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Abstract

Inference of Inter-Individual Heterogeneity in Tuberculosis Transmission
By Jonathan Paul Smith

Objectives: Increasing evidence suggests that tuberculosis (TB) transmission is
largely characterized by “superspreading,” an extreme manifestation of inter-individual
heterogeneity wherein a disproportionately small number of individuals contributes
to the majority of secondary cases. Superspreading greatly undermines public health
interventions and has a profound impact on disease emergence and outbreak trajec-
tory. However, traditional methods used to quantify the propensity for superspread-
ing in a population cannot be applied to TB since high resolution data describing
individual-level TB transmission are rarely observed. Fortunately, recent advance-
ments in genotyping have afforded surveillance systems the ability to more accurately
identify TB transmission clusters, defined simply as the total number of cases in a
given transmission chain. The overall goal of this dissertation was to develop, evalu-
ate, and apply a novel method to quantify the propensity for superspreading in TB
using transmission cluster distributions, without the need for more resource-intensive
individual data.

Methods: In the first study we utilized branching process theory and a negative
binomial offspring distribution to develop a novel method that infers inter-individual
heterogeneity using only cluster level data. We then validated the inference procedure
under real-world scenarios that lead to imperfect surveillance. In Study 2, we applied
this method to TB surveillance data systematically abstracted from the literature and
investigated the impact such heterogeneity had on transmission dynamics. In Study 3
we obtained empirical TB surveillance data from the United States Centers for Disease
Control and Prevention (CDC) and estimated the propensity for superspreading in
four of the most populous states in the US.

Results: Study 1 demonstrated the inference procedure was robust and inferred the
same degree of inter-individual heterogeneity as more resource intensive individual-
level data. In Study 2, the inferred parameters indicated a similarly high propensity
for superspreading across various global contexts. Study 3 demonstrated a similarly
high propensity of superspreading the US, and that a small minority (∼ 10%) of cases
were responsible for all secondary transmission.

Conclusions: A high degree of inter-individual heterogeneity is a defining feature
of TB epidemiology, and accounting for this heterogeneity in epidemic modeling will
result in an improved understanding of TB transmission dynamics and subsequent
public health efforts.
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Chapter 1

Introduction and Background

1.1 Dissertation Approach and Summary

This body of work is comprised of three studies which develop, evaluate, and employ

a novel method to quantify the extent of inter-individual heterogeneity in tuberculo-

sis (TB) transmission, defined as differences in the number of secondary cases arising

between infectious individuals within a population. With more than 10 million new

cases and 1.5 million deaths in 2018, TB is a major contributor of global morbid-

ity and mortality.1 Incident cases of TB arise in a population from either sporadic

reactivation of latent TB infection (LTBI) acquired years earlier, or recent transmis-

sion. From a public health standpoint, recent transmission of TB is of particular

concern as it has to potential to generate explosive outbreaks, particularly in vulner-

able populations.2−4 These outbreaks may fuel larger epidemics, leading to additional

cases in the local community and fueling secondary outbreaks in other populations.

Unfortunately, given the natural history of TB and lack of diagnostics to distinguish

reactivation of LTBI and recent transmission, identifying who infected whom among

active cases is notoriously challenging. There is some evidence that the majority

of recent transmission is a result of “superspreading,” an extreme manifestation of
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inter-individual heterogeneity wherein a disproportionately small number of individu-

als contribute to the majority of secondary cases. However, major gaps remain in our

understanding of inter-individual transmission and its importance in TB transmission

dynamics.5−8 As a result, researchers have explicitly called for an improved under-

standing of TB transmission dynamics, particularly the development of new methods

that advance our understanding of superspreading in TB.6−8

As a partial answer to this call, this dissertation’s overall goal is to quantify

the degree of inter-individual heterogeneity in TB transmission. Quantifying such

heterogeneity affords surveillance systems the ability to evaluate the propensity of

superspreading in a population, improves modeling efforts through a more accurate

representation of transmission heterogeneities, and informs targeted public health in-

terventions. This goal is confronted by a well-known limitation in TB: the number of

secondary cases arising from each infectious case is rarely, if ever, identified with any

accuracy. Thus, researchers are unable to reliably quantify differences in secondary

cases between infectious individuals. However, advancements in genotypic techniques

combined with traditional epidemiologic approaches have allowed for the accurate

identification of entire TB transmission clusters (defined as an index case and all sub-

sequent cases arising from the index case). Leveraging the properties of transmission

cluster distributions, this dissertation’s goal is accomplished by: 1) developing and

evaluating a method to reliably infer inter-individual heterogeneity using the distri-

bution of final transmission cluster sizes in a surveillance system, 2) applying this

method to transmission cluster data that was systematically abstracted from global

surveillance systems in the published literature to quantify individual heterogeneity

in various global populations, and 3) applying this method to data obtained from the

Centers for Disease Control and Prevention (CDC) to assess individual heterogeneity

and its role in transmission dynamics in the United States.
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1.1.1 Study 1: Specific Aims and Summary

The specific aims of Study 1 were to:

1. To develop a method to estimate the degree of inter-individual heterogeneity in

TB transmission using transmission cluster surveillance data

2. To evaluate the bias introduced by common limitations in TB surveillance and

cluster data, including censorship, overlapping transmission clusters, and im-

perfect case ascertainment

3. To apply this method in estimating inter-individual heterogeneity in the United

States using CDC-defined transmission cluster data

Briefly, utilizing a branching process model with a negative binomial offspring distri-

bution, mechanistic adjustments were made to the probability distribution to relate

the distribution of secondary cases to the distribution of final cluster sizes. Maximum

likelihood estimation (MLE) was applied to infer both the reproductive number, R,

and the dispersion parameter k. The dispersion parameter k of the negative binomial

specifically quantifies individual heterogeneity. Simulations were used to compare the

performance of the cluster-based inference procedure to full individual data to as-

sess robustness under perfect surveillance. Adjustments were made to the simulation

procedure to emulate common limitations with TB surveillance that affect cluster

size data: imperfect case ascertainment (through both passive and active case as-

certainment), censorship due to the sampling time frame, and overlapping clusters

(wherein two chains of transmission cannot be unambiguously separated). The extent

and direction of bias introduced by these limitations was first assessed univariately.

Subsequently, three combined scenarios (emulating high-resource, moderate-resource,

and low-resource settings) were constructed to assess multivariate bias. Finally, the

epidemiologic utility of this method was evaluated by applying this method to trans-

mission cluster data in the United States.
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1.1.2 Study 2: Specific Aims and Summary

Study 2 applied the methods developed in Study 1 to quantify inter-individual hetero-

geneity in surveillance system data abstracted from the literature. Once heterogeneity

was quantified by virtue of the parameter k, the study further applied the transmis-

sion parameter estimates to investigate the role that such heterogeneity plays in the

broader context of transmission dynamics. The specific aims of study 2 were:

1. To quantify heterogeneity in TB transmission across global surveillance systems

(a) To build a preliminary evidence base regarding the degree of heterogeneity

present in various global contexts

2. To evaluate the impact of inter-individual heterogeneity on TB transmission

dynamics

Briefly, we systematically gathered empirical TB transmission cluster size data from

detailed contact tracing, whole genome sequencing, and epidemiological surveillance

of TB transmission. R̂ and k̂ were jointly estimated using the methods defined in

Study 1 to examine the extent of individual variation in secondary cases. To investi-

gate the impact such variation may have on epidemic spread, we calculated the abso-

lute and relative probability that a cluster initiating with a single index case would

result in the largest cluster observed in the dataset under three distributional assump-

tions common in epidemiologic modeling: the negative binomial (Y ∼ NB(R̂, k̂)),

geometric (Y ∼ GEO(R̂)), and Poisson (Y ∼ POI(R̂)).

1.1.3 Study 3: Specific Aims and Summary

Working with the United States Center for Disease Control and Prevention (U.S.

CDC), Study 3 applied the methods developed in Study 1 to evaluate individual

transmission heterogeneity in the four U.S. states with the highest number of inci-

dent TB cases: California, Florida, New York, and Texas. Using negative binomial
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parameters R̂ and k̂ inferred from cluster-level data in these states, Study 3 fur-

ther characterized TB transmission by quantifying the proportion of infectious cases

responsible for a given proportion of transmission. The specific aims of Study 3 were:

1. To quantify heterogeneity in TB transmission in four U.S. states

2. To estimate the proportion infectious cases for a given percentage of secondary

cases

Briefly, we used routinely collected data from the U.S. Centers for Disease Control and

Prevention (CDC) National Tuberculosis Surveillance System (NTSS), the National

Tuberculosis Genotyping Service (NTGS), and the Large Outbreaks of Tuberculo-

sis in the United States (LOTUS) databases from January 1, 2014 to December 31,

2016 for the states of California, Florida, New York, and Texas. Transmission clus-

ters were defined using 24-locus mycobacterial interspersed repetitive unit variable

number of tandem repeats (MIRU-24) and whole genome sequencing (WGS). Trans-

mission clusters were defined as cases with identical MIRU-24 profiles within the same

county during the study timeframe. Clusters meeting LOTUS criteria were further

evaluated using the more discriminatory WGS. Taking R̂ and k̂ to specify the ex-

act probability density function (PDF) and cumulative density function for the given

populations, we then calculated the expected proportion of transmission attributed

to a specified proportion of the cases, pt. For clarity, common example known to sex-

ually transmitted and vector-borne diseases is the “80/20 rule,” wherein 80 percent

of transmission is attributable to only 20 percent of infectious cases (i.e. pt = 0.80).
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1.2 Tuberculosis Epidemiology and Transmission

Dynamics

1.2.1 Global Tuberculosis Epidemiology

Tuberculosis disease (TB) is a directly transmitted infectious disease caused by the

bacterial Mycobacterium tuberculosis (Mtb) that remains a major global health crisis.

In 2018, there were an estimated 10 million (range: 9.0-11.1 million) incident cases

of active TB disease and 1.5 (range: 1.3-1.6 million) million deaths worldwide.1 The

global burden of TB has been relatively stable over the past 20 years with a slight peak

in the mid- to late-2000’s followed by a subtle decline over the past decade (Figure

1.1). The incidence rate of TB has dropped 14 percent from 2000-2010 (median: 51

cases per 100,000 population) to 2010-2018 (median: 44 cases per 100,000 population).

The rate of this decline has slowed, however, as more recently the incidence rate has

only decreased 2 percent from 2012 to 2018.

Figure 1.1: Global cases of tuberculosis, 2000-2018. A) Total TB cases worldwide,
2000-2018. B) Median global TB incident rate, per 100,000 population. Data from
World Health Organization (2018).

Although the global epidemiology of TB suggests an improvement in TB control,
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such aggregate data mask a markedly heterogeneous epidemic that varies widely be-

tween countries, places, and people. Many low- and middle-income countries (LMICs)

experience incidence rates over 50 times that in most high-income countries, and two-

thirds of all reported incident TB cases are found in only 8 countries: India (27%),

China (9%), Indonesia (8%), the Philippines (6%), Pakistan (6%), Nigeria (4%),

Bangladesh (4%), and South Africa (3%) (Figure 1.2, Panels A and B).1,9 The con-

sequences of these disparities are realized when examining death rates. TB-related

deaths are significantly lower in high-income countries than in LMICs, and this re-

duction is disproportionate to the country’s incidence: in general TB patients are

more likely to die in LMIC countries than in high-income countries (Figure 1.2, Pan-

els C and D). Such variability in these data suggest that dramatic reductions in TB

morbidity and mortality are achievable by identifying modifiable prevention factors

that determine transmission.10−12
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Figure 1.2: TB morbidity and mortality are related to country income. A) TB

incidence rate (cases per 100,000 population) vs per capita GDP; B) Proportion

of total TB cases vs per capita GDP; C) TB mortality rate (deaths per 100,000

population) vs per capita GDP; and D) Proportion of total TB deaths vs per capita

GDP. Note the log scale for GDP (all figures) and proportions (B and D). The eight

countries comprising 67 percent of the TB burden are highlighted in red. Data are

from the World Bank and World Health Organization and include 156 countries with

both GDP and TB incidence data (2018).
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1.2.2 Inter-Individual Heterogeneity and Superspreading in

Tuberculosis Transmission

In a given population, TB epidemiology is ultimately determined by individuals and

their capacity to transmit and develop TB. Inter-individual differences in these ca-

pacities have been shown to greatly influence both the success of localized outbreaks

and outbreak trajectory.13 In this body of work, inter-individual heterogeneity in

TB transmission is explicitly defined as differences in the number of secondary cases

arising between infectious individuals within a population. The advantage of this def-

inition is that it incorporates all known and unknown host, contact, pathogen, and

environmental factors that lead to the number of secondary cases from an infectious

individual (the “infectious history”). Importantly, although no universally accepted

definition exists, “superspreading” is generally acknowledged as an extreme manifes-

tation of inter-individual heterogeneity wherein few infectious individuals result in a

disproportionate number of secondary cases, while the majority of cases lead to little

or no ongoing transmission.

As evidenced from other infectious diseases, inter-individual heterogeneity and

superspreading have a profound impact on both disease emergence and subsequent

outbreak trajectory within a population.14−17 The probability that an outbreak will

emerge in a population after the introduction of an infectious case decreases as inter-

individual heterogeneity increases (i.e. heterogeneity favors more rapid stochastic

extinction in the early generations of spread).14 This is largely due to the increased

probability that a given index case will transmit few or no secondary cases as inter-

individual heterogeneity increases. Conversely, the few populations that evade extinc-

tion after disease introduction are characterized by less predictable, more explosive

outbreaks.13 Such dynamics can be observed in a number of outbreaks over the past

several decades, including the 2003 Severe Acute Respiratory Syndrome (SARS) out-

breaks, the 2012 Middle East Respiratory Syndrome (MERS), and the 2014 Ebola
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outbreak in West Africa. In these global outbreaks, the majority of communities

experienced little to no epidemic spread after initial introduction of a source case,

whereas others suffered large and explosive outbreaks.18−20 A retrospective evaluation

of these data show that the differences in these transmission patterns were largely

accounted for by the presence or absence of a superspreader in the early generations

of spread.17,21,22

Although little epidemiological research has investigated superspreading in TB

transmission, similar patterns are observed in surveillance data and early evidence

suggests that a high degree of inter-individual heterogeneity may be a defining fea-

ture shaping the epidemiology of TB.5,6,8,11,16,23 For instance, Gardy et al used whole-

genome sequencing and social-network analysis to describe a TB outbreak in British

Columbia, Canada and found that individual superspreaders were the largest single

contributing factor to overall TB prevalence in the study population.7 Additionally,

a recent modeling study investigating the location of TB transmission used empir-

ical data from South Africa to incorporate superspreading into their mathematical

framework.8 The authors found that as the propensity for superspreading was re-

duced, a greater proportion of TB transmission was attributed to the household than

to the general community. Another study using high-resolution follow up and con-

tact tracing data over a ten-year period in Victoria, Australia concluded that super-

spreading is responsible for the majority of secondary cases in the community.6 Such

studies underscore the importance of characterizing and quantifying the degree of

inter-individual heterogeneity in TB transmission in order to optimize public health

interventions designed to interrupt transmission.24
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1.2.3 Sources of Inter-Individual Heterogeneity in TB Trans-

mission

For most infectious diseases, heterogeneity in secondary infections among infectious

individuals is synonymous with heterogeneity in secondary cases.13,16,25,26 However,

TB transmission dynamics are uniquely complicated by latent TB infection (LTBI).

LTBI is successful infection of Mtb in a susceptible host characterized by a dynamic

and sustained balance of immune response and bacterial persistence that may last

for decades; LTBI is not considered clinical TB disease and is non-infectious (Figure

1.3).27 Thus, successful transmission and infection of Mtb may or may not result in

a secondary case of TB; an estimated 90-95 percent of latently infected individuals

never progress to active TB disease.1 Reactivation of LTBI, wherein LTBI progresses

to active TB disease, is highest in the first 2-5 years following infection yet may

occur in the distant future due to changes in the host’s immunological status.28 This

pathological hallmark of TB infection implies that while increased infectiousness of a

source case may lead to an increased number of infections, the resultant number of

observed secondary cases is critically dependent on factors beyond the host, namely

the propensity and timing of the secondary host to progress to active disease after

successful infection.29

The relationship between the number of secondary transmission events resulting

from a source case and the number of observed secondary cases attributed to that

case is unclear. Immunological, diagnostic, and practical challenges associated with

LTBI detection thwart our ability to draw conclusions and make acquisition of the

high-resolution data needed to determine when, how, and where TB infection oc-

curred difficult. However, a recent well-designed study using detailed contact tracing

and surveillance data over a 10-year period compared the distribution of secondary

infections to the distribution of observed secondary cases.6 The study found that,

while the the magnitude of the distributions differed (by default there were more
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Figure 1.3: Pathways of disease occurrence after inhalation of Mtb

secondary infections than secondary cases), the overall shapes of the two distributions

were similar. This implies that those who infected more individuals were responsi-

ble for more secondary cases. While this study provides preliminary evidence that

individual infectiousness may be a correlate with the number of observed secondary

cases, our understanding of this relationship is far from complete.

In contrast to the slow progression of LTBI to active disease, incident TB cases

may also arise due to recent transmission. Recent transmission is distinguished from

reactivation of LTBI as it focuses on the proportion of infected individuals who

progress to active TB within a finite timeframe after infection (0-3 years30). From a

public health standpoint, recent transmission is of particular importance as it repre-

sents the increased potential of rapid, extensive outbreaks, particularly in vulnerable

communities.3,13,31 Both recent transmission and LTBI are a consequence of myriad



13

known and unknown host, contact, pathogen, and environmental factors.

Characterizing heterogeneities within these sources to better understand how and

where TB spreads is a basic public health principal. When considering differences in

the number of observed cases due to recent transmission, it is useful to center one’s

thinking around three primary categories: 1) the infectivity of the source case; 2) the

intensity of exposure to the susceptible individual; and 3) the susceptibility of the

exposed person to infection and disease. Using this framework, this section briefly

describes the most prominent sources of known heterogeneities in TB epidemiology.

