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Abstract

Slow geophysical flows of complex particulate matter
By Kavinda J. Nissanka

The Earth’s surface is continuously shaped by the flow of materials. From microns
to kilometers, seconds to millennia, geophysical process exist across a vast range of
spatial and temporal scales. Seemingly quiet hill slopes and roaring volcanoes are
both extremely complex non-equilibrium systems, which intersect with and impact
our lives. Understanding the fundamental physics at play in geophysical flows is cru-
cial to predicting, controlling, and responding to these natural phenomenon. This
dissertation reports the suite of experiments I have conducted to understand and
examine two geophysical flows: the sedimentation of mass-polar spheroids, and the
quasistatic flow of the world’s largest floating granular material, ice mélange. These
systems both contain complex particle shapes and exist in non-inertial regimes, but
are driven externally far from equilibrium. Sedimentation is a process that occurs
in low Reynolds number flows, and is important in controlling many industrial and
terrestrial processes of micron to millimeter sized particles. I report on experimental
observations of sedimenting objects which deviate from uniform spheres in such a
way as to mimic realistic geophysical particles. I show that a center-of-mass offset
changes individual particle dynamics, interparticle interactions, and the distribution
of many particles in suspension. On the opposite side of the length scale, ice mélange
is a floating conglomeration of icebergs, dirt, and sea ice that sits at the interface
between tidewater glaciers and the open ocean in narrow fjords. Because of confine-
ment and jamming, ice mélange can impact the total ice mass flux out of tidewater
fjords. I study ice mélange using scaled down laboratory experiments to extract the
most salient parameters and features controlling its behaviour. By examining surface
velocity fields, thickness profiles, and its buttressing strength, I showcase the impor-
tance of friction and particle shape for ice mélange. Importantly, I demonstrate that
the force the mélange exerts on the terminus scales as F ≈ H2

0 , which is the thickness
at the terminus. I also show the importance of fluctuations, and the limitations of
continuum model’s ability to capture these fluctuations. Integration of this knowledge
into models of the cryosphere can improve the accuracy of sea level rise predictions.
Overall, the phenomena I studied here showcase a wealth of non-equilibrium dynam-
ics, complex particle interactions, and unexpected behaviors.
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1

Chapter 1

Introduction

1.1 Earth’s geophysical flows

The surface of the Earth is continuously shaped by fluid flows across many differ-

ent shapes, sizes, and speeds. Solid materials are eroded, transformed, transported,

and deposited continuously across the terrestrial landscape. Some of the most ex-

treme natural examples of these processes include avalanches, rivers and river deltas

(Fig. 1.1a), pyroclastic flows (Fig. 1.1b), tornadoes, hurricanes, landslides, and sand-

storms. But even the most mundane system, the ground on which we stand on,

holds an abundance of challenging scientific problems. The ground is not a simple

single phase material. It is composed of large scale solid matter, such as rocks, and

large swathes of ice (whose physical structure can change based on its location and

history). These are broken down by a multitude of processes, including biological

activity, thermal and capillary stresses, shear from flows of air, water, and gravity,

and chemical reactions. The large, solid materials are eroded and torn apart until

they become aggregates of grains [3, 6]. Depending on the natural phenomenon, these

aggregates can be composed of particles on the micron scale (clay platelets, bacteria,

sand) all the way up to particles on the meter to kilometer scale (icebergs, boulders).
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As the climate continues to warm and weather patterns continue to fluctuate wildly,

our understanding and ability to predict these surface processes will be crucial to the

development and safety of our communities [6].

Several different disciplines are connected through the study of the Earth’s sur-

face. Engineers creating human infrastructure need to know how their structures are

coupled to the dynamics and changes of the landscape. The interplay between hu-

mans and the surface we live on is a fundamental tenet of environmental science. For

example, Fig. 1.1c showcases the impact of plastic pollution on the most vulnerable

communities. The complexity and diversity of particle length scales, compositions,

and dynamical timescales provide a wealth of problems for soft matter physics, envi-

ronmental chemistry, and ecology to investigate. In this work, we will focus on the

physics aspects of geophysical flows, namely how do particle shape and strong dissi-

pation influence the manner in which these flows sculpt the Earth’s surface. Physics

often seeks to unify processes across different scales. Testing geophysical phenomenon

in a laboratory provides an exciting opportunity to view some of Earth’s most dan-

gerous yet captivating processes in a controlled environment. Often, we seek to take

a given phenomenon and break it down into its most essential physical components.

For example, do we need our particles to be spherical or does their shape matter?

What role does an interstitial fluid play in a given system? How strongly do we need

to perturb the system to observe changes in the dynamics? Do we need to match the

right temperatures? How about material properties, such as density, tensile strength,

or conductivity? These questions and more must be addressed for every experiment.

Then we try to model these processes using mathematical tools and approximations,

with physical insights and intuition guiding our choices. For geophysical flows, this

usually means trying to establish a rheological framework for a given system (how

will the system flow in response to external driving), and determining not only what

regimes the flows can exist in, but also what parameters can transition the flow from
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one to another. These parameters can include particle shape, fluid viscosity, tem-

perature, particle interactions, and external energy inputs. This work examines two

geophysical processes, sedimentation of objects who are not uniform in shape or den-

sity, and the flows of ice mélange (Fig. 1.1d) in front of marine terminating glaciers.

These processes are separated by large temporal and spatial scales, but we can use

the versatility of physics to elucidate their impact on the terrestrial landscape.

Sedimentation is a processes that shapes many of Earth’s water ground interfaces.

The study of sedimentation has a long and storied history, dating all the way back

to Stokes in the 1800’s [7], where he first described the steady state velocity of small

particles falling in a fluid with a large viscosity. As a specific case of particulate

transport, sedimentation is concerned with particulates suspended in a fluid (typi-

cally water) that are advected by an external flow until gravity drives their settling

to a boundary. On Earth’s surface, sedimentation is one step in the formation of

sedimentary rock and contributes to the evolution of rivers and deltas. Typically,

particles are eroded from loose rock or swept along by meltwater from glaciers and

transported through the air or water. They eventually settle on the beds of rivers,

or exit into large bodies of water through deltas. The loose particles at the riverbeds

are turned into sedimentary rock through the process of lithification. Closer to the

mouths of rivers, in deltas, estuaries, and mouths, sediments are driven by gravity

into deeper waters due to the density difference between the sediment-laden flow and

the ambient water [8]. These turbidity currents drive sediments into deeper waters,

depositing them on the seafloor or lake beds. An example of these currents can be

seen in Fig. 1.1a. The accumulation of particles will alter the landscape of these ma-

rine systems. The process of accumulation after particles are advected by the currents

occurs within the regime of sedimentation. Predicting, controlling, and monitoring

sedimentation rates and amounts is key in combating many environmental risks, such

as siltation, flooding, and collapse of coastal ecosystems, which arise from both natu-
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Figure 1.1: Examples of geophysical flows on the Earth’s surface. (a) Satellite image
of the Ganges-Brahmaputra river delta along Bangladesh’s coastline, courtesy of the
European Space Agency. Sediment plumes driven by turbidity and gravity currents
can be seen extending out into the ocean. (b) A small creek flowing between the
makeshift homes of a Manila slum is choked with a thick layer of garbage. Man
made pollutants create daily challenges for our most vulnerable communities. (c)
Pyroclastic flows of the 1984 Mayon Volcano eruption in the Philippines. Geophysical
flows are able to rapidly shape the Earth’s surface violently and catastrophically. (d)
The interface between a glacier terminus (left) and ice mélange (right) at Helheim
glacier in the Sermersooq municipality of Eastern Greenland. On the opposite end
of the spectrum from pyroclastic flows, some geophysical flows shape the Earth over
much longer timescales.
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ral forces and human pollution and interference. Sedimentation has many industrial

uses as well, including wastewater treatment, mining, and cell separation [9, 10].

We now move on from the micron to millimeter scale geophysical flows to what

is perhaps the world’s largest granular material, ice mélange. Created from a poly-

disperse collection of calved icebergs, sea ice, and brash ice in narrow fjords, ice

mélange is part of the pathway for the flux of mass from glaciers to the open ocean.

In the world’s largest fjords (Sermeq Kujalleq (Jakobshavn Isbræ)), ice mélange can

extend for up to 10 km away from the terminus, covers the full 5 km width of the fjord,

and is several hundreds of meters deep, with its “grains” ranging in size from several

meters to kilometers. Integrating ice mélange into global climate models will give us

more accurate estimations on the rates of sea level rise. For perspective, Greenland,

where most ice mélange exists, holds approximately 7.2 m of sea level rise in total, and

is predicted to release up to 180 mm before 2100. About 30% to 60% of this amount

is expected to come from marine terminating glaciers in Greenland, and ice mélange

sits right at this interface. The understanding of the feedback loop between mélange

and the glacier terminus will give us more accurate predictions on sea level rise.

Remote sensing data of ice mélange suggests that it can control the calving rates and

freshwater input into fjords [11–17]. Current models take an empirical approach to the

effect ice mélange has on glacier termini. They reproduced observed seasonal calving

dynamics using models that prescribe periodic changes in the mélange buttressing

strength [18–25]. However, this doesn’t provide a way to predict the impact of ice

mélange from observed data or granular mechanics. Integrating our understanding

of granular media into the dynamics of ice mélange will improve the accuracy of

our climate models. One might at first try to model ice mélange as an ice shelf,

but because of ice mélange’s granular nature, there are several characteristics that

make it different than an ice shelf. Mélange is porous, which allows water to intrude

between the grains. This changes the stress boundary condition at the bottom surface
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of the mélange. The intrusion of water also changes the pressure distribution within

the system, where gravity and buoyancy dictate that all mélange below the waterline

moves up, and all mélange above gets pulled down, leading to a maximum of pressure

at the waterline. Finally, because mélange is a conglomeration of grains, it is allowed

to jam and rearrange to relieve stresses throughout the system. This modulates

the forces it exerts on the glacier terminus over a short timescale, something that

continuum ice shelf models cannot capture.

Although the rest of this work will focus on the two previous systems, there

are a few interesting phenomenon in other regimes that will help round out this

description of geophysical flows. There are phenomenon on the centimeter to meter

scale, including pyroclastic flows [26], landslides [6], creeping hill slopes [27], and even

ant rafts [28]; systems on the colloidal length scale, like clay and bacterial suspensions,

and systems on the kilometer scale, like ice sheets and ice shelves. At the colloidal

length scales, there is a coupling between hydrodynamic, chemical, and mechanical

forces that leads to low porosity, cohesion, and large yield stresses. Because these

are suspensions of fluids, small colloidal particles (10−9–10−7 m), and larger sand or

silt grains (10−6–10−4 m), there is a interplay between multiple length scales that

makes it a challenging problem to address. For example, increasing the clay content

in sedimentary rocks by 30% leads to a 106 fold decrease in the permeability of the

rock [29]. Similar to blocking the pores on your skin, this decrease in porosity will

change subsurface hydrology, impeding motion of fluid into and out of the material.

Geophysical flows on the centimeter to meter scale are commonly studied in the regime

of near criticality, where they are far from equilibrium and can access different physical

regimes through tuning their temperature, stresses, and densities. Landslides occur

when the soil loses its rigidity, which stems from a decrease in its volume fraction.

Pyroclastic flows, fast moving hot turbulent mixtures of rocks, gases, and ash that

come from volcanic eruptions show remarkably complex dynamics, again due to the
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interplay between many length scales and being near criticality. Ice sheets and ice

shelves demonstrate the interplay between timescales, where they move as viscous

fluids over large timescales, but are brittle and and fracture like a solid material on

short timescales. Geophysical flows are exciting because they exist across a wide

variety of temporal and spatial scales, and exhibit behaviours in several different

physical regimes.

1.2 Non-inertial flow regimes

Many processes on the Earth’s surface exist over long timescales, such as erosion and

deposition of sediments, the movement of glaciers, and the creep of hill slopes. Long

timescales allow for the relaxation and dissipation of energy throughout the system,

causing inertial, or momentum based, effects to be dampened out. The constituent

pieces of these systems are typically in a force balance. In general, forces in the system

come from the deformations of the fluid or continuum material, the inertia of the fluid,

and external body forces. Assuming the conservation of mass and momentum, we

can write a generic set of equations for flowing and deforming materials:

∇ · v = 0, (1.1)

∇ · σ + Fext = ρ

(
∂v

∂t
+ v · ∇v

)
. (1.2)

where σ is the stress tensor of the material, which describes the magnitudes and

directions of stress (force per unit area) in the material, Fext are any external body

forces acting on the material, ρ is the density of the material, and v is the velocity

of the material. The stress tensor is a second order tensor with nine components.

Each component σij can be visualized as the stress pointing along an axis xj on the

surface with normal vector pointing in the direction xi on a infinitesimal cube of

material. The right hand side is typically called the material derivative, and (in this
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case) describes how the momentum of the system is carried by the flow. We can

expand the stress tensor into two quantities, σ = −PI + τ , known as the pressure

(P = −1

3
Tr(σ)) and the deviatoric stress (τ ). Pressure captures the total normal

stresses in the material, while the deviatoric tensor captures the shear stresses and

deformations. We make this transformation because pressure is typically a relevant

quantity of interest, and the deviatoric stress can be tailored to express the unique

qualities of different continuum materials/fluids. Making this substitution will also

allow us to make clearer parallels to our systems of interest. Equation 1.2 then

becomes:

−∇P +∇ · τ + F⃗ext = ρ

(
∂v

∂t
+ v · ∇v

)
(1.3)

To make this equation usable for a specific system, one has to identify the constitutive

relationships for the pressure and deviatoric stress tensor. For most fluids in terrestrial

water systems, we can assume that they are incompressible viscous Newtonian fluids,

which implies the following properties of the stress tensor: it is Galilean invariant, it is

isotropic, and its velocity obeys Eq. 1.1. Galilean invariance stipulates the tensor must

be the same in any inertial reference frame. This means only spatial derivatives of the

flow velocity enter into the stress tensor, ∇v. Isotropy implies that the stress tensor

looks the same no matter your orientation in the fluid. The first order object that we

can write down that has these properties is the strain rate tensor, ϵ̇ =
1

2

(
∇v +∇vT

)
.

So, we build a constitutive equation of the form τ = 2ηϵ̇ = η
(
∇v +∇vT

)
. Here, η

is the material’s resistance to deformations and flow, which we define as the dynamic

viscosity of the material. Substituting this expression into Eq. 1.3 and simplifying,

we arrive at the well known Navier-Stokes equation:

−∇P + η∇2v + Fext = ρ

(
∂v

∂t
+ v · ∇v

)
. (1.4)
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Non-dimensionalization of the equation extracts a parameter which is helpful in identi-

fying flow regimes, called the Reynolds number. The Reynolds number, Re, describes

the ratio of inertial forces within the fluid to the effect of viscous damping, and is

typically written as Re =
ρvR

η
. Here, R is a characteristic length scale in the system,

which in this context will be the size of a particle immersed in the flow. First discov-

ered and used by Osborne Reynolds in 1883 [30], the Reynolds number divides the

flow regimes of incompressible fluids into three major regimes; Stokes flow (Re ≪ 1),

laminar flow (Re ∼ 10− 1000), and turbulent flow (Re ≫ 1000), the exact numbers

for laminar and turbulent flow are dependent on the specific geometry of the system.

