous comparisons have focused on the correct

parametric structure of the two models [Drake, 1993] but we are primarily interested in

the performance of the two methods as the level of imbalance caused by confounders is in-

creased or decreased. We include ‘correct’ and ‘incorrect’ versions of both models to further

determine if one method is more sensitive to missing a potential confounder, as the imbal-

ance caused by that confounder increases or decreases. Our goal is to use these simulations

to better describe the performance of both propensity score and traditional regression ad-

justment methods in the presence of varying degrees of confounding, specifically when the

confounders are dichotomous variables.

3.5.2 Methods

These simulations are still based loosely on the motivating example from the Coverdell

Stroke Registry [Reeves et al., 2007]. First, covariates of interest were simulated at rates

similar to those observed in the Coverdell dataset:

hypertension(htn) ∼ Bin(n, 0.71)

hyperlipidemia(hlip) ∼ Bin(n, 0.25)

age ∼ N(69, 200).
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The problem for this round of simulations was simplified by reducing the number of potential

confounders. Additionally, although we are not interested in age as a potential confounder,

it is included in the treatment assignment model below, with a very small coefficient, to

generate a continuous propensity score. Essentially, this has the same effect as adding a

small amount of normally distributed error on the end of the treatment assignment model.

For conceptualization, we just considered this error to be the age of the study participants

(throughout simulations it was confirmed that there was no significant difference in mean

age between black and white patients). Alternatively, one could imagine this normally dis-

tributed ‘error’ as the remaining covariates in a more complicated propensity score model,

where only two potential confounders are ‘problematic’ in terms of whether or not they

should be included in the model. This was necessary since constructing a propensity score

for only two dichotomous covariates results in a categorical propensity score, and adjust-

ing for such a categorical propensity score would be equivalent to matching on values of

those two dichotomous covariates, whereas we are interested in the performance of covariate

adjustment via regression. Therefore, for simplicity, we are only focusing on the distribu-

tion and inclusion of two potential confounders, but are hopeful that our results could be

generalized to models with more covariates.

The treatment assignment (in this case, race) was modeled:

logit(P (race = 1)) = α0 + α1htn+ α2hlip+ α3age

which is also the ‘true’ propensity score model. The actual race indicator was determined

by

race ∼ Bin
(
n,

exp(α0 + α1htn+ α2hlip+ α3age)
1 + exp(α0 + α1htn+ α2hlip+ α3age)

)
. (3.5)
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As mentioned in section 3.4, it is somewhat inaccurate/controversial terminology within

causal inference methods to refer to race as a treatment. However, for consistency and

brevity of terminology we hope the reader will tolerate this minor abuse.

The primary outcome of interest (length of stay) was simulated as Y ∼ N(µ, σ2) where two

µs were generated, one with and one without a true treatment effect

µtrt = β0 + β1htn+ β2hlip+ β3race

µnotrt = β0 + β1htn+ β2hlip.

These also represent the ‘correct’ outcome models - E(Y |X) = β0 +β1htn+β2hlip+β3race

and E(Y |X) = β0 + β1htn + β2hlip. Values of α were varied to achieve differing levels of

imbalance in terms of confounders between black and white patients and values of β were

varied to achieve differing levels of association between those confounders and length of stay.

The former is the primary problem of interest in this chapter whereas the latter allows us

to test Drake’s [1993] claim that propensity score bias decreases as treatment effect size

and covariate effect on treatment as well as response increase. For the initial set of results

presented in the following section, values of β were held constant as α values were varied.

Subsequently, individual β values were increased while holding α values constant.

For each set of simulations, datasets with 1,000 observations were generated according to

the above variable values. Once the simulated datasets were generated, four models were

compared - the two ‘correct’ models

logit(P (race = 1)) = α0 + α1htn+ α2hlip+ α3age (3.6)

E(Y |X) = β0 + β1htn+ β2hlip+ β3race (3.7)

and two ‘incorrect’ models, either
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logit(P (race = 1)) = α0 + α1htn+ α3age (3.8)

E(Y |X) = β0 + β1htn+ β3race (3.9)

or

logit(P (race = 1)) = α0 + α1hlip+ α3age (3.10)

E(Y |X) = β0 + β1hlip+ β3race (3.11)

each used twice, once with length of stay (Y ) simulated to have a true treatment effect and

once without. Hyperlipidemia was somewhat arbitrarily chosen as the potential confounder

to be dropped in the initial ‘incorrect’ model, so analyses were repeated keeping hyperlipi-

demia and dropping hypertension in the ‘incorrect’ models to confirm our findings. This

will be further addressed in later sections.

Performance of the two methods was determined two different ways. Traditionally, simula-

tions estimate some parameter of interest θ̂, how far that estimate is from the true value

of that parameter θ, and the coverage probability of that estimate, i.e., how often a 95%

confidence interval around the point estimate θ̂ includes the true value θ. For this prob-

lem the parameter of interest is β3, the regression coefficient for race in the final outcome

model. Estimates of β̂3 along with coverage probabilities from propensity score and tra-

ditional regression methods are presented in the following section. Variance estimates for

β̂3 from the propensity score method are based on bootstrap samples, since the estimate

of the standard error of β̂3 from each propensity score model is slightly underestimated by

ignoring the additional variability caused by estimating the propensity score itself.

Additionally, we estimated the treatment effect size based on the difference in marginal

mean predicted outcome values for black and white patients from both methods. This
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estimate of treatment effect was averaged across all 1,000 simulations and the estimated

effects were sorted with the 25th and 975th forming a 95% empirical probability interval for

the estimated treatment effect generated by each model.

The difference of these marginal means provides a comparable point estimate θ̂ to the

estimate of β̂3 used above. Marginal means for each comparison group of interest are

calculated by multiplying L, a column vector containing the appropriate contrast values,

and b, the vector of parameter estimates β̂, and the difference in these marginal means is

simply β̂3. The advantage to this second measure is that it provides an estimate of the

actual marginal means of the comparison groups of interest, not just the difference between

them (i.e., the treatment effect size may be 2, but it may be clinically relevant whether

that difference arises because the adjusted mean in one group is 4 and the other is 6 or

the adjusted means are 200 and 202). Individual marginal means are also more closely

related to our original conceptualization of the causal inference problem as formalized in

section 1.2. The marginal mean length of stay for black and white patients can be written

as µc = E(Yc) and µt = E(Yt) respectively with the average causal effect of interest

µt − µc = E(Yt)− E(Yc).

As shown in section 1.3 if we have successfully estimated the propensity score, the outcome

Y is conditionally independent of treatment assignment Z given propensity score e(x),

making it possible to estimate the desired average causal effect:

E{Yt|e(x), Z = t} − E{Yc|e(x), Z = c} = E{Yt − Yc|e(x)}

This second measure was included both for its clinical relevance and to provide compar-

isons to the pseudo-simulation in the previous section. Since that analysis was based on

resampling a real dataset (rather than simulating a new dataset with known characteristics)

there is no known β3 to which to compare estimated β̂3 values. Although similar analyses

could have been conducted estimating the difference in β̂3 values between the two methods

the marginal mean predicted values were considered more readily clinically interpretable.
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Again, although point estimates of β̂3 and the difference in marginal mean values are com-

parable, empirical probability intervals for the latter estimate of treatment effect are slightly

different. Overall results based on this estimation of treatment effect are consistent with

those based on estimates of β̂3 so tables in the following section summarize β̂3 and tables

summarizing marginal mean estimates can be found in the appendix. The slight difference

in empirical probability intervals will be addressed in the results and discussion sections.

3.5.3 Results

Overall, all four models (‘correct’ and ‘incorrect’ traditional and propensity score) produced

very similar estimates of β̂3 across a range of levels of imbalance. What differed drastically

across methods was coverage probabilities. Results were consistent across simulations, so the

following tables present the most extreme cases. Tables 3.5, 3.6, 3.7, and 3.8 show estimated

treatment effect when the primary source of imbalance is hypertension and dropping either

hyperlipidemia or hypertension in the ‘incorrect’ models. Tables 3.9, 3.10, 3.11, and 3.12

show estimated treatment effect when the primary source of imbalance is hyperlipidemia,

and again dropping either hyperlipidemia or hypertension in the ‘incorrect’ models. These

sets of tables were chosen to clearly demonstrate the trend when imbalance between the

two groups was severe - similar patterns exist for alternative imbalances. The magnitude of

the imbalance between black and white patients in terms of hyperlipidemia rates is smaller

compared to cases where hypertension rates were altered; this magnitude is limited by

the lower overall rate of hyperlipidemia in the simulated sample. However, we believe the

results reported here are still indicative of the performance of the two methods under cases

of extreme imbalance.

As shown in tables 3.5, 3.7, 3.9, and 3.11, the true simulated value of β3 is two, and

all models consistently underestimate this parameter. Correctly specified propensity score

and traditional models more closely resemble each other in terms of point estimate, as do

incorrectly specified propensity score and traditional models. This indicates that including

the correct set of potential confounders in a model has a stronger affect on estimates of

treatment effect than the method employed for estimation. However, both correct and

61



incorrect propensity score models have troublingly low coverage probabilities.

Both propensity score and traditional methods perform much worse when hyperlipidemia is

the source of the imbalance. This is somewhat surprising since at this stage of the analysis

both hypertension and hyperlipidemia were simulated to have the same strength of associ-

ation with length of stay (i.e., β1 = β2). Additionally, despite their different distributions

within the general simulated population, similar α values were used to generate the high

levels of imbalance presented in the tables. However, in the hypertension simulations α1 was

slightly larger in magnitude (4.5) than α2 used in the hyperlipidemia simulations (-4). It is

possible that at extreme values, stronger associations between confounders and treatment

assignment do produce slightly better estimates. This will be addressed further in later

sections examining Drake’s [1993] claims.

Similar patterns can be seen in tables 3.6, 3.8, 3.10, and 3.12 where no treatment effect

exists (β3 = 0). Again, propensity score models have troublingly low coverage probability

and all models overestimate treatment effect.

When the difference between marginal mean outcomes was used to estimate treatment effect,

the estimated 95% empirical probability intervals require a slightly different interpretation.

Coverage probabilities in the tables previously presented refer to the proportion of the 1,000

simulated datasets that resulted in a 95% confidence interval around β̂3 that included the

true parameter value β3. In contrast, 95% empirical probability intervals in tables 3.13,

3.14 below, and tables A.7, A.8, A.9, A.10, A.11, and A.12 in the appendix indicate the

range of estimated treatment effect sizes covered by 95% of the 1,000 simulations. These

empirical probability intervals provide a measure of the variability of the point estimate

of treatment effect across all simulations rather than the variability of each point estimate

within each simulation. They tell a similar story - across every simulation, 95% empirical

probability intervals for traditional and propensity methods (with either correct or incor-

rect model specifications) overlapped, indicating that even in the most extreme cases of

confounding, the two methods provided statistically similar estimates of treatment effect

(albeit sometimes statistically similar incorrect estimates). Additionally, when hyperten-

sion is the primary source of imbalance all methods result in empirical probability intervals
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that include the true value of β3 (both when β3 = 2 and when β3 = 0) whereas simulations

where hyperlipidemia is the primary source of imbalance and no treatment effect exists

some empirical probability intervals exclude this point estimate entirely.

Table 3.5: Comparing parameter estimates from ‘correctly’ and ‘incorrectly’ specified
propensity score and traditional regression adjustment models; 3% hypertension rates
among black patients vs. 82% among white patients (α1 = 4.5)
Model β3 β̂3 Avg SD SD Across Sims Coverage
‘Incorrect’ PS (eq. 3.8) 2 1.54 0.61 0.70 84.5%
‘Correct’ PS (eq. 3.6) 2 1.55 0.62 0.70 85%
‘Incorrect’ Trad. (eq. 3.9) 2 1.54 0.86 0.70 95.3%
‘Correct’ Trad. (eq. 3.7) 2 1.55 0.86 0.70 95.6%

Table 3.6: Comparing parameter estimates from ‘correctly’ and ‘incorrectly’ specified
propensity score and traditional regression adjustment models; 3% hypertension rates
among black patients vs. 82% among white patients (α1 = 4.5)
Model β3 β̂3 Avg SD SD Across Sims Coverage
‘Incorrect’ PS (eq. 3.8) 0 0.33 0.63 0.65 91.3%
‘Correct’ PS (eq. 3.6) 0 0.34 0.63 0.65 90.6%
‘Incorrect’ Trad. (eq. 3.9) 0 0.33 0.81 0.65 97.2%
‘Correct’ Trad. (eq. 3.7) 0 0.34 0.81 0.65 97.2%

Table 3.7: Comparing parameter estimates from ‘correctly’ and ‘incorrectly’ specified
propensity score and traditional regression adjustment models; 3% hypertension rates
among black patients vs. 82% among white patients (α1 = 4.5)
Model β3 β̂3 Avg SD SD Across Sims Coverage
‘Incorrect’ PS (eq. 3.10) 2 1.61 0.50 0.61 84.1%
‘Correct’ PS (eq. 3.6) 2 1.55 0.62 0.70 85%
‘Incorrect’ Trad. (eq. 3.11) 2 1.61 0.68 0.61 93.3%
‘Correct’ Trad. (eq. 3.7) 2 1.55 0.86 0.70 95.6%

Table 3.8: Comparing parameter estimates from ‘correctly’ and ‘incorrectly’ specified
propensity score and traditional regression adjustment models; 3% hypertension rates
among black patients vs. 82% among white patients (α1 = 4.5)
Model β3 β̂3 Avg SD SD Across Sims Coverage
‘Incorrect’ PS (eq. 3.10) 0 0.41 0.49 0.56 82.4%
‘Correct’ PS (eq. 3.6) 0 0.34 0.63 0.65 90.6%
‘Incorrect’ Trad. (eq. 3.11) 0 0.41 0.65 0.56 94.4%
‘Correct’ Trad. (eq. 3.7) 0 0.34 0.81 0.65 97.2%

In cases of very little confounding (hypertension rates of 73% vs. 69% and hyperlipidemia

rates of 27% vs. 24% among black and white patients respectively) and a true treatment
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Table 3.9: Comparing parameter estimates from ‘correctly’ and ‘incorrectly’ specified
propensity score and traditional regression adjustment models; 48% hyperlipidemia rates
among black patients vs. 2% among white patients (α2 = −4.0)
Model β3 β̂3 Avg SD SD Across Sims Coverage
‘Incorrect’ PS (eq. 3.8) 2 1.13 0.35 0.33 27.6%
‘Correct’ PS (eq. 3.6) 2 1.30 0.41 0.34 62.8%
‘Incorrect’ Trad. (eq. 3.9) 2 1.13 0.46 0.33 55.1%
‘Correct’ Trad. (eq. 3.7) 2 1.30 0.54 0.34 84.9%

Table 3.10: Comparing parameter estimates from ‘correctly’ and ‘incorrectly’ specified
propensity score and traditional regression adjustment models; 48% hyperlipidemia rates
among black patients vs. 2% among white patients (α2 = −4.0)
Model β3 β̂3 Avg SD SD Across Sims Coverage
‘Incorrect’ PS (eq. 3.8) 0 0.41 0.34 0.34 76.2%
‘Correct’ PS (eq. 3.6) 0 0.77 0.39 0.31 49.4%
‘Incorrect’ Trad. (eq. 3.9) 0 0.41 0.45 0.34 91%
‘Correct’ Trad. (eq. 3.7) 0 0.77 0.53 0.31 80.7%

Table 3.11: Comparing parameter estimates from ‘correctly’ and ‘incorrectly’ specified
propensity score and traditional regression adjustment models; 48% hyperlipidemia rates
among black patients vs. 2% among white patients (α2 = −4.0)
Model β3 β̂3 Avg SD SD Across Sims Coverage
‘Incorrect’ PS (eq. 3.10) 2 1.31 0.41 0.34 63.7%
‘Correct’ PS (eq. 3.6) 2 1.30 0.41 0.34 62.8%
‘Incorrect’ Trad. (eq. 3.11) 2 1.31 0.54 0.34 85.1%
‘Correct’ Trad. (eq. 3.7) 2 1.30 0.54 0.34 84.9%

