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Abstract 

The Confounders Imbalance vs. Choices between Multiple Regression and Propensity Score 

Approaches 

By Xingyu Gao 

 
Background: The propensity score methods are widely used in observational studies as a tool for 
covariates balancing, especially for potential confounders. The multiple regression method and PS 
methods agree with each other when the baseline covariate balance is good. However, there is no clear 
guidance on deciding the degree of the baseline covariate balance and which method to adopt for analysis. 
 
Methods and Materials: In this project, we created two series of simulation studies to examine the 
performance of PS matching with 0.2 and 0.1 calipers, ATE, ATM, and ATO PS weighting, and multiple 
regression under different levels of baseline covariate overlap between the two comparison groups. To 
create a relatively fair condition of comparison, we added two types of model misspecification to the 
outcome model. Instead of assessing the overlap of all covariates, we used propensity score as a summary 
of information. Specifically, in the simulation study, we used the overlapping coefficient (OVL) as a 
measurement of the degree of overlap propensity score distributions between the treatment and the control 
group. We evaluated the performance of different methods by absolute bias, MSE, and maximum 
standardized difference among all covariates related to the outcome. 
 
Results: In the scenario that an interaction term was added in the outcome model, regardless of the 
strength of the interaction term or the level of model misspecification, when the OVL was above 77.0%, 
all methods agreed with each other. When the OVL is between 77% and 62%, ATE performed best 
among all methods. When OVL is below 62%, PS matching with caliper methods performed the best 
among all. A smaller caliper only helped to improve the matching quality when the model is almost 
correctly specified. ATM and ATO performed stably regardless of the OVL and the strength of model 
misspecification. ATO could achieve exact balance regardless of the strength of model misspecification 
and OVL. 
 
Conclusion: In this paper, we propose using the OVL as a measurement of covariate balance before 
choosing analytic methods. When the OVL is good, multiple regression outperforms PS methods, and 
multiple methods can be used for cross-validation purposes. However, when the OVL is small, we proved 
that PS methods outperform multiple regression based on the simulation result.  
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1. Introduction 

      1.1Background 

The observational study design is commonly used to make inferences for the average 

treatment effect. However, in observational studies, the existence of confounding effects 

cannot be avoided. Therefore, achieving a covariate balance would be a necessary 

strategy before the outcome analysis. The propensity score is widely used as a balance 

score to help accomplish the covariate balancing, especially for potential confounders. 

The general idea of the propensity score is to reduce the high dimensions in a confounder 

set to a one-dimensional score, which can be viewed as a summation of all covariates 

(ROSENBAUM & RUBIN, 1983, p. 47). In the case of two treatment comparisons, the 

propensity score can be estimated by logistic regression as the estimated probability to be 

assigned to a treatment group. Through assessing the distribution difference in propensity 

score among treatment groups, we can roughly assess an overall covariate imbalance and 

its magnitude without examining all covariate individually. PS related methods include 

matching (e.g., match subjects from different treatment groups based on the similarity of 

their propensity score), weighting (e.g., each subject will be assigned a weight that is the 

inverse of the propensity score), or stratification (e.g., the treatment effect is assessed 

based on the stratum defined by propensity score). All of them can help create a 

subpopulation where the baseline covariates will be fairly balanced and hence help to 

eliminate the confounding effect. A propensity score method can be viewed as a strategy 

that identifies hidden randomized trial data from an observational database and has a 

strong indication of causal inference. Also, depending on the underlying covariate 
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imbalance, the identified subpopulation might be different from the original database 

substantially. 

 

As a traditional method, multiple regression is routinely used for estimating the average 

treatment effect or adjusted treatment effect controlling the value of potential 

confounders without any modification on the original study sample. However, in many 

studies, the multiple regression adjustment and propensity score methods give us similar 

results, and propensity score methods are not necessarily superior to regression 

adjustment (Biondi-Zoccai et al., 2011, p. 737; Elze et al., 2017, p. 352). People may be 

confused about the value the propensity score method can add or the gain by taking extra 

steps during the propensity score implementation.  In this study, we try to tackle this 

question and address the key differences between a propensity score method and multiple 

regression and when they will not agree with each other.  