If the flow is within the Stokes regime, then the right hand side of Eq. 1.4 becomes

zero. This gives us the governing equations for incompressible, Newtonian fluids in

Stokes flow (alternatively called low Reynolds number flow):

∇ · v = 0, (1.5)

η∇2v + Fext = ∇P. (1.6)

Sediment particles in terrestrial waterways are found within the length scale of 10−5–10−3

m [31]. Using the values for water, ρ = 1000 kg/m3, η = 8.9×10−4 Pa·s, and using the

measured velocities of sediment laden river delta flows [32] of approximately v = 0.2

m/s, we get a Re ≈ 1–10. This is generally higher than typical Stokesian dynamics

Reynolds numbers, however this is assuming the particles are always moving at the

speed of the river itself. During settling, particles may not be advected by the flow,

and instead fall with their terminal velocity. Chapter 2 will discuss the derivation of

the Stokes velocity, and for a typical aggregate of rock with density ∼ 2000 g/cm3,

the terminal velocity would be v ≈ 2.5 × 10−4 m/s, giving us a Reynolds number of

Re ≈ 10−3, which is squarely in the Stokes regime.

Objects in low Reynolds number flows create fluid disturbances that fall off as 1/r,
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where r is the distance from the center of mass of the object. Typically, sphere-like

objects (spheroids) are expected to sediment at a constant velocity and angle [33].

However, when groups of spheres sediment, mutual drag reduction allows some to

speed up and drift closer to others, forming large clumps, or density variations. The-

ories and experiments differ because experiments typically observe an upper bound

on the size of these velocity fluctuations, while the simple theory predicts no upper

bound. This is commonly referred to as the Caflisch-Luke paradox, and is an on go-

ing problem of interest in sedimentation [34]. There are several proposed mechanisms

that screen out velocity fluctuations in real systems, which include wall effects at the

size of the experimental container [35], correlated particle positions arising from a

pre-imposed structure factor [36, 37], polydispersity [38], stochasticity in the concen-

tration [39], stratification [40], or shape effects [41–47]. Shape effects are of particular

interest because they change the interactions between particles locally. For instance,

many particles in river sediments are conglomerate rocks [48], and it has been shown

that conglomerates of uniform spheres experience a different amount of drag than a

single sphere [49]. This discussion is continued in section 1.3.

While granular materials are made of solid particles, the collective motion of the

grains evokes the image of fluid like behaviour. This suggests that we might be able

to use the same framework of Eq. 1.3 in creating granular flow models. However,

the assumptions and form of the deviatoric stress tensor must be adjusted to reflect

the physical properties of granular matter. Previously, we used a stress tensor form

that is applicable for incompressible viscous Newtonian fluids. For our purposes, we

assume granular flows are incompressible because we are typically dealing with dense

granular systems. There exist generalized Newtonian fluids, where the stress and

strain rate have the following relationship: τ = µeff(ϵ̇)ϵ̇, where µeff is an effective

viscosity that depends on the strain rate. This generalization is robust enough to

characterize several other types of fluids, such as power-law fluids, shear-thinning
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or shear-thickening fluids, and Bingham fluids [50]. Viscous behaviours are used for

materials that are flowing, but at low stresses, granular materials have been shown

to have a solid like, linear elastic response to external forcing [51]. Linear elastic

materials behave like springs, and are only dependent on the amount of strain(ϵ)

not the strain rate (ϵ̇). The constitutive relation between stress and strain can be

derived from Hooke’s law, and is σ = 2µϵ + λTr(ϵ)I, where µ and λ are material

constants called elastic moduli or Lamé coefficients. Materials can also deform like a

plastic, where they act like elastic materials at low stress, but then there is a sudden,

irreversible deformation after their yield stress has been overcome. The three rheolog-

ical frameworks can even be combined to describe viscoplastic (ketchup, toothpaste),

viscoelastic (tendons and ligaments), or elastoplastic (most solids can take some de-

formation before being irreversibly broken) materials. For granular materials, they

can withstand small deformations and hold their shape, but after a certain stress

threshold is reached, they start to flow like a fluid. Thus, rheological models often

use a viscoplastic rheology to describe granular materials, which assume the following

form for the constitutive relation:

τ = µP
ϵ̇

ϵ̇e
(1.7)

where µ is now an effective coefficient of friction that is generally a function of the

strain rate, and ϵ̇e =
√

1/2 (Tr(ϵ̇)2 − Tr(ϵ̇ · ϵ̇)) is the second invariant of the strain

rate tensor. Viscoplastic rheologies have been used to describe a wealth of granular

phenomenon [12, 52–57]. Finally, although we have have used the same continuum

mechanical framework to connect these two disparate types of flows (sedimenting

particles vs. floating granular materials), there are still major differences in how

they are applied. For one, in sedimentation, we are concerned with the movement

of particles suspended in a fluid, and so the continuum equations exist to give a
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description of the forces the fluid applies to the particles, which we then use to build

a model for the particle’s motion. In quasistatic floating granular materials, we again

have particles submersed in a fluid, however now the continuum model describes the

behaviour of the grains, and the fluid’s impact is limited to buoyant effects. As well,

the dissipation of energy in sedimentation is mediated by the fluid and the drag it

imparts on the particles, while in granular materials, it is the particle contact forces

that provide the mediation.

Like fluids, granular materials also exhibit transitions between different dynamical

regimes. The simplest way to imagine this is with sand in a bucket. As the grains

of sand sit in a bucket, you can place an object on them and they will support the

load without letting the object sink. But then you can tilt the bucket and the sand

flows out of it like a fluid. The macroscopic behaviour of the material changed from

something akin to a solid that can bear load, to a flowing fluid, without adjusting any

microscopic parameters. So what changed in the material? The transition between

these two behaviours is theorized to be a gradual change brought on by increasing

the amount of external drive, whether that is shear rate, thermal activity, biological

activity, or chemical reactivity [27, 55, 58–60]. Typically, a ratio between the timescale

of macroscopic shear, γ̇−1 and the timescale of microscopic rearrangements, I =

γ̇d
√

ρ/P is used to differentiate between the two regimes (here d is the grain size, ρ

is the density of a constituent particle, and P is the pressure [59, 61]. Historically, the

first studies found the transition from fluid like to quasistatic to lie in the range I <

10−3–10−2. The constitutive law based on the inertial number is the µ(I) rheology [52],

and is a type of viscoplastic rheology (Eq. 1.7). The µ(I) rheology can quantitatively

predict flows and stresses for granular flows above a yield stress criterion of the friction

µ = µs, below which they predict zero motion within the material. However, granular

materials still flow under the yield criterion, especially where there exists spatial or

temporal inhomogeneity in the flow [27, 55, 58, 59, 62–65]. This regime is called
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quasistatic granular flow, and for this work can be seen as an analog to Stokes flow

in sedimentation. This regime is defined by the independence of stress to the shear

rate, the divergence of interaction length scales, and an exponentially decaying shear

rate profile whose decay length scales with the sizes of grains [58, 64, 65]. This decay

is analogous to the instantaneous diffusion of momentum in Stokes flow, and creates

the potential for long range effects within the system [59, 65]. There have been recent

efforts to address the inconsistency of the µ(I) model by the introduction of an order

parameter which describes how “fluid-like” the material is behaving [60, 66–68]. In

general, the fluidity order parameter is assumed to follow diffusive dynamics, and

whose value is tied to the rheology. The fluidity tries to tie together the fact that

each regime has a different source of fluctuations. In the inertial regime, the flow of

particles themselves generates the fluctuation locally [64]. In the quasistatic regime,

the source of fluctuations come from the boundaries of the material instead [59, 69].

The boundaries are either at the confining walls of the system, or at the point of

transition from quasistatic to inertial. Again, similar to low Reynolds number flows,

the negligible effects of inertia in these “slow” materials means interactions at the

boundaries (particle-fluid for sedimentation, and the previously mentioned boundaries

for granular materials) are propagated throughout the system. Real geophysical flows

are abound with interfaces between solid materials, water, air, and organic materials.

Thus, the importance of understanding how these boundaries are coupled with the

large scale behaviour of these flows cannot be understated.

1.3 Complex particles

When modelling geophysical flows from the grain scale, the natural starting point is

to consider spherical, mono-disperse collections of particles as the constituents of the

system. However, we know that real geophysical flows are anything but homogeneous,
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uniform spheres [49, 70–73]. In Fig. 1.2a we see the sizes and shapes of sediments

within Earth’s terrestrial waterways. The wide breadth of sediment types and sizes

makes it clear that the approximation of mono-disperse spheres is far from reality.

Figure 1.2b shows an overhead view of icebergs in Sermilik Fjord, Greenland. The

iceberg size varies on the order of 100s of meters, and their shapes are rough and

jagged. It is this rough and jagged texture that allows the ice to interlock with each

other and jam in fjords, applying a back stress onto the terminus of glaciers and

inhibiting the calving of new icebergs. Particles also do not only interact with them-

selves. Geophysical flows are inherently multi-phase, and the interactions particles

have with these flows is highly dependent on their shape (Fig. 1.2c). The shape and

size distributions will change particle trajectories, fluid disturbances, inter-particle in-

teractions, and their response to external stresses [41–47, 74–77]. But the amount of

information needed about particle shapes are not equal across all systems. We seek to

understand the salient shape and composition features which will give us the simplest

model that describes a given phenomenon. For instance, during sedimentation, the

linearity of the Stokes equation (Eq. 1.6) allows us to write down a linear relationship

between the forces and velocities of an object in the fluid. More concretely, given the

body forces and torques (F⃗ and τ⃗) on the object, we can recover its velocities and

angular velocities (v⃗ and ω⃗) by:

v⃗

ω⃗

 =

TvF Tvτ

TωF Tωτ


F⃗

τ⃗

 . (1.8)

Here we’ve written down four sub-matrices that are solely dependent on the shape and

mass distribution of the particle. These matrices, when taken together, are typically

called the mobility matrix of a particle. In essence, they are similar to the Stokes

drag formula, which determines the drag force felt by an object given its velocity,

F⃗d = 6πηRv⃗. The mobility matrix expands on this concept, and encapsulates both



15

c

ba

Figure 1.2: Examples of particle shape and size disparity in geophysical systems. (a)
Classification of grain sizes in river sediments, most being within the Stokes limit.
Adapted from the National Park Service [1]. (b) Satellite image of icebergs in Sermilik
Fjord, Greenland, adapted from [2]. White shapes are icebergs, black is the surround-
ing water of the fjord. (c) Shows the interplay between particle shapes and sizes (grey
shapes), external stresses (orange arrows), and external and interstitial flows (blue ar-
rows), adapted from [3]. Earth’s surface is composed of multiple phases, dimensions,
scales, and processes.

translational and rotational drag, as well as any anisotropies in the particles shape,

such as chirality or a non-uniform mass distribution. This governing equation leads

to all sorts of complex behaviours, such as chaotic trajectories and Keplerian orbits

[43, 78–82]. Chapter 2 will go over how a simple change to the mass density of a

particle changes both its individual dynamics and the interaction between particles

in a suspension, leading to uniform sediment layers.

Constitutive particles in granular geophysics are more likely to be jagged, poly-

disperse, and an aggregate of materials of different densities [49, 71–73]. However,

modeling and experiments have been done on uniform, mono-disperse, spherical par-
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ticles. While these are great parameters for establishing the baseline dynamics of

granular materials, complex particle shapes and heterogeneous distributions of size

and composition will change a host of macroscopic behaviours, such as the nature of

the transition between quasistatic and inertial flows, the magnitude of fluctuations,

yield stress, packing fraction, and viscosity [74, 83–87]. In chapter 3, we study the

slow advance of a glacier terminus as it pushes ice mélange, the worlds largest gran-

ular material, through a rugged fjord. Laboratory techniques are used to mimic real

world fjords, allowing us to measure and model previously unseen physical aspects of

the mélange, such as its depth profile and time evolution of its terminus buttressing

strength. The shape of the constituent particles in the mélange were observed to con-

trol the interactions with the boundary, which we saw can influence the flow regimes

of granular materials in section 1.2.
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Chapter 2

Sedimentation of Mass Polar

Spheroids

This chapter is adapted from my previously published paper [88].

2.1 Background

Sedimentation is a longstanding and important problem in fluid dynamics. In its

simplest form, particles far from equilibrium settle in a fluid through some external

forcing, typically gravity, at low Reynolds number [7]. Throughout its storied history,

one can observe a microcosm of physics problems that span multiple fields. Starting

from basic hydrodynamics, the long range velocity fields generated by sedimenting

particles lead to several interesting phenomena [7, 33, 78, 89, 90]. Examples include

unbounded velocity fluctuations [34], chaotic behavior [78, 79], and periodic orbits

[43, 80–82]. Sedimentation is found throughout nature; from silt and sand in a river,

to biogenic particles in the ocean [91]. Most sedimentation work has been done

on uniform particles or particles with simple symmetries. But within nature, most

particles are not uniform. They can be rough and polygonal, and they can be made of

many different materials, causing their mass to be distributed non-uniformly [73]. For
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example, it has been found that some phytoplankton adjust their center of mass to

respond to external environmental flows for better survival in turbulent environments

[10].

Gravitational sedimentation at low Reynolds number (Stokes flow) is a special

case of the Navier-Stokes equation where inertia is negligible. Because of this, Stokes

flow is quasistatic and time reversible. For a single spherical particle of radius R and

density ρp settling in an unbounded fluid of density ρf and viscosity η, balancing

the Stokes drag force with gravitational and buoyant forces leads to the following

expression for the steady state terminal velocity:

UT =
2

9

ρp − ρf
η

gR2. (2.1)

Here g is the gravitational acceleration. The addition of many other particles in the

fluid complicates this picture. To leading order, the fluid disturbance at a distance

r from a sedimenting sphere with velocity Us and radius R scales as UsR/r. In sed-

imenting suspensions of many particles, these long range hydrodynamic interactions

complicate a local description of particle dynamics. Batchelor solved the problem of

a diverging mean sedimentation velocity [92], but Caflisch and Luke pointed out that

the velocity fluctuations were still unbounded as the system size increases [34].

To illustrate the Caflisch-Luke paradox, consider the variance of the sedimentation

velocity of a group of N particles contained in a volume of size L. The volume

fraction ϕ of particles is NVp/L
3, where Vp =

4
3
πR3 is the volume of a single particle.

Within this region, if the particles are randomly and independently distributed, the

fluctuation in particle number is simply
√
N . To find the velocity fluctuations, we can

balance the total change in the Stokes’ drag force over the suspension with the change

in gravitational and buoyant forces due to these number fluctuations: 6πηL∆v ≈

(ρp − ρf )Vpg
√
N . Solving for ∆v, we arrive at the fractional change in velocity,
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∆v/vo = L1/2
√

ϕR2/Vp. This would indicate that the velocity fluctuations depend

on the system size, L. Simulations agree with these predictions in unbounded fluids

[40, 93–97], while experiments generally observe a limit to the size of the fluctuations

[89, 98–100].