Table 3.12: Comparing parameter estimates from ‘correctly’ and ‘incorrectly’ specified
propensity score and traditional regression adjustment models; 48% hyperlipidemia rates
among black patients vs. 2% among white patients (α2 = −4.0)
Model β3 β̂3 Avg SD SD Across Sims Coverage
‘Incorrect’ PS (eq. 3.10) 0 0.78 0.39 0.32 48.5%
‘Correct’ PS (eq. 3.6) 0 0.77 0.39 0.31 49.4%
‘Incorrect’ Trad. (eq. 3.11) 0 0.78 0.53 0.32 79.7%
‘Correct’ Trad. (eq. 3.7) 0 0.77 0.53 0.31 80.7%

effect all methods and model specifications performed quite well in terms of coverage proba-

bilities (see table 3.15), but the similar quantity of bias for each method and model is quite

troubling for what would likely be considered a small amount of confounding (all estimates

of β3 are off by nearly -0.5). Both traditional and propensity score regression adjustment

methods should (and do) produce unbiased estimates in the absence of confounding, but

64



Table 3.13: Estimating β3 as marginal mean difference between black and white patients
estimated by ‘correctly’ and ‘incorrectly’ specified propensity score and traditional regres-
sion adjustment models; 3% hypertension rates among black patients vs. 82% among white
patients (α1 = 4.5)
Model Mean difference 95% Empirical Prob. Interval
‘Incorrect’ PS (eq. 3.8) 1.542 (0.152, 2.939)
‘Correct’ PS (eq. 3.6) 1.557 (0.197, 2.951)
‘Incorrect’ Trad. (eq. 3.9) 1.543 (0.153, 2.935)
‘Correct’ Trad. (eq. 3.7) 1.555 (0.190, 2.926)
β3 2

Table 3.14: Estimating β3 as marginal mean difference between black and white patients
estimated by ‘correctly’ and ‘incorrectly’ specified propensity score and traditional regres-
sion adjustment models; 3% hypertension rates among black patients vs. 82% among white
patients (α1 = 4.5)
Model Mean difference 95% Empirical Prob. Interval
‘Incorrect’ PS (eq. 3.8) 0.325 (-0.941, 1.563)
‘Correct’ PS (eq. 3.6) 0.338 (-0.956, 1.572)
‘Incorrect’ Trad. (eq. 3.9) 0.325 (-0.950, 1.569)
‘Correct’ Trad. (eq. 3.7) 0.336 (-0.959, 1.584)
β3 0

are known to produce biased estimates if adjustment fails to bring comparison groups into

balance. This demonstration of the relatively small amount of initial imbalance that can

still result in biased estimates from both methods, specifically in the case with dichotomous

confounders, presents a nontrivial analytical challenge.

In both cases of a true simulated treatment effect and absent a true treatment effect we

again see that the propensity score method results in lower coverage probabilities compared

to the traditional adjustment method, however these are even more extreme in the absence

of a true treatment effect (see table 3.16). Additionally, in the case of no treatment effect all

methods and model specifications overestimate the true value of β3 by more than 0.5, again

highlighting the rapidity with which estimates become biased in the presence of confounding.

Although the primary question of interest is the performance of propensity score and tra-

ditional regression models under varying degrees of imbalance, in answering this question

alpha values were varied, so we took the opportunity to also examine Drake’s [1993] claims

that propensity score bias decreases with increasing treatment effect and increasing covari-

65



Table 3.15: Comparing parameter estimates from ‘correctly’ and ‘incorrectly’ specified
propensity score and traditional regression adjustment models; 73% hypertension rates
among black patients vs. 69% among white patients (α1 = −0.2) and 27% hyperlipidemia
rates among black patients vs. 24% among white patients (α2 = −0.2)
Model β3 β̂3 Avg SD SD Across Sims Coverage
‘Incorrect’ PS (eq. 3.8) 2 1.50 0.35 0.12 93.6%
‘Correct’ PS (eq. 3.6) 2 1.51 0.35 0.12 94.9%
‘Incorrect’ Trad. (eq. 3.9) 2 1.50 0.46 0.12 100%
‘Correct’ Trad. (eq. 3.7) 2 1.51 0.46 0.11 100%

Table 3.16: Comparing parameter estimates from ‘correctly’ and ‘incorrectly’ specified
propensity score and traditional regression adjustment models; 73% hypertension rates
among black patients vs. 69% among white patients (α1 = −0.2) and 27% hyperlipidemia
rates among black patients vs. 24% among white patients (α2 = −0.2)
Model β3 β̂3 Avg SD SD Across Sims Coverage
‘Incorrect’ PS (eq. 3.8) 0 0.62 0.34 0.12 66.1%
‘Correct’ PS (eq. 3.6) 0 0.63 0.34 0.12 62.7%
‘Incorrect’ Trad. (eq. 3.9) 0 0.62 0.45 0.11 99.8%
‘Correct’ Trad. (eq. 3.7) 0 0.63 0.45 0.11 99.5%

ate effect on treatment as well as response. Applying this to the models described above,

increasing values of α1 and α2 should produce ‘better’ (less biased) estimates from the

propensity score models (where increasing α1 and α2 translates into an increased covariate

effect on treatment and increased levels of imbalance, i.e., confounding). Increasing β1 and

β2 should also produce ‘better’ propensity score estimates (increasing covariate effect on

response). Lastly, increasing β3 (treatment effect) should produce ‘better’ propensity score

estimates. Overall, we found none of these relationships to hold true in our models. Bias

from both traditional and propensity score methods remained nearly equal across increasing

values of α1 and α2 in our original analyses, although bias from both methods does appear

to decrease as α values are increased. Subsequent simulations increasing β3 (see table 3.17)

similarly resulted in nearly equal biases between the two methods. Since the magnitude of

the bias increases as β3 increases, a measure of relative bias is also included in table 3.17.

When increasing β1 and β2 (see table 3.18), a very minor decrease in bias was seen in the

‘correct’ propensity score estimates, however this decrease was arguably trivial in size and

particularly in the case of β2 was not seen until parameter values much larger than typically

encountered in practice. It is important to remember in table 3.18 that although the true
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simulated values of β1 and β2 are being altered, the estimated parameter of interest is still

β3 (and in these simulations is held constant at β3 = 2).

Table 3.17: Estimated Bias Under Increasing Treatment Effect
Model ‘Correct’ ‘Incorrect’ β3

Propensity Score 0.06 (6%) 0.07 (7%) 1
Traditional 0.06 (6%) 0.07 (7%)

Propensity Score 0.45 (22%) 0.46 (23%) 2
Traditional 0.45 (22%) 0.46 (23%)

Propensity Score 0.81 (27%) 0.82 (27%) 3
Traditional 0.81 (27%) 0.82 (27%)

Propensity Score 1.13 (28%) 1.15 (29%) 4
Traditional 1.13 (28%) 1.15 (29%)

Propensity Score 1.43 (29%) 1.44 (29%) 5
Traditional 1.43 (29%) 1.44 (29%)
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Table 3.18: Estimated Bias Under Increasing Covariate Effect on Outcome
Model ‘Correct’ ‘Incorrect’ β1

Propensity Score 0.44 0.46 1
Traditional 0.45 0.46

Propensity Score 0.43 0.45 2
Traditional 0.44 0.45

Propensity Score 0.42 0.44 3
Traditional 0.42 0.44

Propensity Score 0.41 0.42 4
Traditional 0.41 0.42

Propensity Score 0.39 0.41 5
Traditional 0.40 0.41

β2

Propensity Score 0.43 0.46 1
Traditional 0.43 0.46

Propensity Score 0.40 0.45 2
Traditional 0.40 0.45

Propensity Score 0.36 0.45 3
Traditional 0.37 0.45

Propensity Score 0.33 0.44 4
Traditional 0.34 0.44

Propensity Score 0.30 0.44 5
Traditional 0.32 0.44

3.5.4 Discussion

As mentioned in the introduction, hypertension and hyperlipidemia were simulated with

their respective frequencies based on the original Coverdell dataset, but this also provided

a convenient comparison of potential confounders occuring with high frequency versus low

frequency in the general population. Of course, it is worth noting that hyperlipidemia was

somewhat arbitrarily selected as the confounder to be omitted in both sets of ‘incorrect’

models. Since hyperlipidemia was also simulated with a lower frequency in the general

population, it is possible that switching and dropping hypertension from the models would
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produce slightly different results. Therefore we repeated the most extreme examples of

imbalance with incorrect models dropping hypertension (tables 3.7, 3.8, 3.11, and 3.12)

and found conclusions to be similar. However, as noted in the previous section, when

hyperlipidemia is the primary source of confounding, all models perform more poorly, with

the most bias and lowest coverage probabilities when hyperlipidemia is also the confounder

dropped in the ‘incorrect’ models. Which is not surprising, since a model failing to adjust

for the primary source of confounding is bound to produce a rather inaccurate estimate.

However, this performance was consistent across traditional and propensity score methods

of adjustment.

It is also important to note that given the simulation methods described in section 3.5.2,

the frequency of black and white patients was also affected by varying α parameter values.

Therefore our results are linked to both an increasing or decreasing imbalance between

simulated black and white patients in terms of hypertension and hyperlipidemia and an

increasing or decreasing imbalance in the number of black vs. white patients. Given this

same imbalance in our original dataset (which was approximately 75% white), and that

observational studies frequently involve an uneven distribution among comparison groups,

we believe this side effect of our simulations is still realistic. However, this is worth in-

vestigating further, and future simulations should certainly examine modeling structures

that maintain a more consistent and even distribution of patients into comparison groups

of interest.

3.5.5 Conclusion

The simulation results presented here indicate that both traditional and propensity score

regression adjustment methods produce comparably biased estimates of treatment effect.

The primary source of the remaining bias in estimates from both propensity score regression

adjustment and traditional regression adjustment is the reliance of the distribution of race

on the distributions of hypertension and hyperlipidemia (as indicated in equation 3.5).

There is the possibility of additional bias in the propensity score regression adjustment

estimate resulting from the estimation of the propensity score itself - even when the correct
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confounders are included in the model, we are still only estimating the distribution of the

race variable.

One of the primary concerns when estimating a propensity score is failing to account for any

remaining imbalance in a variable that is strongly related to the outcome of interest (hence

the balance-checking step is critical). Ho [2007] has shown that even a small amount of

remaining imbalance can result in large bias in the final causal estimate. These simulations

indicate that estimates from traditional regression adjustment methods are neither more

nor less sensitive to remaining imbalance.

Not only did both adjustment methods consistently provide statistically similar estimates

of treatment effect regardless of simulated levels of imbalance, ‘correct’ propensity score and

traditional models resulted in estimates of treatment effect closer to each other than to their

‘incorrect’ counterparts. In other words, whether or not the ‘correct’ list of confounders

is included in models adjusting for confounding has a stronger influence on the estimated

treatment effect than the method employed to carry out the adjustment.

However, the coverage probability results presented in section 3.5.3 indicate that traditional

adjustment methods should still be preferred over propensity score regression adjustment,

regardless of level of imbalance. We find ourselves drawing a similar conclusion to Kang

and Schafer [2007] (among other researchers in the field) that propensity score analyses

provide useful additional information that careful statisticians would be remiss to dismiss,

but directly adjusting for this information in an outcome model does not necessarily result

in better estimates of treatment effect than more traditional methods.

Additionally, our findings do not confirm Drake’s [1993] findings that propensity score re-

gression adjustment bias will decrease as treatment effect and covariate effect on treatment

as well as outcome increase. Several additional simulations were conducted varying treat-

ment effect and covariate effect on outcome and the bias of the estimated treatment effect

remained consistent across methods. Additionally, as α values increased (corresponding to

a larger covariate effect on treatment, and specifically for these simulations, higher rates of

hyperlipidemia or hypertension among black patients) the size of the bias remained similar
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between propensity score and traditional regression adjustment methods.

It is important to note that Drake’s [1993] findings are based on continuous, normally dis-

tributed confounders, and indeed much of the propensity score literature assumes potential

confounders of this type. To continue to develop ‘best propensity score practice’ [Shadish

et al., 2008] more research must involve a wider variety of potential confounders, both to

examine the overall performance of the method and to develop useful rules of thumb for

applying propensity score analyses to a variety of types of data.

Overall the set of simulations in section 3.5 appear to contradict results from the pseudo-

simulations in the previous section (3.4), where significant differences in estimated treatment

effect were found between the two methods. Given the additional complications included in

the pseudo-simulations (complex survey design structure with stratification and clustering,

additional potential confounders), it is difficult to determine precisely the cause of these

measured differences.

Lastly, all of the above simulations focus only on comparing traditional regression adjust-

ment to propensity score regression adjustment. There are many other propensity score

adjustment methods - stratification, matching, and weighting. Regression adjustment was

chosen for these comparisons since it is most often used by clinical researchers due to its

ease of use and ready interpretability. Other propensity score adjustment methods arguably

perform better than regression adjustment (most recently shown by Shadish et al.), and fu-

ture work should repeat the above simulations with these other propensity score adjustment

methods.
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Chapter 4

Assessing Causal Effects with

Truncation Due to Death and

Missing Mortality Status

4.1 Background

Missing data represent a prevalent problem in all types of research. Frequently, missing

observations are the result of loss to follow-up, in which case the data exist and would be

theoretically possible to collect if we had more time and money for follow-up. In contrast,

another type of ‘missingness’ (which will be more accurately referred to as truncation)

results when some post-treatment variable (Si(Z)) affects our ability to collect the primary

outcome of interest. As mentioned in section 1.4, examples of this include school enrollment

status, when the outcome of interest is a final test score, or employment status, when the

outcome of interest is salary, or mortality status, when the outcome of interest is quality

of life or functional status. In contrast to the type of missingness that results from loss to

follow-up, this sort of truncation results in outcome measures that do not exist, at least

not on the same measurement scale as the outcome of interest. It is critical that analyses

account for this truncation in ways that clearly discriminate between it and other types of

72



missingness.

One such type of analysis is the application of principle stratification, which refers to strat-

ifying data into homogenous groups of potential post-treatment variables Si(Z), which are

not the primary outcome of interest, but may be affected by the treatment. Within this

framework, causal inferences are only valid within a single strata, and in the specific in-

stance where Si(Z) refers to mortality status, we are interested in estimating the treatment

effect within the stratum where Si(t) = Si(c) = alive. See section 1.4 for more details.

Both principle stratification itself and its specific application to truncation due to death

problems are new techniques, so there are few examples of this type of analysis available

[Zhang and Rubin, 2003, Hayden et al., 2005, Mattei and Mealli, 2007, Egleston et al., 2007,

Frangakis et al., 2007, MacKenzie et al., 2008]. However, the application is much more

prevalent in the compliance literature (see section 2.2) and in fact principle stratification

language can be found in Bayesian analyses of the compliance problem [Imbens and Rubin,

1997] prior to Frangakis and Rubin’s [2002b] formalization of the method.

In each of the above referenced studies, truncated outcome data are the only type of ‘miss-

ingness’ considered. Many longitudinal studies that model survival include both death as a

competing risk and missing data due to loss to follow-up, but in all cases that we are aware

of, missing data due to loss to follow-up refers to missing outcome data. Mortality status

(or other general post-randomization variable Si(Z) used to determine principle strata) is

always assumed completely known. In contrast, one of the things that is unique to our

dataset is the combination of missing outcome data caused by truncation due to death

coupled with missing mortality indicators due to loss to follow-up. The principle strata are

defined by mortality status, so when these indicators are missing, additional assumptions

are required to estimate the proportions of observations in each principle strata. Since all

types of data are susceptible to loss to follow-up, we believe that our comparison of the

affect of missing mortality status data on causal inference using principle stratification is a

new and important contribution to the field. As far as we are aware, this is the first work to

compare the sensitivity of causal estimates to principle strata assumptions versus missing

data pattern assumptions.
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4.2 Motivating Example

In the ProTECT study patients who had suffered a traumatic brain injury (TBI) were

randomized to receive either progesterone or a placebo. This was a small pilot study de-

signed primarily to determine the safety (rather than efficacy) of progesterone to treat acute

TBI. Seventy seven patients received the treatment (progesterone) and 23 received placebo.