Infectiousness of the source case

Here, infectiousness is defined as the capacity of an individual to transmit Mtb to

susceptible contacts, including transmission that results in recent transmission or

LTBI. Variation in the infectiousness of a source case is predicated on several known

properties of disease manifestation. As TB is airborne and exposure to Mtb from

an infectious individual is a necessary cause for infection, it is intuitive that one’s

ability to emit infectious droplet nuclei is correlated with a higher degree of infec-

tiousness. Accordingly, extrapulmonary cases of TB (EPTB), such as TB of the bones

or joints, are generally considered non-infectious unless the extrapulmonary disease

is located along the breathing pathway (i.e. oral cavity, throat, or larynx).32 Early

studies investigating mechanics of pulmonary TB infection showed that patients with

more severe manifestations of active disease may generate a larger quantity of more

infectious droplets.33,34 Along this vein, cough is the most common symptom of TB

and the severity of disease may increase the frequency and strength of coughing.35

Smear-positive adults (in which Mtb is positively identified under a microscope) and

TB cases characterized by cavitary lung lesions have also been shown to transmit

more extensively.36 Conversely, young children are typically paucibacillary and rarely

develop severe disease as compared to adults.37
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Social, personal, and demographic factors also play an important role in deter-

mining one’s infectiousness. While men account for a higher proportion of incident

TB, female cases are typically younger, have lower rates of cavitation, and improved

success once in care.1,38,39 However, it is not well established if these gender differ-

ences are a product of biological mechanisms or if they reflect sociocultural norms

influencing health behavior.40−42 There is evidence that TB patients coinfected with

HIV may transmit less than TB patient uninfected with HIV.43,44 Though inconclu-

sive, this hypothesis is in part because HIV/TB coinfection hastens the time to active

TB disease and often results in more severe cases of TB, both of which reduce the

duration of infectiousness (either through social isolation, faster access to necessary

health services, or death).45,46 HIV-infected patients are also less likely to be smear

positive than HIV-uninfected patients.47−49 However, with widespread and increasing

use of ART in recent years, the dynamics of TB/HIV coinfection may change in the

near future.

Mixing patterns and number of contacts also plays a role in the number of sec-

ondary infections. Certain occupations (i.e. restaurant server, teacher) may involve a

high number of contacts, whereas others (i.e. PhD student) are more solitary. Distal

or ecological factors, such as a community’s public transport system and homeless-

ness, also greatly impact contact rates of an infectious individual.50−52 While active

cases of TB can quickly become non-infectious with proper treatment, individuals dif-

fer in their desire or ability to seek medical care and the quality of care recieved.53−55

Healthcare capacity also interplays with the strain of Mtb infecting the source case;

while there is no consensus that drug-resistant TB (DR-TB) strains transmit more

or less efficiently and drug susceptible strains, DR-TB strains are definitively more

challenging and costly to treat and have considerably lower treatment success rates,

all of which may increase an individual’s ability to infect additional contacts.1,56−58
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Intensity of exposure

Intensity of exposure refers to how long a susceptible contact is exposed to Mtb and

the bacterial load to which they are exposed. Physical environments that increase or

decrease duration and exposure to Mtb may play a key role in increased secondary

cases. Prisons and jails are prominent examples, as they have been shown to be a

key reservoir for TB transmission and a critical link to the general population.59,60

TB is considered an occupational disease as certain occupations are prone to involve

more contacts in prolonged and close proximity to infectious cases.61 For instance,

infection pressure is so great within South African gold mines that mass screening

and treatment for LTBI had no effect on reducing secondary cases of TB.62 Health-

care workers are well-known to be at increased risk of Mtb infection, as they may

be exposed to multiple infectious TB patients, work in poorly ventilated spaces, and

perform procedures with contaminated aerosols.63,64 Numerous additional examples

exist of outbreaks occurring in other settings conducive to transmission, such as pub-

lic transport, churches, informal social establishments (shebeens), and other social

mixing patterns.50,65−69

Arguably the most critical aspect of intensity of exposure is within the house-

hold. Household contacts of an infectious case of TB are at substantially higher risk

of TB infection and active TB disease.70 However, the role of household contacts as

it pertains to differences in the number of secondary cases arising from the index

case is uncertain. While the absolute risk is indeed greater among household con-

tacts, several studies have found that a larger proportion of secondary cases arise

outside the household, and thus community transmission may be more influential in

inter-individual heterogenenity.43,66,71,72 This may be due to a phenomenon of “con-

tact saturation;” additional exposures in the community are likely to näıve community

members, whereas additional exposures among household members are “wasted” once

the contact is infected with Mtb.8,73
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Susceptibility of the exposed person

Here, susceptibility refers to both the likelihood of infection of a susceptible contact

after exposure and the progress from Mtb infection to clinical disease after infection.

Numerous studies have identified prominent comorbidities that increase susceptibility.

HIV infection is the most well-described risk factor, with numerous studies demon-

strating that HIV infection both increases the probability of infection and hastens the

time to active TB disease.52,74−76 For instance, a prospective cohort study found that

after two years of follow up, the odds of developing active TB disease in HIV-infected

individuals was 18.8 (95% Confidence Interval (CI): 10.3-34.5) higher than that of

HIV-uninfected individuals, with an incidence of 25.3 and 1.3 per 1,000 person-years,

respectively, for culture-positive active TB.77 Silicosis, a form of pulmonary fibrosis

resulting from inhalation of silica dust, is also known to increase the risk of active TB

two- to three-fold compared to the general population.78,79 Additional comorbidities

are associated with substantially increased susceptibility, including those with chronic

renal failure, diabetes mellitus, or those on corticosteroids and other immunosuppres-

sive drugs.80−84 Malnutrition profoundly compromises one’s immune function and

both increases the probability of infection and the timing and severity of clinical

disease.85,86 Alcohol use has also been shown to substantially impact both the risk

and progression of TB disease.87 LTBI itself may play a role in susceptibility of rein-

fection; there is some evidence to show that latently infected individuals have partial

immunity to reinfection from subsequent exogenous exposures to Mtb and also have

a lower risk of progressing to active disease if infection occurs.88 Conversely, patients

with previous episodes of active TB disease are more susceptible to reinfection despite

treatment outcome.89−91
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1.3 Current Approaches to Addressing Heterogene-

ity in TB Transmission

Heterogeneity in TB and its effect on transmission dynamics is most often explored

through mathematical modeling. Mathematical models are often used in epidemiol-

ogy to better understand epidemic spread, identify gaps in data needs, and predict

how well interventions may work (either alone or in combination) to mitigate disease

spread. Quantifying heterogeneities in transmission is a key component in epidemio-

logic modeling and is critical in evaluating the success of interventions.

Since the first TB model in 1962, hundreds of studies have investigated diverse as-

pects of TB transmission dynamics using various approaches to mathematical modelling.92

Due to a combination of computational convenience and accuracy, the vast major-

ity of TB models are dynamic, compartmental, deterministic transmission models

(Table 1.1).93 While the model structures themselves are diverse depending on what

scientific question the study is trying to answer, all deterministic compartmental mod-

els account for heterogeneity by structuring the population of interest into distinct

sub-groups based on known factors associated with transmission; each group is itself

assumed to be homogenous. These models often perform well in their estimation and

account for many of the sources of heterogeneity in TB transmission. For example,

variable infectiousness is typically represented by smear status and susceptibility is

often accounted for by groups representing “fast” and “slow” progression to active

disease.94,95
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Table 1.1: Brief summary of epidemiologic models used in assessing infectious disease

transmission dynamics

Model Types Description

Dynamic vs

Static Models

Dynamic models account for time-dependent changes in

model parameters to model risk of infection; incidence is

a function of prevalence. Static models are not sensitive

to time-dependent factors.

Compartmental

vs Individual-

Based Models

In compartmental models, disease and immunity states

are modeled at the group level. Individual-based models

(also known as ‘agent-based’ models) use individuals as

the level of analysis

Stochastic vs

Deterministic

Models

Stochastic models account for inherent randomness in

transmission in addition to other model inputs. In deter-

ministic models, the model output is wholly determined

by input parameter values and conditions.

Numerous well-designed deterministic compartmental models have proved integral to

our understanding of TB transmission and prevention.96−98 However, an important

limitation as it pertains to evaluating inter-individual heterogeneity in TB transmis-

sion is that groups must be identified according to some known, identifiable property

(as described above). This presents obvious challenges to incorporating superspread-

ing in TB transmission, which often cannot be predicted a priori. For instance, Curtis

et al describe widespread TB transmission from a nine-year-old boy with extensive

bilateral cavitary TB; meanwhile his identical twin brother experienced a relatively

mild case and was not considered infectious.99 Additionally, Edwards et al demon-

strate significant variation among individuals’ ability to emit exhaled bioaerosols gen-
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erated during normal breathing; identifying two distinct groups (“high-producers”

and “low-producers” with averages of 1580 and 38 particles per liter, respectively)

with no discernible characteristic differences between the two.100 Given the nuance in

individual differences, deterministic compartmental models are unable to capture the

full extent of individual heterogeneity in TB transmission.

Recent advancements in computer power have afforded the increasing use of

individual-based models (also known as agent-based models) to study the trans-

mission of TB. The fundamental units of analysis in these models are individuals;

typically, the model specifies a distribution of discrete individuals, with each individ-

ual assigned a vector of values that modulate risk of infection, progression to clinical

disease, and infectiousness.101,102 In addition, several models assign individuals to de-

mographic or physical spaces, such as households or neighborhoods.8,101−103 A subset

of individual-based models are known as network models, in which edges of a graph

depict relationships among individuals in a population (nodes).104,105 These models

further complement analyses by considering the importance of structure, pathways

of infection, and social networks. Network models often represent individual hetero-

geneity using degree distributions (i.e. the number of connections one node has to

other nodes).

While using the same deterministic skeleton of traditional compartmental models,

individual-based models are useful in the context of understanding the importance

of inter-individual heterogeneity of TB transmission. These models track the dis-

ease and immunity states of individuals, and thus afford the opportunity to assign

individual-level mechanistic and stochastic processes associated with transmission.

As a result, individual-based models are required to account for unknown individual

variation that may lead to superspreading. However, their use is far less widespread

than compartmental models; in contrast to the hundreds of compartmental models,

from 2005 to 2016 only 26 studies using individual based models were published, with
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only 18 of them specifically focusing on transmission dynamics and interventions.106

To date only one model investigating TB transmission dynamics has specifically incor-

porated the propensity for superspreading in a population into the model as separate

parameters.8 In line with models of other infectious diseases, this added mechanism

to the model accounted for all unknown factors associated with infectiousness and

susceptibility. Their results more accurately recreated observed patterns of transmis-

sion and concluded that that many of the unexplained phenomena observed in TB

transmission patterns may be due to the presence of superspreading. However, while

the authors used empirical data to estimate these model parameters, the methods

used for its estimation were limited and the data were incomplete (only 27 percent

of participants had available data for parameter estimation). The authors conclude

that an improved understanding of superspreading and novel methods to quantify su-

perspreading in TB transmission are paramount to improved intervention strategies.

Although current modeling approaches often account for known factors contribut-

ing to such heterogeneity, unknown factors of (and the unknown interactions between)

the host, contact, environment, and bacilli make the accurate representation of inter-

individual heterogeneity one of the great ongoing challenges in TB modeling. This

dissertation addresses this ambitious challenge, in part, by first developing a method

to infer the propensity for superspreading in TB transmission. By doing so, stochas-

tic individual-based models may be used to incorporate a separate model parameter

accounting for all unknown factors attributed to inter-individual heterogeneity. We

then apply this method to accurately establish empirical estimates of this parameter

across various global contexts. By accounting for unknown factors attributed to indi-

vidual variation, future modeling efforts can provide more accurate model predictions

of transmission dynamics and improving the evaluation of interventions.
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Chapter 2

Quantifying Inter-Individual

Heterogeneity in Tuberculosis

Transmission

2.1 Background

The purpose of this chapter is to propose the overall theoretical framework used to

quantify inter-individual heterogeneity in TB transmission and introduce the fun-

damental methods and terminology utilized in the process. Methods of quantifying

inter-individual heterogeneity are relatively straightforward when using individual-

level data: the number of secondary cases attributed to each infectious case are de-

scribed in a probability distribution and the overdispersion of that distribution can be

quantified. These methods cannot be applied to TB transmission data since LTBI and

other issues prevent our ability to determine discrete transmission events and direc-

tionality. However, recent advancements in genetic techniques, such as whole genome

sequencing (WGS), have been combined with traditional epidemiologic techniques

(i.e. contact tracing) to reliably identify entire transmission clusters. Transmission
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clusters are defined as an index case and all subsequent cases (i.e. secondary, tertiary,

etc.) arising from that index case.

Much like the number of secondary cases from each infectious individual in a pop-

ulation follows a probability distribution, the collection of total transmission cluster

sizes in the population also follows a distribution. While these two distributions

are not the same, they are also not independent since the individual cases in each

transmission chain give rise to the transmission cluster sizes in a given surveillance

system (Figure 2.1). This dissertation seeks to exploit this relationship using branch-

ing process and probability theory to quantify inter-individual heterogeneity using

only cluster-level data.
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Figure 2.1: Visualization of individual- vs cluster-level data of TB transmission in a

surveillance system. A) Individual-level data allow for the identification of transmis-

sion chains. Here, five independent index cases (black circles) are introduced to the

population. Subsequent secondary transmission (grey circles) is represented horizon-

tally. Individuals are represented as circles, and numerals indicate secondary cases

attributed to each case. These chains of transmission give rise to the final transmis-

sion cluster sizes. B) Corresponding distributions of individual and cluster-level data

for these example data.
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2.2 Branching Process Analysis

2.2.1 Branching Process Overview

Branching processes are stochastic individual-based models that have long been used

in ecology and epidemiology to model disease spread, and are of particular use in

surveillance data as they only require information on the number of cases.1,2 This

analysis models transmission using a single-type branching process, also known as a

discrete time Galton-Watson process. This is the most well-studied and validated

approach to branching processes.3 Galton-Watson branching processes assumes each

infected individual is associated with a fixed length time interval known as a gen-

eration; at the end of each generation the individual will have produced a random

number of secondary infections (“offspring”), herein denoted Z. Importantly, the ba-

sic reproductive number, R0 (herein referred to as the more generalizable R), which

represents the expected number of secondary cases caused by a typical infectious

individual in a wholly susceptible population, is by definition the mean value of Z.

In branching processes of infectious disease, the offspring distribution is the prob-

ability distribution for the observed number of secondary cases caused by each indi-

vidual infectious case, Z (i.e. pz = P (Z = z) for z = 0, 1, 2, 3, . . . , n). Instrumental in

the analysis of a branching process model is the probability generating function (pgf)

of the offspring distribution. The pgf is a mathematical tool to study the sequence of

probabilities and contains all the information needed to recover the probabilities asso-

ciated with each Z value. The pgf in branching processes can generally be expressed

as:1,4

Gz(s) = p0 + p1s+ p2s
2 + ...+ pns

n =
∞∑
z=0

pzs
z (2.1)

Where s is a dummy variable with no tangible meaning; the powers of s serve as a

placeholder to recover the probabilities associated with Z and facilitate the use of

high-order derivatives in their recovery.
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2.2.2 Incorporating Inter-Individual Heterogeneity in Branch-

ing Process Models

Typically branching processes assume the number of cases resulting from an indi-

vidual in each generation, Z, is a product of a Poisson process with intensity λ

(i.e. Z ∼ POI(λ)).5 This allows branching process models to easily incorporate in-

dividual heterogeneity by allowing λ to itself be a random variable; each infectious

case is associated with an individual reproductive number (denoted ν) drawn from

some probability distribution representing the expected value of secondary cases for

that specific individual (generally denoted here as fv(u)).6 The observed number of

secondary cases, Z, is therefore a mixture of both ν and demographic stochasticity

inherent in transmission. This approach can be generally represented by:3,5

Gz(s) =

∫ ∞
0

e−u(1−s)fv(u)du (2.2)

In this context, the underlying epidemiologic mechanism of disease transmission is

represented by virtue of the distributional assumption of λ and demographic stochas-

ticity in disease transmission is modeled by the Poisson process. For instance, if there

is no mechanistic plausibility for inter-individual heterogeneity (i.e. homogeneous

transmission), ν = R, and Z ∼ POI(R) thus all differences in observed Z values

are a solely attributed to demographic stochasticity. Differential equation models

often provide some mechanism for transmission dynamics that violate homogeneity.

If it is assumed that ν is exponentially distributed with mean R, as is the case with

many differential equation models with homogeneous transmission within groups and

constant recovery rates, the resulting offspring distribution becomes geometrically

distributed, Z ∼ GEO(R).

Both of these common distributional assumptions in epidemiology have a sin-

gle parameter (R) and thus have an inherent and fixed assumption regarding inter-
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individual heterogeneity. To allow for an unknown degree of inter-individual hetero-

geneity, we follow previous studies in assuming that ν is gamma distributed with mean

R and dispersion parameter k.6−9 This gamma-Poisson mixture results in a negative

binomial offspring distribution of Z, also with mean R and dispersion parameter k

(i.e. Z ∼ NB(R, k)).10 The dispersion parameter k quantifies the overdispersion of

the distribution and encapsulates for the all known and unknown factors contributing

to inter-individual heterogeneity in transmission.