To reconcile this paradox, several different physical mechanisms have been pro-

posed. The long-ranged interactions must be screened out by some large length scale,

or by changing the interactions themselves. For example, wall effects at the size of the

experimental container [35], correlated particle positions arising from a pre-imposed

structure factor [36, 37], polydispersity [38], stochasticity in the concentration [39],

stratification [40], or shape effects [41–47]. The latter example is of particular inter-

est since it is a local change to particle interactions. Shape effects can be captured

within Stokes flow using a response matrix that only depends on particle geometry

and couples to external forces and torques.

We start by considering the Navier-Stokes equation for an incompressible fluid in

the low Reynolds number regime:

∇⃗P = η∇⃗2v⃗ + f⃗b, (2.2)

∇⃗ · v⃗ = 0, (2.3)

where P is the pressure, η is the dynamic viscosity, v⃗ is the velocity field, and f⃗b are

any body forces per unit volume on the fluid, such as gravity. The linearity of these

equations allows us to write the equations of motion for a single particle suspended

in the fluid and subjected to an external force or torque as:

v⃗(t) = TvF · F⃗ + Tvτ · τ⃗ , (2.4)

ω⃗(t) = TωF · F⃗ + Tωτ · τ⃗ , (2.5)
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which can be written in matrix form as:v⃗

ω⃗

 =

TvF Tvτ

TωF Tωτ


F⃗

τ⃗

 . (2.6)

Here ω⃗ is the angular velocity of rotation about the center of geometry, F⃗ and τ⃗

are the external forces and torques, respectively. The convention we use is the same

as Witten and Diamant [42]. The shape dependent T matrices couple the velocities

of the particle to external forces and torques. In the fixed lab frame, the matrices

depend on the particle’s orientation to the imposed flow. We can also put restrictions

on the matrices by physical insight. The dissipated power of the object, F⃗ · v⃗+ τ⃗ · ω⃗,

must be positive, which implies the diagonal blocks, TvF and Tωτ must be symmetric,

and Tvτ and TωF must be transposes of each other but not necessarily positive or

symmetric. Taken together, these matrices comprise the mobility matrix T of an

object. If you invert the relation, the matrix is called the resistance matrix. As an

illustration, for a uniform sphere in an unbounded fluid, the mobility matrix is:

v⃗

ω⃗

 =

 1
6πηR

δij 0

0 1
8πηR3 δij


F⃗

τ⃗

 , (2.7)

where δij is the Kronecker delta.

The dynamics of a single particle are determined by the time evolution of T . As

the particle moves through the fluid, its orientation can change with respect to the

center of mass velocity. The orientation of the particle relative to the force determines

what T looks like in the lab frame. Analogously, if we move to the body frame of

the particle, T becomes fixed and the force and torque become time dependent.

The motion of the particle cannot change the magnitude of the force, so only the

force’s direction changes with time. Depending on the symmetries of T , different
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classes of trajectories can be found. For a comprehensive list of these trajectories and

symmetries, refer to Doi and Makino [46], Krapf et al. [45], and Witten and Diamant

[42].

In the case of gravitational sedimentation, asymmetric particles with mass dis-

tribution polarity will undergo rotation in response to external forcing [42]. This is

because the total form and skin drag on the particle can apply a net torque when

the center of mass is in a different location than the geometric center of the particle.

Consequently, an external force leads to a net torque, and the particle will rotate so

that the external force is parallel to an eigendirection of TωF [42]. The response of

a single particle can have important implications for the sedimentation dynamics of

many particles. Recent work has theoretically explored the sedimentation of “mass

polar” prolate spheroids, whose center of mass lies along the major axis away from

the geometric center [41]. These particles are defined by two parameters: the ratio

of major to minor axes, κ, and the center of mass offset from the geometric center,

χ. Using a linear stability analysis of a uniform suspension of particles in Stokes

flow, they predicted a repulsive interaction for κ > 1 (prolate), and an attractive

interaction for κ < 1 (oblate). The effect is surprisingly enhanced for smaller values

of χ. These effects, over a large collection of particles, can either enhance particle

clustering and velocity fluctuations (κ < 1), or inhibit them (κ > 1).

Inspired by Goldfriend et al. [41, 101, 102], we experimentally tested these predic-

tions by fabricating prolate, mass polar “dimers” and “trimers.” The particles were

composed of multiple spheres of varying materials bonded together. Our experiments

tracked the position and rotation of pairs of particles in a quasi-2D environment.

First, we examined the motion of single particles in order to quantify the mobility

matrix. Using the symmetry properties of prolate spheroidal particles, we derive an

analytic solution for the particle dynamics that shows excellent agreement with the

experimental data. Then, by sedimenting pairs of particles in the same quasi-2D
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environment, we found that prolate particles experienced an effective repulsion that

increased with κ and decreased with χ, in agreement with Goldfriend et al. [41].

Finally, we sedimented hundreds of particles in a 3D container and analyzed the

distribution of their post-sedimented positions. The inherent repulsion manifested

as wider spatial distributions of particles on the floor of the experimental appara-

tus. This shows local changes in particle interactions have a large effect on global

sedimentation patterns.

2.2 Experimental Methods and Particle Fabrica-

tion

Composite particles were fabricated by gluing together smooth ball bearings using a

cyanoacrylate based glue. Each sphere had a diameter of 2 mm, and the material and

mass density of each sphere were chosen to produce various numerical values of χ. We

used the minimal amount of glue possible to adhere the spheres by applying a low-

viscosity glue instead of a viscous glue. The remaining thin layer of glue that extended

away from the contact point possibly affected the motion of the sedimentation of the

particles, but the repeatability of the experiments indicates that this has only a

minimal effect. The materials used were aluminum, stainless steel, copper, tungsten

carbide, zirconium dioxide, and Delrin. Spheres were glued in either a dimer (κ = 2)

or linear trimer (κ = 3) configuration. The accessible range of χ was 0.0-0.43. To

analytically calculate χ for any linear chain of n spherical particles, we assumed all

particles were “light” with density ρl except for a single “heavy” particle with density

ρh positioned at the end of the chain. The result is:

χ =
1

n

(n− 1)|ρh − ρl|
ρh + (n− 1)ρl

, n ≥ 2. (2.8)



23

𝜃(𝑥, 𝑦)

𝐹𝑦

𝜂 = 10,000 𝑐𝑠𝑡

𝑥

𝑦

𝑧

𝜅𝑅 𝜅𝜒𝑅

𝑅

Figure 2.1: Schematic diagram of our quasi-2D experimental setup. The tank dimen-
sions are 19 cm × 15 cm × 0.4 cm. The top of the tank has a gating mechanism
that allowed us to drop multiple particles simultaneously. The mechanism consists
of a slotted piece of acrylic and a metal rod in a U shape. By moving the prongs
of the rod, the horizontal part can be rotated out of the plane, releasing the parti-
cles simultaneously. The schematic on the right depicts a κ = 2 composite particle
and coordinates in the lab frame. θ is defined as the angle between the composite
particle’s major axis and the vertical direction. The orange sphere has a larger mass
density in this case, so the center of mass is shifted away from the center of geometry
(black cross) to the position indicated by the black cross. On the bottom right, a
physical representation of κ and χ is shown on an example particle. The center of
mass of the particle is offset by an amount κχR. For all our experiments, R = 1 mm,
and the typical Reynolds number was ∼ 10−4.

The center of mass is displaced by a distance κχR, for a physical representation of κ

and χ, see Fig. 2.1.

Two sets of experiments used a quasi-2D tank made out of cast acrylic (Fig. 2.1).

We laser cut sheets of cast acrylic and used SCIGRIP® 4 acrylic plastic cement to

glue them together to create a tank of dimensions 19 cm high, 15 cm wide, with a gap

of thickness 4 mm. The tank was filled with pure silicone oil of kinematic viscosity

10,000 cSt and density of 0.971 g/cm3. A gating mechanism was placed at the top

of the chamber consisting of a thin rectangle of acrylic with 2.5 mm holes spaced

out evenly. The holes helped to align the particles so that the initial orientations are

fixed before sedimentation. A thin metal rod held them in place and facilitated a

simultaneous release of the particles at the beginning of an experimental run.
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Material Combinations ρl (g/cm
3) ρh (g/cm3) κ χ

St+St 7.82 7.82 2 0
Cu+St 7.82 8.92 2 0.033
St+ZrO2 5.68 7.82 2 0.080
Cu+ZrO2 5.68 8.92 2 0.11
Al+Pl 1.42 2.79 2 0.16
Tc+St 7.82 15.63 2 0.17
St+Al 2.79 7.82 2 0.24
Cu+Pl 1.42 8.92 2 0.36

Cu+St+St 7.82 8.92 3 0.030
Tc+Cu+Cu 8.92 15.63 3 0.11
St+Al+Al 2.79 7.82 3 0.18
Cu+Pl+Pl 1.42 8.92 3 0.25
St+St+St 7.82 7.82 3 0

Table 2.1: The different types of particles used in out experiments along with their
corresponding κ and χ values. Materials used are: steel (St), aluminum (Al), copper
(Cu), Delrin plastic (Pl), tungsten carbide (Tc), and zirconium dioxide (ZrO2). Values
of χ are kept to two significant digits.

After the particles were released, we imaged their sedimentation using a CCD

camera (Point Grey) at 6 frames per second with a spatial resolution of 12 pixels

per mm. After recording, we processed the images using ImageJ [103] for easier

detection of each sphere in a composite particle. Images were first binarized with a

brightness threshold, then each sphere was separated with a watershedding algorithm.

The resulting image was eroded, leaving us with easily-trackable objects composed of

white pixels. Particle tracking and linking between frames were done with TrackPy

[104]. The resulting trajectories of the individual spheres were used to calculate

various quantities associated with the dynamics of the composite particles.

The second set of experiments were done in a cylindrical 3D chamber of diameter

of 12 cm and a height of 21 cm (see Sec. 2.4). The chamber was fabricated from

a cast acrylic tube with wall thickness 12 mm. The chamber was also filled with

silicone oil of the same viscosity (10,000 cSt). We placed 100 particles of a single κ

and χ combination in the fluid and sealed the chamber so that there were no trapped
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air bubbles. Particles were allowed to sediment under gravity to the bottom of the

chamber, and the distribution of particles was imaged from above. We then flipped

the chamber and repeated the experiment 50 times for each set of particles. Due to

finite-size wall effects driving convection and particles resting on top of one another,

identifying the individual spheres from each particle was not feasible, as done in the 2D

experiments. Thus, images were cropped and binarized and the spatial distributions

of black pixels were analyzed.

The quasi-2D geometry allows us to easily track the position and rotation of

particles, but it also imposes a form of screening for the interactions between particles.

The divergence of velocity fluctuations in suspensions arises from the 1/r decay of

velocity around a sedimenting particle, however, in confined 2D environments the

fluid flow decays as 1/r2. A detailed discussion of the differences can be found in

Beatus et al. [105]. The faster decay allows convergence of the velocity fluctuations

found in 3D, meaning that the majority of the screening is provided by the confining

walls of our chamber. Although this is important for a statistically large number of

particles, our results show that mass polarity strongly affects sedimentation dynamics

in both 2D and 3D geometries.

2.3 Results and Discussion

2.3.1 Single Particle Dynamics

After fabricating the composite, prolate particles, we observed the sedimentation of

single, isolated particles to better understand their dynamics and to extract the terms

in the mobility matrix (Eq. 2.6). The response of a single particle to an external force

or torque informs its effective interactions with neighboring particles [41, 42]. For ex-

ample, a rod-shaped particle of uniform mass density will sediment without a change

in its initial angle [33, 42]. This results in a diagonal drift. However, the mass polar-
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Figure 2.2: Two representative examples of the particle trajectories in our single
particle experiments. x = 0 is defined as the geometric center of the particle at the
earliest time. Panel (a) shows a particle with χ > 0 (Cu+St, see Table 2.1). The
left part of the panel is a composite image of the particle during the length of the
experiment. The right graph shows the corresponding particle orientations, with the
arrows pointing from the heavier sphere (Cu) to the lighter sphere (St). The color bar
represents time. Gravity points downward in all pictures. Panel (b) shows a particle
with χ = 0 (St+St).

ity of our objects causes them to align with the external gravitational field, meaning

that a mass polar object will rotate until its center of geometry lies directly above its

center of mass (θ = 0). For our experiments, mass polar particles were released from

an initial angle of θ = π, so that they rotated a total of π radians throughout the

sedimentation process. A trajectory for a single κ = 2 particle composed of Cu+St

(see Table 2.1) is shown in Fig. 2.2a. Particles with larger values of χ rotated much

more rapidly due to the larger gravitational torque applied to the geometric center

of the particle. This can be compared with a St-St particle in Fig. 2.2b, which shows

no preference for rotations since it has no mass polarity (χ = 0). For particles with

χ = 0, we occasionally observed “fluttering”, or oscillations of angular orientation

during sedimentation. This was likely due to interactions with the walls of the exper-

imental chamber during slight rotations out of the quasi-2D plane of the experiment

[106, 107].
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To quantitatively capture the coupling between the external force and dynamics

of single particles, we applied the mobility matrix formalism (Eq. 2.6). Because

we are using a quasi-2D geometry, the complexity of the problem is reduced since

the particle can only rotate in the plane. However, the mobility coefficients will be

different from those measured in an unbounded, 3D fluid. With two planar walls, our

experimental setup is most similar to a Hele-Shaw cell, where the mobility matrix

formalism has already been successfully implemented [108] and tested [109]. Because

we are considering symmetric prolate particles, the mobility matrix in the body frame

(indicated by superscript b) is reduced to:


vbx

vby

ωb
z

 =
1

6πηR


at 0 0

0 bt 0

0 0
3ar
4R2



F b
x

F b
y

τ bz

 , (2.9)

where vbx and vby are the translational velocities in the body frame and ωb
z is the

angular velocity perpendicular to the plane of motion. F b
x and F b

y are the components

of the gravitational force in the body frame, and τ bz is the external torque from gravity

about the particle’s center of geometry (see Fig. 2.1). The dimensionless translational

mobility coefficients bt and at represent mobility along the major and minor axes of

the particle (bt > at). The dimensionless rotational mobility coefficient is ar. These

coefficients should be identical for all of our particles with the same κ andR, regardless

of the internal density distribution (χ). They characterize the drag from the external

flow, which applies stress on the surface of the particle.