In propensity score methods, the first step is to generate a covariate-balance population, 

and the second step is to evaluate treatment effect based on that pseudo population. In 

contrast, the multiple regression will take the original sample and control covariates in 

the model, which will have a similar effect as covariate-balancing under certain 

conditions. If the covariate-balanced sample does not differ from the original one, the two 

methods are highly likely to give us consistent results. This similarity between the 

covariate-balanced sample and the original one can be assessed by comparing the 

baseline covariate distribution in two populations and examining the effective sample 

size after the propensity score method, which is usually smaller than the original sample 

size after matching or weighting.  
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We anticipate the magnitude of imbalance or lack of overlap of underlying covariate 

between treatment and control groups would be the driving factor that causes the above 

difference. Lack of overlap will cause the estimates from PS methods to have a lower 

effective sample size, large variances, and low statistical power (Crump et al., 2009, p. 

192). In other words, if the original population has a good covariate balance, the 

modification effect of PS methods is slight; thus, the estimates obtained by the PS 

methods will be consistent with the estimates obtained by the multiple regression.  

Rosenbaum and Rubin (1985b, p. 34) proposed to use the standardized difference to 

assess the baseline covariate balance, which is very commonly used in observational 

studies. Austin (2009a, p. 3098) also introduced several covariate-based balance 

diagnosis measurements such as graphical checking and hypothesis testing. Those 

methods are based on each covariate. The propensity score as an information summary 

can also be used to evaluate the balance of baseline covariates. In this study, we 

advocated using the overlapping coefficient (OVL) to quantify the degree of overlap in 

covariates among treatment groups. Inman and Bradley (1989, p. 3862) defined OVL as 

an index of the degree of agreement between two probability distributions. Belitser et al. 

(2011, p. 1121) introduced the method of assessing the overlap degree between the two 

comparison groups by calculating the OVL of the two probability density functions of the 

propensity score. In this way, we only need to consider this one-dimensional 

measurement instead of assessing all covariates. A small OVL indicates a poor overlap 

status and vice versa. If the OVL is very small, applying PS methods will considerably 

reduce the effective sample size and lead to a massive population modification. 

Considerable modification is also related to the issue of generalizability. In this study, we 
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aim to explore under what overlapping circumstances that the two methods agree or 

disagree with each other, and how overlapping influences the performance of PS methods 

and multiple regression. For comparison, we used several popular matching and 

weighting methods in this study. 

 

      1.2 Propensity score 

In 1983, Rosenbaum and Rubin (1983, p. 45) published a series of papers on propensity 

score analysis, in which they introduced the theory and application guidelines for a 

variety of propensity score models. They defined the propensity score as the conditional 

probability of assignment to a particular treatment given a vector of baseline covariates. 

Unlike an RCT, where the propensity score is predetermined, in observational studies, the 

propensity score of each subject is usually unknown, but we can estimate them based on 

the study data (Austin, 2011, p. 413). For a binary treatment, the logistic regression 

model can be used for estimating the propensity score for each subject. Ali et al. (2019, p. 

937) advocated that for PS model selection, the propensity score estimation model should 

contain variables only related to the treatment but not the outcome as this may increase 

the variance of estimates. The estimated propensity score is the predicted probability of 

receiving treatment derived from the selected logistic regression model.  Several methods 

based on propensity scores can be applied to the population for estimating the average 

treatment effect. This study uses the propensity score matching and weighting methods 

for comparison with multiple regression methods. 
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      1.3 PS matching 

The propensity score matching method is the most commonly used among all PS 

methods (Wang et al., 2013; Austin, 2007, p. 874980). After the propensity score of each 

subject has been estimated, treated subjects and untreated subjects can be matched on the 

propensity score. 

A matched population can be built based on the estimated propensity scores. Two 

algorithms of matching are available: the global optimal algorithms and local optimal 

algorithms (Ho et al., 2007, p. 215). The Global optimal matching algorithms, introduced 

by Rosenbaum in 1989(1989, p. 1030), aim to minimize the total distance within the 

matched population.  The local optimal matching algorithms aim to find the closest match 

for a treated subject in the control group, and it is easier to implement in practice. Based 

on our study design, we focused on the "one-to-one nearest neighborhood" matching 

method with proper calipers. The matching distance D is defined as (Rosenbaum & 

Rubin, 1985, p. 34): 

D=|logit (𝑝!)-logit (𝑝")| 

where 𝑝! represents the propensity score of the treated individual and 𝑝" stands for the 

propensity score of the untreated individual in a matched pair. The matching caliper is the 

maximum allowed distance between each matched pair, which is defined as a specific 

value multiplying to the standard deviations of the logit of the propensity score (Wang et 

al., 2013). Lunt suggested that a tight caliper can improve the matching quality (2013, p. 