Lemma 2.2.1. A Poisson distribution with a gamma distributed λ with mean R and

dispersion k results in a negative binomial distribution of Z, also with mean R and

dispersion k:

P (Z = z) =
1

Γ(k)Rk

∫ ∞
0

e−λλz

z!
λk−1e−

λ
Rdλ

=
1

Γ(z + 1)Γ(k)Rk

∫ ∞
0

λk+z−1e−λ−
λ
Rdλ

=
1

Γ(z + 1)Γ(k)Rk
Γ(z + k)

(
R

R + 1

)k+z
=

Γ(z + k)

Γ(z + 1)Γ(k)Rk

(
k

R + k

)k(
R

R + k

)z

The negative binomial offspring distribution has the following pgf in the branching

process:4,6

GNB
z (s) =

∞∑
z=0

Γ(z + k)

Γ(z)Γ(k + 1)

(
R

R + k

)z(
1−

(
R

R + k

))−k
sz =

(
1 +

R(1− s)
k

)−k
(2.3)

And the variance of the negative binomial distribution (re-parameterized for infectious

disease) is:

V ar(ZNB) = R

(
1 +

R

k

)
(2.4)

The dispersion parameter k allows us to quantify the degree of inter-individual het-

erogeneity and the propensity for superspreading in a population. By virtue of its
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position in the variance’s denominator, lower values of k (k < 1) correspond to higher

degrees of individual heterogeneity and increasing values of k correspond to more

homogeneous transmission (Figure 2.2). A negative binomial offspring distribution is

particularly useful in the context of infectious disease transmission, as the epidemio-

logically relevant Poisson and geometric distributions are special cases of the negative

binomial distribution. When k = 1, the variance reduces to R(1 + R) and the nega-

tive binomial distribution converges to the geometric distribution. As k asymptotes

to infinity, the variance reduces to R and converges to the Poisson distribution.
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Figure 2.2: Histogram of secondary cases from 10,000 simulated transmission chains,

all with identical R = 0.9 yet varying degrees of inter-individual heterogeneity (k).

k values << 1 are result in a disproportionately high number of cases having no

secondary transmission, with a minority responsible for a large number of secondary

cases (high overdispersion or superspreading). As k increases above 1 and as k →∞,

the distribution converges to a Poisson distribution (i.e. approaching homogeneous

transmission) and differences in secondary cases are entirely attributed to stochastic-

ity.
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2.3 Parameter Inference from the Distribution of

Final Transmission Cluster Sizes

In practice, generations of TB transmission are not observed with accuracy. However,

total transmission cluster sizes, herein denoted Y and defined as the index case and

all subsequent cases in the chain of transmission arising from the index case, are

more readily identifiable. Since the chains of transmission in a surveillance system

are inherently related to the final size of that chain, a natural extension of branching

process theory is to base parameter inferences on the distribution of total transmission

cluster sizes in a surveillance system.

While a single cluster cannot provide any insight into parameter inference, the

distribution of total transmission cluster sizes in a surveillance system has been shown

to be statistically sufficient in estimating the canonical parameter θ in distributions in

the power series (PS) family of distributions, which includes the Poisson, geometric,

and negative binomial. This holds in the context of both R ≤ 111 and R > 1.12 Thus,

that there is no statistical efficiency gained by knowing the individual-level data (i.e.

Z values) in estimating PS distributional parameters.

P (Z = z) = az
θz

A(θ)
(2.5)

where A(θ) =
∑
a(z)θz. Let Y represent the entire cluster size generated by the

branching process, including the number of index cases, it follows that:11

P (Y = y) =

{ y∏
i=1

a(zi)

}
θ
∑
zi

Ay(θ)
(2.6)

where i = 1, 2, 3, 4, . . . , y. For clusters originating with a single index cases, this is
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proportional to θy−1

Ay(θ)
, thus:

P (Y = y) = b(y)
θy−1

Ay(θ)
(2.7)

with b(y) as a proportionality constant. Importantly, a common issue with cluster

level data is that occasionally transmission clusters cannot be unambiguously sep-

arated, resulting in a final cluster of size Y originating with n known index cases.

Thus, the above formula can be modified such that θ
y−n

Ay(θ)
and thus:11

P (Y = y) = b(y;n)
θy−n

Ay(θ)
(2.8)

This relationship has long been shown to accurately infer R using cluster level data

from the single-parameter Poisson and geometric distributions.3,11,12 These distribu-

tions are associated with inherent assumptions regarding inter-individual heterogene-

ity in transmission. Relatively little work has evaluated the use of final transmission

cluster size distributions using the negative binomial distribution and its two param-

eters, R and k, which afford an unknown degree of heterogenenity.3,12 This body of

work seeks to expand on this property of branching process theory as it applies to the

negative binomial distribution to more accurately infer inter-individual heterogeneity

from cluster-level data.

2.3.1 Relating the Individual Offspring Distribution and the

Final Cluster Distribution

As discussed, the distribution of cluster sizes is related to the distribution of sec-

ondary cases in a surveillance system. To establish a relationship between these two

distributions, first recall the coefficient pz of the pgf Gz(s) =
∑∞

z=0 pzs
z generally

specifies the probability that a single individual will infect z secondary cases. If the
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probability distribution of Gz(s) is given under the assumption that it is a smooth

function of s with higher order derivatives, as is the case with relevant epidemiological

distributions, then taking the zth derivative of Gz(s) and evaluating at s = 0 deter-

mines P (Z = z); i.e. the probability that one infectious case results in z secondary

infections:3

P (Z = z) =
1

Γ(z + 1)

dzGz(s)

dsz

∣∣∣∣
s=0

(2.9)

where z = 0, 1, 2, . . . , Y − 1 and Γ(z + 1) = z!. To expand this concept, a common

manipulation in branching processes is the multiplication of i generating functions.

Thus, the coefficients of G(s)i provide all the possible ways that i cases collectively

generate 0, 1, 2, . . . , z cases. It follows:

P (Z = z|i) =
1

Γ(z + 1)

dzGz(s)
i

dsz

∣∣∣∣
s=0

(2.10)

However, extracting the probability for total cluster size, y, as a result of n index

cases is not the same as the probability that z secondary infections were caused by

i cases. This is because when considering all cases in a single cluster, each must

be caused by another within the same chain of transmission. Therefore, for each

cluster of size y with n index cases, there are y individuals that cause a total of y−n

secondary infections (i.e. the total cluster size minus the number of index cases).

Under this constraint, only certain combinations of events generated from Gz(s)
y are

valid. To account for this, a normalization factor of n/y is applied to Gy(s):
7,14

Gy(s) =
n

y
Gz(s)

y (2.11)

Similar to above, this normalization now allows the recovery of P (Y = y|n) by dif-
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ferentiating Gy(s) at the (y − n)th derivative and evaluating at s = 0:

P (Y = y|n) =

(
n

y

)
1

Γ(y − n+ 1)

dy−n

dsy−n

∣∣∣∣
s=0

(2.12)

A closed form of Gy(s) does not always exist, though may be solved recursively by

the helpful conventions that P (Y = 0) = 0 as there must be at least one case in the

cluster, and that Y = 1 represents a single index case transmitting zero secondary

cases, thus P (Y = 1) = P (Z = 0):

P (Y = 1) =
d

ds
Gy(0) = Gz(0) = P (Z = 0) (2.13)

To demonstrate the recursive procedure and the continued relationship between the

generating functions of the total cluster size and individual secondary cases, consider

a simple cluster generated from one index case. If the index case results in no sec-

ondary cases, Y = 1 and P (Y = 1) = P (Z = 0). When the index case results in a

single secondary case, Y = 2, the only permutation available is that the index case

transmitted to one other person who subsequently did not transmit to anyone:

P (Y = 2) =
1

2

d2

ds2
Gy(0) = P (Z = 1)P (Z = 0) (2.14)

When Y = 3, two transmission patters are valid. The index case may cause two

secondary cases and neither subsequently transmit, or the index case results in one

case who subsequently results in another case that does not transmit, thus:

P (Y = 3) =
1

6

d3

ds3
Gy(0) (2.15)

=
1

2

d2

ds2
Gy(0)[Gy(0)]2 + [G′y(0)]2Gy(0) (2.16)

= P (Z = 2)P (Z = 0)2 + P (Z = 1)2P (Z = 0) (2.17)
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This relationship continues for any value of Y ∈ [1,∞].

This generalized relationship is useful when Gy(s) takes a mathematically tangible

form. Assuming a negative binomial distribution, GNB
y (s) = (1 + (R(1 − s))/k)−k

the recursive procedure can regenerate the entire distribution of Z for any Y . When

Y = 1:

P (Y = 1) =
d

ds
Gy(0) =

(
k +R

k

)−k
(2.18)

For Y ≥ 2, the recursive calculation yields:

GNB(i)
y (s) =

∏j−n−1
j=0 (ky + j)

y − n

(
R

k

)j(
1 +

R

k

)−ky−i+n
(2.19)

Substituting into the P (y = y|n) formula above:

P (Y = y|n) =

(
n

y

)∏y−n−1
j=0 (ky + j)

Γ(y − n+ 1)

(
R

k

)y−n(
1 +

R

k

)ky+y−n
(2.20)

Rewriting this equation utilizing the gamma function yields the final probability

distribution for the final size of a transmission cluster of size Y , with underlying Z

distributed NB(R, k) is given by:

P (Y = y|n) =

(
n

y

)
Γ(ky + y − n)

Γ(ky)Γ(y − n+ 1)

(
R
k

)y−n(
1 + R

k

)ky+y−n (2.21)

Importantly, the values of R and k are preserved throughout the transformation

from individual to cluster generating functions, thus this density function provides

the foundation for interpreting inter-individual level heterogeneity using cluster level

data. This equation was computationally verified using stochastic simulation (see

Appendix for code).



45

2.4 Chapter 2 References

1. Harris TE. The Theory of Branching Processes. Berlin: Springer, 1963.

2. Pakes AG. Ch. 18. Biological applications of branching processes. Handbook of

Statistics: Elsevier; 2003:693-773.

3. Yan P. Distribution Theory, Stochastic Processes, and Infectious Disease Model-

ing. In: Brauer F, Driessche vd, Wu J, eds. Mathematical Epidemiology. New York:

Springer; 2008.

4. Taylor H, Karlin S. An Introduction to Stochastic Modeling. San Diego, Califor-

nia, USA: Academic Press; 1998.

5. Diekmann O, Heesterbeek JAP. Mathematical epidemiology of infectious diseases:

model building, analysis and interpretation. Chichester: John Wiley and Sons; 2000.

6. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect

of individual variation on disease emergence. Nature 2005;438:355-9.

7. Blumberg S, Lloyd-Smith JO. Inference of R0 and Transmission Heterogeneity

from the Size Distribution of Stuttering Chains. PLoS Comput Biol 2013;9:e1002993.

8. Lloyd-Smith JO. Maximum Likelihood Estimation of the Negative Binomial Dis-

persion Parameter for Highly Overdispersed Data, with Applications to Infectious

Diseases. PLOS ONE 2007;2:e180.

9. Nishiura H, Yan P, Sleeman CK, Mode CJ. Estimating the transmission potential

of supercritical processes based on the final size distribution of minor outbreaks. J

Theor Biol 2012;294:48-55.

10. Greenwood M, Yule GU. An Inquiry into the Nature of Frequency Distributions

Representative of Multiple Happenings with Particular Reference to the Occurrence

of Multiple Attacks of Disease or of Repeated Accidents. Journal of the Royal Sta-

tistical Society 1920;83:255-79.

11. Becker N. On parametric estimation for mortal branching processes. Biometrika

1974;61:393-9.



46

12. Farrington CP, Kanaan MN, Gay NJ. Branching process models for surveillance

of infectious diseases controlled by mass vaccination. Biostatistics 2003;4:279-95.

13. Farrington CP, Grant AD. The distribution of time to extinction in subcritical

branching processes: applications to outbreaks of infectious disease. Journal of Ap-

plied Probability 1999;36:771-9.

14. Dwass M. The total progeny in a branching process and a related random walk.

Journal of Applied Probability 1969;8:682-6.



47

Chapter 3

Evaluating a Method to Infer

Inter-Individual Heterogeneity in

TB transmission Using Cluster

Level Data

3.1 Abstract

Quantifying inter-individual heterogeneity in infectious disease transmission, defined

as differences in the number of secondary cases between individuals, is commonly

used to improve our understanding of infectious disease transmission dynamics. Re-

cent evidence suggests tuberculosis (TB) transmission is characterized by extreme

inter-individual heterogeneity (“superspreading”). Unfortunately, the unique natu-

ral history of TB prevents the accurate identification of discrete person-to-person

transmission events, thus traditional methods used to quantify the extent of inter-

individual heterogeneity in TB cannot be applied. However, surveillance systems

can often reasonably identify entire TB transmission clusters (an index case and all
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subsequent cases). In this paper, we develop and evaluate a method that accurately

quantifies inter-individual heterogeneity in transmission dynamics using TB cluster

distributions, without requiring knowledge of individual-level transmission events. We

further validate the robustness of the inference procedure despite limitations affecting

cluster-size data, such as missing cases, contact tracing, censorship, and overlapping

transmission clusters. Lastly, we demonstrate the epidemiologic utility of this method

by applying it to United States surveillance data obtained from the U.S. Centers for

Disease Control and Prevention, concluding that TB transmission in the U.S. is char-

acterized by a high propensity for superspreading.
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3.2 Background

With more than 10 million new cases and 1.5 million deaths in 2019, tuberculosis

(TB) is a major contributor of global morbidity and mortality.1 Despite the global

TB incidence rate declining over the past twenty years, the rate of decline has recently

decelerated and is now insufficient to achieve global TB targets by the end of this

century.1,2 Multiple analyses suggest that this rate of decline will continue to slow in

the absence of additional and more targeted interventions.3−5

Incident cases of TB arise either through reactivation of a latent TB infection

(LTBI) acquired in the distant past, or recent transmission. Recent transmission is

distinguished from reactivation of LTBI as it focuses on the proportion of infected

individuals who progress to active TB within a finite timeframe after infection (0-3

years). While recent transmission accounts for a minority of incident cases, it repre-

sents an increased potential for sporadic outbreaks that can fuel larger epidemics and

lead to secondary outbreaks in other populations.6−9 Hence, in addition to LTBI inter-

ventions, preventing recent transmission remains a key pillar in TB control programs

seeking to reduce incidence.

Growing evidence suggests recent transmission is predominantly a result of “super-

spreading,” a phenomenon wherein a small minority of infectious individuals account

for the majority of secondary cases.10,11 Such inter-individual heterogeneity in sec-

ondary cases greatly undermines interventions and is an important consideration in

epidemic modeling.12−16 Unfortunately, identifying exactly who infected whom among

active cases is notoriously challenging due to the marked variability in timing from in-

fection to clinical disease. Hence, major gaps in our understanding of inter-individual

heterogeneity and its importance in shaping TB epidemiology remain.10,11,17,18

The inter-individual heterogeneity in a population is commonly quantified for

many infectious diseases by evaluating overdispersion in the distribution of secondary

cases for each infectious case.12,19 However, these methods are not widely applicable
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to TB since discrete secondary transmission events are unobserved. Fortunately,

recent advances in genetic and epidemiological techniques have afforded the ability

for surveillance systems to accurately identify entire TB transmission clusters (i.e. all

cases in a given transmission chain).

Importantly, since individual chains of transmission give rise to the final transmis-

sion cluster size, there is a relationship between the distribution of secondary cases

and the distribution of cluster sizes in a given surveillance system. Here, we evaluate

a method that mathematically relates these two distributions and accurately quanti-

fies the propensity for superspreading in TB transmission using only TB transmission

cluster data. We further demonstrate the robustness of the inference procedure un-

der complications arising in TB surveillance and demonstrate the epidemiological

significance of the procedure by applying it to TB surveillance data from the United

States.

3.3 Methods

3.3.1 Statistical Methods

This analysis models underlying TB transmission using a single-type branching pro-

cess, also known as a Galton-Watson process. Branching processes are individual-

based stochastic processes that are widely used in biology and epidemiology to study

the spread of infectious diseases.12,20−22 Analysis centers on the probability generat-

ing function (pgf) of the “offspring” distribution. The offspring distribution is the

probability distribution for the number of secondary cases caused by each individual

infectious case, denoted z (i.e. P (Z = z) for z = 0, 1, 2, . . . , n). The pgf for the num-

ber of secondary cases, z, can be generally expressed as Gz(s) =
∑∞

z=0 P (Z = z)sz.23

We follow previous studies in assuming that the offspring distribution follows a

negative binomial distribution with mean R (the reproductive number) and dispersion
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parameter k, yielding the pgf:12,24

GNB
z (s) =

∞∑
z=0

Γ(z + k)

Γ(z)Γ(k + 1)

(
R

R + k

)z(
1−

(
R

R + k

))−k
sz =

(
1 +

R(1− s)
k

)−k
(3.1)

The dispersion parameter k is commonly used in epidemiology to measure the propen-

sity of superspreading as it quantifies the degree of overdispersion in the distribution.

The dispersion parameter is inversely related to the variance of the negative binomial

distribution, V ar(Znb) = R(1+(R/k)), thus smaller k values (k << 1) correspond to

increased heterogeneity in secondary cases and imply a greater propensity for super-

spreading; increasing values of k correspond to more homogeneous transmission. Im-

portantly, the negative binomial converges to the epidemiologically relevant geometric

and Poisson distribution when k = 1 or k →∞, respectively. These distributions are

often used in other applications of infectious disease transmission dynamics, such as

differential equation models.

The primary focus of this analysis is to relate the offspring distribution of individ-

ual secondary cases and the offspring distribution of cluster sizes, denoted Y , in order

to infer the negative binomial parameter k. This relationship is initially intuitive:

consider an isolated case with no secondary transmission. The probability that a

chain results in a cluster of size Y = 1 is identical to the probability of an individual

index case having no secondary transmission, thus P (Y = 1) = P (Z = 0). When

expanding to a cluster of size Y = 2 with a single index case, the only valid trans-

mission sequence is that an index case transmitted to a single secondary case, thus,

P (Y = 2) = P (Z = 1)P (Z = 0). When Y = 3, two valid transmission sequences

can occur: either the index case transmits to two secondary cases, or the index case

transmits to one secondary case, who transmits to a single tertiary case. Therefore,

P (Y = 3) = P (Z = 2)P (Z = 0)2 + P (Z = 1)2P (Z = 0).