Thirty days post-injury, two primary outcome measures were used to assess recovery - the

Glasgow Outcome Score Extended (GOSE) and the Disability Rating Scale (DRS).

Patients were followed for one year, and DRS was measured again at this later follow-up

time. The one year data were used for this paper and DRS was our outcome of interest for

this secondary analysis.

One year post injury, seven of the control patients and fourteen of the treatment patients

were known to be deceased. Five control patients and twenty five treatment patients were

of unknown status.

4.2.1 Original Analyses

Due to the small sample size of the pilot study, original analyses included Fisher’s exact

test (for GOSE scores) and Wilcoxon’s rank sum test (for DRS scores). All analyses were

stratified by the initial severity of the injury (moderate vs. severe). At 30 days 40% of the

severely injured patients randomized to placebo were deceased whereas only 13.2% of those

randomized to treatment were deceased. Mortality rates among the moderately injured were

similar across the treatment arms (14.3% among the control group versus 16.7% among the

treated). Among the survivors with severe initial injury severity, 26.7% of patients in the

control group had a GOSE score at 30 days indicative of moderate or good recovery versus

21.2% of the treated. Among the moderately injured survivors, none in the control group

attained moderate to good recovery versus 55.6% in the treated. Additionally, although the

confidence intervals overlap, the mean estimated DRS score among severely injured patients

was lower (indicating more improvement) in the placebo group, whereas DRS results among
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the moderately injured showed a significant gain for treatment patients [Wright et al., 2007].

It is worth noting that repeating the original study’s Wilcoxon rank sum test on the one

year follow-up data fails to find a statistically significant difference in DRS scores between

the groups (p-value = 0.5, see Table 4.3 below), although patients in the treatment group

do have a lower mean DRS (lower is better).

If the worst DRS score (29 - extreme vegetative state) is substituted for all patients who

died before the one year follow-up (a common alternative to survivor-only analyses), Table

4.1 results,

Table 4.1: Mean DRS Assuming DRS = 29 for Deceased
Mean DRS (SD)

Progesterone 9.1 (12.3)
Placebo 13.0 (13.7)

which still indicates improvement among the treated patients, but much worse recovery

overall. Additionally, this is clearly misleading since it adds back potentially inaccurate

outcome values for 30% of the control patients and 18% of the treated patients. However,

even this amount of data replacement fails to produce a statistically significant difference

between groups using a Wilcoxon rank sum test (p-value = 0.2).

Traditional methods are hampered by the significant amount of missing data resulting from

the two different sources - by the one year follow-up 50% of outcome data are missing,

either due to loss to follow-up or truncation due to death. Both survivor-only analyses

and the alternative of substituting the worst possible outcome for all deceased patients are

likely to provide misleading estimates of treatment effect. Therefore, alternative methods

are needed.

4.3 Principle Stratification

To conduct the principle stratification analysis described in section 1.4, we would ideally

be able to fill out a table such as Table 4.2.
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Table 4.2: Principle Strata
Prob. of Principle Stratum Membership Principle Stratum Si(t) Si(c) Yi(t) Yi(c)
πLL LL 1 1 ∈ < ∈ <
πLD LD 1 0 ∈ < *
πDL DL 0 1 * ∈ <
πDD DD 0 0 * *

Where Si(Z) is observed mortality status under treatment or control, Yi(Z) is observed

outcome (DRS) under treatment and control (which is sometimes a valid DRS score on

the real number line and sometimes truncated by death, indicated by *), and LL, LD, DL,

and DD refer to the principle strata - those who would live under both treatments, those

who would live under control but die under treatment, those who would die under control

but live under treatment, and those who would die regardless of treatment, respectively.

Instead, what we observe is Table 4.3.

Table 4.3: Principle Strata - Observed
Observed Group % of population Principle Stratum Zi Si(Z) Y i(Z) (SD)
OBS(tL) 55% LL or LD 1 1 1.9 (2.8)
OBS (tD) 20% DD or DL 1 0 *
OBS (cL) 15% LL or DL 0 1 2.8 (5.3)
OBS (cD) 10% DD or LD 0 0 *

The principle stratification approach is an attempt to tease out what proportion of the 70%

of the sample that consists of a mixture of LL, DL, and LD patients are actually LL, and

estimate a treatment effect within this principle strata.

4.4 Methods

Based on work by Zhang and Rubin [2003], the causal effect of treating TBI patients with

the drug progesterone was estimated, taking into account both missing data due to loss

to follow-up and missing outcome data caused by truncation due to death. Zhang and

Rubin’s work recommends a bound for the causal effect estimate, based on a weighted av-

erage of approximate principle strata membership. These four strata can never be directly

observed, but we do know that the group we observe to survive under treatment is actually
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a combination of those who would survive regardless of treatment group and those who

would survive under treatment but die under control. Similar observations can be made

about combinations of the principle strata in the four other observed groups (those who

die under treatment, those who survive under control, and those who die under control,

see Table 4.3). Depending on the characteristics of the data, and whether or not two im-

portant assumptions hold, these bounds may be narrowed (see monotonicity and stochastic

dominance assumptions in section 1.4.2).

In addition to missing DRS information for those patients who died, our data also contained

missing information due to loss to follow-up. Therefore we also calculated the causal effect

intervals under each combination of monotonicity and stochastic dominance assumptions

under four extreme boundary options for the pattern of missing mortality status:

• ignoring the missing data

• assuming everyone with missing data was dead by the one year follow-up

• assuming everyone with missing data was alive at the one year follow-up

– with the lowest possible DRS of zero

– with the highest observed DRS, 15 for progesterone patients, 18 for control.

Under these assumptions we observe Tables 4.4, 4.5, and 4.6.

Table 4.4: Ignoring Missing
Observed Strata N Proportion of Observed Group
OBS(t, L) 39 PtL = 39/53 = 0.74
OBS(t, D) 14 1− PtL = 14/53 = 0.26
OBS(c, L) 11 PcL = 11/18 = 0.61
OBS(c, D) 7 1− PcL = 7/18 = 0.39

Table 4.5: Assuming Missing Are Dead
Observed Strata N Proportion of Treatment Group
OBS(t, L) 39 PtL = 39/78 = 0.5
OBS(t, D) 39 1− PtL = 39/78 = 0.5
OBS(c, L) 11 PcL = 11/23 = 0.48
OBS(c, D) 12 1− PcL = 12/23 = 0.52
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Table 4.6: Assuming Missing Are Alive
Observed Strata N Proportion of Treatment Group
OBS(t, L) 64 PtL = 64/78 = 0.82
OBS(t, D) 14 1− PtL = 14/78 = 0.18
OBS(c, L) 16 PcL = 16/23 = 0.7
OBS(c, D) 7 1− PcL = 7/23 = 0.3

More sophisticated methods for handling missing data (such as multiple imputation) were

not considered following the results of the sensitivity analysis.

We also conducted two extensions of Zhang and Rubin’s basic method, stratifying causal

effect estimation by covariates (age group and initial severity) and propose one extension

using Bayesian analyses.

For all 16 possible combinations plus two extensions, we calculated the causal effect bounds

based on the equations provided by Zhang and Rubin (see Table 4.7), where πg indicates the

probability of an observation belonging to a given principle stratum g, Pz,s is the proportion

of observed individuals receiving treatment z with mortality status s and Y z,s is the mean

DRS in a given observed group (see section 1.4.1 for derivation of large sample bounds).

Our primary interest in this paper is to compare causal effects estimates under a variety

of combinations of reasonable assumptions regarding the structure of the principle strata

themselves and the pattern of missingness of the mortality data. In other words, we are

interested in the sensitivity of causal effects estimates to these assumptions and therefore

hope to make recommendations regarding which should be prioritized when conducting

analyses.

4.5 Results

The large sample bounds for the sixteen possible combinations of principle strata and miss-

ingness assumptions described in section 4.2 are presented in Table 4.8. The intervals may

appear misleading at first, but keep in mind that the Disability Rating Scale works like a

golf score - lower is better, and 0 indicates no disability whatsoever. So all of the negative
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Table 4.7: Large Sample Bounds for the Average Causal Effect on Y in the LL Principle
Stratum - Table 6, Zhang and Rubin, 2003, slightly modified notation

A1 A2 Lower Bound, Upper Bound
No No minπDL [Y tL(min|PcL/PtL − πDL/PtL)− Y cL(max|1− πDL/PcL)],

maxπDL [Y tL(max|PcL/PtL − πDL/PtL)− Y cL(min|1− πDL/PcL)]

Yes No Y tL(min|PcL/PtL)− Y cL, Y tL(max|PcL/PtL)− Y cL

No Yes Y tL −maxπDL [Y cL(max|1− πDL/PcL)],
maxπDL [Y tL(max|PcL/PtL − πDL/PcL)]− Y cL

Yes Yes Y tL − Y cL, Y tL(max|PcL/PtL)− Y cL

intervals indicate that the point estimate of DRStrt − DRScontrol is expected to be nega-

tive, across a plausible range of proportions of observations falling in the LL strata, which

in turn implies a beneficial treatment effect, among those who would be expected to live

regardless of treatment assignment. The most extreme analysis, stacked against treatment,

is the one that involves neither the monotonicity nor stochastic dominance assumptions

(hence a broader causal effect interval) and assuming that all of the missing are alive with

the worst observed DRS. Even in this case, treatment was found to be neutral at worst and

given how skewed the interval is toward a large negative difference between treatment and

control, indicative of a potential positive treatment effect at best. When both (plausible)

assumptions are allowed to hold, producing the narrowest causal effect intervals, in all four

possible missing data cases a positive treatment effect is estimated.

One of the boundary estimates did not produce a ‘reasonable’ result - when neither assump-

tion is considered to hold and all missing observations are assumed dead, our sample size

is too small to produce an interval because the second half of the boundary calculations

indicated in Table 4.7 produce no observations. Therefore the point estimate listed as the

second entry in Table 4.8 is actually the upper limit of that causal estimate. Additionally,

the interval estimated when only assumption two is considered to hold and all missing ob-

servations are assumed dead is equivalent to the mean DRS among those observed to be

alive in the treated group (as the upper bound) and the negative mean DRS among those

observed to be alive in the control group (as the lower bound).
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Table 4.8: Large Sample Bounds for Causal Effect Estimates
Assumptions DRS Causal Effect (t - c)

1 2 Missing
no no ignored (-0.79, -5.67)
no no assumed dead -0.92*
no no assumed alive - DRS = 0 (-0.57, -2.58)
no no assumed alive - DRS = 15 (trtment) or 18 (control) (0.77, -7.85)

yes no ignored (-0.51, -1.88)
yes no assumed dead (-0.82, -1.39)
yes no assumed alive - DRS = 0 (-0.60, -1.52)
yes no assumed alive - DRS = 15 (trtment) or 18 (control) (0.6, -1.85)

no yes ignored (1.90, -2.82)
no yes assumed dead (1.90, -2.82)
no yes assumed alive - DRS = 0 (0.91, -1.94)
no yes assumed alive - DRS = 15 (trtment) or 18 (control) (2.94, -6.01)

yes yes ignored (-0.92, -1.88)
yes yes assumed dead (-0.92, -1.49)
yes yes assumed alive - DRS = 0 (-0.78, -1.52)
yes yes assumed alive - DRS = 15 (trtment) or 18 (control) (-0.54, -1.85)

Repeating analyses stratified by initial severity confirms the original study’s findings at

30 days that moderate traumatic brain injury survivors had an improved outcome at one

year when treated with progesterone (causal effect = (-4.2, -2.92)) whereas severely injured

patients experienced a neutral effect (-3, 2.02) resulting in an overall neutral effect when

combining these estimates based on the sample sizes in both groups (-3.37, 0.49). Lastly,

when age is taken into account, progesterone again appears to cause an improvement in

outcome, driven primarily by older patients (over 25 years old) (see Table 4.9).

Table 4.9: Causal Effects Estimates Stratified by Age Group
Age Group DRS Causal Effect (treatment - control)
18-25 (0.92, -1.03)
26-42 (-0.05, -2.33)
43-82 -5.17*

In the age stratification we again see the case where we are missing a lower bound due to

our small sample size.

It is also important to keep in mind that these are bounds on the point estimate of the

causal effect based on an attempt to bound the likely proportion of observations that are
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Figure 4.1: Bounds on Point Estimate of Causal Effect of Treatment; ‘1’ = Ignore miss-
ing, ‘2’ = Assume missing are dead, ‘3’ = Assume missing alive with DRS = 0, ‘4’ =
Assume missing alive with DRS = 15 (progesterone) or 18 (control); ‘No, No’ → Neither
monotonicity nor stochastic dominance assumption

in fact members of the LL principle strata. Additional variability is present, and is not

accounted for in these intervals (see proposed confidence interval calculations in section on

future work).

4.6 Conclusion

Overall, causal effect estimates appear to be more sensitive to assumptions about principle

strata structure rather than missingness patterns. A positive treatment effect was estimated

in seven out of eight analyses under the monotonicity assumption, regardless of assumed
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missingness pattern. A null effect was estimated in five out of seven analyses without the

monotonicity assumption, regardless of missingness pattern. This can also be seen in Figure

4.1, since the variability between principle stratification assumptions is clearly greater than

within (‘yes, no’ groups refer to assumptions A1 and A2 in Table 4.8 and numbers 1 - 4 refer

to the four possible missingness patterns; the horizontal dotted line at -0.9 is the survivor-

only estimated treatment effect, and the horizontal dotted line at -3.9 is the worst case

estimated treatment effect). Covariate analyses produced mixed results, with stratification

by age resulting in a positive treatment effect and stratification by initial severity resulting

in an estimated null effect.

Not only did causal inference analyses confirm the general direction of the original tradi-

tional analyses, we note that with causal inference a positive treatment effect was detected

more often (even without boundary-narrowing assumptions). In terms of pilot studies and

planning future studies this is critical - the ability to detect small indications of improve-

ment, in the context of small sample sizes and a treatment that affects not only functional

status but mortality as well, is needed in many medical research fields. Additionally, the

traditional one-year analysis of the survivor-only group underestimated treatment effect

(Y t − Y c = -0.9) whereas substituting the lowest DRS value for those who died by the

one-year follow-up overestimated treatment effect (Y t − Y c = -3.9) (from Tables 4.3 and

4.1), both of which would have resulted in inaccurate power and sample size calculations

for a phase III clinical trial of the affect of progesterone on TBI.

Of course, we must also keep in mind that these estimates are based on large-sample deriva-

tions, and obviously we are applying them to a dataset with a small sample size. This has

led to some odd results, where the estimated proportion of observations of which to take the

mean was zero, which clearly indicates that our data do not always match the large-sample

theory. We must be cautious in interpreting these results, but nonetheless we believe this is

an important first step toward taking mortality (and missing mortality status) into account

in a more satisfying way than traditional analyses. Future work (proposed in the following

section) suggests a Bayesian approach that may handle some of the small sample challenges

better than the preceding application of large-sample theory.
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4.7 Future Work

4.7.1 Confidence Intervals

As mentioned in the results section, the large sample bounds presented in this chapter are

bounds on possible values of the point estimate itself, they do not represent a confidence

interval. To draw conclusions regarding the potential statistical significance of the causal

estimates calculated in this chapter we would need to account for variability in both the

estimate of the probability that an individual is a member of a given principle strata g and

the estimate of the average DRS outcome Y .