227) because it considerably reduces the bias and leads to closer matches. However, 

Austin (2007) advocated that a caliper of 0.2 of the standard deviation of the logit of 

propensity score outperforms other caliper choices. Making a choice of the caliper is a 
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trade-off matching the quality and statistical power. If the overlap is poor, a tighter 

caliper will lead to discarding a larger number of observations which will reduce the 

statistical power. In this study, we consider both loose and tight calipers for propensity 

score matching. Therefore, we choose 0.1 and 0.2 of the standard deviation of logit 

propensity scores as matching calipers. 

 

      1.4 PS weighting 

The idea of weighting is to create a statistical weight based on the calculated propensity 

score. The distribution of propensity scores in each treatment group can be reshaped to be 

similar. We denote the density function of covariates X as 𝑓(𝑥). We define 𝑤!(𝑥)and 

𝑤#(𝑥)as a function of x to represent the balancing weights in the treatment and control 

groups respectively. In this study, we adopted three types of balancing weights, ATE, 

ATM, and ATO. According to Li et al. (2017, p. 397), they can be expressed as follow: 

ATE weight: 

𝑤!(𝑥) =
!

$(&)
  ,	𝑤#(𝑥) =

!
!($(&)

 

ATO weight: 

𝑤!(𝑥) = 1 − 𝑒(𝑥)  ,	𝑤#(𝑥) = 𝑒(𝑥) 

ATM weight: 

𝑤!(𝑥) =
)*+{$(&),!($(&)}

$(&)
  ,	𝑤#(𝑥) =

)*+{$(&),!($(&)}
!($(&)

 

 

where e(x) represents the propensity score of each subject. 

ATE weight, also known as the probability of treatment weighting (IPW), is a widely 

used balancing weight in practice (Li & Thomas, 2018, p. 253). The weight of the treated 
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subject is the inverse of its propensity score, and the weight of the untreated subject is the 

inverse of one minus the propensity score (D’Agostino, 2007, p. 2342). As a widely used 

PS balancing weighting method, ATE also has the problem of sensitivity to extreme 

propensity scores. A large proportion of subjects with propensity scores close to 0 or 1 

may lead to an extremely biased estimator with high variance (Lee et al., 2011). The 

superior performance of handling extreme propensity scores of ATO weight have been 

proven theoretically by Li et al. (2017, p. 396). According to their study, ATO weight can 

minimize the large sample variance and achieve exact balance if the propensity score is 

estimated using a logistic regression model (Li et al., 2017, p. 396). ATM weight is 

similar to the one-to-one pair matching without replacement method (Dehejia & Wahba, 

1999, p. 1056; L. Li & Greene, 2013, p. 221). 

 

      1.5 Common support and overlapping coefficient 

One of the two major assumptions of applying PS methods is the "common support" 

assumption defined by ROSENBAUM and RUBIN (1983, p. 54). This condition requires 

that all subjects have a non-zero probability of assignment to every treatment group. In 

practice,  the presence of poor overlap in propensity score distributions between the 

treatment and control group in observational studies is ubiquitous. A very poor overlap 

status indicates the violation of this assumption.  

A commonly used method of treating extreme overlap is the inverse probability trimming 

method (Zhou et al., 2020, p. 3726). Crump et al. (2009b, p. 194) introduced a symmetric 

trimming method by discarding subjects with propensity scores outside the range 

[0.1,0.9]. They set the cutoff points of extreme propensity scores to be 0.1 and 0.9, and 
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the values between the two cutoff points are acceptable. This method can indeed 

eliminate the interference of extreme propensity scores on the estimated value, but it will 

also lead to loss of information. Instead of defining cutoff points of "extreme propensity 

score," we choose to quantify the degree of overlap status of two propensity scores 

distributions between the treatment group and the control group.  

 

In this study, we assess the overlap status by using the overlapping coefficient (OVL) 

introduced by Inman and Bradley (1989, p. 3862). We do not know the propensity score 

distributions, so we use kernel density estimations for estimating the propensity score 

density functions (Läuter, 1988, p. 876; Belitser et al., 2011, p. 1122). The OVL is 

calculated using Weitzman’s measure ∆, indicating the intersection area by the graphs of 

two propensity score probability density functions (Dhaker et al., 2017, p. 135). We 

define the propensity score probability density functions as 𝑓!(x|T=1) and 𝑓"(x|T=2). The 

Weitzman's measure of OVL ∆ (Weitzman, 1970, pp. 1–3): 

∆ = ∫𝑚𝑖𝑛{𝑓!(𝑥|𝑇 = 1), 𝑓"(𝑥|𝑇 = 0), }𝑑𝑥 

For better understanding the modification effect of different propensity score methods 

under a poor overlap circumstance, we visualized propensity score distributions from the 

treatment group and the control group before and after applying propensity score methods 

in Figure 1. 