To expand this relationship to any cluster of size Y originating with any num-
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ber of n index cases, first recall the coefficient of P (Y = y) in the pgf Gz(s) =∑∞
(z=0) P (Y = y)sz specifies the probability that one individual will infect z secondary

cases. A common manipulation in branching process theory is the multiplication of

generating functions. Gz(s)
y provides all possible ways y cases can generate z sec-

ondary cases.25,26 However, when considering transmission clusters, only a subset of

these permutations result in valid transmission sequences.27,28 To account for this, a

normalization factor of n/y is applied to Gy(s)
y:21,27,28

Gy(s) =
n

y
Gz(s)

y (3.2)

Bound by these constraints, the probability P (Y = y|n) can be extracted by differ-

entiating equation 2 at the y − nth derivative, evaluating at s = 0, and normalizing

by Γ(y − n+ 1):23

P (Y = y|n) =

(
n

y

)
1

Γ(y − n+ 1)

dy−n

dsy−n
Gx(s)

y

∣∣∣∣
s=0

(3.3)

Assuming a negative binomial generating function (as defined in equation 3.1) yields

the final probability distribution for a transmission cluster of size Y with n index

cases, having underlain z values distributed NB(R, k):

P (Y = y|n) =

(
n

y

)
Γ(ky + y − n)

Γ(ky)Γ(y − n+ 1)

(
R
k

)y−n(
1 + R

k

)ky+y−n (3.4)

A more detailed discussion of this relationship and programmatic code for computa-

tional validation and reproduction of this method can be found in the supplemental

materials.
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3.3.2 Maximum Likelihood Estimation of Transmission Pa-

rameters

Maximum likelihood estimation (MLE) was used to jointly estimate transmission

parameters for both individual- and cluster-level data. Confidence intervals were

obtained using profile likelihood.29 For individual-level data, the joint likelihood is:19

L(R, k) =
∞∏
z=0

[
Γ(z + k)

Γ(z + 1)Γ(k)

(
R

R + k

)(
1 +

R

k

)−k]z
(3.5)

For cluster-level data, the limitation of censoring is accounted for by designating

censored clusters to be of at least size y.30 The joint likelihood for A fully observed

clusters and B censored clusters is therefore:

L(R, k| ~A, ~B) =
∞∏
ya=1

ya∏
na=1

P (Y = y|n)ay,n
∞∏
yb=1

yb∏
nb=1

P (Y ≥ y|n)by,n (3.6)

where P (Y = y|n) is the probability distribution function as specified in equation 3.4

and P (Y ≥ y|n) = 1−
∑y−1

i=1 P (Y = y|n).

3.3.3 Simulated Data

Using this branching process framework, we simulated data to model underlying TB

transmission in a surveillance system under specified values of R and k. Transmis-

sion “chains” are defined as the exact sequence of underlying transmission events (i.e.

transmission trees) originating from a single index case. Transmission chains are con-

sidered to originate by the sporadic activation of latent TB or by the introduction of

an infectious individual into the population (i.e. migration). A transmission “cluster”

is defined as the final chain size, including the index case and all cases from all sub-

sequent generations (i.e. secondary, tertiary, etc.) in the chain. For the purposes of

this analysis, an index case with no secondary transmission is considered a “cluster”
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of size 1. Each individual branching process originated with a single index case and

continued until extinction. Based on empirical estimates of R for TB, our analyses

focuses on values of R < 1, in which extinction is certain.31,32 Specified values of

k < 1, and particularly k < 0.5, are of primary interest and consistent with empirical

estimates of k in TB transmission using detailed contact tracing data.11 A simulated

surveillance system consisted of N individual transmission chains. Our primary anal-

yses simulated surveillance systems of 2000 transmission chains (N = 2000). Final

transmission cluster sizes (Y values) were the sum of each transmission chain, includ-

ing the index case. Thus, simulated cluster data were a simple vector of cluster sizes

and obscured all information on individual transmission events.

3.3.4 Complications in TB Surveillance

We modeled several common real-world limitations affecting cluster size data in TB

surveillance (Figure 3.1). Incomplete case ascertainment was simulated in a two-

step process to emulate TB surveillance practices closely as possible. First, each

case within the chain was observed with probability p1, representing the ability of

the surveillance system to passively ascertain cases (i.e. p1 = 1 indicates perfect

observation). Typically, once a TB case is identified in a population, many public

health systems provide additional public health resources (i.e. contact tracing) to

identify otherwise undiagnosed cases. Thus, to simulate active case finding all missing

cases in chains with at least one case identified through passive surveillance were re-

evaluated with probability p2. After evaluation of p1 and p2, chains may be “broken”

into two or more pseudo-clusters depending on the position of missing cases (Figure

3.1C). Censored chains were incomplete chains due to the sampling timeframe and

represent ongoing transmission clusters at the time of data collection (Figure 3.1D).

Each chain was designated as censored with probability pcens. The generation where

censoring began was randomly selected from all the generations in the chain using
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a uniform distribution. The generation selected for censoring and all subsequent

generations were not observed regardless of p1 or p2.

“Overlapping” chains considered the inability to unambiguously tease apart mul-

tiple chains and result in a combined single cluster of size y with n index cases.

Overlapping chains were simulated at the cluster level by first determining the pro-

portion of clusters in a surveillance system that overlap, pover. Simulating overlap

was iterative; in each iteration the process randomly drew and merged n clusters

from the surveillance system, resulting in a final cluster size of Y =
∑

n yn with n

index cases. The number of clusters that overlapped in each iteration (n) was drawn

from a Poisson distribution with λ = 1 and then bound by a minimum of 2 (∼ 70

percent) and a maximum of 7 (< 0.02 percent), allowing for simulations to more

accurately follow empirical estimates of the number of index cases identified from

overlapping clusters.9,33 The iterative process repeated until the proportion of chains

in the surveillance system designated by pover was satisfied.

Final simulated transmission chains were subject to any combination of these sce-

narios. “Perfect observation” was considered to be an ideal scenario where all cases

in the transmission chain were perfectly observed and is the reference for the infer-

ence procedure. All simulations and calculations were completed using R statistical

programming; all code needed to recreate simulations and calculations are provided

in the supplemental materials.

3.3.5 United States National TB Surveillance System Data

We examined the epidemiological relevance of this method by applying the inference

procedure to data from the U.S. National Tuberculosis Surveillance System (NTSS),

the National Tuberculosis Genotyping Service (NTGS), and the Large Outbreaks of

Tuberculosis in the United States (LOTUS) database utilized by the U.S. Centers

for Disease Control and Prevention (CDC). Data are from all 50 U.S. States and the
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District of Columbia, collected between January 2012 and December 2016.

Transmission cluster data were provided from the CDC using previously estab-

lished methods employed by the CDC to identify likely transmission clusters described

elsewhere34. Briefly, since 2009 the CDC has performed universal 24-locus mycobac-

terial interspersed repetitive unit variable number of tandem repeats (MIRU-24) in

combination with obtaining clinical, demographic, geospatial, and risk factor data

for all reported tuberculosis cases in the United States. Currently, the CDC uses

MIRU-24 in addition to algorithms that consider risk, time, and space to identify

clustered cases that may be due to recent transmission. Within this framework, the

CDC further identifies large outbreaks (LOTUS; 10 or more cases in with the a 3-

year period related by recent transmission) and conducts Whole Genome Sequencing

(WGS) to provide increased resolution of clusters and exclude recent transmission

within a given cluster.

To evaluate the sensitivity of cluster definitions, clusters were defined using two

timeframes (the full 5-year data from 2012-2016 and a nested 3-year subset from

2014-2016) and two geographic scales (state and county). WGS was used to assign

the number of index cases in LOTUS clusters; we did not disentangle overlapping

transmission clusters within LOTUS clusters ad hoc. Clusters with an incident case

arising within two years of the end of the study timeframe were considered censored.

3.4 Results

3.4.1 Initial Validation the Inference Procedure

We first compared the cluster-based inference method to the established individual-

based methods19 under perfect surveillance for 500 simulated surveillance systems,

each with 2000 completely observed transmission chains (Table 3.1, Supplemental

Figure S3.1). Both individual- and cluster-level data accurately inferred R and k, and
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cluster-based MLE values were consistently identical or near-identical when compared

to the underlying individual-level data across the range of R and k values. While

perfect observation is implausible, these data verify the theoretical underpinnings

of this approach and provide a basis from which the degree of bias that imperfect

surveillance may impose.

3.4.2 Bias Arising Due to Complications in Surveillance

We initially evaluated the bias due to complications arising in TB surveillance uni-

variately. Under-ascertainment of cases through passive surveillance systematically

biases k̂ upward (Figure 3.2); this was true across all values of R and k. In scenarios

with extremely low passive case ascertainment (p1 ≤ 0.3), transmission may appear

homogeneous as the distribution approximates the Poisson distribution (i.e. k →∞).

Paradoxically, improving case finding through active case detection exacerbates the

overestimation of k. This phenomenon is likely because the additional yield in unob-

served cases from active case finding is differential with respect to cluster size; small

or isolated clusters are more likely to be missed entirely by passive surveillance and

subsequently not eligible for active surveillance measures (See Supplemental Figure

S3.4, Panel A). Thus, improving ascertainment through contact tracing is biased to-

wards large clusters and shifts the distribution of clusters in the surveillance system

to appear more homogeneous (see supplemental materials).

Clusters that are ongoing at the time of data collection are censored. We evaluated

the impact of censoring at the thresholds of 5, 10, and 20 percent of clusters censored

(Figure 3.3). Censoring clusters systematically underestimated k. This is in contrast

to under-ascertainment of cases due to passive and active surveillance and is likely

because censoring is less likely to be differential by cluster size (see Supplemental

Figure S3.4, Panel B). Our approach to addressing this limitation in the likelihood

by calculating the cumulative cluster size probability of at least size Y demonstrated
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modest improvement in correcting the estimates, particularly as the proportion of

clusters that are censored increases.

Clusters that cannot be unambiguously isolated from other clusters are consid-

ered “overlapping,” and result in a single combined cluster with multiple index cases.

Inference of k is very sensitive to overlapping clusters (Figure 3.4). Without account-

ing for overlapping clusters in the likelihood, estimates of k were significantly biased

upward (towards homogeneity). This is likely because, similar to missing cases, over-

lapping clusters reduces the number of isolated cases and shifts the distribution to

the right. As a result, the distribution appears more normal and overdispersion is

reduced. We found an ad hoc approach to disentangling overlapping clusters, either

by evenly splitting the clusters by the number of index cases or by separating clusters

such that the number of isolated cases is maximized, remained significantly biased

(data not shown). However, by conditioning the likelihood on the number of index

cases, we probabilistically account for all ways an overlapping cluster of size Y could

be divided into n valid transmission chains. The conditional approach proved to be

robust and reliably corrected for this bias across all values of k.

3.4.3 Validation of Inference Procedure Under Real World

Scenarios

We evaluated the inference procedure under combined scenarios of passive surveil-

lance, active case finding, censoring, and overlapping clusters. Based on empirical

estimates of surveillance in various global settings and in consultation with TB surveil-

lance experts, three primary scenarios were developed representing surveillance sys-

tems in high-resource, moderate-resource, and low-resource settings (Table 3.2).35−38

Although we generate estimates across a grid of R and k values, empirical estimates

are assumed to be R = 0.5 and k = 0.15.10,11,39 Each simulated surveillance system

generated 2000 transmission chains under perfect observation; after imperfect obser-
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vation the median number of observed clusters in each surveillance system was 1455

(Interquartile Range (IQR): 1445-1464) for high-resource, 1151 (IQR: 1138-1163) for

moderate resource, and 905 (IQR: 893-918) for low resource scenarios (data from 1000

simulations).

We found the inference of both R and k were robust and could clearly and reliably

distinguished between small differences in R and k values under all scenarios (Figure

3.5). Importantly all scenarios could unequivocally distinguish between k = 1, which

represents the geometric distribution, and all values below 0.5, including the empirical

estimate of k = 0.15. There was a slight overestimation of k across all estimates, which

systematically increases as the true underlying value of k increases. This implies the

model may provide more conservative estimates of k when applied to surveillance

data.

We used partial ranked correlation coefficients (PRCCs) to evaluate the strength

of the relationship between each surveillance complication and its effect on k (Sup-

plementary Figure S3.6). Under-ascertainment of cases by passive surveillance had

a moderate effect and is most influential in the model (PRCC -0.594, p < 0.001);

identifying otherwise missing cases by active case finding also had a modest effect on

model estimates (PRCC -0.324, p < 0.001). Coverage probabilities were calculated

to validate the simulation procedure for each scenario (Supplemental Table S3.1).

Using the inferred R and k values from U.S. surveillance data, empirical estimates

of coverage probabilities were sufficiently close to the theoretical value of 95 per-

cent (see Supplemental Figure S3.7). Simulated confidence intervals falling outside of

the true parameter were generally overestimates, implying empirical results are more

conservative estimates of heterogeneity.
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3.4.4 Analysis of United States TB Surveillance Data

From January 2012 to December 2016 MIRU-24 results were obtained for 95.8 percent

of reported TB cases in the United States. In the full 5-year timeframe, 35,313

genotyped cases of TB were reported in the United States resulting in 29,238 clusters

when defined at the county level and 26,999 clusters when defined at the state level

(Table 3.3). The 3-year (January 2014 to December 2016) subset reported 20,780

cases of TB resulting in 18,128 clusters when defined at the county level and 16,212

when defined at the state level.

Inference of k remained robust throughout all four scenarios, ranging from 0.08 (3-

year, state-level) to 0.12 (5-year, state-level), which is consistent with a high degree of

superspreading (Table 3.4, Supplemental Figure S3.5). While R̂ was not substantially

affected by differences in the sampling timeframe, it was increased when broadening

the geographic area. For the 5-year timeframe, R̂ increased from 0.17 for county-level

to 0.28 for state-level clusters and from 0.14 to 0.24 for the 3-year timeframe.

3.5 Discussion

Obtaining high resolution, individual-level data has been one of the major limita-

tions in our understanding of TB transmission dynamics. In this study, we evaluated

a method to quantify individual-level heterogeneity from more easily obtained trans-

mission cluster data. Overall, the cluster-based inference procedure demonstrated

similar accuracy in quantifying both the average transmission potential, R, and the

degree of individual heterogeneity, k, when compared to individual-level data. More-

over, the inference of these transmission parameters remained robust despite real-

world limitations, such as under-ascertainment of cases, overlapping clusters, and

censoring of cluster size due to the study timeframe. These findings may prove useful

to future surveillance efforts by drawing attention to the utility of cluster-level data
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when the individual-level data unavailable.

We applied this method to TB transmission cluster data in the United States using

multiple transmission cluster definitions provided by the CDC. In all scenarios, the

distribution of transmission clusters was highly skewed and values of k̂ were consistent

with a high degree of superspreading. While changes in the definition of transmission

clusters had a slight impact on R̂, the effect on k̂ was largely invariant to temporal

or geospatial differences in cluster definitions (ranging from 0.07 to 0.12 between

the lowest-bound and the highest-bound confidence interval). These differences are

unlikely to change the epidemiological significance of the results. To our knowledge,

this is the first study to quantify individual heterogeneity in TB transmission in

the United States, and these results are consistent with estimates of k in other low-

incidence populations outside the U.S.10,11

Inference of k using cluster-level data is largely a function of two key components

of the distribution of clusters: the proportion of isolated cases who transmitted zero

secondary cases (i.e. “clusters” of size 1) and the length of the right-hand tail. We

used simulated data to investigate the direction of bias introduced from three common

issues in TB surveillance and evaluated the changes in the distribution. Incomplete

case ascertainment biased our estimates of k upwards. This can be explained by the

fact that both passive and active surveillance methods bias case acquisition towards

larger clusters; isolated cases and smaller clusters are more likely to be completely

unobserved, thus shifting the distribution to the right towards homogeneity. Con-

versely, censoring due to the study timeframe slightly biases k̂ downwards. This is

because censoring does not affect the proportion of isolated cases and retains much of

the right-hand tail, yet some clusters are indeed shifted left. Thus, the distribution

appears more over-dispersed and values of k̂ are decreased. Overlapping clusters intro-

duce significant upward bias towards homogeneity. This is likely explained because

the proportion of isolated cases is significantly reduced when combined with other
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clusters, and the distribution is shifted to the right. In addition, although inference

was relatively stable for all values of k < 1, we found that the degree of uncertainty in

parameter estimation is an increasing function of k itself; larger underlying k values

show broader confidence intervals around k̂. This is likely due to the fact that, for

a given R and N , as k increases individual differences in transmission become more

attributed to stochasticity rather than the underlying mechanisms of transmission.

The performance of the inference procedure demonstrates that accuracy of pa-

rameter estimation is more likely a function of limitations in the data itself than by

biased inference, and accurate identification of transmission clusters and index cases is

paramount to the utility of these methods. This has been a historical challenge in TB

surveillance using less discriminatory genotyping methods. While U.S. transmission

cluster definitions were applied largely using MIRU-24 genotyping, global surveil-

lance systems are increasingly shifting towards universal WGS of TB cases.40 When

combined with other epidemiological data, WGS provides extremely high-resolution

transmission cluster data, as it can more easily differentiate between reactivation

from recent transmission. Since the methods presented here are predicated on trans-

mission clusters, the accuracy of parameter inference will increase as WGS becomes

increasingly integrated in TB surveillance practices.

Our results concur with other research describing the distribution of genetic TB

clusters in European surveillance data. Ypma et al (2013)10 used a negative binomial

branching process model to relate heterogeneity in secondary cases to the distribution

of genotypic cluster sizes in the Netherlands. The authors used IS6110 restriction

fragment length polymorphism (RFLP) to define TB clusters, a much less discrim-

inatory technique than other genotyping methods. As a result, the authors also

incorporated IS6110 transposition into their model and thus were unable to jointly

estimate R and k; as the relationship between R and k is complex and nonlinear, this

may affect their conclusions. More recently, Brooks-Pollock et al (2020)41 investi-
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gated individual heterogeneity in TB using cluster-level data assuming both negative

binomial and a Poisson lognormal (PLN) distribution in describing TB cluster dis-

tributions in the Netherlands and the United Kingdom. Their PLN model showed

a slightly improved fit to TB genetic cluster data but larger degree of uncertainty

when compared to their negative binomial model. However, this study was looking

exclusively at the distribution of TB genetic clusters (MIRU-24), not transmission

clusters. Genetic clusters are typically larger than true underlying transmission clus-

ters; further research is needed to identify distribution superiority among transmission

clusters.

Our model was a simplified representation of disease transmission and subject to

several limitations. Branching process models assume transmission is independent

and identically distributed and we assumed heterogeneity is drawn from a negative

binomial offspring distribution. Our model assumed the mean susceptibility between

individuals remained constant. In reality, individual susceptibility within a population

varies. In small populations with heterogeneous susceptibility, the mean susceptibility

is a decreasing function of time. Highly susceptible individuals, on average, acquire

infection first and thus average susceptibility reduces over generations of spread.42

However, in both our simulated and empirical data, the population was sufficiently

large such that the depletion of susceptible individuals is negligible and thus the

average susceptibility does not meaningfully decline.43 Caution should be exercised

when interpreting these results in smaller populations where the depletion of suscep-

tible individual may impact average susceptibility, which tends to decrease R.43,44

We also assumed individual infectiousness and susceptibility were uncorrelated. Un-

der this assumption, variation in individual susceptibility, even if unaccounted for,

does not change parameter inference.43 However, this assumption may be invalid in

outbreaks occurring in vulnerable populations, such as refugee, prison, and homeless

communities, where there is likely a correlation between individual infectiousness and
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susceptibility. Further research should investigate the relationship between R, k and

heterogeneity in individual susceptibility.