Our experimental data, however, are collected in the lab frame. Thus, we first

rotate all vectors and the mobility matrix by an angle θ (Fig. 2.1) to obtain the
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equations of motion in the lab frame:

Ω =


cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

 (2.10)

Ω ·


vbx

vby

ωb
z

 =

Ω · 1

6πηR


at 0 0

0 bt 0

0 0
3ar
4R2

 ·Ω−1

Ω ·


F b
x

F b
y

τ bz

 (2.11)

After multiplying and collecting terms, we use the substitutions 2c1 = at + bt, 2c2 =

bt − at, and c3 = 3ar/4 to write the result in the following form:


vx

vy

ωz

 =
1

6πηR


c1 − c2 cos(2θ) c2 sin(2θ) 0

c2 sin(2θ) c1 + c2 cos(2θ) 0

0 0
c3
R2




0

Fy

τz

 . (2.12)

We have chosen this parameterization out of convenience. For example, in the case of

a perfect sphere, bt = at, thus c1 = 1, c2 = 0, and c3 = 3/4 (Eq. 2.7). We have dropped

the superscript since we are referring to the lab frame where the gravitational force

only points in the y-direction. The matrix multiplication above gives us the following

equations of motion for our particles in the lab frame:

vx = ẋ =
c2 sin(2θ)

6πηR
Fy, (2.13)

vy = ẏ =
c1 + c2 cos(2θ)

6πηR
Fy, (2.14)

ωz = θ̇ =
c3

6πηR3
τz. (2.15)
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Figure 2.3: Data for 5 experiments with a single Al+Pl particle (Table 2.1). Only 5%
of points are plotted for clarity. Initially, the heavy aluminum sphere begins above
the lighter Delrin sphere. Open symbols represent data, and curves are model fits
from Eqs. 2.23, 2.25, and 2.24. Different symbols and colors are separate experiments.
Inset: residual difference between the model fit ym and the data y for the vertical
position of the particle.
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Figure 2.4: Best-fit parameters vs. χ from Eqs. 2.23-2.25 for single particle sedi-
mentation experiments with κ = 2. The material combinations used were: circle,
St+St; diamond, Cu+St; plus, St+ZrO2; right triangle, Cu+ZrO2; square, Al+Pl;
star, Al+St (see Table 2.1). Each data point is the weighted mean of five different
trials with error bars representing the standard error of the mean. Panels (a-c) show
the parameters c1-c3 directly computed from the nonlinear regression of data in the
lab frame. Panels (d-f) show the body frame coefficients: at, bt, and ar. St+St is
missing from c3 and ar because of the limiting form of θ(t) when χ = 0 (Eq. 2.26),
which has no dependence on c3.
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The dotted variables denote differentiation with respect to time. Similar simplified

equations for single particle dynamics in quasi-2D geometries have been derived by

Bet et al. [108] and Ekiel-Jeżewska and Wajnryb [110]. In our experiments, the net

force and torque on a particle will depend on the values of κ and χ. For κ = 2

particles, the net gravitational force, and torque about the center of geometry are:

Fy = −4

3
πR3(ρh + ρl − 2ρf )g (2.16)

τz = −4

3
πR4(ρh − ρl)g sin θ. (2.17)

Equations 2.13-2.15 are coupled through θ, and can be solved analytically. However,

the solution can be generalized by making the equations dimensionless. We used the

sphere radius R for a characteristic length scale, and τ = R/UT for the characteristic

time scale, where UT is the terminal velocity of the lighter sphere (Eq. 2.1). This

nondimensionalization results in the following equations of motion, where all variables

are considered dimensionless for clarity of notation:

ẋ = −K1c2 sin(2θ) (2.18)

ẏ = −K1(c1 + c2 cos(2θ)) (2.19)

θ̇ = −K2c3 sin(θ) (2.20)

K1 =
ρh + ρl − 2ρf

ρl − ρf
(2.21)

K2 =
ρh − ρl
ρl − ρf

(2.22)

Equation 2.20 can be immediately solved since it is independent of the other equations.

The result is:

cot

(
θ(t)

2

)
= cot

(
θ0
2

)
eK2c3t, (2.23)
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where θ0 is the initial value of θ at t = 0. Plugging this back into Eqs. 2.18 and 2.19

and simplifying algebraically, we get:

x(t) = x0 +
4c2FK1 cot(θ0/2)

c3K2 − c3F 2K2 cot(θ0/2)2
− 2c2K1 sin (θ0)

c3K2

, (2.24)

y(t) = y0 −
K1

K2c3

(
(c1 + c2)c3K2t+ 2c2

(
cos(θ0) +

1− F 2 cot2
(
θ0
2

)
1 + F 2 cot2

(
θ0
2

))) , (2.25)

where F = eK2c3t is a function of time, and used here for compactness. In the limit of

particles with uniform mass density (K2 → 0, χ → 0), these functional forms simplify

to:

θ(t) = θ0, (2.26)

x(t) = x0 − c2K1t sin(2θ0), (2.27)

y(t) = y0 −K1t(c1 + c2 cos(2θ0)). (2.28)

Equations 2.26-2.27 verify the prediction that for polar particles of uniform density,

the angle of inclination doesn’t change, and the particle drifts laterally in the x-

direction [33].

After taking the inverse cotangent of Eq. 2.23 and using standard least-squares

nonlinear regression, we can fit these analytic forms to the experimental data with

very good agreement. Figure 2.3 shows 5 identical experiments and their correspond-

ing fits. For θ(t), there are only 2 fitting parameters, c3 and θ0. Once they are

determined by the fit, then x(t) can be fit for the parameters c2 and x0. Finally, y(t)
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can then be fit for c1 and y0. The curves are compared to each other by assigning

t = 0 when the particles are completely horizontal, i.e. θ = π/2. We also moved the

x and y origin to correspond to t = 0. Open symbols represent data, and curves are

the fits to Eqs. 2.23, 2.25, and 2.24. The fits for the x-position show more system-

atic deviation from the data, yet the overall displacement is also much smaller. For

example, as shown in the inset in y vs. t, the residuals of these fits are comparable

to the variability in x vs. t, which is a fraction of a particle radius in displacement.

Although the source of the systematic asymmetry is unclear, we suspect that when

particles are released from the gating mechanism, they are not perfectly parallel with

the walls of the quasi-2D chamber. If a particle’s alignment varies during the rotation

from θ = π to θ = 0, we would expect variations in the mobility coefficients (i.e., c2)

due to wall effects [35, 106], resulting in an asymmetry in x(t) about θ = π/2. Addi-

tionally, we do not expect errors in particle tracking to lead to systematic asymmetry

even though the x-motion is on the order of the particle size. Tracking errors would

manifest more as random noise rather than systematic deviations from theory. The

data for θ, x, and y can also be fit simultaneously using a global least squares regres-

sion for all parameters, since parameters appear in multiple equations. We found less

than 5% difference in the fitted parameter values using this method, so we have only

chosen to report the results of the sequential fitting. Similar analytic solutions and

quality of fits were recently found in the alignment of mirror-symmetric particles in

a microfluidic device [108, 109].

One of the major assumptions of our model was that all coefficients are indepen-

dent of χ, and only depend on the shape of the composite, prolate particles. This

is evident from Eq. 2.9, since at, bt, and ar are dimensionless coefficients that only

depend on the particle shape, not the density distribution. We confirmed this predic-

tion using all fits of single particle experiments with κ = 2, as shown in Fig. 2.4a-c.

The coefficients c1, c2, and c3 are computed directly from nonlinear least-squares re-
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gression of the data (Eqs. 2.18-2.20). For particles with χ = 0 (uniform density), we

used Eqs. 2.26-2.27 to fit the data. In this form, there is no torque from gravity, so c3

cannot be determined and is not shown. However, c1 and c2 can be determined, but

are not very reliable because of experimental artifacts that affect the angle (and thus

translational velocity) during sedimentation. These artifacts include small differences

in the distribution of glue used between the particles, rotations out of the quasi-2D

plane, and other 2D confinement effects such as “fluttering” [35, 106, 107]. For finite

χ, the particles rotate significantly due to gravitational torque, and c1, c2, and c3

can be determined reliably. There appears to be some small systematic trend in c1,

but the overall variation is small and the data for all parameters is consistent with a

constant value over the range 0 < χ < 0.25.

Using 2c1 = at + bt, 2c2 = bt − at, and c3 = 3ar/4, we computed the shape-

dependent drag coefficients of our symmetric particles in the body frame, as shown

in Fig. 2.4d-e. Here again, ar cannot be determined from χ = 0 data, and data

with finite χ are most reliable. The average values of these mobility coefficients with

χ > 0 are shown by the dashed lines: āt = 0.328 ± 0.018, b̄t = 0.404 ± 0.012, and

ār = 0.221 ± 0.008. We suggest that these experimental values for the mobility

coefficients can be compared directly to simulations of particles composed of spheres

[111]. In comparison to sedimentation in an unbounded, 3D fluid, we expect our

measured values of at, bt, and ar to be somewhat smaller since the particles experience

a larger drag due to the confining walls.

2.3.2 Sedimenting Particle Pairs

Goldfriend et al. [41] theoretically examined a sedimenting suspension of mass polar

spheroids using a continuum linear stability analysis. To briefly summarize their re-

sults, they considered a suspension of particles settling due to an external body force

F in the direction of gravity in a fluid of viscosity η. A sinusoidal concentration per-
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turbation was applied in a direction perpendicular to the force with amplitude c(x)

and a characteristic wavelength λ. These fluctuations in the concentration create

velocity fluctuations, U(x). Balancing the change in gravitational force of the sus-

pension versus the change in the drag force gives: cλF ≈ Uη/λ. By solving for the

amplitude U , we see that U ∼ cλ2F/η. The indefinite scaling of U with λ is a demon-

stration of the Caflisch-Luke paradox described in the introduction. These slabs of

particles will also experience vorticity of the magnitude U/λ ∼ cλF/η. For uniform

spheres, this will cause a rotation of the sphere, but no drift. However, self-aligning

objects will be tilted away from their preferred alignment. This causes a drift in the

x-direction with velocity ∼ γRcF/η, where γ = γ(κ, χ) is a proportionality constant

determined by the shape and mass distribution of an individual particle. For positive

γ, which requires κ > 1 [41], the relative velocity of the particles is positive, meaning

they drift away from each other. This is the screening mechanism that stabilizes the

suspension. For negative γ, which requires κ < 1, they drift towards each other,

leading to unbounded growth of the instability.

In our experiments, we examined the particle-level interactions by measuring the

relative separation of pairs of prolate (κ > 1) particles as they repel each other

during sedimentation. We placed two particles heavy-side down in adjacent slots of

the plastic gate so that their initial separation was 3.3 mm. Each experiment was

conducted five times for reproducibility. Figure 2.5 shows a representative selection

of settling trajectories for various values of κ and χ. These are composite images

of the particles during sedimentation, spaced 3.33 s apart. The arrows to the right

of each panel show the orientations of each particle during sedimentation, and the

color represents time. First, particles with χ = 0 heavily influenced each other. Their

dynamics were typically characterized by one of the particles rotating or flipping

completely. This particle often lagged behind the other one, which did not flip,

but followed a curved trajectory. This can be seen in both Fig. 2.5a and Fig. 2.5d.
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Figure 2.5: Experimental trajectories of two-particle interaction experiments. In each
alphabetic panel, the image shows a composite of the particles’ trajectories during
sedimentation. The graph shows the orientation of the particles with arrows pointing
from the heavier particle to the lighter particle(s). The color is used to show when
two arrows are at the same time during their transit. x = 0 is defined as the halfway
point between the particle centers on the first frame. Panels (a), (b), and (c) are
κ = 2 particles, panels (d), (e), and (f) are κ = 3 particles. Panels (a) and (d) show
particles with χ = 0. Panels (b) and (e) show particles with the smallest χ, Cu+St
(see Table 2.1). Panels (c) and (f) show particles with the largest χ, Cu+Pl (see
Table 2.1).
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The particles did not preferentially align to gravity, and instead produced a variety

of dynamics. For example, the periodic variation in separation visible in 2.5d is

reminiscent of Kepler orbits observed in sedimenting pairs of disks [43]. In fact,

a periodic variation in the relative position between adjacent, sedimenting prolate

particles was theoretically predicted by [82] (Fig. 4). On average, we did not observe

a net repulsion or attraction between our particles with a uniform mass distribution

(χ = 0).

For particles with χ > 0, there was an immediate rotation and repulsion between

the particles leading to a horizontal separation that grew with time. Eventually

the particles would align with the external gravitational field, and the separation

saturated. This is shown in Figs. 2.5b-c for κ = 2 and Figs. 2.5e-f for κ = 3.

The finite width of the quasi-2D chamber, 4R, introduced a length scale that could

potentially set an upper limit on the range of the repulsive interaction. However,

we observed that the final separation between the particles could be as much as

30R (Fig. 2.5e) for smaller values of χ. The repulsive effect was most prominent

for particles composed of materials with closely-matched densities (i.e. copper and

steel). Although this may seem counter-intuitive at first, particles with 0 < χ ≪ 1

can rotate away from vertical more easily, and thus experience a larger repulsion and

horizontal drift. As χ → 0, we expect one of the particles to be able to flip entirely if

they are close enough to interact strongly, leading to the periodic type of interactions

observed for χ = 0 (Figs. 2.5a and 2.5d). In this limit, the eventual behavior of the

sedimenting particles should be determined both by χ and by the initial separation.

The inverse relationship between χ and the mutual repulsion was also predicted

by Goldfriend et al. [41]. The authors found that the growth rate of the horizontal

velocity fluctuations scaled as γ = κ2/3/3χ for highly prolate particles (κ ≫ 1). To

quantify this effect in our experiments, we chose to measure the total change in hor-

izontal separation, ∆H, between the particles’ geometric centers in each experiment.
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Figure 2.6: Graphs of our experimental response parameter, ∆H, versus κ. ∆H
is defined as the difference between the final and initial horizontal separation. The
colors and shapes represent different material combinations of the composite particles.
By order of increasing χ, they are Cu+Pl (upright triangle), Al+St (upside down
triangle), Tc+St (star), and Cu+St (circle) (see Table 2.1). Panel (a) is the raw data,
with each data point being an average over five runs and error bars representing one
standard deviation. Panel (b) is the same data collapsed using the best fit parameters
obtained from Eq. 2.29.
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This is plotted in Fig. 2.6a as a function of κ. Generally, the separation increased

with κ. However, in order to compare between each set of experiments that corre-

sponded to different values of χ, we multiplied the final separation by χα, where α

was determined by simultaneous fitting of all the data to the following form:

χα∆H

2R
= A(κ− 1), (2.29)

where we have imposed the requirement that there be no repulsion for κ = 1 (i.e.

single spheres). The fit was performed by subtracting the left and right hand sides

of Eq. 2.29, squaring the difference, and summing over all data points. The best fit

values for the parameters were α = 0.39± 0.05 and A = 1.28± 0.20, where the errors

represent one standard error. The fit shows very good agreement with the data, as

plotted in Fig. 2.6b.

In general, the predictions from Goldfriend et al. [41] are in excellent qualitative

agreement with our experiments, yet the scaling, α ∼ 0.39, is quite different than

that predicted by Goldfriend et al. [41]: α ∼ 1. There are a few reasons that can

explain this discrepancy: 1) γ represents an instantaneous response for an initially-

uniform concentration of particles. Here we are using the final separation, ∆H, which

is essentially an integral of the repulsion between the particles in time. 2) The quasi-

2D environment should screen the long-ranged, 1/r hydrodynamic interactions [105],

so one may expect a different theoretical scaling between γ and χ based purely on

geometry. 3) Our quasi-2D chamber may introduce other effects that depend on the

thickness of the chamber, for example, it is well known that the net viscous drag force

on a sedimenting particle can be dependent on distance to a nearby wall [35, 106]. 4)

Our particles are not perfect examples of the prolate and oblate ellipsoids discussed in

Goldfriend et al. [41]. Despite these differences, the experimental data with different

values of κ and χ can be reasonably collapsed using the dependence listed in Eq. 2.29.
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Figure 2.7: Series of 3 sequential images of 29 particles sedimenting in our quasi-2D
chamber. The left column (χ = 0) shows St+St particles, and the right column (χ
= 0.24) shows St+Al particles (Table 2.1). The top row shows images at the same
vertical position near the top of the experimental chamber at early times, the middle
row shows the same particles later in time, and the bottom row shows the particles
near the end of the experiment, at the bottom of the chamber.