For comparison, we generated two scenarios, one has a 95% OVL, and the other has a 

32% OVL. Although PS weighting does not discard any data points, the sample size 

required to achieve the same level of precision can be calculated by effective sample size 

(ESS) (Bock, 2020). The ESS is calculated by: 
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ESS= /
!0123(4)

 

for each treatment group separately. N represents the original population size, and w 

represents the weights based on the propensity score. For PS matching, the ESS 

represents the sample size in the matched dataset. The right column of figure 1 represents 

the circumstance with a poor overlap (OVL=32%), and the left column represents a 

circumstance with a good overlap. The mutual area of the original population for a poor 

overlap scenario is much smaller than that for a good overlap scenario. 

A 95% OVL represents an almost "exact balance" circumstance. In this scenario, the 

modification effect of PS methods is relatively slight. The effective sample size after 

weighting and matching methods does not differ very much from the original population. 

But applying PS methods will also reduce the effective sample size. In this case, the 

population after applying PS methods will be very similar to the original population. 

When the OVL is 32%, the PS methods will modify the shape of the propensity score 

distribution, and the effective sample size becomes much less than the original sample 

size. In this scenario, the estimate from PS methods will differ from that of multiple 

regression. 

Figure 1 illustrates that propensity score related approaches can help achieve similarity in 

the distribution of propensity score (or covariates) between treatment and control groups, 

but the final overall distribution would differ from the original distribution based on 

different PS approaches. For poor overlapped original sample (column 1), the final 

matched or weighted sample, except ATM or ATO weighting, could be very different 

from the original one (e.g., matching or ATE) with ESS substantially less than N. For a 

good overlapped original sample (column 2), the final matched or weighted sample by all 
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PS methods would not departure from the original sample too much.  Also, by different 

PS approaches, the final sample may differ slightly among themselves.  

 

 
Figure 1: The distribution of propensity score in two comparison groups before and after PS methods when the OVL 

equals 32% and 95%. The two datasets were generated using the data generating framework in the presence of a square 
term in the outcome model. ESS represented the effective sample size. Picture A1 and A2 showed the propensity scores 

distribution before applying methods. 
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      1.6 Standardized difference 

Apart from the accuracy of treatment effect estimates, the standardized difference can be 

used for assessing the covariate balance after applying propensity score methods of 

propensity score methods. If the ignorable treatment assignment is achieved, we will 

observe similar propensity score distribution between each treatment group. The 

standardized difference can be used for covariate balance diagnosis for both continuous 

variables and categorical variables, and this measurement is not sensitive to the sample 

size (Austin, 2011, p. 413; Austin, 2009b, p. 672). For continuous covariates, the 

standardized difference can be expressed as follow: 

𝑆𝐷 =
𝑥53$25)$+5 − 𝑥67+5378

9𝑠53$25)$+5
" + 𝑠67+5378"

2

 

 

where 𝑥53$25)$+5 and 𝑥67+5378 represent the sample mean of the covariate in the treatment 

group and the control group respectively. 𝑠53$25)$+5" and 𝑠67+5378"  denote the sample 

variance in the two comparison groups. 

For categorical covariates, standardized difference can be expressed as follow. 

𝑆𝐷 =
𝑝53$25)$+5 − 𝑝67+5378

9𝑝53$25)$+5(1 − 𝑝53$25)$+5) + 𝑝67+5378(1 − 𝑝67+5378)
2

 

 

where 𝑝53$25)$+5 and 𝑝67+5378 represent the prevalence of the binary variable in the two 

comparison groups. Normand et al. (2001, p. 397) proposed that we conclude a good 
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covariate balance if the standardized difference is smaller than 0.1. We also use the same 

cutoff value in our study. 

2. Method 

Based on our findings in Figure 1, we plan to examine how the magnitude of covariate 

overlapping measured as PS OVL can impact the performance among multiple 

regression, PS matching, and PS weighting. A simulation study was carried out. 