This analysis provides a well-characterized model using simplified data to infer

individual differences in the number of secondary TB cases. Quantifying such infor-

mation is critical to surveillance systems seeking to better understand the underlying

mechanisms of TB transmission.
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Figure 3.1: Common complications arising in TB transmission surveillance. Colored

circles represent observed individuals; grey represents unobserved. Arrows represent

transmission events.
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Table 3.1: Individual vs cluster-level inference of k under simulated R and k values.

Maximum likelihood estimates from 500 simulated surveillance systems, each with

2000 transmission chains. Coverage probabilities from simulations are in parenthesis.

True k = 0.25 True k = 0.50 True k = 0.75

Individual Cluster Individual Cluster Individual Cluster

True R = 0.90 0.25 (0.95) 0.25 (0.95) 0.50 (0.95) 0.50 (0.94) 0.75 (0.96) 0.76 (0.97)

True R = 0.70 0.25 (0.95) 0.25 (0.94) 0.50 (0.94) 0.50 (0.94) 0.75 (0.96) 0.75 (0.97)

True R = 0.50 0.25 (0.95) 0.25 (0.97) 0.50 (0.95) 0.51 (0.97) 0.76 (0.96) 0.76 (0.98)

True R = 0.50 0.25 (0.95) 0.25 (0.97) 0.51 (0.95) 0.52 (0.97) 0.76 (0.96) 0.78 (0.97)
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Figure 3.2: In this figure, true k = 0.25 and true R = 0.90. Passive surveillance

(p1) represents the surveillance system’s ability to passively ascertain cases. Ac-

tive surveillance (p2) represents the public health system’s ability to ascertain cases

through contact tracing. Numbers in the center of each combination of p1 and p2

represent the median estimate of k of 500 simulated surveillance systems, each with

2000 chains.
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Figure 3.3: Impact of censoring on estimates of k. Results of 1000 simulated surveil-

lance systems, each with 2000 clusters censored according to the methods, at for

values of k between 0 and 1.1 (R = 0.90). The top row contains results when 5

percent of clusters are censored and were (A) accounted for in the final likelihood

equation, or (B) unaccounted for in the likelihood. Panels (C) and (D) show sim-

ilar results with 10 percent censoring, and (E) and (F) with 20 percent censoring.

Grey represents the perfect observation reference (i.e. no censoring). The violet line

represents perfect inference. Shading represents 95 percent confidence intervals.
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Figure 3.4: Results of 1000 simulated surveillance systems, each with 2000 clusters

(R = 0.90). In this scenario, 20 percent of clusters overlapped (pcens = 0.20) with

the number of combined clusters ranging between 2 and 7. Dotted lines indicate 95

percent confidence intervals. The grey line indicates perfect inference.
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Table 3.2: Parameter values for simulated scenarios representing high, moderate, and

low resource settings.

Model Parameters High

Resource36,37,45

Moderate

Resource35,36,46

Low

Resource35,37

Proportion of cases identi-

fied via passive surveillance

(p1)

0.90 0.75 0.50

Additional yield of undiag-

nosed cases through active

case finding efforts (p2)

0.75 0.50 0.25

Proportion of clusters cen-

sored (pcens)

0.05 0.10 0.10

Proportion of clusters over-

lapping (i.e. with 2 or more

index cases) (pclust)

0.15 0.20 0.20
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Figure 3.5: Inference from simulated surveillance systems under imperfect surveillance

for A) high resource B) moderate resource, and C) low resource settings as described

in the methods. Each surveillance scenario was simulated 500 times for each R and k

value. Colored lines represent the interquartile range for each R and k; dots represent

medians values. Black dots represent true values. R values were simulated at 0.25,

0.50 (empirical), and 0.75. k values were simulated at 0.15 (empirical), 0.30, 0.45,

and 1.0.
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5 Years (2012 to 2016) 3 Years (2014 to 2016)

Cluster

Size

Number of

Clusters

Total

Cases

Percent of

Cases

Number of

Clusters

Total

Cases

Percent of

Cases

County-level definition

1 26580 26580 75% 16779 16779 81%

2 1638 3276 9% 893 1786 9%

3 474 1422 4% 224 672 3%

4 203 812 2% 90 360 2%

5 98 490 1% 42 210 1%

6 66 396 1% 33 198 1%

7 52 364 1% 21 147 1%

8 29 232 1% 5 40 ≤1%

9 14 126 ≤1% 12 108 1%

10 12 120 ≤1% 5 50 ≤1%

11 12 132 ≤1% 6 66 ≤1%

≥ 12 60 1363 4% 18 364 2%

State-level definition

1 22154 22154 63% 14379 14379 69%

2 1921 3842 11% 1136 2272 11%

3 629 1887 5% 291 873 4%

4 250 1000 3% 128 512 2%

5 139 695 2% 73 365 2%

6 90 540 2% 47 282 1%

7 66 462 1% 35 245 1%

8 51 408 1% 22 176 1%

9 34 306 1% 14 126 1%

10 26 260 1% 17 170 1%

11 18 198 1% 11 121 1%

≥12 1621 3561 10% 59 1259 6%

Table 3.3: Transmission cluster sizes in the United States by timeframe and geography
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Sampling Timeframe Geographic Catchment R̂ (95% CI) k̂ (95% CI)

5 Years (2012-2016)
County 0.17 (0.16-0.18) 0.09 (0.08-0.10)

State 0.28 (0.27-0.29) 0.12 (0.11-0.12)

3 Years (2014-2016)
County 0.14 (0.14-0.15) 0.08 (0.07-0.09

State 0.24 (0.23-0.25) 0.11 (0.10-0.12)

Table 3.4: Estimates of R and k for TB transmission in the United States by time-

frame and geographic definition of clusters
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3.6 Supplemental Materials

Figure S3.1: Inference of k under various R values for individual- and cluster-level

data. Each surveillance system contained 2000 simulated transmission chains under

perfect surveillance. Each surveillance system was simulated 100 times for underlying

values of k between 0.1 and 1.5. The purple line indicates perfect inference. Values

above the purple line indicate an overestimation of k; below the line indicate an

underestimation of k. R values are indicated at the top of each panel. This analysis

focuses on k values below 1.0; the grey shaded areas represents k values above 1.0.
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Figure S3.2: k values range from 0.1 to 1.5. Purple line indicates inferred k̂ values are

identical to the true k values. Values above the purple line indicate an overestimation

of k; below the line indicate an underestimation of k. R values are indicated at the

top of each panel.
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Figure S3.3: Inference of R under varying case ascertainment probabilities
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Figure S3.4: Visualizing the bias of missing cases. A) Possible explanation of bias due

to imperfect case ascertainment. B) Possible explanation of bias due to censoring.
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Figure S3.6: Partial rank correlation coefficients (PRCCs) comparing imperfect

surveillance parameters with inference of transmission parameters. A) PRCCs for

k. B) PRCCs for R.
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True k value Perfect

Surveillance

High-resource

Setting

Moderate-

resource

Setting

Low-resource

Setting

0.10 0.966 0.900 0.886 0.646

0.30 0.966 0.944 0.934 0.860

0.50 0.960 0.938 0.930 0.926

Table S3.1: Coverage probabilities of the inference procedure under various k values.

Each coverage probability was the result of 500 simulated surveillance systems, each

with 2000 chains and R = 0.25.
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Figure S3.7: Coverage probabilities of empirical estimates of R and k using US CDC

TB surveillance data, k̂ = 0.09, R̂ = 0.17. Results of 500 simulated surveillance

systems, each containing 2000 transmission chains, for each scenario under MLE es-

timates for R and k in the United States. A) Perfect surveillance; B) High-resource

setting; C) Moderate-resource setting; D) Low-resource setting. Vertical lines rep-

resent 95% confidence intervals for each simulation. The purple line represents the

true parameter value of interest (k̂ = 0.17). Black represents simulations containing

the true parameter in the 95% CI; red represents simulations that do not contain the

true parameter in the 95% CI.
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Chapter 4

Estimates for the Propensity of

Superspreading in Tuberculosis

Transmission from Global

Surveillance Systems

4.1 Abstract

Background: Increasing evidence suggests recent transmission in TB is character-

ized by “superspreading,” a phenomenon wherein a small proportion of cases ac-

count for a large number of secondary cases. Unfortunately, identifying individual

transmission events in tuberculosis transmission remains elusive, thus quantifying

the propensity for superspreading in a given population has been limited. However,

global tuberculosis surveillance systems can reliably identify entire TB transmission

clusters. The distribution of TB transmission clusters has been shown to accurately

infer inter-individual heterogeneity in secondary cases in the population.
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Methods: We systematically abstracted TB transmission cluster data from global

surveillance systems and fit these data to a negative binomial branching process model

with mechanistic adjustments to the model account for cluster size distributions. We

used maximum likelihood estimation to infer the parameters R (the basic reproduc-

tive number) and dispersion k; this dispersion parameter quantifies the degree of

inter-individual heterogeneity in the population.

Results: A total of five datasets were included in the study. In all studies, we

found estimates of k to be consistent with a high degree of superspreading (k << 1).

We further demonstrated that by accounting for this heterogeneity, epidemiologic

models are more likely to recreate observed transmission patterns when compared to

other distributional assumptions.

Conclusion: While the majority of incident TB is a result of reactivation of latent

TB infection, cases that are a result of recent transmission are largely characterized

by infrequent yet large outbreaks consistent with superspreading.
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4.2 Introduction

Tuberculosis (TB) is the leading cause of infectious death globally.1 While controlling

TB transmission remains an essential pillar of TB control policies, relatively little is

known about differences in transmission among individual cases.2,3 For many infec-

tious diseases, there is marked variability in the number of secondary cases caused

by each individual. Such heterogeneity has been shown to greatly undermine inter-

ventions aimed at interrupting transmission and play a fundamental role in shaping

epidemics.4 A small body of evidence supports such variability in TB epidemiology,

including superspreading events characterized by relatively few individuals account-

ing for a disproportionate number of secondary cases.5−8 However, given the limited

number of studies, two basic yet fundamental questions remain unanswered: how

much heterogeneity is there among individuals in transmission, and how does this

heterogeneity impact transmission dynamics?

In answering these questions, it is intuitive to focus the approach around the trans-

mission parameter R0 (herein referred to the more generalizable R), which describes

the average number of secondary cases transmitted by an infectious individual. R

has well-known fundamental and applied properties to understanding epidemic tra-

jectory, yet as an average value cannot assess differences in the number of secondary

cases between idividuals.9 Fortunately, both R and the extent of heterogeneity can

be quantified by describing the distribution of secondary cases in a given population

as negative binomial with mean R and dispersion parameter k.10 While the number

of secondary cases transmitted by each individual is concentrated at the mean R, the

parameter k quantifies overdispersion of the distribution. Values of k < 1 suggest

large differences in the number of secondary cases and support the potential for su-

perspreading, while values increasing above one indicate broadly similar transmission

among individuals.

This approach is commonly used to quantify the degree of individual heterogeneity
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in transmission for many infectious diseases.4,11−13 Unfortunately, its application to

TB transmission has been remarkably absent. This is primarily because a direct

method of estimating k is only possible in rare instances where the transmission

tree for an outbreak is known. Identifying specific individual transmission events

in TB epidemiology is an enormous challenge given the large differences in time

between infection and disease onset.3,14 However, in contrast to resource-intensive

individual data, TB transmission clusters are more easily identifiable and the recent

expansion of whole-genome sequencing (WGS) has afforded a high degree of accuracy

in discriminating between transmission clusters in a surveillance system.

In this study, we systematically gather empirical TB cluster size data from de-

tailed contact tracing, WGS, and epidemiological surveillance of TB transmission.

We jointly estimate R and k using a branching process modified to accommodate

cluster size distributions to examine the extent of individual variation in secondary

cases and investigate the impact such variation may have on epidemic spread. We

use this dispersion parameter as a single measure from which to build a preliminary

evidence base regarding the degree of heterogeneity present in TB transmission across

various global contexts.

4.3 Methods

4.3.1 Search Strategy

We conducted a systematic search to identify suitable surveillance data that could

be extracted from reported literature. An initial search for all English-language

peer reviewed studies examining TB transmission via WGS was conducted on 23

September 2019. Medical Subject Headings (MeSH) and keywords were used to

search PubMed and analogous methods were used in Web of Science, PsychINFO,

and CINAHL databases. Our search strategy was informed by prior literature re-
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views and expert consultation; the strategy was peer-reviewed by science librarians

at the Emory Woodruff Health Sciences Center Library with expertise in systematic

database searches for public health.

4.3.2 Inclusion and Exclusion Criteria

Studies were included if they satisfied the following criteria: (1) were either surveil-

lance data or conducted empirical research using observational or experimental study

designs, (2) used WGS and other epidemiological techniques, and (3) identified trans-

mission cluster sizes and index cases. Final decisions on all included studies were

confirmed by all authors. If multiple studies conducted analyses on the same (or sub-

stantially overlapping) dataset only one study was included. The decision for which

study to include was made based on relevance to the aims of this study, strength

of design/analysis, and confirmed by all authors. For authors who explicitly define

clusters, we extracted transmission clusters and number of index cases verbatim from

included studies per the author’s definition. Studies that report WGS to improve con-

tact tracing but do not explicitly define transmission clusters were included if study

authors were able to elucidate the clusters from available data.

4.3.3 Parameter Inference Using Cluster-level Data

We jointly estimated R and k from cluster distributions using a maximum likelihood

estimation (MLE) based method developed for TB transmission using a branching

process with a negative binomial offspring distribution. The probability that n index

cases result in a final cluster size of y is:

P (Y = y|n) =

(
n

y

)
Γ(ky + y − n)

Γ(ky)Γ(y − n+ 1)

(
R
k

)y−n(
1 + R

k

)ky+y−n (4.1)

Thus, the likelihood of R and k in a distribution of clusters having a complete
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clusters of size y with n index cases, and b censored clusters of at least size y and n

index cases is given by:

L(R, k| ~A, ~B) =
∞∏
ya=1

ya∏
na=1

P (Y = y|n)ay,n
∞∏
yb=1

yb∏
nb=1

P (Y ≥ y|n)by,n (4.2)

Where P (Y ≥ y|n) = 1−
∑y−1

i=1 P (Y = y|n). We previously validated the inference

procedure and demonstrated that parameter inference of both R and k is consistent

with individual-level estimates when using cluster-level data.

Importantly, the negative binomial has the beneficial property of converging to the

geometric and Poisson distributions when k = 1 or k →∞, respectively. The geomet-

ric distribution is a distributional assumption common in epidemiologic modeling (i.e.

SIR models). The Poisson distribution implies homogeneous transmission. Thus, we

can determine superiority of these common distributional assumptions used in epi-

demiology by virtue of the confidence interval of k. Both 95% and 90% confidence

intervals were obtained using profile likelihood.15

4.3.4 Cluster Size Probability Calculations

We calculated the expected probability that a cluster initiating with one index case

would result in a final size of least size Y , i.e. P (Y ≥ y). For each dataset, this prob-

ability was calculated by integrating over the entire parameter surface encompassed

by the study-specific R and k confidence interval. We also compared the negative bi-

nomial distribution with the geometric and Poisson distributions by integrating over

the confidence interval of R and setting k = 1 and k →∞, respectfully. To overcome

computational challenges associated with the use of infinity, k was set to 1,000,000

to approximate the Poisson. We then assessed the absolute and relative probabil-

ity of observing the largest cluster in each dataset between the negative binomial,

geometric, and Poisson distributions. All analyses were conducted in R statistical
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software.

4.4 Results

4.4.1 Characteristics of Included Datasets

After electronic and manual search, a total of five studies met inclusion criteria and

had sufficient data for extraction (Table 4.1).16−20 Detailed information on each study

is provided in the supplemental materials. Three studies16,18,19 investigated transmis-

sion in drug susceptible TB, while one looked at multi-drug resistance (MDR-TB),20

and one collected both MDR- and extensively drug resistant (XDR) TB.17 All stud-

ies were from different countries; three studies were from surveillance system in low

incidence settings (≤50 cases per 100,000 population), including Germany,18 United

Kingdom (UK),19 and Portugal.17 Two studies were from higher incidence settings of

China20 and Malawi.16

The median timeframe for isolate collection was 6 years (range: 4-16), with a

median of 247 genotyped isolates (range: 80-1687) in the surveillance system. Sin-

gle nucleotide polymorphisms (SNPs), which represent a variation in a single Mtb

nucleotide, are used in WGS to determine transmission clusters; the SNP threshold

needed to define a transmission cluster varied by author, from 6 to 16. One study

did not specify a SNP threshold.20 A median of 37% (range: 16-66) of isolates were

clustered, with a median cluster size of 3. The maximum cluster size was relatively

large in two studies, with a largest cluster of 3816 and 2117, respectively; the remaining

studies had a maximum cluster size of ¡15 (Table 4.2).

4.4.2 Transmission Parameter Estimates

Using available cluster data, we jointly estimated the reproductive number, R, and

dispersion parameter, k across the surface of 90 and 95% confidence intervals (Figure
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4.1). Maximum likelihood estimates of k across all datasets ranged from 0.08 to 0.34,

which is consistent with a high propensity for superspreading in the population (Table

4.3). When k = 1, the negative binomial distribution converges to the geometric

distribution, a common assumption in differential equation modeling. As k → ∞,

the distribution becomes Poisson which implies homogeneous transmission, thus all

differences in secondary cases are attributed entirely to demographic stochasticity.

All studies confidently rejected underlying mechanism of transmission consistent with

homogeneous transmission. In all but one study, the 95% confidence interval for k

remained below 1.0. These results imply that, in large part, recent transmission as

a result of superspreading more accurately describes the mechanism of secondary

transmission.