Lastly, we verified that this mutual repulsion led to more uniformly distributed

suspensions of many particles. We filled our quasi-2D chamber with 29 particles with

κ = 2. The left column Fig. 2.7 shows that for particles with χ = 0, there is no

preferential alignment to gravity, resulting in a large spread of particle separations,

both vertically and horizontally. Particle can flip very easily, and often came into

contact. Some of the particles experienced small rotations out of the plane as well.

The right column of Fig. 2.7 illustrates that particles with χ = 0.24 followed a more

uniform spatial distribution. All particles tended to align with gravity, resulting in a

mutual repulsion. When particles are in close proximity, they tilted away from the

vertical and drifted apart, similar to Fig. 2.5. Surprisingly, the particles with χ =

0.24 did not spread as much in the vertical direction as χ = 0, suggesting that vertical

fluctuations in concentration may be suppressed for χ > 0. An intuitive explanation

for this behavior stems from the variations in vertical velocities of particles. For
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Figure 2.8: (a) Experimental procedure for 3D sedimentation. The sealed chamber
was repeatedly flipped and imaged, as described in Sec. 2.2. (b) Sample image from
the side during a single sedimentation experiment of particles with χ = 0 and κ = 3
(St+St+St). (c) Sample image during sedimentation of particles with χ = 0.18 and
κ = 3 (St+Al+Al).

χ = 0, particle rotations lead to a spread in vertical terminal velocities (Eq. 2.25),

whereas particles with χ > 0 are mostly aligned to gravity and sediment at the same

rate. Although vertical fluctuations were not directly addressed in Goldfriend et al.

[41], we hypothesize that the mutual repulsion in mass polar particles also suppresses

the “clumping instability” observed in uniform suspensions [44] that leads to large

vertical separations between particles.

2.4 3D Particle Suspensions

Although the effective repulsion between our prolate particles is apparent in a con-

fined, quasi-2D environment, it is possible that the dynamical evolution of these par-
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Figure 2.9: (a) Sample images of particles resting on the bottom of the 3D chamber
after sedimentation. The left column shows κ = 2 particles with χ = 0 (St+St;
top) and χ = 0.24 (St+Al, bottom). The right column shows κ = 3 particles with
χ = 0 (St+St+St; top) and χ = 0.18 (St+Al+Al, bottom). We quantified the radial
distribution of black pixels at a different radii r from the center of the sedimented
pattern, as indicated by the magenta arrow. (b) Radial probability density function
(PDF) of black pixels from the images. The radius has been normalized by rrms for
χ = 0 (Eq. 2.30). The legend indicates the values of κ and χ for the different PDFs.
Each curve was produced using data from 50 post-sedimented images.
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ticles in 3D could hinder the repulsion since the particles have more motional degrees

of freedom. Figure 2.8 illustrates the experimental procedure, described in Sec. 2.2,

where particles are sedimented repeatedly and their resulting spatial distribution is

imaged after each repeated experiment. For χ = 0, particles tended to cluster during

sedimentation, resulting in a rapid increase in their velocity due to mutual drag re-

duction at finite distances. For χ = 0.18, there is a visible alignment of particle to the

direction of gravity (vertical), and a broader spatial distribution with less clustering.

To quantify the post-sedimentation spatial distribution of particles, one would

ideally extract the center of mass position of each particle and calculate the radial

distribution function of their positions. However, after sedimentation we found that

particles often overlapped by stacking in the vertical direction, making identifying

the center of mass impossible. Instead, we choose to threshold the images so that

particles became black pixels, and the background became white. Samples of these

images are shown in Fig. 2.9. We then calculated the radial distribution function of

the positions of the black pixels. This was done by first finding the center of mass

of all black pixels, corresponding to r = 0 in each image, and then binning pixel

positions radially along r. We divided the number of pixels in each bin range by the

area of the annulus associated with the bin. In order to compare between κ = 2 and

κ = 3, we also normalized the radial positions by the root mean squared radius of

the data for χ = 0, calculated by:

rrms =

√
1

N

∑
r

r2. (2.30)

Here, the sum runs over every black pixel in all 50 images associated with χ = 0, and

N is the sum total of all black pixels from all images with χ = 0.

The resulting distribution functions are shown in Fig. 2.9. After normalizing the

radial position, we see that all data for χ = 0 collapses onto the same distribution
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(dashed lines). As expected, when χ > 0 (solid lines), these distributions broaden due

to the net repulsion between the particles. Furthermore, particles with larger κ and

smaller non-zero χ should experience a larger respulsion, as predicted by Eq. 2.29.

This is consistent with our data, since the distribution for κ = 3, χ = 0.18 is broader

than for κ = 2, χ = 0.24. We note that because the initial state of each round of

sedimentation was set by the final state of the previous one, the sequential images

of the final sedimentation pattern were not statistically independent. Nevertheless,

we don’t expect these effects to qualitatively change our results, and taken together,

Fig. 2.8 and Fig. 2.9 confirm that the effective pairwise repulsion between mass polar

particles also suppresses clumping in 3D.

2.5 Conclusion

Particles with mass polarity are forced to align with the direction of gravity during

sedimentation. This alignment arises because the center of mass is displaced from

the geometric center of each particle, resulting in a net torque imposed by the fluid

flow. Our work examined the motion of single particles sedimenting in a viscous

fluid, and we derived a simple analytic expression for the their motion in a quasi-2D

environment. Fitting trajectories of the individual particles allowed us to reconstruct

the parameters of the mobility matrix. When two or more prolate particles are

present, we showed that they experience a mutual repulsion, as first described by

Goldfriend et al. [41]. Surprisingly, this repulsion is strongest for small values of χ,

i.e. when the center of mass is only slightly displaced from the center of geometry.

The repulsion also increases as the particles become more asymmetric (more prolate,

large κ). We also showed that this overall repulsion persists in 3D experiments with

hundreds of particles.

There are still many open questions facilitated by this work. First, Goldfriend
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et al. [41] showed that there should be a mutual attraction between particles for

κ < 1. We found that our particle fabrication method, i.e. gluing individual spheres

together, did not easily lend itself to making oblate particles with κ < 1. Such

particles would cluster rapidly during sedimentation, and may dramatically increase

the overall sedimentation rate of a suspension of particles. Additionally, Goldfriend

et al. [41] predicted the existence of hyperuniformity in the density distribution of a

sedimenting suspension. Our experimental results in 3D demonstrate a net repulsion

and a more uniform concentration, yet we would need many more particles with

accurate tracking in 3D to quantify hyperuniformity. One alternative route could be

simulating many particles efficiently with a parameterized interaction based on our

results. We hope our simplified mobility matrix may serve as a starting point for such

idealized simulations of many interacting particles.

2.5.1 Future Outlook

This discussion has been focused on geometrically symmetric particles, albeit with

rotational asymmetry provided by a center of mass offset. However, natural particles

rarely ever exist as such idealized shapes [49, 71–73]. One avenue of investigation

left open is the question of what happens when we relax the assumption of mirror

symmetry. Particles without mirror symmetry are called chiral, and they are char-

acterized by the fact that there does not exist a plane that, once mirrored across, a

particle and its mirror cannot be mapped onto one another through simple rotations

and translations. The prototypical example of a chiral object is the helix. Sedi-

mentation of chiral objects has been studied extensively using theoretical measures

[42, 45, 46, 101, 112, 113]. As we saw with mass polar objects, simple adjustments

to the geometry of particles will cause them to translate or rotate when driven by an

external force. Tuning specific parameters of the particles (e.g. density or size) can

change the degree and form of response intrinsically. This allows control of particle
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Figure 2.10: Showcase of chiral sedimentation experiments and new sedimentation
tank. (a) and (c) A mass polar, non-chiral object with an unedited trajectory (a) and
stretched trajectory (c). (b) and (d) A mass polar, chiral particle with an unedited
trajectory (b) and stretched trajectory (d). Grey particles are aluminum, and orange
particles are copper. All spheres are 2 mm in diameter. The stretched trajectory
elucidates the drifting, spiral like motion predicted for chiral objects. (e) Schematic
of new sedimentation tank, the base of the tank is a square. (f) and (g) Other chiral
particle shapes that will be explored in future sedimentation experiments. The red
star indicates the center-of-mass of the composite particle, the black X represents the
geometric center of the object.
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transport without the need for any external fields or driving. We physically real-

ize chiral particles through a center-of-mass offset outside of the particle’s symmetry

plane, which has been predicted to produce a chiral response in sedimenting suspen-

sions [42]. An example can be seen in Fig. 2.10a and 2.10b, where both particles

are mass polar, but only the particle in 2.10b demonstrates a chiral response. To

study chiral sedimentation, we have been developing new chiral particles and a new

sedimentation chamber that provides several upgrades to our current experiments. A

diagram of a few of our new particles can be seen in Fig. 2.10a, b, f, and g. We glue

2 mm spheres of different materials together, and we place the heavy sphere outside

of the symmetry plane of the object, causing it to become chiral [42]. At least four

particles are needed to create a chiral particle, because no matter how you glue three

spheres together, they will always share a symmetry plane. Even for mass polar par-

ticles, three spheres cannot be glued together in such a way as to produce a chiral

particle. For our chamber, we want to reduce the effects of the walls on our particles,

since it is known that sedimenting particles close to boundaries experience a modified

drag force that is dependent on the distance to the wall [35, 106, 114]. We also need

a taller viewing area in an aim to capture multiple periods of particle rotations. The

chamber is now a 15.24 cm x 15.24 cm x 76.2 cm rectangular box, seen in Fig. 2.10e,

with a single input and output hole for particles to travel through. These holes allow

us to retrieve particles easily after experiments, as we found pulling particles back out

of our 2-D chamber was difficult and wasted a lot of silicone oil in the process. These

holes can be sealed on the outside so that the tank may be flipped multiple times to

allow repeated trials to be done on the same particle. Variations in the fabrication

of particles won’t be as impactful using this method since the same particle can be

used for a set of experiments. The chamber will also be allowed to rotate about one

of its short axes, with each flip being the start of a new sedimentation experimen-

tal run. As the particle sediments, we will image it with a single camera at a fixed
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distance. However, the extraction of the 3-D orientation is necessary to quantify the

particle’s trajectory, so a procedure to resolve the orientation is needed. The brute

force approach is to use a second camera and reconstruct the trajectories from both

viewpoints. We can improve on this method because we know our particle shape in

each experiment. The particles are simple enough to be modelled as a collection of

spheres using Python. From there we can take projections of the particle and use

least square regression to find the projection which maps it to an image from a single

camera. On the next frame, another regression can be used to find the most likely

orientation adjustment that leads from the previous frame to the current frame. The

trajectory of the particles orientation can then be reconstructed from a single camera,

but to get the full 3-D trajectory, a second camera would still be needed to recover

all three spatial positions (x, y, and z). Design and implementation of the new ex-

perimental setup and data analysis methods is being undertaken by undergraduates

in the lab, special thanks to Tony Li and Mingxuan Liu for their hard work. Our

preliminary results (Fig. 2.10c and 2.10d) observe the predicted qualitative motion

of chiral objects [42, 45, 46, 101], where their orientation spins continuously while

sedimenting, leading to a periodic twirling motion.



49

Chapter 3

Experimental Investigations of Ice

Mélange and the Flow of Floating

Granular Materials

3.1 Introduction

Earth’s landscape is continuously shaped by granular materials [6]. Natural examples

include volcanic pyroclastic flows, avalanches, landslides, and sandstorms, but man-

made materials such as plastic rafts and industrial waste are becoming increasingly

important [115]. Granular materials can undergo sharp transitions between freely

flowing and jammed states, accompanied by large variations in stress and a poten-

tial for catastrophic failure [56, 59, 60, 116–120]. Additionally, geophysical granular

materials are often multiphase; they are strongly coupled to and transported by air

or water [3]. Floating granular materials, such as logjams [75], river ice [121], sea

ice [122], and volcanic pumice rafts [123], can jam in converging flows or narrowing

geometries, and create hazards or ephemeral perturbations to the dynamics of Earth’s

aquatic interfaces. Even insects such as fire ants intentionally form granular rafts to
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survive flooding [28]. Despite their ubiquity and importance, modelling floating gran-

ular materials remains a challenge due to the inherent difficulties in granular rheology

[67] and the large variations in particle size and shape in geophysical environments

[3].

Ice mélange is perhaps the world’s largest floating granular material [15] and is

formed from a polydisperse collection of broken icebergs, brash ice, and sea ice with

“grain” sizes ranging from meters to kilometers. Ice mélange varies seasonally and

exists in some form in most of Greenland’s fjords. Approximately half of Greenland’s

ice sheet mass flux is accounted for by iceberg calving [124]. Greenland’s ice sheet

holds an ≈ 7 m worth of sea level increase, almost 10% of worldwide ice sheet mass.

It is estimated that by 2100, the Greenland ice sheet will have contributed 79–167

mm of sea level rise, 30% to 60% of which is projected to come from calving at marine

terminating glaciers [125, 126]. Importantly, remote sensing and field studies suggest

ice mélange has a large impact on calving rates and the release of freshwater into

fjords [11–17].

As tidewater glaciers are driven by gravity into the fjord, the terminus slowly

pushes the buoyant ice mélange, compacting the granular material into a three-

dimensional wedge. Resistance to flow is provided by rocky fjord walls or geometric

constrictions. When granular materials are sheared, force chains between grains trans-

mit stress from the boundary to the bulk [120]. In ice mélange, this manifests as a

buttressing force on the glacier terminus, which can in turn impact glacial calving

rates. Throughout the year, the changes in mélange properties and dynamics coincide

with the retreat and advance of glacier termini. In the winter, the formation of sea ice

leashes the loose iceberg clasts together, forming a rigid structure that inhibits glacier

calving, allowing the advance of the glacier terminus [13, 16, 17]. In the spring and

summer, when the ice melts, the mélange’s ability to buttress is weakened, leading to

more calving events, which increases the speed of glacial retreat [13, 16, 25, 127]. Pre-
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vious studies have reproduced observed seasonal calving dynamics using models that

prescribe periodic changes in the mélange buttressing strength [18–25]. However,

this parameterization does not predict mélange buttressing strength from granular

mechanics or from observed data.