 

      2.1 Data generating process 

We carried out two series of simulation studies to compare the relative performance of PS 

methods and multiple regression under different overlapping circumstances. We only 

considered the continuous outcome and binary treatments in this study. Since the 

outcome model is also generated from multiple regression models, we added model 

misspecifications to create a relatively fair condition for comparison. But the multiple 

regression model used for analysis did not contain the model misspecifications. In the 

first scenario, we added an interaction term between a categorical confounder and the 

treatment in the outcome model in the data generating process. The interaction term's 

existence exaggerated the difference between the target population extracted by PS 

methods and the original population. In this case, the treatment effect is not the same 

across the space of X. In the second scenario, we added a squared term of a continuous 

confounder to the outcome model. In this case, the true value of the treatment effect is 

known. After data generation, all data will be analyzed by either a PS approach or a 

main-effect linear regression model. For consistency, we reported the relative bias of the 
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estimators instead of the true bias. The relative bias of the estimators is the ratio of the 

estimators of PS methods to that of multiple regression.  

 

In each simulation, six covariates 𝑋!-𝑋9were generated from the multivariate normal 

distribution with zero mean and marginal variance equals 10. We assumed that 𝑋!-𝑋:are 

associated with treatment assignment, and 𝑋;-𝑋9	are associated with the outcome. So 𝑋; 

and 𝑋: are the true confounders.  

For the first scenario, we first generated six variables 𝑋!-𝑋9from a multivariate normal 

distribution with zero mean and marginal variance equals ten for each data generating 

process. We assumed that the correlation between each pair of covariates is zero.  Each 

covariate multiplied an index called 𝛾 to ensure that datasets with different OVL can be 

generated. To categorize 𝑋;, we set two threshold values, the 1/3 quantile and the 2/3 

quantile. We changed 𝑋; to be one if the value lies between the two thresholds; 

otherwise,	𝑋;	equals zero. We then calculate the treatment assignment probability using a 

logistic model, 

 

𝑙𝑜𝑔(
𝑒(𝑇)

1 − 𝑒(𝑇)) = 𝛼# + 𝛼!𝑋! + 𝛼"𝑋" + 𝛼;𝑋; + 𝛼:𝑋: 

and simulate the treatment independently from a Bernoulli distribution. 

 The continuous outcome variable Y satisfied: 

𝐸(𝑌|𝑇, 𝑋) = 𝛽# + 𝛽!𝑋; + 𝛽"𝑋: + 𝛽;𝑋< + 𝛽:𝑋9 + 𝛽<𝑋; ∗ 𝑇 + 𝛥𝑇 

We chose the parameters of the treatment assignment 

(𝛼#, 𝛼!, 𝛼", 𝛼;, 𝛼:)=(0,1.2,1.3,5.3,5.4). Those parameters were chosen to control the 
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treatment prevalence to approximately 0.5. For the outcome model, we chose the 

parameters to be	(𝛽#, 𝛽!, 𝛽", 𝛽;, 𝛽:)=(0,2.4,2.6,2.3,1.1). The variance of Y=2 and the 

treatment effect 𝛥 = 2 was also fixed. The strength of the model misspecification also 

influenced the performance of PS methods and the multiple regression, so we considered 

a range of scenarios with an increasing value of 𝛽< to control the misspecification effect. 

The range of 𝛽< = (0,1,2,3,4,5,6,7,8). The range of 𝛾 = (0.01,0.05,0.1,0.15,0.2,0.3,0.5,1,8) 

so that OVL can also change approximately from 95% to 21%. 

In the second scenario, we added the square term of 𝑋; to the outcome model. The data 

generating process of the six covariates the same as the previous scenario. This time, we 

kept the 𝑋; continuous. 

The treatment assignment probability model was the same as the previous framework, 

and the treatment was also simulated from a Bernoulli distribution. 

The continuous outcome variable Y satisfied: 

𝐸(𝑌|𝑇, 𝑋) = 𝛽# + 𝛽!𝑋; + 𝛽"𝑋: + 𝛽;𝑋< + 𝛽:𝑋9 + 𝛽<𝑋;" + 𝛥𝑇 

We chose the parameters of the treatment assignment model 

(𝛼#, 𝛼!, 𝛼", 𝛼;, 𝛼:)=(0,1.8,1.6,2.4,7.5). Those parameters were chosen to keep the 

treatment prevalence to be approximately 0.5. For the outcome model, we chose the 

parameters to be (𝛽#, 𝛽!, 𝛽", 𝛽;, 𝛽:)=(0,2.4,2.6,2.3,1.1). The variance of Y = 2 and the 

treatment effect 𝛥 = 2 were fixed. We considered ranging 𝛽< = (0,1,2,3,4,5,6,7,8). In 

each scenario, we set 𝛾 =(0.01,0.05,0.1,0.15,0.2,0.3,0.5,1,8) so that the OVL can change 

approximately from 95% to 21%.  
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      2.2 Analysis process 