4.4.3 Cluster Size Probabilities

We calculated the probability that a single index case will result in a cluster of at least

size Y , P (Y ≥ y) (Figure 4.2; Supplemental Figure S4.1). Independent of distribu-

tional assumption, the probability of observing larger cluster sizes naturally increases

with R; however, compared to the geometric and Poisson distributions, the additional

variation afforded by the dispersion parameter k considerably increased the relative

probability that a large cluster would be observed under a negative binomial assump-

tion (Table 4.4; Supplemental Figure 4.1). On average, the relative probability of

observing the largest cluster was 6.6 times more likely under the negative binomial

than the geometric distribution, and 27.8 times more likely when compared to the

Poisson distribution. Importantly, the impact of k on the probability of the emer-

gence of a large cluster became much more profound as estimates of R decreased and

conversely attenuated as R approached one.
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4.5 Discussion

The primary outcome of this study was to quantify heterogeneity in TB transmission

by virtue of the negative binomial dispersion parameter k. Using available surveillance

data, we found estimates of k that were consistent with a high degree of overdispersion

in secondary cases. This study also sought to better understand how such variation

may impact TB transmission dynamics. We found for a given R value, a smaller value

of k substantially increased the probability of observing a large cluster. Taken to-

gether, these findings suggest that ongoing TB transmission may be largely fueled by

the high degree of heterogeneity in secondary cases, and there exists a high potential

superspreading events in TB transmission

Only two previous studies have sought to quantify individual heterogeneity us-

ing the dispersion parameter k in TB transmission. Melsew et al21 used compre-

hensive contact investigation and long-term follow up to directly estimate k from

individual-level data. While this comprehensive study provides strong support for

the presence of extreme individual variation in TB transmission (k = 0.04), such

high-resolution individual data are not feasible from a surveillance standpoint. Ypma

et al7 estimated k from TB cluster-level data by relating individual variation to the

distribution of IS6110 restriction fragment length polymorphism (RFLP) genotypic

cluster sizes (k = 0.10). RFLP is less discriminatory than WGS, and methods used

by the authors prevented estimation of R, which is critical to understanding the

potential for superspreading given the nonlinear relationship between R, k, and clus-

ter size (Supplemental Figure S4.1). Despite these differences, our findings concur

with these studies and add to the evidence base that TB transmission may be highly

over-dispersed.

Our findings were largely consistent across both high- and low-incidence settings.

This indicates that, while the absolute number of cases differ, the shape of the dis-

tribution is similar in both settings. Estimates were also similar between drug sus-
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ceptible and drug resistant strains. This is unsurprising, as drug resistance does not

typically confer additional infectiousness.

The most important limitation of our study is the reliance on available data ac-

quired in the published literature. Surveillance systems are likely to miss smaller

clusters and isolated cases, as well as truncate ongoing clusters due to censoring of

the study timeframe. Both of these complications shift the distribution toward ho-

mogeneity. Thus, bias arising from these sources is unlikely to alter our findings. We

also were only able to obtain data from well-resourced surveillance systems and epi-

demiological studies covering large municipalities, provinces, or countries. These may

not represent the true mechanics of transmission on a more local level, particularly

in high-incidence settings. The number of available datasets was relatively small,

and despite their concurrence, these results may not be generalizable. This study

also measures the overall extent of heterogeneity in transmission and does not elu-

cidate the mechanisms behind such variation. Superspreading remains an ill-defined

term without a universally accepted definition. This study did not seek to identify

superspreading events, rather quantify the potential for such phenomenon.

Two functional consequences result from these findings. First, traditional epi-

demiologic models accounting for this heterogeneity are more likely to reproduce the

observed transmission patterns. The Poisson and geometric distributions, both com-

mon in modeling, had a significantly lower probability of recreating observed trans-

mission patterns. Failure to properly account for such variation at an individual level

may greatly undermine TB model predictions.4 Second, we found the relationship of

R, k, and total cluster size is non-linear (Supplemental Figure S4.1). As R decreased

below one, the excess probability of observing ongoing transmission became more

dependent on k. This implies significant potential for continued transmission despite

a small R value. Thus, while R has unassailable properties in understanding trans-

mission dynamics, estimates of inter-individual heterogeneity should be also reported
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to better contextualize the mechanism of transmission in TB.
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First Author

(Year)

Setting Scope Timeframe Type of TB

Guerra-Assunção

(2015)

Karonga Dis-

trict, Malawi

All reported

cases in

location

1995-2010

(16 years)

Drug suscep-

tible

Macedo (2019) Portugal All reported

cases in

location

2013-2017

(5 years)

M/XDR

Roetzer (2013) Hamburg,

Germany

One large 24-

MIRU-VNTR

cluster

1997-2010

(14 years)

Drug suscep-

tible

Walker (2014) Oxfordshire,

UK

All reported

cases in

location

2007-2012

(6 years)

Drug suscep-

tible

Yang (2017) Shanghai,

China

All reported

cases in

location

2009-2012

(4 years)

MDR

Table 4.1: Characteristics of Included Studies
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First

Author

(Year)

Culture

confirmed

TB cases

Genotyped

Isolates (%)

SNP Cutoff Unique iso-

lates,

n (%)

Clustered

isolates,

n (%)

Median

cluster size

(IQR)

Cluster size

range

Guerra-

Assunção

(2015)

2332 1687 (72) 10 672 (40) 1015 (60) 3 (2, 5) 2-38

Macedo

(2019)

96 80 (83) 16 27 (34) 53 (66) 3 (2, 10) 2-21

Roetzer

(2013)

86 84 (98) 3 53 (63) 31 (37) 3.5 (2.5, 5) 2-7

Walker (2014) 269 247 (92) 12 208 (84) 39 (16) 2.5 (2, 4) 2-8

Yang (2017) 367 324 (88) Not specified 221 (68) 103 (32) 2 (2, 3) 2-8

Table 4.2: Cluster size distribution of included surveillance datasets
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Figure 4.1: Joint estimates of the reproductive number R and dispersion parameter

k for included studies. Points indicate maximum likelihood point estimates. Dot-

ted lines indicate 90% confidence intervals and solid lines represent 95% confidence

intervals.
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First Author (Year) R̂ (95% CI) k̂ (95% CI)

Guerra-Assunção (2015) 0.48 (0.43-0.54) 0.24 (0.19-0.33)

Macedo (2019) 0.56 (0.31-1.05) 0.19 (0.06-0.99)

Roetzer (2013) 0.27 (0.13-0.68) 0.12 (0.04-0.57)

Walker (2014) 0.15 (0.09-0.25) 0.08 (0.04-0.19)

Yang (2017) 0.20 (0.15-0.27) 0.34 (0.15-1.51)

Table 4.3: Cluster-based maximum likelihood estimates of R̂ and k̂
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Figure 4.2: Points indicate maximum likelihood point estimates. Dotted lines indicate

90% confidence intervals and solid lines represent 95% confidence intervals.
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MLE Estimates Absolute Probability of

Observing Largest Cluster

Relative

Probability of

Observing Largest

Cluster

First

Author

(Year)

R̂ (95%

CI)

k̂ (95%

CI)

Negative

Binomial

Geometric Poisson NB vs

Geomet-

ric

NB vs

Poisson

Guerra-

Assunção

(2015)

0.48 (0.43-

0.54)

0.24 (0.19-

0.33)

– – – – –

Macedo

(2019)

0.56 (0.31-

1.05)

0.19 (0.06-

0.99)

0.02 0.01 0.005 1.6 3.6

Roetzer

(2013)

0.27 (0.13-

0.68)

0.12 (0.04-

0.57)

0.02 0.008 0.004 2.4 4.8

Walker

(2014)

0.15 (0.09-

0.25)

0.08 (0.04-

0.19)

0.004 0.0002 0.00006 19.4 73.1

Yang

(2017)

0.20 (0.15-

0.27)

0.34 (0.15-

1.51)

0.002 0.0009 0.0003 2.1 6.3

Table 4.4: Absolute and Relative probability of observing largest cluster in observed

data using alternative negative binomial, geometric, and Poisson assumptions for

study data. Note the probabilities for Guerra-Assunção (2015) resulted in numeric

overflow and are unable to be represented.
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4.6 Supplemental Materials

Figure S4.1: Relationship between R, k, and the probability of a cluster size of at

least 15 cases, i.e. P (Y ≥ 15). Black dots indicate the respective author’s maximum

likelihood estimates of R and k. Confidence intervals are not shown for clarity. Left:

The absolute probability of observing a cluster size of at least size 15 given R and

k. Right: The relative probability of observing a cluster of at least size 15 compared

with the geometric distribution (k = 1). The choice of P (Y ≥ 15) was arbitrary.
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Chapter 5

Estimating individual

heterogeneity in tuberculosis

transmission in the United States

5.1 Abstract

The decline in tuberculosis (TB) incidence in the United States (U.S.) has plateaued

at a rate insufficient to achieving elimination this century. Identifying mechanisms

of transmission and targeted interventions are critical to regain the historic progress

made toward TB elimination. Using TB transmission cluster data from the U.S.

states with the highest burden of TB, we characterized TB transmission dynamics

in two ways. First, we estimated the propensity of superspreading in U.S. TB trans-

mission by utilizing a branching process model with a negative binomial offspring

distribution modified to infer individual heterogeneity using transmission cluster size

distributions. The negative binomial dispersion parameter k quantifies the propensity

for superspreading in the population. We then applied inferred parameters to calcu-

late the expected proportion of cases due to recent transmission. We estimated that
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the distribution of secondary cases in TB transmission was consistent with super-

spreading, and that the majority of incident TB is attributed to reactivation of latent

TB. Major reductions in incidence can be achieved through targeted interventions

dually aimed at both latent TB infection and predictively identifying and mitigating

superspreading.

5.2 Introduction

Since 1989 the United States (U.S.) has pursued an ambitious goal of tuberculosis

(TB) elimination, predicated largely on strategies to mitigate secondary transmission.1,2

As a result, the U.S. has seen a marked decline in TB incidence and in 2019 reported

the lowest rate in its history (2.7 cases per 100,000 population).3 However, in re-

cent years the rate of decline has plateaued and remains insufficient to achieving TB

elimination this century.3

Incident cases of TB arise from either the sporadic reactivation of an infection

acquired in the distant past (latent TB infection or LTBI), or recent transmission

from an infectious case. While efforts to mitigate reactivation are crucial to reducing

incidence, recent TB transmission is of particular concern to public health as it is

holds potential for explosive outbreaks – particularly in vulnerable populations.4,5

Such transmission patterns may be a result of “superspreading,” a loosely defined

term in which a minority of individual cases account for the majority of secondary

transmission. Superspreading has been shown to greatly undermine prevention efforts,

sustain ongoing transmission, and fuel larger epidemics.6,7 Hence, quantifying the

propensity of superspreading in a population is critical to informing intervention

strategies and accelerating progress towards elimination.

Understanding the distribution of secondary cases caused by each infectious indi-

vidual is useful in quantifying the possibility of superspreading in a population. For
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many directly transmitted infectious diseases, this distribution follows the negative

binomial distribution with mean R0 (herein referred to the more generalizable R) and

dispersion parameter k.6−12 While the reproductive number R represents the average

number of secondary cases caused by each infectious case, the dispersion parameter k

quantifies the extent of variation in the number of secondary cases between individ-

uals (i.e. specifies the degree of overdispersion in the distribution). Smaller k values

(k < 1) indicate increased variability and thus a higher probability of superspread-

ing. Increasingly larger values of k indicate transmission is more homogenous and

less likely to be characterized by superspreading. Thus, while R remains central to

our current understanding of infectious disease dynamics, k provides critical insight

into transmission dynamics of infectious diseases.

In this analysis, we estimate the propensity for superspreading in TB transmis-

sion across the four U.S. states accounting for the majority of TB cases. We use a

mathematical model defined by R and k of a negative binomial branching process

with mechanistic adjustments to account for transmission cluster size distributions.

We fit this model to the cluster size distributions of four states in the United States

that comprise the majority of TB cases in the U.S. (California, Florida, New York,

and Texas) to estimate the dispersion parameter k. By inference of k, we quantify

the extent of individual-level heterogeneity and interpret these results in the context

of superspreading. We further contextualize these findings by calculating the propor-

tion of cases responsible for a given proportion of transmission using estimates of k

inferred from the model.
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5.3 Methods

5.3.1 Data Source

We used routinely collected data from the U.S. Centers for Disease Control and Pre-

vention (CDC) National Tuberculosis Surveillance System (NTSS), the National Tu-

berculosis Genotyping Service (NTGS), and the Large Outbreaks of Tuberculosis in

the United States (LOTUS) databases from January 1, 2014 to December 31, 2016

for the states of California, Florida, New York, and Texas. Since 2009 the CDC

has performed universal 24-locus mycobacterial interspersed repetitive unit variable

number of tandem repeats (MIRU-24) genotyping in combination with clinical, de-

mographic, geospatial, and risk factor data for all reported tuberculosis cases in the

U.S. Currently, the CDC uses MIRU-24 in addition to algorithms that consider risk,

time, and space to identify cases that may be due to recent transmission.

5.3.2 Inference Procedure and Model

In this context, “heterogeneity” in transmission refers to differences in the number

of secondary cases caused between infectious cases. This definition encapsulates the

entire infectious history that led to a secondary case and may differ from other def-

initions of heterogeneity in infectious disease, such as those describing substantial

differences in transmission between populations. Following previous studies, we as-

sume the number of secondary cases caused by each individual is identically and

independently distributed random variable according to a negative binomial distribu-

tion with mean R and dispersion parameter k.6,13,14 The negative binomial dispersion

parameter k quantifies the degree of overdispersion in the distribution and infers the

propensity for superspreading in the population.

The exact number of secondary cases for each individual case is unobserved in TB

transmission, however advancements in genetic techniques have allowed for surveil-
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lance systems to reasonably identify entire transmission clusters, defined as the in-

dex case and all subsequent (secondary, tertiary, etc.) cases arising from the index

case. Within a surveillance system, the distribution of transmission cluster sizes has

been well-established as a sufficient statistic for parameter inference in power-series

distributions, which contains the negative binomial.15,16 Thus, mechanistic adjust-

ments were made to the negative binomial probability density function (PDF) in

the branching process that affords parameter inference using the distribution of final

transmission cluster sizes. We made further adjustments to account for two common

limitations with cluster size distributions in TB transmission. First, in some circum-

stances it is impossible to unambiguously separate overlapping chains of transmission.

This results in a combined transmission cluster of total size Y with n index cases. In

this analysis, we did not seek to disentangle overlapping transmission clusters ad hoc;

instead accounted for this by conditioning the modified PDF on the number of index

cases in the cluster. The final PDF of a transmission cluster of size Y initiating with

n initial index cases can be expressed:

P (Y = y|n) =

(
n

y

)
Γ(ky + y − n)

Γ(ky)Γ(y − n+ 1)

(
R
k

)y−n(
1 + R

k

)ky+y−n (5.1)

Second, clusters with ongoing transmission at the time of data acquisition may

result in cluster sizes being right-censored. We account for this limitation by assuming

censored clusters are of at least size Y . Thus, the final likelihood for A clusters that

were completely observed, and B clusters partially observed due to censoring is:

L(R, k| ~A, ~B) =
∞∏
ya=1

ya∏
na=1

P (Y = y|n)ay,n
∞∏
yb=1

yb∏
nb=1

P (Y ≥ y|n)by,n (5.2)

Where P (Y = y|n) is the PDF specified in equation 3.1 and P (Y ≥ y|n) =

1 −
∑y−1

i=1 P (Y = y|n). We used maximum likelihood estimation (MLE) of R̂ and k̂

and 95% confidence intervals (CIs) were obtained using profile likelihood.
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5.3.3 Transmission Cluster Definitions

The CDC provided cluster data based on CDC standard practices for identifying

potential transmission clusters. Briefly, transmission clusters were defined as cases

with identical MIRU-24 profiles within the same county during the study timeframe.

However, the CDC further investigates LOTUS clusters (10 or more cases within a

3-year period related by recent transmission) using whole genome sequencing (WGS).

WGS provides significantly higher resolution genotypic data and may identify ‘over-

lapping” transmission clusters, where multiple transmission clusters are present in

the same MIRU cluster. We also assessed the impact of varying this definition on

parameter inference by expanding geographic catchment to the state level and repeat-

ing the analysis. This expanded definition intentionally provides a more conservative

estimate of k.

5.3.4 Burden of Secondary Transmission

We took R̂ and k̂ to to specify the exact PDF and cumulative density function for

the given populations. We then calculated the expected proportion of transmission

attributed to a specified proportion of the cases, pt. A general example for sexually

transmitted and vector-borne diseases is the “80/20 rule” wherein 80% of transmission

is due to only 20% of infectious cases (thus pt = 0.8).17 For any value of pt, this

proportion can be specified as:

1− pt =
1

R

∫ x

0

uf(u)du (5.3)

Where f(u) represents the PDF of the negative binomial distribution with specified R

and k per our model. In this analysis, we calculated the proportion of cases responsible

for 80%, 85%, 90%, 95%, and 100% of secondary transmission. We further compared

TB transmission to the common “80/20 rule” in more detail by using the MLE of k
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and varying R across all values from 0 to 1 (in 0.01 increments). These calculations

were computationally eased by the following manipulation:

1− pt =
1

R

∫ x

0

uf(u)du =

∫ x−1

0

f(u)du (5.4)

All analyses were performed in the R programming language; reproducible code for

all analyses available in the supplementary materials.

5.4 Results

Between 2014 and 2016, a total of 21,110 incident cases of TB were reported and

genotyped in the U.S. Among these, 10,970 (52%) were in the four states of California,

Florida, New York, and Texas (Table 1). The vast majority of cases were isolated

cases (69-83%); among clustered cases, the median cluster size was 2 (interquartile

range: 2-3) for all states. The distribution of cluster sizes was heavily skewed in

each state, with a vast majority of cases resulting in relatively little to no secondary

cases, yet several substantially large clusters were present (Figure 5.1; Supplemental

Table S5.1). This overdispersion was reflected in the MLE estimates of k; across all

populations, k̂ was substantially lower than 1 and consistent across states, ranging

slightly from 0.08 to 0.11 (Table 5.2, Figure 5.2). Values of k̂ in this range (k << 1)

indicate extreme heterogeneity in the number of secondary cases resulting from each

infectious individual and are consistent with a high probability of superspreading.