While serious and sustained effort has gone into remote sensing and modeling of

ice mélange, experimental work is limited [15]. Experiments allow us to break down

the dynamics of ice mélange to the most important parameters, separating it from

field conditions that have a coupled impact on its motion. More broadly, there are

few studies describing how buoyant granular materials behave [128], and none that

characterize internal or external stress. Ice mélange has a unique geometry in that one

end is stress-free and open to the ocean, yet granular jamming still occurs further to-

wards the glacier terminus. It is essentially an inverted granular pile. In granular piles

after “run-out” ceases, gravitational body forces are balanced by internal stresses and

friction at the walls and bottom of the containing vessel [129, 130]. Floating granular

materials lack basal friction and only experience friction at the walls [128], yet their

collapse and run-out behavior can be described quantitatively using a similar frame-

work as dry granular materials. Zheng et al. [128] formed rectangular suspensions of

millimeter-scale plastic beads held back by a removable lock gate. The experiments

consisted of removing the gate and recording the run-out evolution of the pile until

it reaches a nearly steady state, tracking the height and evolution of the front. One

of the main findings was that the initial length of the rectangular pile influences the

time it takes for the front of the pile to reach its steady state value, with longer lock

lengths decreasing the rate of spreading. They found that there is a so-called “frozen”

region near the closed end of the experiment where the height of the block does not

change from its initial height. Yet the rectangular particle shape, wall friction, and

quasistatic advancement of ice mélange make it distinct from run-out experiments

where stress fluctuations aren’t measured.
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In this study we use laboratory experiments to simulate the quasistatic advance-

ment of ice mélange in rectangular channels with frictional walls. In lieu of real ice, we

fabricated centimeter-scale plastic buoyant particles which are then slowly pushed by

a instrumented “glacier terminus” where forces can be monitored in real-time. Using

simultaneous imaging from the side and from above, we extracted depth and surface

velocity profiles across different particle shapes and frictional boundary conditions.

We find that the most glaciological-relevant conditions, the thickness of the mélange

at the terminus is sufficient to estimate the magnitude of the buttressing force, in

agreement with recent field measurements [4]. However, the results can vary by a

factor of 2-3 depending on the frictional wall condition (smooth vs. rough). Rough

walls induce constant shear and rearrangements of the particles, whereas smooth

walls lead to uniform plug flow. Additionally, we find that the thickness profile of the

mélange along the length of the model fjord is well-described by a 1D, depth-averaged

continuum model, which provides a prediction for the average buttressing force. How-

ever, the continuum model cannot capture the large force fluctuations, which are of

the same magnitude as the mean force. The experiments are supported by granu-

lar DEM simulations, which show excellent agreement over multiple conditions. Our

results suggest that the granular nature of ice mélange facilitates stochastic fluctua-

tions in buttressing that can influence sub-seasonal controls on the timing and rate

of iceberg calving.

3.2 Experimental Design and Methods

3.2.1 Experimental Methods

Figure 3.1 shows a schematic of our experimental setup. The model fjord was fabri-

cated from cast acrylic and is 2 m long, 27 cm wide, and 30 cm in depth. The visible

experimental viewing area is ≈ 1 m long, so there was an extra 1 m of space to allow
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for particles and water to flow out of view. We performed experiments using both

smooth, transparent acrylic walls, and removable, transparent, rough acrylic walls.

The rough walls had a pattern of random packed, bi-disperse circles with diameters

of 0.4 cm and 0.6 cm cut out using a laser cutter so that they acted like perforated

sheets. This created a frictional surface where the corners and edges of particles were

stuck, reducing slip at the walls. The perforated surface also allowed for imaging

from the side to measure thickness profiles. We tested four particle shapes: irregular,

spheres, rectangles, and squares. For the latter 2 particles, we are referring to their

2D cross-sections since they are both cuboids (Fig. 3.1b). All particles were made

from polypropylene, which has a density similar to that of sea ice, 0.912 g/cm3. The

rectangular and square particles were laser cut to the specific shape and were 0.635

cm thick. The irregular particles were cut using a band-saw from bulk blocks of

polyproylene, thus, their sizes were highly polydisperse, and ranged from 1.27 cm to

12.7 cm.

Our “glacier terminus” consisted of a cast acrylic plate and two shear strain sensors

(Strain Measurement Devices, Inc.), as shown in Fig. 3.1a. The sensors were chosen

for their rigidity and sensitivity, i.e., the terminus plate was solely fixed to the sensors

using L-shaped brackets. This way the plate was only supported by the force sensors,

and any extra force exerted on the plate was due to the mélange. The sensors were

fixed to aluminum rails with L-shaped brackets, which were further attached to an

aluminum rig that could freely slide back and forth. Linear motion of the terminus

was achieved by use of an Arduino and two stepper motors. The rig had two tapped

aluminum boxes, and two long threaded rods were fed into the boxes. The stepper

motors were attached to the rods, and the speed of the terminus was then determined

by the rotational speed of the motors. With this setup, the terminus speed, vT ,

could be adjusted from 0.62 mm/s to 1.5 mm/s. Most experiments were performed

at vT = 0.62 mm/s. The Arduino and stepper motors were controlled by a custom
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Figure 3.1: Cartoon diagram of our experimental setup. Panel a shows the whole
setup. An acrylic plate acts as our “glacier” terminus. It is suspended by two sets of
rails which are connected to stepper motors. We move the terminus at 0.62 mm/s.
The terminus is connected to two shear force sensors (each rated up 10 N), which
determine the total force on the plate by how much it gets deflected by the mélange.
To both image the thickness profile of the mélange, and induce rearrangements and
frictional forces from the walls, we fabricated our own “rough” acrylic sheets to act
as our side walls. To image the mélange, we use two cameras, one positioned above
to capture surface velocity fields, and one positioned on the side to capture thickness
profiles. In panel b, we show examples of the types of particles used throughout our
experiments. From left to right: Irregular, Spheres, Rectangles, and Squares. The
irregular particles are not characterized, but range in size from 1.27 cm to 12.7 cm.
Spheres have a diameter of 2.54 cm. Rectangles are 2.54 cm x 1.27 cm x 0.635 cm
and squares are 0.953 cm x 0.953 cm x 0.635 cm.
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LabView program (National Instruments). The voltage output of each force sensor

was measured at 5,000 samples per second for 0.5 s, and the measurements were

averaged to dramatically reduce noise and increase sensitivity. Thus the ultimate time

resolution of our force measurements was 0.5 s. The strain sensors were calibrated

using a pendulum with a known weight and an adjustable angle.

To image the motion of the mélange, we used two CMOS cameras whose time bases

were synchronized. One camera was mounted 1.22 m above the mélange, and the other

camera was mounted on a tripod approximately 1.83 m away. The camera frame-rate

was fixed at 1 fps, and the resolution of each camera was 2048 × 2048 pixels. A large

LED panel light was mounted on the back of the model fjord to facilitate imaging

from the side. To synchronize the cameras to the force measurements, we applied a

sharp impulse to the place that was visible in both cameras, and provided a reference

time for both measurements. Profiles of the mélange from the side were extracted and

processed using ImageJ Fiji [103]. Surface velocity fields were calculated using Lucas-

Kanade optical flow techniques, implemented in Python using OpenCV [131, 132].

Each experiment consisted of filling the model fjord with fresh water until it

reached a depth of 20 cm with the terminus submerged. The force measurement was

then zeroed so that the force recorded was only due to the mélange. A large plastic

plate was then placed at a angle of 27.5◦, which initializes the mélange into a triangular

wedge shape of length 36 cm and height 15 cm. The angle was arbitrarily chosen.

We then poured the granular particles into the wedge where they formed a floating

mélange. We kept the total mass of particles nearly the same in each experiment:

5.5 kg for squares and irregular particles, and 5.24 kg for rectangles. The large plate

was then removed, and we initiated the terminus movement and synchronized the

imaging and force measurements. The experiments ran for roughly 20 minutes while

the mélange traversed the total length of the model fjord.
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3.2.2 Glaciological Scaling

With any experiment intended to model geophysical phenomena, it is essential to

compare the relevant dimensionless numbers. In particular, we compared several

dimensionless numbers that determine the granular flow regime of our experiments in

regards to field-scale ice mélange. The first number is the ratio between the typical

size of an iceberg, d, to the width of the fjord,W . Using a typical iceberg size of d ∼ 25

m, and the width of a large fjord such as Sermeq Kujalleq (Jakobshavn Isbræ), W ∼ 5

km, the size ratio is d/W ∼ 0.005. Using the smallest particle size in our experiments,

d = 0.953 cm (squares), and the width of our model fjord W = 27 cm, the ratio

d/W ∼ 0.035. For the other two particle types, d/W ∼ 0.094 (rectangles), d/W ∼

0.047−0.470 (polydisperse irregular). Thus, the most glaciologically relevant particle

type is the smaller square particles, especially since jamming forces can increase

significantly when d/W approaches unity [15]. In addition to size, there are dynamical

dimensionless numbers as well. The buoyant particles near the surface will bob and

rock at a specific frequency. This timescale should be compared to the motion of

the terminus, i.e., the time it takes the terminus to move a typical particle size. The

bobbing and rocking frequencies (fbob, frock) of a buoyant, rectangular iceberg are

given in Burton et al. [133]:

fbob =
1

2π

√
gρw
dερ

, (3.1)

frock =
1

2π

√
g(6ρ2i − 6ρρw + ε2ρ2w)

d(1 + ε2)ρρw
. (3.2)

Here d is the dimension of the long edge of the rectangular iceberg, ε is the aspect

ratio of the iceberg, g is the acceleration due to gravity, and ρw (ρ) is the density of

water (ice). We define the quasistatic regime as the limit where vT/(dfbob) ≪ 1 and

vT/(dfrock) ≪ 1. This means that the characteristic timescale for buoyant iceberg

motion is much faster than the time it takes for the terminus to move by a distance d.
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Since Eq. 3.2 depends sensitively on the geometry of the iceberg, we will only consider

the bobbing motion for simplicity. Using Sermeq Kujalleq (Jakobshavn Isbræ) as an

example again, we assume vT = 30 m/day, d = 25 m, and ε = 1, resulting in

vT/(dfbob) = 1.3× 10−4. For our square particles, vT = 0.62 mm/s, d = 9.5 mm, and

ε = 1, then vT/(dfbob) = 1.2 × 10−2. Irregular and rectangular particles are similar

or smaller than this value. Although the experimental value of vT/(dfbob) is roughly

two orders of magnitude greater than real ice mélange, both are much less than unity,

implying that both lie squarely in the quasistatic regime. Amusingly, we note that

the velocity of our model terminus, vT = 0.62 mm/s, is equivalent to 54 m/d, close

to the actual velocity of a fast moving glacier terminus.

The two aforementioned dimensionless numbers solely described the granular scale

properties of the mélange and its relation to the movement of the glacier terminus

without considering hydrodynamics. Possible hydrodynamic effects that could influ-

ence ice mélange motion include fluid drag and iceberg wave interactions [14, 133, 134].

In the water, the Reynolds number characterizes the ratio of inertial to viscous forces,

Re = ρwvTd/η. Here, η is the dynamic viscosity of water (≈ 1 mPa·s), and we have

used the terminus velocity as the velocity scale. An typical iceberg moving at the

velocity of the glacier terminus would result in a local Reynolds number of Re ∼ 104.

This indicates that flows are mostly turbulent. Using the square particles from our

laboratory experiments, the Reynolds number is Re ∼ 10, which indicates laminar

flow. However, Re only characterizes the hydrodynamic regime of the flow, and

doesn’t indicate the strength of total forces on an iceberg. Instead, we use the Froude

number (Fr), which measures the strength of drag forces on a partially submerged

object to gravitational and buoyant forces. Defining Fr = vT/
√
gd, the iceberg-scale

Froude number is Fr ∼ 10−5, and for laboratory experiments, Fr ∼ 10−3. In both

cases, Fr ≪ 1, which means that hydrodynamic forces stemming from the slow ad-

vancement of the terminus are negligible. Thus, the surrounding water’s role is es-
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Figure 3.2: Images showing the angle of repose for three different particle types
on both smooth and rough surfaces. The particles types (from top to bottom) were:
irregular, rectangles, and squares. Panels a, c, and e show piles generated on smooth,
acrylic surfaces. Panels b, d, f show piles generated on our fabricated “rough” acrylic
surfaces. The angle of repose, θ, can be used to calculate a static coefficient of friction
using Mohr-Coulomb theory: µp = tan θ.

sentially a modified gravitational field (with buoyancy below the water line). For ice

mélange, hydrodynamic forces will be important during rapid iceberg rearrangements

or during iceberg calving [133, 134], which happen on a much higher velocity scale

than terminus motion. These forces rapidly dissipate kinetic energy, but otherwise

do not affect the quasistatic motion of ice mélange. Sub-glacial plumes that drive cir-

culation in fjords could also apply hydrodynamic forces on individual icebergs [135],

but we do not consider stratification in our current experimental study.

3.2.3 Friction in dense ice mélange

In dense granular materials, the maximum shear stress is proportional to the confin-

ing pressure, and the constant of proportionality is defined as a generalized friction

coefficient, µp. However, µp depends on both material properties and particle shape.

Highly irregular particles typically have a larger value of µp than spherical particles
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due to interlocking [74, 83]. Additionally, there is a separate coefficient of friction

at the wall of our model fjord, µw. Geometry also plays a role in determining fric-

tional force by influencing the number of particle-wall contacts and the shape of the

wall roughness. Thus, we employed two separate methods to characterize µp and µw.

The first was a typical granular column collapse using equal masses (1 kg) of square,

rectangular, and irregular particles confined inside a cylinder of radius 16 cm. Sim-

ilar experiments have been used previously to measure internal friction in granular

materials [130, 136]. We slowly removed the cylinder, which allowed the particles to

spread radially outward and form a conical pile. We examined both the rough and

smooth surfaces used as fjord walls in our ice mélange experiments. Figure 3.2 shows

examples of the end state of the experiments where each pile was arrested and no

longer flowing. We measured the approximate repose angle, θ, from the slope that

the pile made with the horizontal surface, and interpreted it using Mohr-Coulomb

theory to measure the friction coefficient: µp = tan θ. We found that µp was nearly

the same for smooth and rough surfaces, yet varied considerably with particle shape

(Fig. 3.3a). This may be expected since µp is predominantly a measure on internal

granular friction between particles. Square particles consistently had the largest µp.

We suspect that this was mostly due to the ability of rectangular particles to align

with their largest flat faces parallel to each other and the horizontal surface.

Our second method employed a simple sliding experiment to measure the maxi-

mum static friction between the particles and the walls of our chamber, albeit in a

dry environment instead of a wet one. We filled a cylinder of radius 12.5 cm and mass

295 g with the following masses of particles: squares (345 g), rectangles (330 g), and

irregulars (530 g). This was done on a 30 cm x 60 cm plate that was either rough

or smooth, similar to the walls of the fjord in our ice mélange experiments. We then

raised one end of the plate slowly using a jack until the column of material started

to slide. We recorded the angle when sliding occurs, and using the force balance be-
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a b

Figure 3.3: (a) Coefficient of internal friction (µp = tan θ) measured using the angle
of repose after the collapse of a granular column. (b) Coefficient of wall friction (µw)
measured during sliding experiments in a confining cylinder. Solid colors in both
panels represents friction measured on smooth surfaces, and hatched colors represent
friction measured on rough surfaces. Error bars were calculated from 3 repeated
experiments.

tween gravity and friction, we estimated the µw between the packed particles and the

surface. This was done three times for each combination of particle type and plate

friction. The data is summarized in Fig. 3.3b. On rough surfaces, the coefficient of

friction was much higher, except for the rectangular particles. Again, we believe that

this was because rectangles can easily align to the basal plane, resulting in less sharp

corners penetrating the crevasses of the rough surface. The squares and irregulars did

not align naturally, resulting in a much larger value of µw. Irregular particles had a

larger error bar because the particles were much larger and polydisperse, leading to

different contact patterns with the surface in different repeated experiments.