In each simulation, we calculated the estimators from PS weighting, matching, and 

multiple regression based on 1000 simulated data. For PS weighting, ATE, ATM, and 

ATO were used, and the treatment effect was estimated in weighted sample through a 

linear regression with only treatment as the only independent variable. For PS matching, 

we considered both caliper =0.2 and 0.1. For multiple regression, we mainly considered 

the model that contained 𝑋!-𝑋9, but we also included the model with true confounders 

( 𝑋;,𝑋:) and the model with all covariates (𝑋;-𝑋9) related to the outcome for reference 

purposes.  In the summary tables, we only included the results of the model with all 

covariates since, in practice, we usually do not know the true confounders or the exact 

covariates only related to the outcome. We also calculated the maximum standardized 

difference of all covariates related to the outcome (𝑋;-𝑋9) before and after applying PS 

methods to check the covariate balance. For a specific strength of the model 

misspecification, we changed the value of  𝛾 to generate datasets with different OVL. For 

each OVL scenario, we simulated 1000 datasets with 1000 subjects in each dataset. In 

each generated dataset, the sample size in each comparison group is approximately 500. 

We calculated the mean and standard error of estimators and the maximum standardized 

difference for each method for the result summary. Here, we used bias and MSE to assess 

performance of PS methods and multiple regression. In the scenario with an interaction 

term in the outcome model, the true value was defined using the estimate from the 

multiple regression model with all covariates when the OVL is 93.3%. In the other 

scenario, the true value was defined as 2. The simulation study was run in R 3.6.2. The 
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package "MatchIt" is used for PS matching methods, and "WeightIt" is used for 

weighting. 
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3. Results 
 
Table 1: The left part of summarized average estimates and absolute bias from 1000 simulated datasets obtained using 
different methods in the presence of interaction terms in the outcome model with decreasing OVL. The right part 
summarized the MSE of estimates. The numbers of absolute bias shown in the table were represented as ten times the 
values. The MSE shown in the table was shown as 100 times the values. The true value was assumed as the estimate 
from the multiple regression model with all covariates when the OVL=93.3%. ATE, ATM and ATO represented the 
corresponding PS weighting schemas. Matching 0.2/0.1 represented the PS matching methods with the caliper equals 
0.2/0.1.MR represents multiple regression. The category of interaction represents the value of the coefficient of the 
interaction term in the outcome model.

 
 
Table 1 represented the estimates, absolute bias, and MSE obtained using different 

methods in the presence of interaction terms in the outcome model with decreasing OVL. 

Adding interaction terms in the outcome model in the data generating process impacted 

the performance of different approaches and caused the true values of the treatment 

effects to be different. Therefore, we assumed the true value in each scenario to be the 

estimate from the multiple regression model that contained all six covariates when the 
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OVL is 93.3%. The "Interaction 0" scenario indicated that the multiple regression model 

of interest was correctly specified, and the estimate was unbiased. With the increase of 

the coefficient of the interaction term, all estimated values became larger. This is 

expected as the coefficient for interaction increases; the overall underline averaged 

treatment effect across all populations will increase as well.  The increased strength of the 

interaction term and the decrease of OVL both caused more bias and MSE. Regardless of 

the strength of the interaction term or the level of model misspecification, when the OVL 

was above 77.8%, all methods seemed to agree with each other since the absolute bias for 

all methods was minimal (<0.05). When the interaction term existed and OVL was above 

38.5%, ATE performed the best among all methods with the smallest bias and MSE 

regardless of the strength of the interaction term. However, ATE performed badly when 

the OVL was below 62%. In the "Interaction 0" scenario, we supposed the outcome 

model was correctly specified; hence regardless of the OVL, multiple regression always 

provided the most precise estimate with the smallest MSE. In this scenario, ATM and 

ATO performed best among all PS methods even when the overlap was very poor. Both 

methods had a minimal bias, and ATO had a slightly smaller MSE. For PS matching with 

caliper methods, a smaller caliper helped to increase the matching quality. However, 

when the interaction term existed, PS matching methods outperformed PS weighting 

methods in terms of bias. In addition, when the coefficient of the interaction term was 

larger than 2, a smaller matching caliper did not make the estimate more precise. The 

multiple regression method had a more considerable bias than ATM, ATO, and PS 

matching with caliper methods when the OVL was below 77.8%. When the OVL is 
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small, PS weighting methods tend to underestimate the treatment effect while PS 

matching methods tend to overestimate the treatment effect. 