Estimates are R were not the primary aim of this analysis but demonstrated slightly

more variability (range: 0.14-0.22; Table 5.2, Figure 5.2). When defining transmission

clusters at the state level, estimates of k were slightly higher (k̂ = 0.10 − 0.17; see

Supplemental Table S5.2 and Supplemental Figure S5.1). Given the sufficiently low

values of k̂, these differences are not epidemiologically relevant as they infer a similar

propensity for superspreading in the population.
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We used R̂ and k̂ to calculate the proportion of cases responsible for 80%, 85%,

90%, 95%, and 100% of secondary transmission (Table 5.3). Our model suggests that

across all four states, all secondary TB transmission (pt = 1.0) is largely driven by a

small fraction of infectious individuals; across all four states, only 9%-11% of infectious

cases account for 100% of secondary transmission. Our model also suggests that TB

transmission is more extreme than the common “80/20 rule,” as across all states only

5-7% of cases are responsible for 80% of transmission. This phenomenon holds when

varying R between 0-1; the number of cases responsible for 80% of infection remains

under 10% in all four states for all values of R. Furthermore, these proportions

did not meaningfully change when expanding the cluster definition to the state level

(Supplementary Table S5.3 and Supplemental Figure S5.2).

5.5 Discussion

In this analysis, we sought to describe and quantify the degree of heterogeneity in

TB transmission across the four most populous states in the United States using the

negative binomial dispersion parameter k. We found transmission in all four states

was characterized by a similarly high degree of superspreading, and the majority

of secondary transmission is likely caused by a small minority of cases. While to

our knowledge k has not been estimated for TB transmission in the United States,

these results concur with estimates of k in other studies among low-incidence popula-

tions. Previous studies in Australia and the Netherlands found estimates of k of 0.04

(95% CI:0.03–0.05) and 0.10 (0.09-0.12), respectively.13,14 Moreover, a recent study

modeling TB transmission under both a negative binomial and Poisson-lognormal

assumption estimated all secondary TB cases were caused by only 16% of cases in

the United Kingdom, and 12% of cases in the Netherlands.

The epidemiological significance of these findings is three-fold. First, both the high
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degree of overdispersion and small proportion of cases responsible for total transmis-

sion reinforces the need to focus interventions on efforts that mitigate superspread-

ing. As the overwhelming majority of infected individuals do not lead to additional

cases, incidence of TB attributable to recent transmission could be disproportion-

ately impacted by preventing relatively rare superspreaders. Second, this analysis

demonstrates the utility of cluster-level surveillance data in quantifying individual-

level heterogeneity without the need for resource intensive individual data. Lastly,

our findings have implications for improved TB transmission modeling. While hetero-

geneity in mathematical modeling is historically assigned according to some known

property (i.e. smear status, HIV status), superspreading is unpredictable and often

cannot be identified using a priori information. A notable example is a 9-year old

child who was assumed to transmit TB to at least 56 contacts, while his twin brother

had a relatively mild case and was not considered infectious.18 Several models have

begun incorporating stochasticity of individual variation in secondary transmission by

assigning a random variable drawn from a distribution with mean R and dispersion

k.19−21 By establishing empirical estimates of the dispersion parameter in U.S. TB

transmission, individual heterogeneity may be more accurately incorporated into fu-

ture mathematical models that seek to further characterize TB transmission dynamics

and prevention measures in the United States.

Our analysis was subject to several notable limitations. States may differ in

their surveillance and intervention capacities, which invariably modulates estimates

of overdispersion. However, given the marked similarity in k̂ across all four states, any

bias arising due to such differences may be insignificant as it pertains to this analysis.

However, while the degree of superspreading did not vary meaningfully across states,

the clinical and structural determinants of such heterogeneity may vary throughout

populations. Local surveillance systems should identify characteristics that play a

key role in superspreading for their specific populations. While we accounted for
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truncated cluster size due to censoring in the likelihood, we did not account for

systematic under reporting of cases (or cases missing genotype). In the context of

cluster-based inference, such missing cases may bias inference towards homogeneity

(increased k̂),thus our estimates are likely conservative. This bias arises because

parameter inference is largely predicated on two key components of the distribution:

the long right-hand tail of the distribution and the proportion of isolated cases. When

a case of TB is identified in the United States, this often triggers additional public

health resources for active case finding (i.e. contact tracing). By doing so, this

intuitively biases case ascertainment differentially towards larger clusters. Larger

clusters are exponentially more likely to have at least one case identified, thereby

triggering active case finding efforts and capturing otherwise unidentified cases. In

contrast, smaller clusters – particularly orphan cases with no secondary transmission

– are more likely to be missed entirely by the surveillance system. This phenomenon

shifts the distribution to the right towards homogeneity.

Although disease transmission is not limited to administrative borders, our pri-

mary analysis imperfectly defined transmission cluster using county-level data within

each state. While this definition provides the most reasonable identification of trans-

mission clusters give data availability, it likely misclassifies larger transmission clus-

ters as multiple smaller clusters. Such misclassification biases k̂ downwards towards

heterogeneity, as it increases the proportion of cases that appear to transmit zero

secondary cases. To address this, we expanded our definition to the state level, which

provides a very conservative estimate of cluster sizes. We found that the inference of

k was largely invariant to the change in definition, with only marginal increases in

k̂ in each state. Thus, the epidemiological relevance of our findings likely does not

change based on transmission cluster definition.

Understanding the degree of individual variation in the number of secondary trans-

missions is crucial for epidemic control. Our findings suggest that there is considerable
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variation in the capacity for individuals to transmit TB in the United States, and most

cases do not contribute to ongoing transmission. In addition to interventions aimed

at reducing TB reactivation, efforts aimed at preventing superspreading will likely

meaningfully contribute to the goal of elimination of TB in the United States.
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Jurisdiction Total Cases Proportion

of all re-

ported cases

in the U.S.

Proportion

of Isolated

Cases

Proportion

of Clustered

Cases

Median

Cluster Size

(IQR)

Largest

Cluster Size

California 5,024 24% 0.75 0.25 2 (2, 3) 41

Florida 1,415 7% 0.79 0.21 2 (2, 3) 42

New York 1,757 8% 0.83 0.17 2 (2, 3) 14

Texas 2,774 13% 0.69 0.31 2 (2, 3) 65

Total (All

Four States)

10,970 52% 0.75 0.25 2 (2, 3) 65

Entire United

States

21,110 100% 0.79 0.21 2 (2, 3) 65

Table 5.1: Reported TB cases and clusters in the United States, 2014-2016
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Figure 5.1: Transmission cluster size distributions in the U.S. states of California,

Florida, New York, and Texas. Transmission clusters were defined at the county level

as described in the methods.
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State R̂(95%CI) k̂(95%CI)

California 0.17 (0.16-0.19) 0.09 (0.08-0.10)

Florida 0.14 (0.12-0.17) 0.09 (0.07-0.12)

New York 0.11 (0.10-0.14) 0.08 (0.06-0.11)

Texas 0.22 (0.20-0.25) 0.11 (0.09-0.13)

Table 5.2: Maximum likelihood estimates of R and k, by state
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Figure 5.2: Joint estimates of R and k by state. A) Surface plots for point estimates

of R and k and 95% CIs using a negative binomial branching process model. Note

the y-axis is on the logarithmic scale. B) Contour plots of log-likelihood surfaces.

Horizontal and vertical black lines represent 95% CIs for R̂ and k̂, respectively.
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State pt, Percent (95% CI

80% 85% 90% 95% 100%

California 5.7 (5.3-6.1) 6.6 (6.2-6.9) 7.4 (7.0-7.8) 8.3 (7.9-8.6) 9.1 (8.7-9.5)

Florida 5.3 (4.6-6.1) 6.0 (5.3-6.8) 6.7 (6.0-7.5) 7.4 (6.7-8.2) 8.1 (7.4-8.9)

New York 4.5 (3.9-5.1) 5.0 (4.4-5.7) 5.6 (5.0-6.2) 6.1 (5.5-6.8) 6.7 (6.1-7.3)

Texas 7.0 (6.1-7.7) 8.1 (7.2-8.8) 9.2 (8.3-9.9) 10.3 (9.4-11.0) 11.4 (10.5-12.1)

Table 5.3: Expected percent of transmission attributed to a given proportion of the

cases, pt
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Figure 5.3: Proportion of infected individuals responsible for 80% of the total sec-

ondary transmissions (p80) across the current consensus range of R values for TB

in the United States. Colors lines indicate expected proportion based on MLE esti-

mates of k (California and Florida: k̂ = 0.09; New York: k̂ = 0.08; Texas: k̂ = 0.11).

Shaded areas represent 95% confidence intervals. Dots represent MLE estimates of

R for the four states (California: R̂ = 0.17; Florida: R̂ = 0.14; New York: R̂ = 0.11;

Texas: R̂ = 0.22).
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5.6 Supplemental Materials

County Level

Cluster Size California Florida New York Texas

1 3770 1115 1451 1927

2 231 68 60 139

3 70 16 28 56

4 29 6 8 16

5 18 2 3 8

6 5 2 3 5

7 8 1 1 4

8 5 0 2 3

9 3 0 0 2

10 3 1 0 0

11+ 11 2 1 8

Total Clusters 4135 1213 1557 2168

State Level

Cluster Size California Florida New York Texas

1 2908 883 1328 1927

2 274 95 80 139

3 88 27 25 56

4 47 10 18 16

5 19 4 2 8

6 17 3 4 5

7 15 4 3 4

8 6 2 1 3

9 14 2 0 2

10 4 0 0 0

11+ 23 6 4 8

Total Clusters 3415 1036 1456 1751

Table S5.1: Cluster size distributions of TB in the U.S., by cluster definitions
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State R̂(95%CI) k̂(95%CI)

California 0.32 (0.30-0.35) 0.13 (0.12-0.15)

Florida 0.27 (0.23-0.31) 0.17 (0.13-0.23)

New York 0.17 (0.14-0.20) 0.10 (0.08-0.14)

Texas 0.37 (0.33-0.41) 0.15 (0.13-0.19)

Table S5.2: Maximum likelihood estimates of R and k, by state, with transmission

clusters defined at the state level
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Figure S5.1: Joint estimates of R and k by state, with clusters defined at the state

level. A) Surface plots for estimates of R and k using a negative binomial branching

process model. B) Contour plots of log-likelihood surfaces. Horizontal and vertical

black lines represent 95% of R̂ and k̂, respectively.
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State pt, Percent (95% CI

80% 85% 90% 95% 100%

California 8.5 (8.0-9.3) 10.1 (9.6-10.9) 11.7 (11.2-12.5) 13.3 (12.8-14.1) 14.9 (14.4-15.7)

Florida 9.5 (8.2-11.0) 10.9 (9.5-12.3) 12.2 (10.9-13.7) 13.6 (12.2-16.4) 14.9 (13.6-16.4)

New York 6.1 (5.3-7.1) 6.9 (6.2-8.0) 7.8 (7.0-8.8) 8.6 (7.9-9.7) 9.5 (8.7-10.5)

Texas 9.6 (8.7-11.2) 11.5 (10.5-13.0) 13.3 (12.4-14.9) 15.2 (14.2-16.7) 17.0 (16.1-18.6)

Table S5.3: Expected percent of transmission attributed to a given proportion of the

cases, pt (Cluster definitions defined at state level)
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Figure S5.2: Proportion of infected individuals responsible for 80% of the total sec-

ondary transmissions (p80) across the current consensus range of R values for TB in

the United States, with transmission clusters defined at the state level. Colors lines

indicate expected proportion based on MLE estimates of k (California: k̂ = 0.13;

Florida: k̂ = 0.17; New York: k̂ = 0.10; Texas: k̂ = 0.15). Shaded areas represent

95% confidence intervals. Dots represent MLE estimates of R for the four states

(California: R̂ = 0.32; Florida: R̂ = 0.27; New York: R̂ = 0.17; Texas: R̂ = 0.37).
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Chapter 6

Summary and Conclusions

6.1 Overview

Although inter-individual heterogeneity in transmission is known to be a critical fac-

tor shaping the epidemiology of many infectious diseases, its impact on TB transmis-

sion remains largely unknown. A growing body of epidemiological work investigating

individual differences in TB transmission suggest that extreme inter-individual het-

erogeneity and superspreading is a defining feature of TB transmission. The three

studies in this dissertation have contributed additional information to help clarify the

role and impact of inter-individual heterogeneity in TB transmission dynamics.

The first study developed a method to quantify the propensity for superspreading

using readily available transmission cluster data in a surveillance system. Simulated

data were used to test the robustness of the inference procedure and found that infer-

ence of the negative binomial parameters R and k using transmission cluster data is

reliable and accurate despite several well-known limitations in imperfect surveillance.

When applied to surveillance data in the United States, the results suggested a high

degree of inter-individual heterogeneity. These results are in line with other studies

seeking to quantify individual heterogeneity, and is plausible from a public health
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standpoint as heterogeneity typically increases as public health systems improve.1−3

This study provides the first known estimates of inter-individual heterogeneity in the

U.S.

The second study was the first study to systematically quantify inter-individual

heterogeneity in TB transmission using data from various global contexts. The re-

sults of this study indicate that inter-individual heterogeneity is largely consistent

across populations and settings, and TB is near-universally characterized by a high

propensity for superspreading. The study also demonstrated that incorporating inter-

individual heterogeneity in TB transmission models could more accurately represent

observed patterns of TB transmission by virtue of the relative probabilities in obtain-

ing the largest cluster size in the observed data.

The third study was the first to quantify inter-individual heterogeneity in TB

transmission in the four U.S. states responsible for the majority of TB burden. Using

TB cluster data provided by the U.S. Centers for Disease Control and Prevention, re-

sults indicated a high propensity for superspreading and marked similarity of between

states. These results also held when expanding the definition of transmission cluster

to provide a more conservative definition. The study further demonstrated a small

minority of cases (∼7-11 percent) were responsible for all secondary TB transmission

in the population.

Taken together, the findings from this dissertation align with more recent studies

suggesting that TB transmission is characterized by marked variability in individual

transmission.1,4,5 Moreover, the evidence base formed from this body of work suggests

that individual variation in TB transmission may be equal to or more extreme than

other infectious diseases well-known to be characterized by superspreading, including

Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV; k=0.16),6 Middle East

Respiratory Syndrome Coronavirus (MERS-CoV; k=0.26),7 COVID-19 (SARS-CoV-

2, k=0.10),8 monkeypox (k=0.33),9 and Ebola virus (k=0.09).10 As a result, public
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health programs seeking to mitigate TB transmission may draw from successes of

these and other diseases with similar heterogeneity.

6.2 Public Health and Epidemiological Implications

The accurate representation of inter-individual heterogeneity in TB transmission con-

tinues to be a challenge in TB modeling. This dissertation’s goal is primarily to benefit

future epidemiologic modeling efforts by accounting for the diversity of unknown and

unmeasured factors (and the interaction between them) that contribute to variation

in the number of secondary cases. It accomplishes this goal by both inferring the

first empirical estimates of this parameter globally, and by providing modelers with

a tool to estimate the propensity for superspreading within their study population.

This dissertation also highlights the need to report estimates of inter-individual het-

erogeneity and provides a common reference (by virtue of k) for which to compare

populations and diseases. By incorporating such previously unknown information into

epidemic models, a more accurate representation of epidemic spread and the impact

of intervention efforts can be realized. Although this dissertation focused intensely

on one aspect in the broader context of epidemiologic heterogeneity, the importance

of quantifying inter-individual heterogeneity cannot be overstated and its findings

will prove critical in better informing intervention efforts, decision making, and the

allocation of resources.

This dissertation provided preliminary evidence that the vast majority of incident

TB does not lead to secondary outbreaks, yet those that do often result in explosive

outbreaks that account for the majority of secondary transmission. This is the defin-

ing hallmark of other diseases known to be characterized by extensive superspreading.4

Such information has direct implications for improving the effectiveness and efficiency

of outbreak response programs. First, it demonstrates that the presence of at least
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one secondary case arising due to recent transmission greatly increases the likelihood

of a large outbreak. Thus, outbreak response teams may need to respond earlier and

with more urgency to prevent additional ongoing TB cases that may have occurred

under the current response strategy.

6.3 Limitations

The methods proposed in this dissertation rely on several assumptions that should be

considered. First, the type of branching process used in this dissertation, a Galton-

Watson process, assumes that the depletion of susceptible contacts due to infection is

negligible and thus there is an infinite susceptible population. While this assumption

likely holds true in the general population of large, low-incidence settings such as the

United States, it may not be as reliable in smaller populations with a high prevalence

of TB or in vulnerable communities in low-incidence settings. Additionally, trans-

mission and subsequent disease spread is assumed to be independent and identically

distributed (i.i.d.). This assumption may be violated if there are correlations be-

tween source cases and contacts, such as behavior or clustering of highly susceptible

individuals. Additionally, the number of observed secondary cases is drawn from a

negative binomial distribution. While this distribution allows for an unknown degree

of heterogeneity, it may not be definitively superior to other distributions. For in-

stance, a recent study employed the use of a Poisson log-normal (PLN) distribution in

comparison to the negative binomial.11 Whereas the negative binomial is a mixture of

a gamma-distributed λ in a Poisson process, the offspring distribution follows a PLN

distribution if log(λ) is normally distributed. In their study, the PLN models better

captured the long tails of the distribution of cluster-level data and were statistically

better fits than the negative binomial. However, cluster data analyzed genetic clusters

and the long tails are likely a product of multiple transmission clusters. Moreover,
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the model did not account for overlapping clusters or censorship.

While the simulations in the methods developed in Study 1 demonstrate that the

inference procedure is robust under perfect surveillance, the transition from theo-

retical evaluation to real world application also poses several limitations. All three

studies applied these methods to real-world surveillance data containing imperfect

transmission clusters, missing cases, and censoring. Although these limitations were

evaluated in the method developed in Study 1, those evaluations specified the degree

to which these imperfect surveillance measures impacted estimates of heterogeneity.

In reality, these factors are unknown to surveillance systems and thus the degree of

bias introduced is similarly unknown. Such issues present a larger problem in limited-

resource settings where surveillance systems inadequately capture information on new

TB cases.

Perhaps most importantly, this approach is of primary use when evaluating recent

transmission and does not estimate complete heterogeneity in TB transmission, which

may include infected individuals that result in latent TB infection (LTBI). Unique

to the natural history of TB, it is possible that certain index cases may be prolific

transmitters of successful TB infection yet result in little or no secondary cases.

Unfortunately, there is little epidemiologic work investigating the relationship between

secondary infections and secondary cases caused by an individual. To our knowledge,

only one well-designed study directly compared the number of infections with the

number of resultant cases and found a high degree of concordance.6 Though this

indicates that those who infect more also result in more secondary cases, there is too

little evidence for scientific consensus.
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6.4 Remaining Gaps in Knowledge and Future Di-

rections

While this body of work provides a preliminary framework for assessing inter-individual

heterogeneity in TB transmission, additional research is greatly needed to obtain a

more complete understanding of TB transmission dynamics on an individual level.