3.2.4 1D Depth-Averaged Model of Ice Mélange Thickness

Densely-packed granular materials transmit stress through individual contact forces

between particles. Nevertheless, there have been many successful attempts to model

granular materials using continuum approximations, often with complex, nonlocal
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Figure 3.4: Diagram and visual description of the variables in our model. ρ and ρw
are the densities of the ice and water respectively. ϕ is the packing fraction of the
mélange. g is the magnitude and direction of the acceleration due to gravity. δ(x)
is the height of the mélange above the water line, h(x) is the depth of the mélange
below the water line. HL is the height of the mélange at its end, which is also the
characteristic size of an iceberg in the mélange.

rheologies [12, 52, 60, 67]. The most relevant dimensionless number for determining

the regime of granular flow is the inertial number,

I = ϵ̇d
√
ρ/P , (3.3)

where ϵ̇ is the effective strain rate for the flow, ρ is the mass density of the packed

granular material, and P is the average pressure. For the ice mélange in our exper-

iments, I ≤ 10−3, meaning that the flow is well within the quasistatic regime, and

inertial effects are small. Since granular rheologies typically have the effective friction

coefficient (µp) increase with inertial number, we will assume that a roughly constant

value of µp can capture the salient features of ice mélange flow.

In our experiments, the measurements of the thickness profiles of the ice mélange

can be used to infer the frictional properties of the granular materials. To accomplish

this, we developed a continuum, one-dimensional, depth-averaged model that provides

a prediction for the thickness profile. The model is similar to other recent continuum

models of ice mélange [4, 12]. Figure 3.4 illustrates the geometry and important
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physical quantities in our model. Our approach is similar to Amundson and Burton

[12], with a few updated assumptions and methods. The main assumptions of the

model are: the flow is quasistatic so that the thickness profile doesn’t change over

time, the only driving stress is gravity, the fjord width W is constant, the packing

fraction ϕ is constant, and the variation of pressure and thickness is small across

with fjord width (y-direction) when compared to variations along the fjord length

(x-direction). With these assumptions, the stress balance becomes

∂σij

∂xj

= ρϕgeffδiz, (3.4)

where σij are components of the stress tensor, repeated indicies indicate summation,

δij is the Kronecker delta, and geff is the effective gravitational acceleration, which

is different above (geff = g) and below (geff = (1 − ρ/ρw)g) the waterline. We also

assume that the mélange is in hydrostatic balance, meaning that there are no vertical

shear forces. With these assumptions, all components of the stress tensor are zero

except for σxx, σyy, σzz, and σxy. The leading force balance equations then become

∂σxx

∂x
+

∂σxy

∂y
= 0, (3.5)

∂σzz

∂z
= ρϕgeff. (3.6)

Solving for σzz is straightforward, and results in the following piece-wise expression:

σzz(x, z) =


−ρϕg(δ(x)− z) z ≥ 0

−(ρw − ρ)ϕg(h(x) + z) z < 0

(3.7)

We note that σzz is zero at the top (δ) and bottom (−h) of the fjord since granular

contact forces are minimal here. The stress is largest right at the waterline (z = 0).

In typical ice sheet models, the pressure in the material increases with depth, and is a
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maximum at the lower boundary of the ice sheet [137]. However, because ice mélange

allows water to intrude within the material, the contact forces already reflect the

balance of gravitational and buoyant forces on each particle in the mélange.

We define the pressure with the trace of the stress tensor: P = −(σxx+σyy+σzz)/3.

We will refer to this as the “granular pressure” of our ice mélange. We then take

the total stress tensor and partition it into the pressure and the deviatoric stress:

σij = σ′
ij−Pδij, where σ

′
ij is a traceless tensor. Because we are assuming the mélange

is quasistatic, there are no deformations to the length or thickness, and thus σ′
xx =

σ′
yy = σ′

zz = 0. Using these facts, we can rewrite Eqs. 3.5 and 3.6 as:

∂σ′
xy

∂y
=

∂P

∂x
, (3.8)

P = −σzz =


ρϕg(δ − z) z ≥ 0

(ρw − ρ)ϕg(h+ z) z < 0

. (3.9)

The total height of the mélange is H(x) = δ(x) + h(x), and since we know that the

pressure must be continuous at z = 0, we can solve for both δ and h in terms of

the total thickness H. After some algebra, we arrive at δ(x) = H(x)(ρw − ρ)/ρw

and h(x) = H(x)(ρ/ρw). To proceed further, we depth average both equations by

integrating over z from −h to δ:

∫ δ

−h

∂σ′
xy

∂y
dz =

∫ δ

−h

∂P

∂x
dz. (3.10)

For the left-hand side of Eq. 3.10, the we can easily switch the order of integration and

differentiation. However, because δ and h are functions of x, we need to be careful

with the right hand side. Using the Leibniz rule in this case, we can also switch the

order of integration and differentiation since P is zero at z = δ and z = −h. Defining
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the depth averaged quantities, σ̄xy and P̄ , the result is

τ̄xy =
1

H

∫ δ

−h

τxydz, (3.11)

P̄ =
1

H

∫ δ

−h

Pdz =
1

2
ρ

(
1− ρ

ρw

)
ϕgH, (3.12)

∂ [Hτ̄xy]

∂y
=

∂
[
HP̄

]
∂x

. (3.13)

Because we assume H(x) and P̄ (x) do not vary with y, we can immediately

integrate our equation over the y direction. On the right hand side of Eq. 3.13, we

pick up a factor of W . The left hand side can be readily integrated, resulting in

H
(
τ̄xy|W

2
− τ̄xy|−W

2

)
. To further solve for H(x), we need to introduce a relationship

between τ̄xy and P̄ . The simplest granular rheology to relate these quantities requires

the shear stress to be proportional to the pressure with a single, unchanging friction

coefficient. Thus, we choose the relationship τ̄xy(±W/2) = ∓µwP̄ , where µw is the

friction coefficient at the wall, and the shear stress points in the negative x-direction,

since the mélange is being quasistatically advanced forward. Finally, using the fact

that P̄ ∝ H, we arrive at the final equation and solution for the thickness profile

H(x):

−2µw

W

[
HP̄

]
=

∂
[
HP̄

]
∂x

, (3.14)

H(x) = H0e
−µw

W
x, (3.15)

where H0 is the thickness at x = 0. This simplified model shows that the thickness

of a quasistatically-pushed, three-dimensional ice mélange should vary exponentially

along the length of the fjord. Our continuum model also suggests that the mélange

thins indefinitely and reaches zero thickness, yet real granular materials have a finite

grain size, and the mélange can never be thinner than the characteristic iceberg size

d. We note that given Eq. 3.14, the relationship between thickness and pressure
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(Eq. 3.12) cannot be altered to have P̄ → 0 at finite thickness H since the product

HP̄ must follow an exponential, which only tends to zero at x = ∞. Alternatively,

one can alter the simple rheology at the walls (τ̄xy(±W/2) = ∓µwP̄ ) to account for

the finite grain size near the end of the mélange. In Amundson and Burton [12],

the rheology was altered to introduce a stress at the end of the mélange (x = L) to

fix the thickness. In Burton et al. [15], the rheology was altered by introducing a

finite shear stress at the end of a two-dimensional mélange so that the shear stress

was larger than the pressure. This was motivated by the Janssen effect in grain

silos [138], where the pressure saturates at increasing depths, and friction supports

the weight of the material. Here, we make an empirical modification to Eq. 3.15

by adding a constant, d, that represents the mélange thickness at infinite distance,

which should ultimately be the same as the grain size. This allowed us to fit all

of the data uniformly. As we will show, this simple exponential fit is sufficient for

the experimental data, and results in measured friction coefficients that mostly agree

with our independent sliding experiments, shown in Fig. 3.3.

3.3 Results and Discussion

3.3.1 Experimental Mélange Thickness Profiles

In the field, direct visual measurements of the thickness profile of ice mélange are

impossible. The freeboard height, δ, can be related to the total thickness assuming

a hydrostatic balance in our model, δ(x, y) = H(x, y)(1 − ρ/ρw). This relationship

has been used to estimate ice mélange thickness in an number of studies [4, 70, 139].

In our experiments, we can image the thickness profile and its time evolution over a

distance equivalent to ∼ 100 particle lengths. Figs. 3.5a-3.7a show a time-lapse of

the thickness profile during a representative experiment for three different particle

types. Figure 3.5a also shows the initialization state of the ice mélange, which is
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t = 0 s
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t = 960 s
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b

Figure 3.5: Evolution of the mélange thickness profile and fitting with our 1D model
for square shaped particles. Panel (a) are raw experimental images at the given
timestamps with initial mélange structure shown at the top. Panel (b) shows the
extracted thickness profile for five timesteps (top) and the resulting binned data
(blue dots) with a best fit curve for µW from Eq. 3.15 (solid red) on the bottom.
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t = 960 s
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Figure 3.6: Evolution of the mélange thickness profile and fitting with our 1D model
for rectangular shaped particles. Panel (a) are raw experimental images at the given
timestamps. The initial mélange structure is the same as shown in Fig 3.5. Panel (b)
shows the extracted thickness profile for five timesteps (top) and the resulting binned
data (blue dots) with a best fit curve from Eq. 3.15 (solid red) on the bottom.
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Figure 3.7: Evolution of the mélange thickness profile and fitting with our 1D model
for irregularly shaped particles. Panel (a) are raw experimental images at the given
timestamps. The initial mélange structure is the same as shown in Fig 3.5. Panel (b)
shows the extracted thickness profile for five timesteps (top) and the resulting binned
data (blue dots) with a best fit curve from Eq. 3.15 (solid red) on the bottom.
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the wedge shape described in section 3.2.1. There are a few important observations

that are illustrated by the images. The mélange thickness decreases slightly across

the duration of the experiment, but eventually tends to a steady-state. Consistently,

there is a bulge in the shape near the terminus. There are two reasons for this.

There is a yield stress that the granular material must overcome to deform, and this

can affect its shape near the terminus, similar to what has been observed in floating

granular collapse experiments Zheng et al. [128]. Also, the region near the terminus is

being pushed uniformly, and as a consequence, must have a different velocity profile

across the width of the fjord. This will be discussed in more detail in section 3.3.2.

Figures 3.5b-3.7b shows thickness profile data and fits produced by Eq. 3.15, with

the correction for the grain size:

H(x) = (H0 − d)e−
µw
W

x + d, (3.16)

In each figure, the top graph shows profiles of the mélange at different points in

time. These curves are the functions δ(x) and −h(x), assuming hydrostatic balance.

The data was acquired by clicking off points in the images using ImageJ software

[103]. The blue data in the bottom graph are the binned and averaged data of all

profiles in the the top graph, and are used to fit Eq. 3.16. The fit is good, but shows

systematic deviations near the terminus, as expected since the shear stress at the

fjord walls must be different near the terminus, i.e. the mélange must move with

the terminus uniformly. The fitted values of µw show qualitative agreement with µw

measured using sliding and angle of repose experiments (Fig. 3.3). However, all fit

values for µw were proportionally larger than the measured values from Fig. 3.3b.

Although, the motion of the melange near the fjord walls is not pure sliding, as in

Fig. 3.3. For example, if there is no-slip on the walls, then the wall friction similar

to a static coefficient of friction. This coefficient would generally be larger than a
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sliding or kinetic coefficient of friction. The particles also rotate significantly when

sheared near the wall, which is not present in the sliding experiments. Overall, the

model shows reasonable agreement with salient features of the experimental profiles,

and provides a way to estimate frictional parameters from thickness profiles alone.

3.3.2 Surface Velocity Fields

Granular materials are known to display large fluctuations in velocity as they are

quasistatically deformed. This is an indication that the material is jammed. Stress

is built up and subsequently released through rapid rearrangements of the individual

particles. Ice mélange displays similar behavior, as evidenced by stochastic fluctua-

tions in lab experiments [15], and dynamic “jamming waves” observed after calving

events in field data [140]. In some cases, the surface velocity fields in real ice mélange

can predict the timing of calving events [14]. In our experiments, we examined the

velocity fields from above to quantify this behavior, and to directly compare to the

measured force on the terminus. In the field, velocity fields can be measured using

portable radar interferometers, which provide centimeter-scale resolution of iceberg

displacements on timescales of minutes [14, 140]. Velocity fields can then be ex-

tracted from these measurements. In our experiments, image analysis alone makes it

challenging to track individual, box-shaped icebergs with an equivalent level of pre-

cision. As stated above, our velocity fields were calculated using PIV implemented

with Lucas-Kanade optical flow. Briefly, optical flow can track features in an image

(i.e., the corners of particles high contrast exists due to shadows) over a given number

of frames, and assigns a displacement track to that feature. We can then interpolate

the set of all feature velocities at a particular frame, using the pixel resolution of the

image as our interpolation grid.

For all of our velocity fields, we track features over 20 frames, and we repeat the

calculation every 5 frames. A typical view from above and the corresponding velocity
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Figure 3.8: Process of calculating the across fjord velocity profile transects for dif-
ferent fixed distances from the terminus. Panel a shows the distances at which the
corresponding colored transects are calculated. Each transect is 2.54 cm in width,
and the distances from the terminus are in the legend of panel c. Panel b shows
the velocity field at the same time point as panel a. Panel c are the velocity pro-
files at each corresponding transect distance. Velocity profiles are averaged over the
whole experimental trajectory, and then normalized by the maximum value along the
transect.
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20 cm

Figure 3.9: Representative images of velocity, divergence, and curl fields for a chosen
experiment. Column a shows velocity fields, column b shows the divergence, and col-
umn c shows the curl. Images shows mélange experiences periods of slow compression
followed by large extension, likely due to relaxation from rearrangements of particles.
Velocity color bar is in units of mm/s, and the divergence and curl color bar is in
units of 1/s scaled by 1x10−2.



72

magnitude for square particles is shown in Fig. 3.8a-b. Across-fjord velocity measure-

ments can reveal the degree of shear near the fjord walls, and near the terminus. This

was done at different distances from the terminus since similar measurements can be

made on ice mélange in the field using satellite imagery. Figure 3.8a indicates the

different distances where across-fjord profiles were calculated. The velocity profiles

are calculated at each frame, then averaged over the entire experiment. We plot the

longitudinal velocity, vx, as a function of lateral position in y in Fig. 3.8c. Near the

terminus, the flow of the mélange is more plug-like (blue and orange curves) since

the particles near the terminus are fixed to move at the terminus velocity. There is

a transition zone where shear develops near the fjord walls further down the fjord.

Qualitatively, the size of the plug-flow region should scale with the particle size, and

should be inversely related to the fjord width. Further down the fjord, the frictional

shear bands near the wall lead to an increase in velocity in the middle of the fjord.

Similar profiles were predicted from simplified models of quasistatic flow, but de-

pended somewhat on the granular rheology used [12]. The predictions depended on

a number of parameters, including slip at the wall, and thus here we are not able

to distinguish between different potential granular rheologies from velocity profiles

alone.