 
 
 
 
 
 
Table 2: The left part of summarized average estimates and absolute bias from 1000 simulated datasets obtained using 
different methods in the presence of the square term in the outcome model with decreasing OVL. The right part 
summarized the MSE of those estimates. The numbers of absolute bias shown in the table were represented as ten times 
the values. The MSE in the table was shown as 100 times the values. The true value was 2.MR represents multiple 
regression. ATE, ATM, and ATO represented the corresponding PS weighting schemas. Matching 0.2/0.1 represented 
the PS matching methods with the caliper equals 0.2/0.1. The category of Square represents the value of the coefficient 
of the square term in the outcome model. 

 
 

Table 2 represented the estimates, absolute bias, and MSE obtained using different 

methods in the presence of squared terms in the outcome model with decreasing OVL. 

The “Square 0” scenario indicated that the multiple regression model of interest is 
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correctly specified, and the estimate was unbiased.  Adding squared terms for one of the 

confounders in the outcome model in the data generating process did not impact the 

estimation of the true treatment effect. If we discarded the scenario of OVL equals 

21.8%, the general results of the estimate were similar to the results from Table 1. All PS 

methods seemed to agree with multiple regression when the OVL was larger than 33.7%. 

However, when the OVL was below 21.8%, all methods give divergent results. It seemed 

like the strength of the square term did not impact MSE if we discard the scenario with 

21.8% OVL. When the OVL reduced from 33.7% to 21.8%, MSE from all methods 

sharply increased. When OVL was below 54.7%, as the square term's intensity increases, 

the MSE of all methods increases drastically. 

 

The maximum standardized difference of covariate related to the outcome was 

summarized in  

Table 3 in the appendix to demonstrate the covariate balance of different PS methods. 

Regardless of the strength of the model misspecification, the maximum standardized 

difference became larger with the decrease of OVL. The strength of model 

misspecification also had very little impact on this increase. In the scenario with the 

interaction term in the outcome model, ATM and PS matching with caliper =0.1 all had 

small maximum standardized difference. ATO achieved the exact balance regardless of 

the value of OVL and the strength of model misspecifications in both scenarios. 
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For a better understanding of the study result, Figure 2 provides an overall visualization 

of trend change under different level of model misspecification by multiple regression, 

ATM, ATO, and matching with caliper=0.In the scenario with an interaction term in the 

outcome model, which was indicated the left part of the figure, the four methods 

gradually diverged with the decreasing of OVL. When the OVL was very small, the 

multiple regression estimators tended to underestimate treatment effect than PS methods 

estimators, while the PS matching with caliper method usually gave relatively large 
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estimators. ATM and ATO methods were always consistent regardless of the strength of 

the interaction term and the overlapping status. Multiple regression estimators tended to 

have a significant difference between the estimators from PS methods when the OVL was 

smaller than 38.5%. The existence of the interaction term could further drive the bias. In 

the scenario with a square term in the outcome model, the four methods gave similar 

results when the OVL was above 33.8%, regardless of the strength of the squared term in 

the outcome model. In this scenario, the true value of the treatment is 2. The bias 

increased as OVL decreased in the first scenario. The trend was the same in the second 

scenario but not as extreme as the first.  

4. Discussion 

In this study, we created a straightforward data structure to compare the performance of 

several PS matching and weighting methods and multiple regression. We chose to use a 

dichotomous treatment variable and a normally distributed outcome. In each simulated 

dataset, only six covariates were included without any missing data and unmeasured 

confounders. The data generating process were similar to a study design procedure of an 

RCT study. The true propensity score model contained 𝑋!-𝑋:, which were related to the 

treatment. The treatment assignment procedure was based on the true propensity score for 

each subject. The outcome satisfied a multiple regression model and was also simulated 

using the normal distribution. To create a relatively fair condition for PS methods and 

multiple regression, we added model misspecification to the outcome model, and the 

multiple regression model used for analysis only contained all six covariates. We 

considered two types of model misspecification. In the first scenario, an interaction term 

of a categorical confounder was added in the outcome model. This setting could mimic a 
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heterogeneous treatment effect among different subpopulations. The true treatment effect 

in the original population was known, so the relative performance of different methods 

can be compared. In the second scenario, a square term of a continuous confounder was 

added. This setting imitated one of the practical concerns of an observational study-- an 

unknown true outcome model. In the data analysis process, we adopted the variable set's 

inclusion criteria mentioned in Austin's (2011, p. 412) study. The selected propensity 

score model only contained potential confounders (covariates related to the outcome but 

not the treatment, in our study design, it is 𝑋;-𝑋9 ). In our simulation, the degree of 

overlap could be changed by controlling the distance between each subject within a 

simulated dataset. An exaggerated distance led to a dispersed covariate distribution. 