Many TB researchers reasonably argue that the plateauing rate of decline in global

TB incidence is more a function of reactivation of LTBI than recent transmission.12−14

Thus, a more complete understanding of inter-individual heterogeneity in TB trans-

mission – including the number of both secondary cases and secondary infections

leading to LTBI – would prove useful in identifying recently infected contacts who

would benefit from preventive therapy and allocating resources. This may be achieved

in the context of a multi-type branching processes model that accounts for LTBI or

through other novel means of epidemiologic modeling. However, given challenges as-

sociated with identifying the source of infection for individuals with LTBI, there is

little data from which models may draw assumptions in this regard. Further epi-

demiological research is needed to shed light on this unique and critical aspect of TB

transmission.

Our definition of inter-individual heterogeneity accounted for all known and un-

known factors in the infectious history of both the source and the contact. While this

provided a benefit to the methods presented here aimed at quantifying this hetero-

geneity, public health systems benefit from being able to proactively identify tangible

situations with a higher potential for superspreading. Despite a large body of work

contextualizing risk factors for individual infectiousness and susceptibility, these are

often discussed separately and remain limited in their ability to capture the full extent

of factors that lead to superspreading.15 However, analysis of risk factors associated

with transmission clusters as a whole would jointly describe the complex dynamic
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of host and contact factors that resulted in extensive transmission, and afford the

ability to predict superspreader-associated clusters. Drawing on previous models and

analysis of TB transmission dynamics, the methods and evaluation presented in this

dissertation afford the opportunity for de novo models of TB outbreaks that more

accurately reflect observed TB transmission patterns. As a direct result of this dis-

sertation, novel TB outbreak models can be developed using an individual-based

framework that more accurately accounts for unknown factors attributing to super-

spreading.
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Appendix A

Key Formulas

A.1 Probability Density Function

The probability of a transmission chain originating with n index cases resulting in a

final transmission cluster size of y can be expressed as:

P (Y = y|n) =

(
n

y

)
Γ(ky + y − n)

Γ(ky)Γ(y − n− 1)

(R
k

)y−n

(1 + R
k

)ky+y−n

A.2 Likelihood Equation

The likelihood of parameters R and k with data containing Ay,n fully observed clusters

resulting in size y and initiating with n index cases and By,n censored clusters of size

y with n index cases is”

L
(
R, k| ~A, ~B

)
=
∏
ya

∏
na

P (Y = y|n)ay,n
∏
yb

∏
nb

P (Y ≥ y|n)by,n

Where P (Y ≥ y|n) = 1−
∑y−1

i=1 P (Y = y|n)
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Appendix B

Relevant R Code for Inference

Procedure

B.1 Branching Process Function

bp <- function(gens=20, init.size=1, offspring , ...){

Z <- list() #initiate the list

Z[[1]] <- init.size

i <- 1

while(sum(Z[[i]]) > 0 && i <= gens) {

Z[[i+1]] <- offspring(sum(Z[[i]]), ...)

i <- i+1

}

return(Z)

}
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B.2 Imperfect Simulation Function

##’

_______________________________________________________________________________________________

##’ Simulating imperfect observation

##’ @param true_R True underlying R value for NB

branching process

##’ @param true_k True underlying k value for NB

branching process

##’ @param num_chains Number of simulated transmission

chains in a surveillance system

##’ @param p1 Probability of ascertaining cases

by passive surveillance

##’ @param p2 Probability of ascertaining cases

by active surveillance

##’ @param prob_cens Probability that a chain will be

censored

##’ @param perc_overlap Proportion of clusters that

overlap (i.e. multiple index cases)

##’ - - - - - - - - - - - - -

##’ @return Output is a list of length 2, each list

contains a data frame of cluster sizes , index

##’ cases , and censored status , for:

##’ [[1]] Perfect Surveillance

##’ [[2]] Imperfect Surveillance

##’

_______________________________________________________________________________________________
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##’

imperfect <- function(true_R, true_k, num_chains=2000, p1=0.75

, p2=0.5, prob_cens=0.10, perc_overlap=0.20){

z <- replicate(num_chains ,bp(offspring = rnbinom , mu =

true_R, size = true_k)) # Simulate individual -level

surveillance system

z.pass <- z; z.act <- z

## - - - - - - - - - - - - - - - - - - - - -

## Imperfect case ascertainment

## - - - - - - - - - - - - - - - - - - - - -

#Passive surveillance

for (i in 1:length(z.pass)){

for (j in 1:length(z.pass[[i]])){

for (k in 1:length(z.pass[[i]][[j]])){

for (l in 1:length(z.pass[[i]][[j]][[k]])){

if (runif(1)<(1-p1)){ # Get to

"individuals" and randomly assign NA based on

p1

z.pass[[i]][[j]][[k]]<-NA

}}}}}

#Active case finding (only chains with at least one case

observed by passive surveillance)

##’ Note to self: Index cases with no secondary cases

present in the branching process as a

##’ list of 2 (always [1] and [0]). The second value

is what we are concerned about having an NA value

via passive

##’ surveillance. In the scenario where the list is [1

] and [NA], this would artifically make the chain
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eligible for

##’ reevaluation since the cluster is not completely

missing. So before reevaluation with p2 we need to

##’ assign the first position in all of the lists as

NA. That way , if the index case is missing ,

##’ both values will be missing.

a<-z.pass

for (i in 1:length(a)){

a[[i]][[1]]<-NA

}

b<-cbind(a,sapply(a, function(x) all(is.na(unlist(x))))) #

Determine if anyone in the chain has been seen

for (i in 1:length(z.pass)){

if (b[i,2]== TRUE){

z.act[[i]]<-a[[i]] # Skip if cluster not observed at

all

} else {

for (j in 1:length(z.pass[[i]])){

for (k in 1:length(z.pass[[i]][[j]])){

for (l in 1:length(z.pass[[i]][[j]][[k]])){

if (is.na(z.pass[[i]][[j]][[k]])){

if(runif(1) <=(p2)){ #Active probability

of being seen by case detection

z.act[[i]][[j]][[k]]<-z[[i]][[j]][[k]] #

Reassign original value

} else {z.act[[i]][[j]][[k]]<-z.pass[[i]][[j

]][[k]]}

}}}}}}

# "Break" chains based on the position of missing cases in
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the chain

l <- z.act #dummy/temp data to not change z.act

for (i in 1:length(l)){

l[[i]][[1]]<-NULL #remove first position of the nested

list so that it eases summing lengths (can ’t sum

based on integer values in imperfect observations)

}

#"Break apart" the chains

t1 <- lapply(lapply(seq_along(l), function(nm) {split(l[[

nm]], cumsum(sapply(l[[nm]], function(x) all(is.na(x)))

))}), function(lstA) lapply(lstA ,function(x) Filter(

function(y) !all(is.na(y)), x)))

t2 <- rapply(unlist(t1,recursive=FALSE),function(x) x[!is.

na(x)], how="replace") #Remove NA values.

z.broken <- Filter(length ,t2) #remove all with length 0 (

missing/unobserved)

## - - - - - - - - - - - - - - - - - - - - -

## Censoring

## - - - - - - - - - - - - - - - - - - - - -

z.cen <- z.broken # Initialize

the censored list

for (i in 1:length(z.broken)){ # Iterate

through the list

if (length(z.broken [[i]])>1) { # List must

have at least length of two (cant be censored if the

index case isnt seen , then it is unobserved as above)

if(runif(1)<=prob_cens){ # Stochastic

process to determine if the nested list will be

censored
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if(length(z.broken [[i]])==2){

n <- 2} else { # A little

trick to get over the issue of sample(2:2,1)

returning values of 1 as well as 2

n <- sample(2:length(z.broken [[i]]),1)} #

Randomly determine what list position in the

nested list will be the censor threshold

z.cen[[i]][n:length(z.broken [[i]])] <- NA # Fill

all positions from n to the end of the nested

list with NA

}}}

out_list <- lapply(z.cen , function(x) { # Remove all

nested list elements that contain NA

inds <- sapply(x, function(x) any(is.na

(x)))

if(any(inds)) x[seq_len(which.max(inds)

- 1)] else x})

cens <- numeric(length(out_list))

true <- numeric(length(out_list))

for (k in 1:length(out_list)){

cens[k]<-sum(lengths(out_list[[k]])) # Get cluster size

of censored clusters

true[k]<-sum(lengths(z.broken [[k]])) # Get cluster size

of uncensored (but imperfect obs) clusters

}

Y_cens <- data.frame(y.cens=cens , censor=ifelse(cens!=true

,1,0)) #Create a censoring index (1=censored , 0=

uncensored)

## - - - - - - - - - - - - - - - - - - - - -



148

## Overlapping clusters

## - - - - - - - - - - - - - - - - - - - - -

#’ Determine sampling space - i.e. how many clusters get

merged with each iteration

#’ Skewed towards smaller overlapping clusters (n=2,3)

, but allows for up

#’ to 7 (~0.02% chance) based on Poisson w/ lambda 1

a <- data.frame(table(rpois(1000000,1))) # Drawn from a

Poisson with lamda=1

a_trunc <- a[a$Var1 %in% c(2:7) ,] # Restrict the

number of overlapping clusters (n) to between 2-7,

heavily skewed towards lower values

n <- round(nrow(Y_cens)*perc_overlap) # Determine

the number to be merged

sample_clust <- sample(c(rep(2,a_trunc[1,2]), # ~184000 or

~69%

rep(3,a_trunc[2,2]), # ~61200 or

~23%

rep(4,a_trunc[3,2]), # ~15100 or

~6%

rep(5,a_trunc[4,2]), # ~3000 or

~1%

rep(6,a_trunc[5,2]), # ~500 or

~0.2%

rep(7,a_trunc[6,2])),# ~60 or

~0.02%

size=n, replace=TRUE)

names(sample_clust) <- paste0("S", 1:n)

m <- nrow(Y_cens)-sum(sample_clust) # Determine the number
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that will not be merged (m)

non_merge_clust <- rep(1, m) # Create a vector with

replicated 1 based on m

names(non_merge_clust) <- paste0("N", 1:m)

# Combine sample_clust and non_merge_clust , and then

randomly sort the vector

combine_clust <- c(sample_clust , non_merge_clust)

combine_clust2 <- sample(combine_clust , size=length(

combine_clust))

# Expand the vector

expand_list <- list(lengths=combine_clust2, values=names(

combine_clust2))

expand_clust <- inverse.rle(expand_list)

# Create a data frame with y and expand_clust

dat <- data.frame(Y_cens , group=factor(expand_clust ,

levels=unique(expand_clust)))

dat$index <- 1 # add the index case number for summing

# Convert dat2 to a matrix , sum the index cases and

censoring index , remove the group column

dat2 <- aggregate(cbind(dat$y.cens , dat$index , dat$censor)

, by=list(group=dat$group),FUN=sum)

dat2$group <- NULL

y.merged <- as.matrix(dat2); colnames(y.merged)<-c("clust_

size","index_cases","censor_status")

y.final <- data.frame(y.merged) #just to be safe

y.final$censor_status <- ifelse(y.final$censor_status >=1

,1,0) # if more than 1 censored clusters merged

## - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - -
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y.true <- unlist(lapply(z,function(x) sum(unlist(x)))) #

Sum true cluster sizes

Y.true <- data.frame(y.true=y.true , index=rep(1,times=

length(y.true)), censor=rep(0,times=length(y.true))) #

original uncensored and unmerged data

names(Y.true) <- c("clust_size","index_cases","censor_

status")

return(list(Y.true , y.final))

#return(list(z, z.pass , z.act , z.broken , out_list , cens ,

true , Y_cens , y.final)) #for validation

}
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B.3 Likelihood Function

cens_likelihood <- function(Y,R,k) {

p_function <- function(y,n){ #Dummy function to

apply

exp(log(n)-log(y)+lgamma(k*y+y-n)-(lgamma(k*y)+lgamma(y-n+

1))+(y-n)*log(R/k) -(k*y+y-n)*log(1+R/k)) #PDF as

defined un methods

}

ya <- Y[Y[,3]==0,] # Uncensored clusters

yb <- Y[Y[,3]==1,] # Censored clusters

liks_a <- log(p_function(ya[,1],ya[,2])) # Can apply P(Y=y)

via vectorization

liks_b <- numeric(nrow(yb)) # Not sure how to

vectorize with the $P(Y \geq y)$ being of the 1-sum(p_

function(1:(y-1),n)) below

if(nrow(yb)>0){ # This for loop

approach is reasonably fast (about 9 seconds on a list of

2000 cluster sizes)

for (i in 1:nrow(yb)){

y <- yb[i,1]

n <- yb[i,2]

if (y==1){ # If the cluster size

is 1, the P(1)=1, thus log(1)=0

liks_b[i] <- 0 # This trick

prevents issues with running the code

} else{
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if (is.nan(log(max(10^-300,1-sum(p_function(1:(y-1),n)

))))){ # Trick to avoid NaN due to extremely

unlikely clusters (very rare , but was causing

numeric overflow problems)

liks_b[i] <- log(10^-300)

} else {liks_b[i] <- log(max(10^-300,1-sum(p_function(

1:(y-1),n))))}

}}}

sumliks <- sum(liks_a,liks_b)

return(sumliks)

#return(list(liks_a,liks_b)) #validate

}



153

B.4 Parameter Estimation Function

##’

_______________________________________________________________________________________________

##’ Parameter Estimation

##’ Estimates MLE and confidence interval for R and k

##’ @param simdata 3-column data frame or matrix

containing

##’ [1] Custer Size

##’ [2] Index Cases

##’ [3] Censored status

##’ @param Rrange Range of R values for optimization

##’ @param krange Range of k values for optimization

##’ @param conf.interval Desired confidence interval (as

decimal , i.e. 0.95)

##’ @param k_only Option to only estimate k values (

increases speed significantly)

##’ - - - - - - - - - - - - -

##’ @return Matrix containing point , lower , and upper

bound estimates for R and k

##’

_______________________________________________________________________________________________

paramests <- function(simdata , Rrange , krange , conf.interval=0

.95, k_only=FALSE){

if (k_only==TRUE){

Rrange_2 <- 1-(mean(simdata[,2])/mean(simdata[,1])) #R MLE

value
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} else {Rrange_2 <- Rrange}

likesurf <- matrix(NA, nrow=length(Rrange_2),length(krange))

for(i in 1:length(Rrange_2)){

for(j in 1:length(krange)){

likesurf[i,j] <- cens_likelihood(simdata ,Rrange_2[i],

krange[j])

}

}

chiV <-qchisq(conf.interval , df=1)/2

profprep_k <- apply(likesurf ,2,function(x){max(x)})

profprep_k2 <- krange[profprep_k-max(profprep_k)>-chiV]

profprep_R <- apply(likesurf ,1,function(x){max(x)})

profprep_R2 <- Rrange_2[profprep_R-max(profprep_R)>-chiV]

likesurf_max <- likesurf ==max(likesurf)

output <- matrix(NA ,2,3)

output[1,1] <- Rrange_2[sum(seq(1,length(Rrange_2))%*%

likesurf_max)] #k point estimate

output[1,2] <- min(profprep_R2) #k lower CI

output[1,3] <- max(profprep_R2) #k upper CI

output[2,1] <- krange[sum(likesurf_max %*% seq(1,length(krange

)))] #R point estimate

output[2,2] <- min(profprep_k2) #R lower CI

output[2,3] <- ifelse(max(profprep_k2)==max(krange),Inf ,max(

profprep_k2)) #R upper CI

colnames(output) <- c("point_est","lower_ci","upper_ci");

rownames(output) <- c("R_hat","k_hat")

if (k_only==TRUE) {

output <- output[2,]
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}

return(output)

}


	Introduction and Background
	Dissertation Approach and Summary
	Study 1: Specific Aims and Summary
	Study 2: Specific Aims and Summary
	Study 3: Specific Aims and Summary

	Tuberculosis Epidemiology and Transmission Dynamics
	Global Tuberculosis Epidemiology
	Inter-Individual Heterogeneity and Superspreading in Tuberculosis Transmission
	Sources of Inter-Individual Heterogeneity in TB Transmission

	Current Approaches to Addressing Heterogeneity in TB Transmission
	Chapter 1 References

	Quantifying Inter-Individual Heterogeneity in Tuberculosis Transmission
	Background
	Branching Process Analysis
	Branching Process Overview
	Incorporating Inter-Individual Heterogeneity in Branching Process Models

	Parameter Inference from the Distribution of Final Transmission Cluster Sizes
	Relating the Individual Offspring Distribution and the Final Cluster Distribution

	Chapter 2 References

	Evaluating a Method to Infer Inter-Individual Heterogeneity in TB transmission Using Cluster Level Data
	Abstract
	Background
	Methods
	Statistical Methods
	Maximum Likelihood Estimation of Transmission Parameters
	Simulated Data
	Complications in TB Surveillance
	United States National TB Surveillance System Data

	Results
	Initial Validation the Inference Procedure
	Bias Arising Due to Complications in Surveillance
	Validation of Inference Procedure Under Real World Scenarios
	Analysis of United States TB Surveillance Data

	Discussion
	Supplemental Materials
	Chapter 3 References

	Estimates for the Propensity of Superspreading in Tuberculosis Transmission from Global Surveillance Systems
	Abstract
	Introduction
	Methods
	Search Strategy
	Inclusion and Exclusion Criteria
	Parameter Inference Using Cluster-level Data
	Cluster Size Probability Calculations

	Results
	Characteristics of Included Datasets
	Transmission Parameter Estimates
	Cluster Size Probabilities

	Discussion
	Supplemental Materials
	Chapter 4 References

	Estimating individual heterogeneity in tuberculosis transmission in the United States 
	Abstract
	Introduction
	Methods
	Data Source
	Inference Procedure and Model
	Transmission Cluster Definitions
	Burden of Secondary Transmission

	Results
	Discussion
	Supplemental Materials
	Chapter 5 References

	Summary and Conclusions
	Overview
	Public Health and Epidemiological Implications
	Limitations
	Remaining Gaps in Knowledge and Future Directions

	Appendix Key Formulas
	Probability Density Function
	Likelihood Equation

	Appendix Relevant R Code for Inference Procedure
	Branching Process Function
	Imperfect Simulation Function
	Likelihood Function
	Parameter Estimation Function