One place to start in calculating confidence bounds would be to simply calculate standard

deviations for the proportion of Yz,s used in each causal effect estimate. For example, when

neither assumption is considered true, the lower point estimate bound is

minπDL [Y tL(min|PcL/PtL − πDL/PtL)− Y cL(max|1− πDL/PcL)] (4.1)

(from Table 4.7). If missing mortality status data are ignored, the minimum πDL value is

0. Recall that πDL is bounded

max(0, PcL − PtL) ≤ πDL ≤ min(PcL, 1− PtL),

PcL − PtL = 0.61 − 0.74 = −0.13, PcL = 0.61, and 1 − PtL = 1 − 0.74 = 0.26 from section

4.4, so

max(0,−0.13) ≤ πDL ≤ min(0.61, 0.26)⇒ 0 ≤ πDL ≤ 0.26.

Then the left hand side of equation 4.1 is Y tL(min|PcL/PtL − 0), which indicates to take

the average of the lowest 1 32 DRS values (a proportion PcL/PtL = 0.61/0.74 = 0.82 of the

total of 39) in the observed treated and alive group. The right hand side then indicates to

subtract the average of the highest 11 DRS values (a proportion 1 − πDL/PCL ⇒ 100%,

for πDL = 0) in the observed control and alive group. We could then treat this like a
1‘highest’ and ‘lowest’ must be interpreted carefully, since DRS = 0 is actually the best, or ‘highest’

outcome value
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traditional difference of means and calculate the lower confidence interval bound by sub-

tracting either tn1+n2−2
1−α/2

√
(n1−1)s21+(n2−1)s22

n1+n2−2

√
1
n1

+ 1
n2

or tn1+n2−2
1−α/2

√
s21
n1

+ s22
n2

(depending on

assumptions about underlying variance structures) from the estimated difference of means,

to achieve an approximate lower confidence bound. Of course, this implies an assumption

of normality, or a large enough sample size to invoke the central limit theorem, which may

or may not be applicable.

Similarly, the upper point estimate bound is

maxπDL [Y tL(max|PcL/PtL − πDL/PtL)− Y cL(min|1− πDL/PcL)] (4.2)

(from Table 4.7). From the calculations above, this indicates to take the average of the

highest 15 DRS values (a proportion PcL/PtL − πDL/PtL = 0.82 − 0.26/0.74 = 0.39 of the

total of 39) in the observed treated and alive group and subtract the average of the lowest

6 DRS values in the observed control and alive groups (a proportion 1 − 0.26/0.61 = 0.57

of the total of 11). Again, treating this as a traditional difference of means, and calculating

the appropriate SD as above, but this time adding to the upper point estimate bound to

find the upper confidence bound.

Although this method would provide a starting point in estimating confidence intervals

for the estimated causal effect, it only takes one source of variability into account. The

conditional distribution of observations belonging in the LL principle stratum given that

they were observed in the tL group could be modeled as a binomial distribution (similarly

membership in the LL principle stratum given observed in the cL group). More traditional

estimates of variability (i.e., σ2 = npq for binomially distributed random variables) could

then be used to estimate this source of variability. Of course, the next analytical question

would then be how best to combine these two sources of variability into a single estimate

of confidence interval limits.
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4.7.2 Bayesian Methods

We propose extending Zhang and Rubin’s (2003) initial analysis to include a Bayesian

approach. This is essentially a two-step hierarchical process - defining the distribution of

patients into each of the four possible principle strata and, given that, defining the probable

outcome within each strata. In other words, modeling the potential outcomes

f(S(t), S(c), Y (t), Y (c)|X) = f(S(t), S(c)|X)f(Y (t), Y (c)|S(t), S(c),X)

In their study of the effect of job training on wages, Zhang, Rubin, and Mealli [2006] start

with a multinomial distribution of probabilities of principle strata membership and assume

that their outcome of interest (wages) is normally distributed.

P (Gi = g|Xi, θ) =
exp(αg + XT

i βg)∑
g′ exp(αg′ + XT

i βg′)
(4.3)

and

(log(Yi(z))|Gi = g,Xi, θ) ∼ N(µg,z + ηTg,zXi, σ
2
g,z)

where g indicates principle strata and z treatment.

We will assume the same model for our principle strata, but with the addition of a simplify-

ing assumption - no ‘denier’ group (i.e., that no patients died under treatment but survived

under control), leaving three possible categories for our multinomial distribution.

Instead of a normally distributed outcome, we propose transforming the pseudo-continuous

outcome measure (DRS) into a dichotomous outcome (probability of being disabled, which

is equivalent to DRS > 0 vs. DRS = 0) and assume a binomial distribution with a stratum-

specific probability pg assigned to each stratum g. The collection of unknown parameters θ

is then θ = {(αg, βg, pg), g ∈ {LL,LD,DD}}
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Under our model, the likelihood function is

L(X,Z,Sobs,Yobs|θ) ∝
∏

i∈O(1,1)

[πLL:iBini(pLL) + πLD:iBini(pLD)]×
∏

i∈O(1,0)

πDD:i

×
∏

i∈O(0,1)

[πLL:iBini(pLL)]×
∏

i∈O(0,0)

(πLD:i + πDD:i). (4.4)

Where πg,i = P (Gi = g|Xi, θ) for g ∈ {LL,LD,DD}. The first and third terms account for

those who received treatment and were alive at one year and those who received placebo

and were alive at one year respectively. The second and last terms account for those who

received treatment and placebo respectively and were not alive at one year, and hence are

lacking the binomial component for disability since their probability of disability has been

truncated. Since we are maintaining Zhang, Rubin, and Mealli’s (2006) principle stratum

distribution, we will also assume the same prior distribution

(αg, βg) ∼ N(0,K0I) (4.5)

for each g ∈ {LL,LD,DD}

Equation 4.4 indicates that it would be challenging to draw our parameters of interest from

their posterior distribution. Fortunately, if the principle strata could be treated as known

and we could condition on them, the posterior distribution of θ has a much preferable

structure:

f(θ|G,X,Z,Sobs,Yobs) ∝ L(G,X,Z,Sobs,Yobs|θ)p(θ). (4.6)

Continuing to follow Zhang, Rubin, and Mealli [2006], we will then use their suggested data

augmentation approach to iteratively impute G given θ and draw θ given G. For starting

values, we will randomly draw θ+ = {αg, βg} from 4.5 and then compute G from equation
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4.3 (using X = initial severity) and then draw an updated θ+ from

f(θ+|pg,G,X,Z,Sobs,Yobs) ∝ p(θ+)×
∏

iεO(1,1)
⋂
LL

πLL:i ×
∏

iεO(1,1)
⋂
LD

πLD:i

×
∏

iεO(1,0)
⋂
DD

πDD:i ×
∏

iεO(0,1)
⋂
LL

πLL:i

×
∏

iεO(0,0)
⋂
LD

πLD:i ×
∏

iεO(0,0)
⋂
DD

πDD:i (4.7)

where p(θ+) is the prior distribution defined in 4.5. The conditional posterior mode and

covariance matrix of θ+ will then be Λ and Ω respectively and can be used to construct

a multivariate t distribution tv(Λ,Ω). θ+ will then be updated with values from tv(Λ,Ω)

with probability

min

(
1,
f(θnew+ |pg, G,X,Z, Sobs, Y obs)tv(θcur+ |Λ,Ω)
f(θcur+ |pg, G,X,Z, Sobs, Y obs)tv(θnew+ |Λ,Ω)

)
.

At this stage, Zhang, Rubin, and Mealli [2006] assume their normally distributed outcome

and define subsequent prior distributions accordingly. In contrast, we assume a dichotomous

outcome with a binomial distribution, so we will assume a conjugate beta prior distribution

for the binomial probability pg

pg ∼ Beta(a, b). (4.8)

The beta parameters a and b could be chosen such that a higher frequency of low p values

(i.e., lower probability of disability) is generated among the LL strata and a higher frequency

of high p values (i.e., higher probability of disability) among the DD strata, to incorporate

the assumption that the LL strata includes healthier patients overall, and therefore patients

with a lower probability of disability.

Alternatively, we could model the probability of disability, p, as

pg = β0,g + β1,gage

and then the prior for {β0,g, β1,g} would be Nv(µg, σ2
g). Either way, we will eventually be
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working toward a posterior estimate of the causal effect of treatment:

P (disability|LL, treatment group)− P (disability|LL, control group).

Although Zhang, Rubin, and Mealli provide the initial starting point for this problem with

their Bayesian analysis of the employment and wage problem, we are not aware of any other

studies that take the particular Bayesian approach we have with a dichotomous outcome

variable to the truncation due to death problem.

Additionally, we could develop a prior for the possible distribution of missing mortality

status indicators (Si(Z)) and include that in our model (unknown parameter θ would then

include a factor for P (Si(z) = s|Zi = z, Sobsi = .)). An obvious starting value for the

Markov Chain Monte Carlo method would then be P (Si(t) = 1) = pt = 0.26 (the observed

proportion of deceased individuals in the treatment group) and P (Si(c) = 1) = pc =

0.52 (the observed proportion of deceased individuals in the control group). The prior

distribution for mortality status, given missing observed mortality status, would then be

Bin(pZ) and this information could be used to improve the estimation of the distribution

of observations among the principle strata (P (Gi = g|Xi, θ)).
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Chapter 5

Prognostic Scores and Sliding

Dichotomy

5.1 Background

Many studies rely on a measure of functional status as an outcome of interest. In stroke

and traumatic brain injury (TBI) research, a commonly used scale is the Glasgow Outcome

Scale (GOS), which is composed of five categories - dead, vegetative state, severe disability,

moderate disability, and good recovery. Traditionally, a patient is categorized as having

a favorable outcome if he or she achieves a categorization of moderate disability or good

recovery at some post-treatment time point (say, three or six months later). Clinical trials

evaluating potential new treatments then define a successful treatment as one that results

in a ten percentage point increase in favorable outcomes among patients in the treatment

group as compared to those in the control group. Unfortunately, a successful treatment

has not been identified in either field (with the exception of tissue plasminogen activator

for stroke) in many years. This has led some researchers to hypothesize that the problem

is not a lack of successful treatment options but rather a highly heterogeneous patient

population resulting in frequently under-powered trials. In particular, many argue that the

current standard definition of a successful treatment implies that every patient has the same
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probability of achieving a favorable outcome, which is simply clinically untrue - probabilities

of favorable outcomes are clearly affected by patient characteristics and the initial severity

of injury [Barer, 1998, Maas et al., 1999].

Many research fields encounter heterogenous patient populations and there are numerous

analytical methods available to adjust for a patient population with varying probabilities of

favorable outcomes. For example, polytomous regression may be used, with the outcome of

interest being whether or not a patient improves one or more categories rather than applying

a single threshold to the entire patient population. This approach is typically not used in

TBI research, potentially due to Choi’s [2002] findings that a categorical response measure

does not necessarily translate into higher powered trials, primarily due to the increased risk

of misclassification error. Another way to address a heterogeneous patient population is to

adjust for baseline characteristics in a final regression model. This is commonly done in

TBI research, but it is unclear how often this analytical approach is taken into account in

power and sample size calculations during the design stage of a clinical trial.

A newer approach gaining popularity in the TBI field is one called the sliding dichotomy.

Instead of adjusting the final analysis for variables that may affect the relationship between

outcome and treatment assignment, the sliding dichotomy method attempts to make a por-

tion of this adjustment up front by more specifically tailoring the definition of a favorable

outcome to an individual patient’s recovery prognosis. More specifically, the sliding di-

chotomy slides the cutpoint for favorability up or down the outcome scale depending on

which prognostic category a patient has been grouped into. Currently in the TBI field, this

has only been well-defined for outcomes based on the GOS.

Murray [2005] suggests grouping patients into ‘worst,’ ‘intermediate,’ or ‘best’ prognostic

categories, determined by the tertiles of predicted probabilities from a predictive model.

Among those with the ‘worst’ prognosis, a GOS of severe disability, moderate disability,

or good recovery may all be considered a favorable outcome. Those with an ‘intermediate’

prognosis maintain the traditional definition of a favorable outcome (moderate disability or

good recovery) and those with the ‘best’ prognosis are given a slightly higher bar to clear

with only good recovery counting toward a favorable outcome (see figure 1.1). This definition
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of a favorable outcome based on the sliding dichotomy method will be used throughout this

chapter. Machado [1999], Maas [1999], and Murray [2005] suggest that such an approach

will lead to higher powered clinical trials.

Initially, the research in this chapter was motivated by an interest in developing better

predictive models for defining prognostic categories for the sliding dichotomy approach as

defined above. Several predictive models currently exist in both TBI and stroke literature

(see section 2.3), however, few have been validated. A systematic review of prognostic

models for TBI [Perel et al., 2006] found that only 38% of current models were validated as

part of the development process, and that only 11% of those were validated in an external

population. Additionally, there does not exist a general method for developing statistically

sound predictive models for a variety of study characteristics in either field. Therefore, we

considered this to be a vital gap in the literature and hoped to advance TBI research by

applying Hansen’s prognostic score theory (2006, 2008) to the development of a general

method for predictive modeling. Results from this method would then be compared to

results from two validated predictive models from the TBI literature [Hukkelhoven et al.,

2005, Murray et al., 2005].

However, in the process of evaluating these predictive models, another gap in the litera-

ture became clear - although Machado [1999], Maas [1999], and Murray [2005] suggest that

the sliding dichotomy approach results in higher powered clinical trials, only two formal

comparisons of the sliding dichotomy approach and the traditional definition of a favorable

outcome exist in the current literature. Young’s [2003] work relates to stroke patients, so

although her research lays the conceptual groundwork for an alternative definition of a fa-

vorable outcome, it is not directly comparable to this research since Young’s work involved

different outcome measures. Therefore, Machado [1999] provides the only example of a

power analysis using the siding dichotomy as defined for the GOS. Machado concludes that

“. . . a strategy of recruiting only patients with an intermediate prognosis allows the sample

size to be reduced by the order of 30% with no loss of statistical power [1999].” Unfor-

tunately, it is unclear how these power calculations were conducted. Machado [1999] uses

data from the European Brain Injury Consortium (EBIC) Core Data Survey to develop
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a predictive model linking age, Glasgow Coma Scale (GCS) motor score, and computed

tomography (CT) classification to a traditional favorable outcome based on GOS at six

months (see Eq. 5.1, see Machado et al. [1999] for categorical variable breakdown). He

then formalizes a range of ways that a treatment effect may modify this association and

then simulates datasets based on the EBIC survey within which to conduct power analy-

ses. Although the original dataset contained 689 patients who met the exclusion/inclusion

criteria, simulated datasets included 1,000 hypothetical TBI patients. A uniform potential

treatment effect was incorporated into logistic regression models as an additional covariate

with a simulated parameter estimate of 0.557, translating into an odds ratio of 1.75 (see

Eq. 5.2). This resulted in an increase in the proportion of observed favorable outcomes

from 51% to 61% across the entire simulated population. Machado [1999] claims that

[t]his model means, for example, that a patient with an intermediate progno-
sis, say aged 36-50, with motor score 4 and CT class 5/6 (mass lesion), has a
predicted probability of 0.48 of having a favorable outcome on placebo, which
increases to 0.62 on active treatment. The same odds ratio for a patient with
a very favorable prognosis, say aged 16-25, motor score 5/6 and CT class 1 (no
visible pathology) corresponds to a probability of having a favorable outcome,
which increases from 0.95 to 0.97 on active treatment.