Furthermore, the degree of the disperse was quantified by OVL. 

 

According to our simulation study results, we found that the influence of OVL on the 

degree of divergence was not continuous. However, when OVL was less than a specific 

value, as OVL continued to decrease, the estimates of multiple regression would diverge 

from the estimates of PS methods. For different PS methods, this cutoff point was 

different. In other words, regardless of the type of model misspecification, when the 

overlap was relatively good, all methods tended to agree with each other. The estimates 

from the PS methods and those from the multiple regression disagreed with each other 

only when the OVL was very small. The strengths of model misspecification did not 

seem to impact this trend but the magnitude of the difference between PS methods and 

multiple regression. The standard error of estimators from all PS methods became larger 

with the decrease of OVL.ATE was the most sensitive to the decline of OVL and the 
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strength of the model misspecification. PS matching with caliper methods were also 

sensitive to the reduction of OVL but not as extreme as ATE. The OVL could act as a 

factor when considering the matching caliper. A narrow caliper outperformed a wide one 

when the OVL is relatively poor. ATM and ATO performed stably and tended to be more 

consistent with multiple regression. When applying PS methods under a poor overlap, the 

effective sample size used for analysis would be much smaller than the original 

population. 

 

Our study design and results were very similar to the theory proposed in Austin's (2011, 

p. 411) study. When satisfying "no unmeasured confounders," "continuous outcome," and 

"correctly specified propensity score model and outcome model," the results from 

multiple regression and PS methods would coincide. Hade and Lu (2013, p. 81) set three 

covariate distribution shapes and named them as "contained," "common support," and 

"some overlap" in their simulation study. The three types had a decreasing degree of 

overlap but no extreme overlap circumstances. F. Li and Thomas (2018, p. 254) 

generated four different propensity overlap scenarios in their simulation study, and they 

also considered extreme overlap circumstances. Inspired by their studies, we advocated 

that quantifying the overlapping degree using OVL can better help balance diagnostics 

before adopting any analytic method. In practice, the true propensity score model and the 

outcome model are unknown in observational studies. Therefore, the major practical 

concern is model selection. Once we select a proper propensity score model, the OVL can 

be calculated to assess the degree of the baseline covariate overlap. The decision of the 

next step can be made by the research question and OVL. If we are confident enough to 
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claim that the prediction model is correctly specified, the multiple regression model is the 

best choice. When the OVL is above 90%, multiple regression and PS methods agree 

with each other. Multiple methods can be adopted for cross-validation purposes. ATE 

performed very well when the OVL is above 38%. When the OVL is below 62%, 

propensity score matching with caliper methods, ATO, and ATM could all be selected 

based on the research question. 

Our simulation study has several limitations. In this study, we only considered a binary 

treatment and a continuous outcome. As mentioned in Austin's (2011, p. 411) study, one 

of the advantages of propensity score methods is the flexibility of handling various types 

of outcomes such as time-to-event outcomes and a binary outcomes. It is also of interest 

to explore whether the results can be expanded to other scenarios. In the scenario with a 

square term of confounder in the outcome model, the pattern of the performance of 

different methods was not very clear. It is probably because the confounder's strength in 

the outcome model in the data generating process was relatively small. 

 

5. Conclusion 

In conclusion, we suggest estimating the propensity score of each observation and 

assessing the baseline covariate balance by OVL and PS methods outperform multiple 

regression when the overlap is poor. According to our study result, PS methods and 

multiple regression agree when the OVL is good. However, PS methods provided more 

efficient estimates when the OVL is poor. PS matching with a smaller caliper does not 

always improve the matching quality. This improvement can be achieved only when the 

model is correctly specified. ATE has superior performance when the OVL is good, but it 
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should be avoided when the overlap is very poor. The decision to adopt the analytic 

method should be made after estimating the OVL according to the research question. 
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Appendix: 
 
Table 3: Maximum standardized difference of all covariates related to the outcome after PS methods in presence of the 
interaction /square term in the outcome model with decreasing OVL.MR represents multiple regression. The category 
of Int/Sq represents the value of coefficient of the interaction term in the outcome model. 

 