Additional simulations also included alternative treatment effects, including a treatment

that provided greater benefit to those with an intermediate prognosis and a treatment that

benefited only those with a specific CT classification.

logit(P (fav = 1)) = 2.979− 0.196age1− 0.709age2− 1.634age3− 2.442age4

− 1.912GCS1− 0.981GCS2− 1.162GCS3− 1.060CT1− 2.046CT2− 1.361CT3
(5.1)

logit(P (fav = 1)) = 2.979− 0.196age1− 0.709age2− 1.634age3− 2.442age4− 1.912GCS1

− 0.981GCS2− 1.162GCS3− 1.060CT1− 2.046CT2− 1.361CT3 + 0.557treatment

(5.2)
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Analyses in this chapter include a general method for developing a predictive model (loosely

based on Hansen’s prognostic score technique) and a formal comparison of the power

achieved by sliding dichotomy and traditional definitions of favorable outcomes. The latter

analysis concludes with guidelines regarding under what conditions each method results in

higher power.

5.2 Motivating Example

Research was motivated by data from the National Acute Brain Injury Study: Hypothermia

(NABISH), a multicenter randomized trial that recruited 392 patients, 16-65 years of age,

with severe head trauma, from October 1994 through May 1998. The original aim of

the study was to determine the effect of induced hypothermia on functional status six

months post-injury. A traditional favorable outcome was used (good recovery or moderate

disability vs. severe disability, vegetative state, or death according to the GOS). Patient

enrollment was stopped in May 1998 by the patient safety and monitoring board because it

was determined “. . . that the probability of detecting a treatment effect was less than 0.01

if the trial expanded to include 500 patients.” The original study used the Wilcoxon Rank-

Sum test to assess a difference in favorable outcomes between treatment groups [Clifton

et al., 2001].

Our goal is to use prognostic scores (as described in section 1.6) to divide patients from

the NABISH dataset into prognostic tertiles with corresponding definitions of favorable out-

comes as recommended by Murray [2005]. The performance of prognostic scores in assigning

patients to these groups will then be compared to two existing predictive models from the

literature [Hukkelhoven et al., 2005, Murray et al., 2005]. We hope to make recommenda-

tions regarding our approach versus those from the literature in terms of their application

to the sliding dichotomy method of designing future studies, however as mentioned in the

previous section, an important question regarding power and sample size must be answered

first.

A formal analysis of the power of the two methods to detect a potential treatment effect
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will begin with simulations. Starting values for these simulations will be based on initial

analyses using Hansen’s [2006] prognostic score approach and the two predictive models

from the literature [Hukkelhoven et al., 2005, Murray et al., 2005].

5.3 Methods - Developing Predictive Models

The next section will elaborate on all of the assumptions necessary to estimate the power

of an analysis using a traditionally defined outcome versus a sliding dichotomy outcome.

However, one of the first requirements of such an analysis is an estimate of the probability

of a favorable outcome under either definition. Simulations will vary this probability, but

we must define a reasonable parameter space within which to run the simulations. This

reasonable parameter space will be defined based on initial results from two validated pre-

dictive models from the TBI literature [Hukkelhoven et al., 2005, Murray et al., 2005] and

Hansen’s prognostic score approach [2006].

Hukkelhoven [2005] models the probability of a favorable outcome (dichotomized using the

traditional definition based on GOS) using the covariates age (as both a main effect and

squared term), GCS motor score, pupil reactivity, and CT score.

logit(P (fav = 1)) = β0 + β1age+ β2GCS + β3pupil + β4CT + β5age
2 (5.3)

As originally published, Hukkelhoven’s model also included indicators for hypotension, hy-

poxia, and traumatic subarachnoid haemorrhage (SAH).

logit(P (fav = 1)) =β0 + β1age+ β2GCS + β3pupil + β4CT + β5hypotension

+ β6hypoxia+ β7SAH + β8age
2

Unfortunately, the NABISH dataset does not include information on these covariates, so

they were omitted from the model. This is one of the challenges of using a predictive model

from the literature - not all studies collect data on the same set of covariates. Although

there is a movement within the TBI field to develop a standard set of predictive covariates
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that all studies will collect, this has not yet been formalized. Additionally, even when data

are collected on a common set of covariates, the distribution of those covariates will not

always be similar across studies and therefore researchers may make individual decisions

regarding how best to analyze data - for example, age may be treated as continuous or

categorical, GCS motor score categories may be combined due to low sample size, etc.

Hukkelhoven [2005] suggests using his logistic regression model to generate deciles of pre-

dicted probabilities of favorable outcomes (see table 5.1 for deciles of predicted probability of

favorable outcome versus observed favorable/unfavorable outcome in the NABISH dataset).

How best to break down these categories of predicted probabilities into prognostic regions is

left up to the reader/researcher/clinician. However, one can see from table 5.1 that although

there does appear to be a natural division around either the fourth or seventh decile, the

predicted probabilities still do not appear to discriminate very well between the observed

favorable and unfavorable outcomes.

Table 5.1: Deciles of Predicted Probabilities from Hukkelhoven Model (5.3) versus Observed
Outcome
Decile of Pred. Prob. Observed Favorable Outcome

No Yes
0 30 (88%) 4 (12%)
1 28 (80%) 6 (17%)
2 27 (77%) 6 (17%)
3 27 (77%) 7 (20%)
4 22 (65%) 11 (32%)
5 29 (83%) 5 (14%)
6 26 (74%) 9 (26%)
7 17 (50%) 17 (50%)
8 17 (47%) 19 (53%)
9 12 (35%) 21 (62%)

To match Murray’s [2005] sliding dichotomy definition, we instead divided predicted prob-

abilities from Hukkelhoven’s model into tertiles, with favorable outcomes defined for each

tertile as described in section 5.1. Within the group identified as having the ‘worst’ prognosis

(i.e., the lowest tertile of predicted probabilities, according to Hukkelhoven’s model), 15%

were observed to attain the traditionally defined favorable outcome and 39% were observed

to attain the sliding dichotomy definition of a favorable outcome. Within the ‘moderate’
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group 22% attained a favorable outcome (defined as the same GOS categories for both

traditional and sliding dichotomy) and within the ‘best’ group 53% attained a traditional

favorable outcome while 46% attained the sliding dichotomy version of a favorable outcome

(see Table 5.2).

Murray [2005] proposed two proportional odds models, both with GOS (treated as ordinal;

not dichotomized into favorable and unfavorable) as the outcome of interest. Model A

included age, GCS motor score, and pupil reactivity, model B included the same covariates

with the addition of CT score.

logit(P (Y = k)) = αk + β1age+ β2GCS + β3pupil (5.4)

logit(P (Y = k)) = αk + β1age+ β2GCS + β3pupil + β4CT (5.5)

These proportional odds models produce predicted probabilities for each of the five GOS

categories. Therefore the category with the maximum predicted probability was taken to

be the predicted GOS outcome for each individual. Model A resulted in only two predicted

GOS categories, (GOS = 1 (dead) or 3 (severely disabled)) and so was discarded in favor

of model B, which resulted in three predicted GOS categories. GOS = 1 was treated as

the ‘worst’ prognostic category, and 34% of patients in this group were observed to attain a

traditional favorable outcome while 62% attained the sliding dichotomy favorable outcome.

GOS = 3 was treated as the ‘moderate’ prognostic category, with 27% of patients in this

group attaining a favorable outcome. Lastly, GOS = 4 (moderately disabled) was considered

the ‘best’ prognostic group and 67% of these patients attained a favorable outcome, using

either the traditional or sliding dichotomy definition (see Table 5.2).

Next we used Hansen’s [2006] suggestion of modeling outcome measures looking only at

the subpopulation of control patients. Stepwise model selection indicated that GCS motor

score, pupil reactivity, and age were significantly associated with a dichotomous favorable

outcome and GCS score and pupil reactivity were significantly associated with the ordinal

GOS (in control patients only). Since Hukkelhoven’s model also included age as a squared

term this was checked in our logistic regression model, but adding this higher order term
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did not appear to improve our model.

logit(P (favc = 1)) = β0 + β1GCS + β2pupil + β3age (5.6)

logit(P (Yc = k)) = αk + β1GCS + β2pupil (5.7)

According to Hansen [2006], the next step in this procedure would be to estimate a formal

prognostic score Ψ(X), such that outcomes in the control patients are conditionally inde-

pendent of a set of covariates X given some prognostic score Ψ(X), as defined in section

1.6

Yc⊥X|Ψ(X), XεA.

Similar to how the propensity score e(x) was estimated in chapter three, Ψ(X) is the linear

combination of the covariates chosen in the above model, using the parameter estimates from

the model including only the control patients, but applied to the entire patient population

(see appendix for parameter estimates used to calculate Ψ(X)).

The final outcome model should then adjust for Ψ(X) as a balancing technique, similar to

the propensity score adjustment from chapter three. It is possible that such an adjustment,

rather than using Ψ(X) to define a new outcome, would improve analysts’ abilities to

detect a statistically significant treatment effect in otherwise under-powered clinical trials.

Exploration of this possibility is suggested for future work.

Instead, we used parameter estimates from this model, based only on control patients, to

estimate predictive probabilities for the entire study population. In this way our method

more closely resembles that suggested by Peters [1941] and Belson [1956], however with a

slight modification. In the Peters-Belson method, individual prediction values (typically

from linear rather than logistic regression) would be used to estimate D, the adjusted

treatment effect.

D =
1
nt

nt∑
i=1

(Yti − Ŷti)
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where Yti are the observed responses from the treatment group and Ŷti are the predicted

responses, based on parameter estimates from a regression model fit to the control group

only. Whether or not this difference is statistically significantly different from zero requires

a specific test based on the asymptotics of D (see Gastwirth and Greenhouse [1995] for

derivation). In contrast, we are not interested in whether or not this difference is statistically

significantly different from zero, but rather in using the predicted values Ŷci and Ŷti (or

probabilities, as they are in this case) to define prognostic categories of patients within

which to define a new outcome variable. This represents a new method of developing

predictive models in TBI research.

Similar to the use of predicted probabilities from the Hukkelhoven and Murray models

above, we divided the predicted probabilities from the first Hansen model (with dichoto-

mous GOS as outcome, Eq 5.6) into tertiles and selected the GOS value with the highest

predicted probabilities (from the model with ordinal GOS as the outcome, EQ 5.7) as the

predicted GOS grouping. Based on the first model, 19% of those grouped in the ‘worst’

prognostic category attained a traditionally defined favorable outcome while 46% attained

a favorable outcome defined by the sliding dichotomy. Of those in the ‘moderate’ category

26% attained a favorable outcome, and 47% of those in the ‘best’ prognostic group attained

a traditional favorable outcome while 40% of them attained the sliding dichotomy defini-

tion of favorability. For the model with GOS as the ordinal outcome, the ‘worst’ prognostic

group were those with a predicted GOS of 1, and 25% of these attained a traditional fa-

vorable outcome while 47% attained a favorable outcome on the sliding dichotomy scale.

The ‘moderate’ group were those with a predicted GOS of 3 and 15% of them attained a

favorable outcome (on either scale). Lastly, the ‘best’ prognostic category were those with a

predicted GOS of 5, and 45% of them attained a traditional favorable outcome while 38% of

them attained favorability as defined by the sliding dichotomy approach. All model results

are summarized in table 5.2.

These observed proportions were treated as the probability of achieving a favorable out-

come under either definition for each prognostic group and were used to define the initial

parameter space for the simulations in the following section.
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Table 5.2: Observed Proportion of Patients Achieving Favorable Outcome Under Either
Definition
Prognostic Group Traditional Favorable Sliding Dichotomy Favorable

Hukkelhoven Model (5.3)
Worst 15% 39%
Moderate 22% 22%
Best 53% 46%

Murray Model (5.5)
Worst 34% 62%
Moderate 27% 27%
Best 67% 67%

Hansen-Hukkelhoven Model (5.6)
Worst 19% 46%
Moderate 26% 26%
Best 47% 40%

Hansen-Murray Model (5.7)
Worst 25% 47%
Moderate 15% 15%
Best 45% 38%

5.4 Methods - Simulations

We used the results from the four predictive models described in the previous section as

starting points to simulate data to compare power and sample size calculations when favor-

able outcomes are defined traditionally versus by a sliding dichotomy.

Several assumptions are required in these simulations. First is the assumption that re-

searchers suggesting the need for a sliding dichotomy are correct, that TBI and stroke pa-

tient populations are heterogeneous and that traditional definitions of favorable outcomes

fail to take this heterogeneity into account. This implies that were we able to identify pa-

tients by prognosis (or prognostic group) we could specify their probability of a favorable

outcome, which would be different from members of other prognostic groups. For simplicity,

we start with three prognostic groups - ‘best’, ‘moderate,’ and ‘worst.’

Within each prognostic category we must define the probability that any individual patient

achieves a favorable outcome, either according to the traditional definition or the sliding

dichotomy definition. Initial values for these probabilities were based on the observed

attainment of a favorable outcome (under either definition) for patients in the NABISH
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dataset categorized according to each of the predictive models described in the previous

section (see Table 5.2). Depending on which predictive model was referenced, the probability

of a favorable outcome according to the sliding dichotomy varied from 39% to 62% for

patients with the ‘worst’ prognosis, 15% to 27% for patients with a ‘moderate’ prognosis,

and 38% to 67% for patients with the ‘best’ prognosis. The distribution of probabilities

looks counterintuitive at first, as those patients categorized with the worst prognosis appear

to have the highest probability of achieving a favorable outcome. However, this is also the

patient category for whom the definition of ‘favorable’ has been moved the lowest on the

sliding dichotomy scale (see Figure 1.1). The probability of a traditional favorable outcome

in the ‘worst’ prognostic group varied from 15% to 34%, ‘moderate’ varied from 15% to

27%, and ‘best’ from 45% to 67%.

These provided the starting probability values for simulated control patients; the next step

was to choose the size of the simulated treatment effect. Some clinicians suggest that

an improvement as small as 2% between treatment and control patients could translate

into a highly successful treatment [Narayan et al., 2002], so the probability of a favorable

outcome (either traditionally defined or based on the sliding dichotomy) was increased by

two to ten percentage points (the current standard definition for a ‘successful’ treatment)

in the simulated treatment patients. For example, one round of simulations to detect a two

percentage point increase would use the values in Table 5.3.

Table 5.3: Simulated Probabilities of Favorable Outcome by Prognostic Group, Treatment
Assignment, and Definition of Favorable

Sliding Traditional
Prognostic Group Treatment Control Treatment Control
Worst 41% 39% 17% 15%
Moderate 17% 15% 17% 15%
Best 40% 38% 47% 45%

More generally, outcomes were simulated as

favorable ∼ Bin(pgdz)

with a different probability for each prognostic group g, definition of favorability d, and
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treatment group z.

Of course, this also assumes a constant treatment effect across prognostic groups, something

else that many researchers believe is not reflective of reality. The simulations varied from a

constant treatment effect across all prognostic groups to a treatment that only benefitted

one prognostic group at a time.

This also interacted with another assumption - the distribution of patients into the prognos-

tic categories. Initially patients were simulated to be evenly distributed into three prognostic

categories. This distribution was eventually varied to more realistically reflect the patient

population that might be available for a phase III clinical trial (majority ‘worst’ category,

since often severely injured patients are recruited for trials); alternatively, simulations were

also conducted with a simulated majority ‘moderate’ prognosis with fewer patients in either

the ‘best’ or ‘worst’ categories to reflect Machado’s [1999] suggestion to recruit primarily

patients with an intermediate prognosis. Additionally, for simulations with a treatment

effect in only one prognostic group, the proportion of patients in the prognostic group ex-

periencing a treatment effect was increased. For example, one simulation scheme would

implement a treatment effect only among those in the ‘worst’ prognostic category, but with

patients still evenly distributed among the three categories. Subsequent simulations would

then increase the proportion of patients in the ‘worst’ category to 40% and 80%, in an

attempt to determine if a known treatment effect only affected a subset of the patient

population, and clinicians were able to conduct targeted recruitment of patients in that

particular prognostic group, could a higher powered clinical trial be achieved? And if so,

which definition of favorable outcome would be most advantageous? Of course, this is an

extreme example, since if the treatment effect only affects one prognostic group, that group

is the only one contributing to the power of the study.

Since sample size is also a critical component of power calculations, the above described

simulations were conducted with individual simulated samples of size 400. This was re-

flective of the approximate size of the original NABISH dataset and also falls well within

Perel’s [2006] systematic review of prognostic models for TBI research in which he found a

median sample size of 319 patients and 75% of studies included less than 500 patients.
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Lastly, prognostic groups were simulated such that there was an even 50%/50% split between

treatment and control patients within each prognostic category, though in future analyses

this too could be varied.

Whether or not a significant treatment effect was identified using each method was deter-

mined two different ways - logistic regression models were fit with favorable (either tradi-

tional (‘tradfav’) or sliding dichotomy (‘fav’)) as the outcome and treatment as the only

covariate. For the sliding dichotomy definition of favorability, prognostic group was also

included in the logistic regression model, since the point of the sliding dichotomy approach

is to take prognostic group into account. The two models were

logit(P (tradfav = 1)) = β0 + β1treatment (5.8)

and

logit(P (fav = 1)) = β0 + β1treatment + β2prognostic group (5.9)

This slightly favors the sliding dichotomy approach, since Choi [1998] and Hernandez [2004]

show that including a significant covariate in analyses with a dichotomous outcome increases

power. This is a simplified version of this problem, since presumably final analyses to detect

a potentially significant treatment effect would also adjust for other covariates.

Datasets with the above characteristics were simulated 1,000 times and the two logistic

regression models were fit to each simulated dataset. The odds ratios and corresponding

confidence intervals and p-values for the treatment coefficient (i.e., β̂1) were recorded from

each model and the number of ‘significant’ treatment effects using each method was counted

across simulations. Significance was defined as either an odds ratio confidence interval that

excludes one or a p-value of less than 0.05. The proportion of significant results out of

all 1,000 simulations indicated the power of each method to detect a potentially significant

treatment effect of varying size.
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5.5 Results - Sliding Dichotomy Power Analysis

A total of 295 simulations were conducted, varying probabilities of favorable outcome,

distribution of patients into prognostic categories, and treatment effect size across prognostic

groups. Since the four prognostic models used to set initial values in the simulations resulted

in a range of probabilities of favorable outcomes, simulations somewhat arbitrarily increased

probabilities by 5 percentage points across the suggested ranges (i.e., for the traditional

definition of a favorable outcome, probabilities within the ‘best’ group included 45%, 50%,

55%, 60%, 65%, and 67%). After a clear pattern emerged in the simulation results, it was

determined that finer variations in predicted probabilities were probably not necessary.

The traditional favorable outcome resulted in higher power in 196 simulations (66.4%), the

sliding dichotomy produced higher power in 95 simulations (32.2%) and the two methods

tied in 4 simulations (1.4%) (see Table 5.4).

Simulations also included examples of a treatment effect in only one prognostic group. When

broken down this way, the traditional definition of a favorable outcome still clearly provides

more power. Of the 90 simulations with a treatment effect only in the ‘worst’ prognostic

group, 65 simulations (72.2%) had higher power with a traditionally defined outcome, 24

(26.7%) with a sliding dichotomy outcome, and 1 (1%) was tied. When treatment effect was

simulated to only affect those in the ‘moderate’ prognostic group 58 simulations (64.4%)

had higher power with a traditionally defined outcome versus 30 (33.3%) with a sliding

dichotomy outcome, and 2 (2.2%) were tied. The sliding dichotomy approach appears to

work best when treatment effect is restricted to those in the ‘best’ prognostic category,

however traditional outcomes still more often resulted in higher power - 51 (56.7%) versus

38 (42.2)%, with one tie. Lastly, when treatment effect was constant across the prognostic

groups (25 total simulations) 21 (84%) had higher power with a traditional outcome versus

4 (16%) with a sliding dichotomy outcome. These results are summarized in Table 5.4. It

is also important to note that neither method ever achieved 80% power in any simulation

scheme.

Again, at first these results appear to be counterintuitive, since the sliding dichotomy has
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Table 5.4: Simulation Results Comparing Power
% of Simulations Achieving Higher Power

Simulation Scheme Traditional Sliding Tied
Overall (n = 295) 66.4% 32.2% 1.4%
Constant (n = 25) 84% 16% 0%
‘Worst’ (n = 90) 72.2% 26.7% 1%
‘Moderate’ (n = 90) 64.4% 33.3% 2.2%
‘Best’ (n = 90) 56.7% 42.2% 1.1%

the potential to make the most gains in the ‘worst’ prognostic category by lowering the

threshold for defining a favorable outcome. However, by lowering the threshold, the proba-

bility of a favorable outcome is increased, for both control and treatment patients, regardless

of treatment effect. Traditional sample size calculations for the difference of two propor-

tions show that the largest sample size (holding all else constant) is required when both

proportions approach 0.5. By increasing the probability of a favorable outcome, the sliding

dichotomy definition results in probabilities closer to 0.5 and thus requires a larger sample

size/produces lower power than the traditional definition.

Although these simulations are by no means exhaustive, the clear pattern they indicate

coincides with basic properties of sample size calculations for differences of proportions. To

generalize these results to scenarios beyond those covered in the above simulations, our next

step was to attempt a closed-form solution for sample size for both methods.

The most simplified version of the traditional favorable outcome is simply a comparison of

two proportions:

ni =
(√2pqZ1−(α/2) +

√
ptqt + pcqcZ1−β

ES

)2
(5.10)

Where pt is the probability of a favorable outcome in the treatment group, pc is the proba-

bility of a favorable outcome in the control group, Effect Size = ES = |pc − pt|, p = pt+pc

2 ,

and q = 1−p. Using this equation one can estimate the sample size required for each group

for a variety of values of pt and pc, once α, β, and ES have been chosen. For example, using

the traditional cutpoint of a ten percentage point improvement, α = 0.05, and β = 0.1, the

table of sample sizes in Figure 5.1 could be calculated.

Currently, no closed-form solution exists for sample size calculations using a sliding di-
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Figure 5.1: Sample Size Calculations for ES = 0.1, alpha = 0.05, beta = 0.1 with maximum
n required per group highlighted

chotomy approach. However, one can exploit the fact that although in the case of three

prognostic groups we are interested in six different proportions, it is actually three compar-

isons of two proportions (rather than directly comparing six proportions).

For either the traditional outcome or sliding dichotomy outcome, if we accept the assump-

tion of a heterogeneous population with different probabilities of favorable outcome per

prognostic category, the problem of under-powered clinical trials arises because we are not

actually detecting a ten percentage point difference between treatment and control groups,

but rather some other difference pt− pc that is a weighted average of the differences within

each prognostic group. Where pt could be written as

pt = (nt1/Nt)(pt1) + (nt2/Nt)(pt2) + (nt3/Nt)(pt3) (5.11)

where ntk is the number of treatment patients in prognostic group k, Nt is the total number

of treatment patients, and ptk is the probability of a favorable outcome for those who receive

treatment in prognostic group k. A similar weighted average can be calculated for pc. A few

algebraic steps then show that for the simplified case where the proportions ntk
Nt

= nck
Nc

= wk,

the difference in pt and pc that a study is actually powered to detect is:

pt − pc = w1(pt1 − pc1) + w2(pt2 − pc2) + w3(pt3 − pc3) (5.12)
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(for the simplified case of only three prognostic groups - an important next step would be

to generalize to k prognostic groups). The traditional sample size calculation described in

equation 5.10 can then be carried out for this new (and more accurate) estimate of the two

proportions.

Although this formulation of the problem still requires an unreasonable number of assump-

tions to reach a closed-form solution, one can begin to get a handle on the problem by

choosing the final difference pt − pc that a clinical trial needs to be powered to detect, say,

0.1. The possible combinations of differences within each prognostic group that could lead

to a difference of 0.1 could be written as

0.1 = w1(pt1 − pc1) + w2(pt2 − pc2) + w3(pt3 − pc3) = w1d1 + w2d2 + w3d3 (5.13)

where dk = ptk − pck. The question then becomes what combinations of values of wk ∗ dk

sum to 0.1, for a given wk? Of course, there is more than one solution to this problem,

and dk values may vary across prognostic groups according to whether favorable is defined

traditionally or using the sliding dichotomy. But there are a finite number of solutions, and

for each of those solutions there are a finite number of combinations of pt and pc.

We further simplify the problem by assuming the same distribution of patients into prog-

nostic groups regardless of definition of outcome (reasonable, if comparing the two methods

within the same patient population), i.e., wk the same whether estimating pt and pc for

traditional or sliding dichotomy approaches. Given the current definition of the sliding di-

chotomy approach, pt and pc for the ‘worst’ prognostic category (referred to as pt1 and pc1

for the remainder of this paper) will be higher for the sliding dichotomy defined outcome

versus the traditional outcome (since the sliding dichotomy includes one lower GOS cate-

gory as ‘favorable’ for those with the ‘worst’ prognosis; see Figure 5.2) and pt and pc for the

‘best’ prognostic category (referred to as pt3 and pc3 for the remainder of this paper) will

be lower for the sliding dichotomy defined outcome versus the traditional outcome (since

the sliding dichotomy excludes one GOS category in defining ‘favorable’ for those with the

‘best’ prognosis; see Figure 5.2). Lastly, assume that the ‘moderate’ prognostic group has
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the same probability of achieving a favorable outcome under the sliding dichotomy model

as under the traditional model. This is because favorability for this group is defined to be

the same GOS categories under both schemes (see Figure 1.1 and pattern in Table 5.2).

Therefore, any gain in power can be estimated by determining the trade-off between pt1 and

pc1 using the two methods versus pt3 and pc3 using the two methods and the proportion of

patients allocated to each category. The question then becomes what difference (pt1 − pc1)

versus (pt3 − pc3) results in a smaller detectable overall effect size ES = pt − pc without

increasing ni?

Figure 5.2: Graphical comparison of sliding dichotomy and traditional definitions of favor-
able outcomes as defined by GOS

Alternatively, what difference (pt1−pc1) versus (pt3−pc3) results in a smaller sample size for

a given ES? Returning to equation 5.13, except this time only considering d1 and d3 (since

d2 does not contribute to any differences in sample size calculations between traditional

and sliding dichotomy methods), and choosing a 65%/35% split of patients into ‘worst’ and

‘best’ prognostic groups, we can construct Figure 5.3 to summarize possible solutions to
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equation 5.13. Highlighted cells in Figure 5.3 indicate possible values of d1 and d3 that

would result in overall differences pt − pc of 0.1 or greater. Assuming more ‘room’ for

improvement in the ‘worst’ prognostic group, let’s select d1 = 0.15 and d3 = 0.05 for an

overall pt − pc = w1d1 +w3d3 = 0.65 ∗ 0.15 + 0.35 ∗ 0.05 = 0.115. Figure 5.4 shows possible

combinations of p1t − p1c resulting in a difference of 0.15 or greater. Similarly, Figure 5.5

shows possible combinations of p3t − p3c resulting in a difference of 0.05 or greater. From

Figures 5.4 and 5.5 we could select, for example, the probabilities in Table 5.5. Note that the

probability of favorability in the worst category is higher for the sliding dichotomy method

and the probability of favorability in the best category is higher for the traditional method,

due to the definition of the sliding dichotomy method based on GOS outlined previously.

Figure 5.3: Possible values of d1 and d3 combining with 65% patients in ‘worst’ prognostic
group and 35% patients in ‘best’ prognostic group to generate ES ≥ 0.1 (shaded region)

Table 5.5: Possible Probabilities of Favorability Resulting in Overall ES = 0.115
Sliding Traditional

Prognostic Group Treatment Control Treatment Control
Worst (p1zd) 35% 20% 25% 10%
Best (p3zd) 15% 10% 20% 15%
Overall (pzd) 28% 16.5% 23.3% 11.8%

ES for both methods is 0.115 but the sample size required for the sliding dichotomy method
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Figure 5.4: Possible values of p1t and p1c resulting in difference of 0.15 or greater (shaded
region)

Figure 5.5: Possible values of p3t and p3c resulting in difference of 0.05 or greater (shaded
region)

is 336 versus 280 for the traditional method (assuming α = 0.05 and 80% power).

ni =
(√2 ∗ 0.22 ∗ 0.78 ∗ 1.96 +

√
(0.28 ∗ 0.72) + (0.165 ∗ 0.835) ∗ 1.64

0.115

)2
= 336

ni =
(√2 ∗ 0.0.18 ∗ 0.82 ∗ 1.96 +

√
(0.233 ∗ 0.767) + (0.118 ∗ 0.882) ∗ 1.64

0.115

)2
= 280

This is because the overall pt and pc for the sliding dichotomy method are greater (and

more specifically, closer to 0.5) than the overall values for the traditional method, and ni is

maximized when pt and pc are both closest to 0.5 (see Figure 5.1). Although we have been

109



using equation 5.12, we must return to equation 5.11 to calculate the individual overall pt

and pc values needed in the sample size equation 5.10 used above. Therefore, for the sliding

dichotomy, pt = (0.35∗0.15)+(0.65∗0.35) = 0.28 and pc = (0.35∗0.1)+(0.65∗0.2) = 0.165.

For the traditional method, pt = (0.35 ∗ 0.2) + (0.65 ∗ 0.25) = 0.233 and pc = (0.35 ∗ 0.15) +

(0.65 ∗ 0.1) = 0.118

Within this example, as shown in Figure 5.6, for the sliding dichotomy approach to result

in a smaller sample size, the probability of a favorable outcome would either have to far

surpass 50% within one prognostic category (say, p1t = 0.9 and p1c = 0.75) or the difference

between probabilities of a favorable outcome would have to be quite large between the two

methods (see Figure 5.8). The former seems unreasonable given the results of past clinical

trials and the latter seems unreasonable since currently the two methods only differ by one

GOS category (see Figure 5.2).

Figure 5.6 shows the difference in required sample size for the sliding dichotomy and tra-

ditional methods as probabilities of a favorable outcome are varied among the ‘worst’ and

‘best’ prognostic groups. Several assumptions are included in this figure:

• A detectable treatment effect of 0.15 among the ‘worst’ prognostic group

• A detectable treatment effect of 0.05 among the ‘best’ prognostic group

• α = 0.05 and power = 80%

• 65% of patients in ‘worst’ prognostic group

• 35% of patients in ‘best’ prognostic group

• The probability of a traditionally defined favorable outcome in the ‘worst’ prognos-

tic group is 0.1 less than the probability of a favorable outcome under the sliding

dichotomy definition

• The probability of a traditionally defined favorable outcome in the ‘best’ prognostic

group is 0.05 more than the probability of a favorable outcome under the sliding

dichotomy definition.

110



The diagonal line labeled ‘0’ indicates that the two methods require the same sample size

when the probability of a favorable outcome is approximately 70% among the ‘worst’ prog-

nostic group (combined with any probability in the ‘best’ group) or when the probability

of a favorable outcome is over 80% among the ‘best’ prognostic group (combined with

any probability in the ‘worst’ group). For higher combinations of probabilities the sliding

dichotomy method results in a smaller required sample size (indicated by the negative dif-

ference labeled on the lines in the upper righthand portion of Figure 5.6) and for lower

combinations of probabilities the traditional method results in a smaller required sample

size.

To confirm these findings, we could repeat the simulations described in section 5.4 with

values indicated by Figure 5.6. Specifically, Figure 5.6 indicates that the sliding dichotomy

should require a smaller sample size when the probability of a favorable outcome is greater

than 70% among those in the worst prognostic category. Repeating simulations with pc1 =

0.8 under the sliding dichotomy definition, and pc1 = 0.7 under the traditional definition

indeed confirms higher power achieved under the sliding dichotomy definition (where power

is estimated as defined in section 5.4). If we do not adjust for prognostic category in either

model (comparing results from equation 5.8 for both definitions of favorability) we find

that the sliding dichotomy method results in slightly less than 50% power, whereas the

traditional definition results in slightly less than 40% power. If we adjust for prognostic

group (comparing results from equation 5.9 for both definitions of favorability) we find

that the sliding dichotomy definition results in almost 65% power whereas the traditional

definition results in slightly more than 45% power (both were underpowered overall, due to a

relatively small simulated sample size). As one might expect, adjusting for prognostic group

favors the sliding dichotomy definition slightly, but failing to adjust for it in both models still

confirms findings that for large probabilities of a favorable outcome the sliding dichotomy

definition results in higher power to detect a significant treatment effect. Conversely, and

again as indicated in Figure 5.6, if pc1 = 0.3 under the sliding dichotomy definition, and

pc1 = 0.2 under the traditional definition, the traditional method results in higher power,

regardless of adjustment for prognostic group.
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As listed above, these results rely on several assumptions. Varying them one at a time

produces both similar and different patterns. A similar pattern to that seen in Figure 5.6

holds if the distribution of patients into prognostic groups is flipped - 35% in the ‘worst’

category and 65% in the ‘best’, however in this case the differences in sample sizes are much

smaller, since both methods are simulated to have more similar probabilities of a favorable

outcome among the ‘best’ category and the assumed treatment effect size is smaller in the

‘best’ category (see Figure 5.7). Varying these assumptions as well can produce different

patterns. For example, leaving the patient distribution with more patients in the ‘best’

category, allowing for a larger treatment effect within the ‘best’ category (ES3 = 0.1), and

a larger difference in the probability of a favorable outcome in the ‘best’ category as defined

by the sliding dichotomy versus the traditional definition (delta = 0.15 instead of 0.05

above), flips the observable pattern in the difference of required sample sizes (see Figure

5.8). For a study population fitting this set of assumptions the traditional method would

require a smaller sample size at higher combinations of probabilities of a favorable outcome

and the sliding dichotomy would require a smaller sample size at lower combinations of

probabilities of a favorable outcome.

The observed data in our motivating example fit the assumptions and patterns of lower

combinations of probabilities in Figures 5.6 and 5.7, so we are reluctant to conclude that the

sliding dichotomy method will result in higher-powered clinical trials. However, the figures

presented here are produced by a program written in R (see appendix), and researchers

could certainly enter their own values for the assumptions listed above and draw their own

conclusions regarding the benefits of one method over the other for a specific set of data.

5.6 Discussion

5.6.1 Power and Sample Size

The probabilities used for both definitions of a favorable outcome in the above simulations

are slightly lower than those assumed by Machado [1999] in his simulations. To detect
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Figure 5.6: Difference in sample size required by sliding dichotomy vs. traditional methods
to detect an overall treatment effect of 0.115 as probability of favorable outcome varies in
‘worst’ and ‘best’ prognostic groups; 65% of patients in ‘worst’ category, 35% in ‘best’

an overall treatment effect corresponding to a ten percentage point increase in favorable

outcomes among treatment versus control patients Machado simulated odds ratios that

translated to a probability of a favorable outcome of 62% among treated patients in the

‘intermediate’ group versus 48% among control patients and 97% among treated patients in

the ‘best’ prognostic category versus 95% among control patients. Although Machado does

not provide enough information to duplicate his calculations, one possibility is a distribution

of approximately 70% of patients into the ‘intermediate’ group and 30% into the ‘best’

group, which would result in a difference pt−pc = 0.1, with the individual prognostic group

probabilities reported by Machado - p1t = 0.97, p1c = 0.95, p2t = 0.62, and p2c = 0.48. This

would require a sample size of 636 (per treatment arm) to achieve 80% power (Machado

[1999] alleges 90% power to detect this treatment effect with 500 patients per arm).
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Figure 5.7: Difference in sample size required by sliding dichotomy vs. traditional methods
to detect an overall treatment effect of 0.085 as probability of favorable outcome varies in
‘worst’ and ‘best’ prognostic groups; 35% of patients in ‘worst’ category, 65% in ‘best’

Similarly, Mendelow [2005] reports that approximately 60% of all TBI patients achieve a

favorable outcome across numerous studies, which is again a higher proportion than that

observed in the NABISH dataset. If it is indeed true that the majority of TBI patients

have a higher probability of a favorable outcome (regardless of treatment assignment) then

perhaps the elevated probabilities needed to achieve gains in power via the sliding dichotomy

method are reasonable (see Figures 5.6, 5.7, and 5.8).

A remaining complication to the existing literature on the sliding dichotomy approach

and predictive models in general is the conflation of models designed to aid clinicians in

assigning patients to treatment regimens and models designed to improve the efficiency of

clinical trial design. The models discussed in this chapter and the recommendations based
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Figure 5.8: Difference in sample size required by sliding dichotomy vs. traditional methods
to detect an overall treatment effect of 0.12 as probability of favorable outcome varies in
‘worst’ and ‘best’ prognostic groups; 35% of patients in ‘worst’ category, 65% in ‘best’

on the simulations developed in this chapter are aimed at the latter problem. In particular,

the Hansen prognostic score approach relies on fully collected data (albeit only from control

patients) and therefore cannot be used to assist clinicians in estimating the prognosis of

a specific patient prior to the completion of the study. Rather the predicted probabilities

from models based on Hansen’s approach can be used to categorize patients post data

collection but prior to data analysis in hopes of closely matching the planned power of a

study (assuming the study was designed with a sliding dichotomy approach). Inclusion and

exclusion criteria for any specific clinical trial will still have to rely on predictive models

developed in the existing literature.
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5.6.2 Traditional versus Alternative Predictive Models

In much the same way that the propensity score e(x) in chapter three enables multiple checks

of covariate balance without revealing the primary outcome of interest, the development of a

prognostic score Ψ(X) enables checks of ‘prognostic’ balance without revealing any potential

treatment effect. We believe that estimating predicted probabilities of a favorable outcome

based on the subpopulation of control patients is a better general method than the models

suggested by Hukkelhoven [2005] and Murray [2005] (or others in the literature). Although

predictive models that have been internally and externally validated are a valuable addition

to the literature, as pointed out in section 5.3 there are a variety of challenges associated

with using predictive models developed on external datasets - failure to collect data on the

same covariates, differing distributions among common covariates, etc. A general method

for developing a new predictive model, tailored to each dataset, such as the new application

of Hansen [2008] and Peters-Belson [1995] to ideas used in this chapter, should result in more

accurate predictive probabilities (the Hansen modeling approach correctly identified nearly

twice as many patients with favorable outcomes as either Hukkelhoven or Murray models).

However, as noted in the previous section, this applies only to predictive models intended to

improve final statistical analyses - predictive models intended to provide treatment guidance

to clinicians would, obviously, have to be developed on external datasets and applied to new

studies.

It is also worth noting that the prognostic scoring method is still susceptible to vast differ-

ences among treatment and control groups. In other words, developing a predictive model

based on the control patients of a clinical trial when the randomization scheme has severely

failed in some way could potentially be worse than applying a predictive model from the

literature. Hansen’s [2008] simulations show that “. . . when comparison groups differ sub-

stantially on X, adjustment based on same-sample estimation of prognostic scores can be

much worse than no adjustment at all.”
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5.7 Conclusion

Although there do appear to be situations in which the sliding dichotomy approach would

produce a higher powered clinical trial, the results of these simulations indicate that the

majority of the time the traditional approach is higher powered. Additionally, for the

sliding dichotomy approach to provide higher power, the probability of a favorable outcome

would have to be quite high (greater than 0.5) and/or the change in overall probability of

a favorable outcome as defined by the sliding dichotomy versus the traditional definition

would have to be quite large (more than one would reasonably expect across one GOS

category).

The formal power analysis presented here is especially needed in the TBI field since as

recently as last fall scientists convened a workshop to ‘. . . outline the steps needed to develop

a reliable, efficient and valid classification system.’ [Saatman et al., 2008] Of course, this

is a laudable goal when such a classification system is aimed at enabling physicians to

make therapeutic decisions. But as mentioned in the previous section, often these goals are

conflated with analytical goals, and as this chapter has shown that the sliding dichotomy

approach is unlikely to produce significant gains in power, it seems wasteful to continue to

contribute resources to developing better predictive models, if the goal of identifying ‘better’

definitions of favorable outcomes does not in fact improve the design of clinical trials.

It is possible that using predictive models to better map the probability of a favorable

outcome (however it may be defined) within prognostic groups could help to achieve more

efficient clinical trials by more closely approximating the true treatment effect pt−pc as the

weighted average of a series of differences as outlined in section 5.5. However, assigning pa-

tients to prognostic groups and estimating probabilities of a favorable outcome within those

groups requires a nontrivial amount of guesswork and assumptions. Therefore more poten-

tial gains in efficiency can probably be found in the work of Choi [1998], Hernandez [2004],

and others tackling the problem of adjusting for covariates when modeling dichotomous

outcomes.
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5.8 Future Work

Choi [1998] formalizes the problem of adjusting for a covariate in logistic regression with

a dichotomous outcome. In linear regression problems the reduction of residual variance

resulting from covariate adjustment plays a key role in estimations of sample size reduc-

tion. However, with a dichotomous outcome it is challenging to determine the appropriate

measure of variability. Choi [1998] suggests three different potential measures of variance

reduction, which he calls R (involving sums of squares, maximized log-likelihood values,

and prediction rates) and suggests that the “. . . required sample size [may] be simply ap-

proximated by multiplying the usual asymptotic sample size by (1−R).”

It appears that the most potential for gains in power/reductions in sample size can be

achieved by covariate adjustment, so more research should focus on Choi’s [1998] methods

and in particular in examining if there is a difference in estimations of R if adjusting for

traditional covariates or some combination of covariates summarized in the prognostic score

Ψ(X).
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Chapter 6

Conclusions

Shadish et al [2008] warn that “. . . the practice of propensity score analysis in applied

research may be yielding adjustments of unknown or highly variable accuracy. For a method

as new as propensity score analysis, this is not surprising, and points to the need for

more clarity about best propensity score practice.” Currently, the literature on propensity

scores includes comparisons of different parametric structures for both the propensity score

and outcome models, different propensity score adjustment methods, and estimates of the

sensitivity of propensity score analyses to potentially omitted variables. The majority of this

research, and particularly the majority of theoretical work on propensity scores, assumes

normally distributed covariates. In contrast, we chose to focus on dichotomous confounders,

since this type of covariate is often neglected in the literature and yet often occurs in applied

research, especially in public health. Additionally, dichotomous covariates present unique

analytical challenges to the traditional propensity score rules of thumb regarding successful

balancing techniques.

Specifically, we chose to compare the performance of propensity score regression adjust-

ment to traditional regression adjustment in the presence of varying degrees of imbalance

due to dichotomous covariates by conducting two different types of simulations - one called

a ‘pseudo-simulation’ and one a ‘full’ simulation. The first involved re-sampling an existing

dataset to create new datasets with more and less similiar confounder distributions. Al-
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though this ‘pseduo-simulation’ provided some insight into the performance of propensity

score and traditional regression adjustment methods, it did not provide a way to know the

true treatment effect, and which method was providing a more accurate estimate of this

effect. Therefore a ‘full’ simulation was conducted using datasets composed of variables

with known distributions and a known treatment effect size. This latter set of simulations

confirmed that propensity score and traditional regression adjustment methods suffer from

the same quantity of bias in the presence of dichotomous confounders. However, the tradi-

tional method provides better coverage probabilities, so it should be preferred, even in the

presence of high levels of confounding. Lastly, this set of simulations contradicted Drake’s

[1993] findings, based on normally distributed confounders, that propensity score regres-

sion adjustment has decreasing levels of bias as the association between confounders and

treatment assignment increases.

Although propensity score regression adjustment analyses may still offer an alternative

in the presence of many confounders and a small sample size, this is the only situation,

with dichotomous confounders, that these simulations indicate a propensity score regres-

sion adjustment method would be preferred over traditional regression adjustment. This

represents an important advancement in propensity score research, as many applied analy-

ses are currently implementing propensity score regression adjustments with the false belief

that propensity scores represent an improvement over traditional regression adjustment

methods, or at the very least provide a confirmation of traditional regression adjustment

results. In particular, many studies claim that propensity score regression adjustment anal-

yses provide a more conservative estimate of treatment effect, based on the lower frequency

of statistically significant findings, when in fact the consistently lower coverage probabili-

ties presented in chapter three indicate that propensity score regression adjustment analyses

may in fact be simply missing the true treatment effect.

Chapter four presented a unique application of principle stratification in the presence of

missing values for the covariate used to define the principle strata. Up to this point all

examples of principle stratification in the literature assume that all missing data are con-

tained in the outcome variable, and that the post-treatment covariate used to define the
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principle strata is known completely. Clearly this assumption will be frequently violated

in many applied research problems, so we presented a sensitivity analysis to bound causal

effect estimates according to assumptions about both missing outcome data and missing

post-treatment covariate data. Our findings indicate that crude estimates about the latter

source of missing data are sufficient, as assumptions about the structure of the principle

strata themselves are much more influential over the bounds on the causal effect estimate.

Hopefully these findings will advance the principle stratification literature by guiding re-

searchers in prioritizing the many assumptions necessary to calculate a point estimate of

causal effect in the presence of competing sources of missing data.

Additionally, the bounds proposed by the existing literature do not take into account two

possible sources of variability in the estimate - both from the outcome variable itself and

from the estimate of the proportion of observations belonging to each principle strata. We

proposed an initial method for estimating these sources of variability to enable to calculation

of confidence intervals around the bounds presented in chapter four, thus making it possible

to draw conclusions regarding the statistical significance of the estimated causal effect.

Lastly, these bounds on the causal effect estimate draw on large sample theory, and we

propose a Bayesian approach that will not only take multiple sources of missing data into

account, but will potentially reflect the true distribution of the data more accurately than

the large sample asymptotic assumptions.

In chapter five we tackled the question of whether or not the sliding dichotomy method is

truly the analytical silver bullet that some in the traumatic brain injury (TBI) and stroke

research fields desire it to be. Although it is conceptually appealing to more specifically

tailor a patient’s outcome classification into ‘favorable’ and ‘unfavorable’ based on his or

her initial prognosis, such definitions based on current outcome scales only provide an

improvement in power under very specific, and likely to be rare, circumstances. Additionally,

estimating an individual patient’s initial prognosis and accurately assigning an outcome

‘goal’ based on such a prognosis is both highly complicated and likely to be inaccurate. Our

findings in chapter five indicate that such resources would be potentially better applied to

alternative analytical techniques, such as including baseline covariates in final analyses and
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designing studies with the assumption that final analyses will include such variables.

The power analyses presented in chapter five are the first formal comparison of the sliding

dichotomy and traditional methods and advance the TBI literature by outlining the circum-

stances under which the sliding dichotomy method results in a higher powered trial. This

occurs either when the probability of a favorable outcome within one prognostic group is

much higher than 50% (say 90% among the treated and 75% among the control) or when a

favorable outcome as defined by one cutpoint on the Glasgow Outcome Scale versus another

results in dramatically different probabilities of achieving a favorable outcome.
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Appendix A

Chapter 3 - Propensity Score

A.1 Theoretical Derivations

From Rosenbaum and Rubin (1984):

P (x, z|e) = P (x|e)P (z|e)

where x is a vector of observed covariates, z is the treatment indicator, and e is the propen-

sity score, e = e(x) = P (z = 1|x). Proof:

P (x, z|e) = P (x|e)P (z|x, e)

P (z|x, e) = P (z|x) since e is a function of x

P (z = 1|x) = eby definition

P (z = 1|e) = E(z|e) = E{E(z|x)|e} = E(e|e) = e

⇒ P (z = 1|x) = P (z = 1|e)⇒ P (z|x) = P (z|e)

∴ P (x, z|e) = P (x|e)P (z|x) = P (x|e)P (z|e) as needed
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A.2 Complete Pseudo-Simulation Results

Table A.1: Simulation results - Afibrillation (10% among black patients) - Comparing
traditional and propensity score regression adjustment

Simulated rate in white patients Mean difference 95% empirical probability interval
5% 0.04 (-0.02, 0.09)
10% 0.03 (-0.02, 0.08)
15% -0.003 (-0.03, 0.04)
20% -0.01 (-0.07, 0.07)
25% -0.01 (-0.08, 0.09)
30% 0.02 (-0.05, 0.10)
35% 0.01 (-0.08, 0.11)
40% 0.02 (-0.09, 0.12)
45% 0.02 (-0.12, 0.15)
50% -0.004 (-0.17, 0.18)
55% 0.02 (-0.17, 0.21)
60% 0.01 (-0.19, 0.22)
65% -0.06 (-0.22, 0.08)
70% -0.09 (-0.24, 0.05)
75% -0.05 (-0.24, 0.10)
80% 0.004 (-0.21, 0.20)
85% 0.02 (-0.21, 0.23)
90% 0.006 (-0.21, 0.22)
95% 0.03 (-0.15, 0.32)
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Table A.2: Simulation results - Hyperlipidemia (21% among black patients) - Comparing
traditional and propensity score regression adjustment

Simulated rate in white patients Mean difference 95% empirical probability interval
5% -0.005 (-0.06, 0.06)
10% -0.02 (-0.08, 0.06)
15% -0.04 (-0.09, 0.04)
20% -0.04 (-0.10, 0.05)
25% 0.004 (-0.05, 0.08)
30% 0.008 (-0.08, 0.09)
35% 0.01 (-0.06, 0.10)
40% 0.03 (-0.11, 0.16)
45% 0.009 (-0.14, 0.15)
50% 0.005 (-0.14, 0.13)
55% 0.02 (-0.12, 0.15)
60% 0.04 (-0.12, 0.19)
65% 0.03 (-0.12, 0.17)
70% 0.04 (-0.12, 0.18)
75% 0.07 (-0.11, 0.22)
80% 0.11 (-0.10, 0.30)
85% 0.13 (-0.006, 0.30)
90% 0.11 (0.01, 0.26)
95% 0.12 (-0.08, 0.26)

Table A.3: Simulation results - CAD (19% among black patients) - Comparing traditional
and propensity score regression adjustment

Simulated rate in white patients Mean difference 95% empirical probability interval
5% -0.007 (-0.05, 0.07)
10% -0.03 (-0.08, 0.09)
15% -0.03 (-0.09, 0.04)
20% -0.01 (-0.08, 0.07)
25% 0.03 (-0.03, 0.11)
30% 0.04 (-0.03, 0.14)
35% 0.03 (-0.07, 0.14)
40% 0.03 (-0.06, 0.15)
45% 0.05 (-0.07, 0.16)
50% 0.06 (-0.05, 0.18)
55% 0.04 (-0.10, 0.19)
60% 0.02 (-0.14, 0.17)
65% -0.02 (-0.19, 0.13)
70% 0.01 (-0.16, 0.16)
75% 0.05 (-0.13, 0.22)
80% 0.07 (-0.12, 0.24)
85% 0.06 (-0.08, 0.23)
90% 0.06 (-0.08, 0.23)
95% 0.24 (-0.02, 0.08)
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Table A.4: Simulation results - Afibrillation (10% among black patients) - Comparing
traditional regression adjustment to stratification by propensity score

Simulated rate in white patients Mean difference 95% empirical probability interval
5% -0.32 (-0.72, 0.21)
10% -0.88 (-0.47, 0.40)
15% -0.37 (-1.32, 0.19)
20% -0.31 (-1.33, 0.58)
25% -0.31 (-0.93, 0.33)
30% -0.54 (-0.99, -0.09)
35% -0.52 (-0.95, -0.06)
40% -0.34 (-1.18, 0.29)
45% -0.46 (-0.98, 0.04)
50% -0.62 (-1.03, -0.09)
55% -0.71 (-1.10, -0.17)
60% -0.4 (-1.18, 0.18)
65% -0.56 (-1.12, 0.10)
70% -0.48 (-0.76, -0.29)
75% -0.55 (-0.85, -0.32)
80% -0.69 (-0.99, -0.49)
85% -0.63 (-0.80, -0.64)
90% -0.84 (-0.91, -0.81)
95% -0.52 (-0.52, -0.42)

Table A.5: Simulation results - Hyperlipidemia (21% among black patients) - Comparing
traditional regression adjustment to stratification by propensity score

Simulated rate in white patients Mean difference 95% empirical probability interval
5% -0.22 (-0.30, 0.48)
10% -0.26 (-0.68, 0.79)
15% -0.21 (-0.65, 0.69)
20% -0.17 (-0.41, 1.33)
25% -0.16 (-0.53, 0.47)
30% -0.19 (-0.54, 0.47)
35% -0.29 (-0.92, 0.46)
40% -0.44 (-0.99, 0.63)
45% -0.38 (-0.55, 0.45)
50% -0.44 (-0.90, 0.40)
55% -0.3 (-0.82, 0.51)
60% -0.39 (-0.94, 0.48)
65% -0.56 (-0.68, 0.11)
70% -0.62 (-0.51, -0.05)
75% -0.67 (-0.31, -0.14)
80% -0.7 (-0.19, -0.17)
85% -0.8 (-0.44, -0.40)
90% -0.82 (-0.22, -0.63)
95% -0.78 (-0.29, -0.43)
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Table A.6: Simulation results - CAD (19% among black patients) - Comparing traditional
regression adjustment to stratification by propensity score

Simulated rate in white patients Mean difference 95% empirical probability interval
5% -0.19 (-0.48, 0.32)
10% -0.15 (-0.59, 0.50)
15% -0.52 (-1.73, 0.25)
20% -0.27 (-1.52, 0.40)
25% -0.18 (-1.06, 0.60)
30% -0.17 (-1.03, 0.50)
35% -0.29 (-1.04, 0.58)
40% -0.35 (-0.95, 0.21)
45% -0.23 (-0.81, 0.32)
50% -0.33 (-0.86, 0.23)
55% -0.48 (-1.06, 0.11)
60% -0.35 (-1.06, 0.58)
65% -0.56 (-1.06, 0.01)
70% -0.59 (-1.33, -0.14)
75% -0.7 (-1.20, -0.23)
80% -0.76 (-1.26, -0.34)
85% -0.8 (-1.24, -0.36)
90% -0.76 (-1.81, -0.15)
95% -0.58 (-2.42, 1.01)

A.3 Full Simulation Results - Marginal Mean

Table A.7: Estimating β3 as marginal mean difference between black and white patients
estimated by ‘correctly’ and ‘incorrectly’ specified propensity score and traditional regres-
sion adjustment models; 3% hypertension rates among black patients vs. 82% among white
patients (α1 = 4.5)
Model Mean difference 95% Empirical Prob. Interval
‘Incorrect’ PS 1.611 (0.401, 2.758)
‘Correct’ PS 1.557 (0.197, 2.951)
‘Incorrect’ Trad. 1.611 (0.409, 2.753)
‘Correct’ Trad. 1.555 (0.190, 2.926)
β3 2
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Table A.8: Estimating β3 as marginal mean difference between black and white patients
estimated by ‘correctly’ and ‘incorrectly’ specified propensity score and traditional regres-
sion adjustment models; 3% hypertension rates among black patients vs. 82% among white
patients (α1 = 4.5)
Model Mean difference 95% Empirical Prob. Interval
‘Incorrect’ PS 0.404 (-0.648, 1.451)
‘Correct’ PS 0.338 (-0.956, 1.572)
‘Incorrect’ Trad. 0.405 (-0.651, 1.441)
‘Correct’ Trad. 0.336 (-0.959, 1.584)
β3 0

Table A.9: Estimating β3 as marginal mean difference between black and white patients es-
timated by ‘correctly’ and ‘incorrectly’ specified propensity score and traditional regression
adjustment models; 48% hyperlipidemia rates among black patients vs. 2% among white
patients (α1 = −4.0)
Model Mean difference 95% Empirical Prob. Interval
‘Incorrect’ PS 2.432 (1.740, 3.069)
‘Correct’ PS 2.610 (1.932, 3.327)
‘Incorrect’ Trad. 2.432 (1.736, 3.083)
‘Correct’ Trad. 2.607 (1.922, 3.337)
β3 2

Table A.10: Estimating β3 as marginal mean difference between black and white patients
estimated by ‘correctly’ and ‘incorrectly’ specified propensity score and traditional regres-
sion adjustment models; 48% hyperlipidemia rates among black patients vs. 2% among
white patients (α1 = −4.0)
Model Mean difference 95% Empirical Prob. Interval
‘Incorrect’ PS 0.393 (-0.279, 1.093)
‘Correct’ PS 0.744 (0.149, 1.356)
‘Incorrect’ Trad. 0.394 (-0.286, 1.086)
‘Correct’ Trad. 0.743 (0.146, 1.358)
β3 0

Table A.11: Estimating β3 as marginal mean difference between black and white patients
estimated by ‘correctly’ and ‘incorrectly’ specified propensity score and traditional regres-
sion adjustment models; 48% hyperlipidemia rates among black patients vs. 2% among
white patients (α1 = −4.0)
Model Mean difference 95% Empirical Prob. Interval
‘Incorrect’ PS 2.622 (1.933, 3.333)
‘Correct’ PS 2.610 (1.932, 3.327)
‘Incorrect’ Trad. 2.623 (1.937, 3.336)
‘Correct’ Trad. 2.607 (1.922, 3.337)
β3 2
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Table A.12: Estimating β3 as marginal mean difference between black and white patients
estimated by ‘correctly’ and ‘incorrectly’ specified propensity score and traditional regres-
sion adjustment models; 48% hyperlipidemia rates among black patients vs. 2% among
white patients (α1 = −4.0)
Model Mean difference 95% Empirical Prob. Interval
‘Incorrect’ PS 0.753 (0.156, 1.373)
‘Correct’ PS 0.744 (0.149, 1.356)
‘Incorrect’ Trad. 0.753 (0.162, 1.377)
‘Correct’ Trad. 0.743 (0.146, 1.358)
β3 0

Table A.13: Estimating β3 as marginal mean difference between black and white patients es-
timated by ‘correctly’ and ‘incorrectly’ specified propensity score and traditional regression
adjustment models; 73% hypertension rate among black patients (α1 = −0.2), 69% among
white, 27% hyperlipidemia rate among black patients, 24% among white (α2 = −0.2)
Model Mean difference 95% Empirical Prob. Interval
‘Incorrect’ PS 1.503 (1.279, 1.717)
‘Correct’ PS 1.514 (1.294, 1.732)
‘Incorrect’ Trad. 1.503 (1.281, 1.717)
‘Correct’ Trad. 1.513 (1.291, 1.728)
β3 2

Table A.14: Estimating β3 as marginal mean difference between black and white patients es-
timated by ‘correctly’ and ‘incorrectly’ specified propensity score and traditional regression
adjustment models; 73% hypertension rate among black patients (α1 = −0.2), 69% among
white, 27% hyperlipidemia rate among black patients, 24% among white (α2 = −0.2)
Model Mean difference 95% Empirical Prob. Interval
‘Incorrect’ PS 0.620 (0.389, 0.825)
‘Correct’ PS 0.631 (0.399, 0.841)
‘Incorrect’ Trad. 0.621 (0.395, 0.824)
‘Correct’ Trad. 0.631 (0.407, 0.842)
β3 0
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Appendix B

Chapter 5 - Prognostic Scores and

Sliding Dichotomy

B.1 Prognostic Score Calculations

Prognostic scores were calculated based on the logistic regression model 5.6

logit(P (favc = 1)) = β0 + β1GCS + β2pupil + β3age

where the values listed in Table B.1 were estimated.

Table B.1: Parameter estimates from proportional odds model with GOS as outcome and
using only control patients
Parameter Estimate
β0 -1.6362
β1 - GCS = 1 0.9034
β1 - GCS = 2 0.3735
β1 - GCS = 3 0.4610
β1 - GCS = 4 -1.5748
β2 - pupil = 1 -0.6254
β2 - pupil = 2 0.7769
β3 0.0260
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B.2 Computer Code to Generate Sample Size Comparisons

for Traditional and Sliding Dichotomy Methods

#define probabilities of favorable outcomes under sliding dichotomy for worst and

best

#prognostic groups and treatment and control groups

p1c <- seq(0.1, 0.8, 0.025)

p1t <- seq(0.25, 0.95, 0.025)

p3c <- seq(0.1, 0.85, 0.025)

p3t <- seq(0.2,0.95,0.025)

#define distribution of patients into worst and best categories

w1 <- 0.35

w3 <- 0.65

x <- matrix(0,length(p1t),length(p3t))

p_bar <- matrix(0,length(p1t),length(p3t))

q_bar <- matrix(0,length(p1t),length(p3t))

pt <- matrix(0,length(p1t),length(p3t))

pc <- matrix(0,length(p1t),length(p3t))

qt <- matrix(0,length(p1t),length(p3t))

qc <- matrix(0,length(p1t),length(p3t))

es <- matrix(0,length(p1t),length(p3t))

for (i in 1:length(p1t))

{

for (j in 1:length(p3t))

{

p_bar[i,j] <- ((p1t[i]*w1)+(p3t[j]*w3)+(p1c[i]*w1)+(p3c[j]*w3))/2

q_bar[i,j] <- 1-p_bar[i,j]

pt[i,j] <- (p1t[i]*w1) + (p3t[j]*w3)

qt[i,j] <- 1-pt[i,j]

pc[i,j] <- (p1c[i]*w1) + (p3c[j]*w3)
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qc[i,j] <- 1-pc[i,j]

es[i,j] <- pt[i,j]-pc[i,j]

x[i,j] <- (((sqrt(2*p_bar[i,j]*q_bar[i,j])*1.96) + (sqrt((pt[i,j]*qt[i,j]) +

(pc[i,j]*qc[i,j]))*1.64))/es[i,j])^2

}

}

#define difference in probability of favorable outcome in worst group (1) for

traditional definition vs. sliding (defined above)

#define difference in probability of favorable outcome in best group (3) for

traditional definition vs. sliding (defined above)

p1d <- -0.1

p3d <- 0.15

p1tt <- p1t + p1d

p1ct <- p1c + p1d

p3tt <- p3t + p3d

p3ct <- p3c + p3d

x_t <- matrix(0,length(p1tt),length(p3tt))

p_bart <- matrix(0,length(p1tt),length(p3tt))

q_bart <- matrix(0,length(p1tt),length(p3tt))

ptt <- matrix(0,length(p1tt),length(p3tt))

pct <- matrix(0,length(p1tt),length(p3tt))

qtt <- matrix(0,length(p1tt),length(p3tt))

qct <- matrix(0,length(p1tt),length(p3tt))

est <- matrix(0,length(p1tt),length(p3tt))

for (i in 1:length(p1tt))
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{

for (j in 1:length(p3tt))

{

p_bart[i,j] <- ((p1tt[i]*w1)+(p3tt[j]*w3)+(p1ct[i]*w1)+(p3ct[j]*w3))/2

q_bart[i,j] <- 1-p_bart[i,j]

ptt[i,j] <- (p1tt[i]*w1) + (p3tt[j]*w3)

qtt[i,j] <- 1-ptt[i,j]

pct[i,j] <- (p1ct[i]*w1) + (p3ct[j]*w3)

qct[i,j] <- 1-pct[i,j]

est[i,j] <- ptt[i,j]-pct[i,j]

x_t[i,j] <- (((sqrt(2*p_bart[i,j]*q_bart[i,j])*1.96) + (sqrt((ptt[i,j]*qtt[i,j]) +

(pct[i,j]*qct[i,j]))*1.64))/est[i,j])^2

}

}

library(lattice)

#matrices x and x_t now contain required sample sizes for range of probabilities

temp <- x - x_t

contour(p1c,p3c,temp,xlab="P(fav=1) in prognostic group 1",

ylab="P(fav=1) in prognostic group 3", labcex=1,vfont = c("sans serif", "bold"))
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