Importantly, although the velocity profiles in Fig. 3.8c are averaged over the entire

experiment, the velocity displays large fluctuations during an experiment; fluctuations

that cannot be captured using a continuum model. Figure 3.9a shows the velocity

magnitude of the mélange at different times using square particles. The behavior

varied between almost plug-flow for the whole length of the mélange (t = 265 s), to

a state showing a transition between plug and shear-dominated flow (t = 655 s). To

better understand the spatial variability in velocity in x and y, we plot the derivatives

of our velocity fields to highlight areas of activity and showcase the inhomogeneity

and stochastic nature of granular materials. Figure 3.9b shows the two-dimensional
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divergence, and column 3.9c shows the two dimensional curl. In the divergence,

magenta colors show areas of compression, and green colors show areas of extension in

the mélange. The far right-hand side of all images show large numerical values of the

fields, but this is an experimental artifact caused by either the lack of dense particles (t

= 20 s), or the lack of visibility near the right side of the frame. Generally, across the

whole mélange there is a slight magenta tone, indicating an overall compression. As

the mélange advances, the compression is punctuated by pockets of deep green color,

indicating rapid extension. We interpret this as a slow build-up of compressional

stress, which is constantly being relieved by extensional rearrangements of particles.

This stick-slip motion is typical of quasistatic granular flows [141, 142], cannot be

captured in continuum models, and leads to stochastic fluctuations in the forces that

the mélange applies on the terminus [15]. Similar heterogeneous behavior is observed

in the curl of the velocity (Fig. 3.9c). Near the terminus, there is a uniform color

due to the plug-like flow, and further down the fjord there are opposite colors on the

walls due to the localized frictional shear. Additionally, the center of the mélange is

punctuated by regions of opposite vorticity that can span the width of the fjord (t =

155 s).

3.3.3 Buttressing Strength and Fluctuations

One of the largest potential feedbacks from the presence of ice mélange on the glacier

terminus is its mechanical buttressing force. For example, the buttressing force (or

local stress) can influence the rate of iceberg calving [4, 12–14]. However, time evo-

lution of the total mélange stress on real tidewater glaciers is impossible to measure

in the field, and can only be estimated from continuum models or observations of the

freeboard height of ice mélange [4]. In contrast, although experiments are down-scaled

and idealized, they allow direct and dynamical measurements of the buttressing force

generated by ice mélange. In our 1D continuum model, σxx = −P , and the pressure
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can be deduced directly from the thickness at the terminus (Eq. 3.12). Thus, the

total force on the terminus should be proportional to the total pressure multiplied by

the contact area between the mélange and the terminus:

F0 = P̄ (x = 0)H0W =
1

2
ρ

(
1− ρ

ρw

)
ϕgH2

0W, (3.17)

where H0 is the thickness of the mélange at x = 0. As discussed in Meng et al. [4], ϕ

and H0 are the two parameters that control the variability in the buttressing strength

of ice mélange. This expression for F0 and visual observations of the evolution of

H0 (Fig. 3.5) implies that the force should be relatively constant or change slowly

throughout the experiment.

Figure 3.10a shows the normalized average surface velocity of the mélange, and the

normalized total force on the terminus versus distance traveled down the fjord. Data

is shown for both smooth and rough walls. The velocity generally fluctuates around

the terminus velocity, which is expected since the flow is quasistatic and the length of

the mélange doesn’t change during the experiment. These fluctuations aren’t present

when the walls are smooth, indicating that granular rearrangements from frictional

shear at the walls drive variations in mélange velocity. Importantly, similar large

fluctuations can be observed in the force on the terminus. These fluctuations can be

50% or more of the average force. While the correlation is small between force and ve-

locity is small (Pearson correlation coefficient 0.3), we note that there is a qualitative

inverse relationship between the two. For example, at roughly x/W = 1.5, we see a

sharp peak in velocity with a corresponding dip in the force. We emphasize that these

fluctuations cannot be captured by continuum models of ice mélange, i.e., they lack

the ability to account for short time rearrangements and localized deformations of the

mélange. For the square particles in Fig. 3.10a, the average force when rough walls

are present agrees well with the continuum prediction (F ≈ F0), suggesting that a
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continuously sheared mélange is sufficiently fluid and explores jammed configurations

that on average agree with a depth-averaged, hydrostatic continuum model.

In contrast, the dashed line in Fig. 3.10a shows that smooth walls always produce

a buttressing force smaller than F0, in this case it is only half as large. Without

the increased friction provided by wall roughness, the system can get stuck in static

frictional states where the force on the terminus is small. We believe a process similar

to the Janssen effect [138] causes the pressure to saturate before the terminus, caused

by the bridging of mélange particles across the width of the fjord. When the amount

of shear increases, the mélange can explore more configurations, and thus fluctuates

around the continuum prediction. A similar decrease in the mélange’s buttressing

strength can be seen when we change the particle shape (Fig. 3.10b and 3.10c), but

now the disparity occurs with both smooth and rough walls. Figure 3.3 demonstrates

the decrease in friction when the particle shape is changed, which supports the pre-

diction that when the friction is low enough, the amount of shear and rearrangments

decreases, which causes the Janssen effect to emerge. These results indicate that our

continuum theory agrees well when the mélange is well sheared, but seems to be only

an upper bound when the mélange is in a plug flow regime.

Finally, we want to ensure that we are truly within the quasistatic regime, so that

our assumptions hold true. Granular materials within the quasistatic regime should

have dynamics that are qualitatively independent of shear rate, so if we increase the

velocity of our terminus, then the overall dynamics of our mélange shouldn’t change.

This is exemplified in Fig. 3.11, where we plot the forces from a typical experiment

(blue) and forces from an experiment at roughly double the speed (red). Fig. 3.11a

shows the force as a function of distance travelled down the fjord, scaled by the

predicted mean force from our continuum 1-D model. Visually, the fluctuations don’t

look too different between the two curves. To verify, we plotted the histograms of the

forces in Fig. 3.11b. While the distribution for the higher velocity experiment is a bit
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a

b

c

Figure 3.10: Velocity and force time traces for our three particle types. Solid lines are
for experiments using rough fjord walls, dashed lines are experiments using smooth
fjord walls. Velocity plotted is the average velocity at a given time step over the area
of our mélange that is viewable divided by the terminus velocity. Forces are scaled
by the predicted buttressing force F0 (Eq. 3.17); squares - 1.42N , rectangles - 1.49N ,
irregular - 1.36N .
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a b

Figure 3.11: a Normalized force on terminus versus distance traveled down fjord.
Solid line represents slower terminus speed (vT=0.62 mm/s), dotted line represents
faster terminus speed (vT=1.53 mm/s). b Histograms of the forces normalized by
the predicted buttressing strength from our continuum model (Eq. 3.17). The area
of each distribution is normalized to one.

narrower and extends a bit further, the mean of the two distributions is roughly the

same. We would expect with higher shear rate that the mean force would increase

if we were outside the quasistatic regime, so we safely assume that the mélange is

quasistatic.

3.3.4 DEM Simulations of Ice Mélange

Our experiments provide a controllable environment to explore the most salient and

important features that influence the dynamics of ice mélange and its buttressing

force on glacier termini. However, due to limitations in particle fabrication, we are

unable to produce a mélange with the same type of iceberg size distributions that are

seen in fjords of marine terminating glaciers [2, 70]. Our fabrication techniques were

constrained by the melting of the polypropylene plastic, and particles on the lower end

of the distributions found in nature could not be cut effectively without risk of fires.

Simulations can be used to explore situations that are too difficult for laboratory

experiments to undertake. To rectify this limitation of our experimental work, I

collaborated with Professor Ching-Yao Lai and Dr. Olivia Meng to develop a suite of

3D discrete element method (DEM) simulations. By comparing the DEM simulations
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Figure 3.12: Adapted from Meng et al. [4]. Results from field scale DEM simula-
tions of ice mélange performed by Meng et al. [4]. (a) Width averaged buttressing
force on the terminus (F/W ) versus time. The colors correspond to different initial
mélange thicknesses. The dashed lines represent smooth fjord walls, solid lines rep-
resent rugged fjord walls. The mélange appears to be in a steady state after 5 days,
except for the thinnest mélange (Hini = 84 m). (b) Buttressing strength as a function
of steady state mélange thickness, H0. Dashed lines represent theoretical predictions
of the steady state force (Eq. 3.17) with varying packing fractions. H0 is the average
thickness over a 200 m slice of the mélange in front of the terminus. All averaged
calculations are done within the 5 - 15 days time period to ensure the mélange is
in the steady state. Triangles represent rugged walls, circles represent smooth walls,
and stars represent mélange that has thinned to a 2D monolayer.
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b

c

10 cm

Figure 3.13: Across fjord velocity profiles from DEM simulations by Meng et al. [4].
Panels a shows the distances at which across fjord velocity profiles are calculated.
Each transect is 2.54 cm in width, and the center of the transect along the x direction
are indicated in terms of characteristic iceberg sizes d in the legend of panel c. Panel b
shows a representative velocity field at the same time point as panel a. Panel c shows
the resulting across fjord velocity profiles for each distance. The curves are calculated
by first calculating the average velocity across a transect at a given y position for each
timestep of the simulation. This provides a single across fjord velocity profile at a
given time, which is then averaged over the entire simulation. Solid curves represent
the average over the whole simulation, and the shaded in area represents one standard
deviation of the velocity.
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with our experiments, we can validate our continuum 1D model of ice mélange using

parameters from the field. This work resulted in a collaborative publication [4].

In the simulation, icebergs are modelled as cubic particles that follow a power law

distribution in their size, in accordance to observed icebergs size distributions [2, 70].

The terminus is modelled as a flat surface with velocity 43.2 m/day [15, 143]. The

fjord is a 1 km wide straight channel open on one end that is either smooth (constant

width) or has a series of bulges which are intended to explore the effect of friction

on mélange buttressing force. These bulges are squares that are 60 m wide, 20 m

thick, and are spaced 150 m apart. The initial length of the mélange is always 3 km.

The initial thickness of the mélange is varied from 30 m to 380 m to determine the

influence of mélange thickness on the buttressing force. The simulations are ran for

an equivalent of 16 days so that a steady state of mélange is reached. They found that

thin mélange evolved into 2D monolayers without sufficient wall friction, as seen in

the dashed black curve in Fig. 3.12a. Figure 3.12b demonstrates the predicted scaling

of buttressing strength with mélange thickness and packing fraction from Eq. 3.17. As

seen in our experiments, smooth walls consistently had a lower averaged buttressing

force than rough walls.

Meng et al. [4] also ran experiment scale simulations to cross validate their sim-

ulations and our experiments. The simulations have the same dimensions as our

experimental setup, however the roughness on the walls is now instead a uniform grid

of square bulges that are 0.5 cm wide, extend 0.2 cm from the walls, and are spaced

0.4 cm apart. Simulations are run for 1200 seconds, roughly the same amount of

time an experiment runs. Only two particles were explored, squares and rectangles.

Our irregular particles were difficult to parameterize in the DEM simulations, so no

simulations were run using that particle shape. The terminus speed, initial mélange

shape, and simulation domain size are the same as our experiments. Qualitatively, the

DEM simulations show great agreement with our experiments, and support the use
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a

b

c

Figure 3.14: Velocity and force versus distance down the fjord from DEM simulations
by Meng et al. [4]. Solid lines are simulated velocities and forces for rough fjord walls,
dotted lines are for smooth fjord walls. The terminus velocity is equal to vT = 0.62
mm/s. Forces are scaled by the predicted buttressing strength (Eq. 3.17) at the
terminus. (a) Velocities and forces for square particles. (b) Velocities and forces for
rectangular particles. (c) Histogram of velocities of square particles in a fjord with
rough walls. The histogram is normalized so that the sum of the area of the histogram
is equal to one.
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of their scheme in the field scale simulations. The simulation can track the individ-

ual positions, velocities, contact numbers, and stress tensor of each particle. Figure

3.14 compares the velocities and forces of the mélange in the DEM simulations, akin

to Fig. 3.10. We note that the velocities here are velocities of all particles above

the waterline, which is not the same as the velocity of the surface. In Fig. 3.13 we

demonstrate results similar to Fig. 3.8. We are again calculating surface velocity

fields (Fig. 3.13b) and calculating across fjord velocity profiles (Fig. 3.13c). We are

showing profiles for square particles. Across fjord velocity profiles show the same tran-

sition from plug flow to shear banded flow profiles as we saw in Fig. 3.8. Figure 3.14

shows the normalized average surface velocity of the mélange, and the normalized

total force on the terminus versus distance traveled down the fjord for both smooth

(dotted curves) and rough (solid curves) walls. Once again we see that fluctuations

dominate the dynamics when roughness (and thus shear at the walls) is increased.

However the magnitude and frequencies of these fluctuations is greatly increased in

the simulation data. To visualize these fluctuations, we plotted the distribution of

particle velocities in Fig. 3.14c. As the terminus is pushing the mélange in the posi-

tive x-direction, we expect the velocities to be centered around the terminus velocity,

with a skew towards velocities greater than the terminus velocity, and a small amount

of negative velocities. Because velocities are averaged across the mélange every time

step, the large spikes must be accounted for by particles with velocities significantly

higher than the terminus velocity. What causes some particles to achieve these erro-

neous velocities in the simulations is currently unknown. We also see a roughly 50%

decrease in the average terminus force when smooth walls are used, indicating that

the simulations can capture most of the relevant phenomenon of our experiments.

One discrepancy is that for rectangular particles (Figure 3.14b) the simulated force is

larger than the experiments. It is unclear what causes this difference in behaviour, but

we know that the simulations do not include gravitational torques due to buoyancy
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Figure 3.15: Adapted from Amundson et al. [5]. Steady state profiles of the (a)
velocity, (b) thickness, (c) fluidity, (d) wall friction µw, and (e) across fjord velocity
profiles for various choices of non local granular rheology parameters. Default value
curves (A = 0.5,b = 1 × 104,d = 25,µs = 0.3) are shown in solid purple. Different
parameter values are listed in the legend. For each curve, the default values are held
constant and the parameter of interest is changed.

in the relaxation of particles. The difference in dynamics might lead to rectangular

particles not aligning with the walls as we see in our experiments.

3.3.5 Modifications of the Continuum Model

Experiments and DEM simulations have provided us with considerable evidence that

ice mélange imparts a fluctuation force on the glacier termini. The width averaged

force can be on the order of 107 N/m [12, 15, 143], which is thought to be sufficient to

inhibit the calving of new icebergs from glacier termini [11, 144–146]. The dynamics

of the mélange can also control when glaciers calve [13, 17, 127]. Modelling efforts
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have used discrete element modelling [4, 15, 143], modified ice sheet models[147]

and simple paramaterizations [18–25] to quantify ice mélange’s impact. However, a

continuum granular description that can capture the dynamics of ice mélange and

its coupling to the glacier-ocean system is still needed. Our continuum model is a

first step, but it does not contain the necessary ingredients to be incorporated into

coupled glacier-ocean models. The model needs to be able to couple mechanically

and thermodynamically to both the glacier and the ocean, and it must include effects

that come from the finite grain size of ice mélange. Recently, I have participated

in a collaboration with Professor Jason Amundson and Professor Alex Robel on an

implementation of non-local granular rheology [60, 67] to model ice mélange and its

coupling with glacial calving and basal melt [5]. These modifications will violate

our assumptions of quasistatic flow and zero strain rate. However, the mathematical

framework of the model is effectively the same as our continuum model up until the

introduction of the rheology. It starts with a depth integrated, viscoplastic rheology:

τij =
µP

ϵ̇e
ϵ̇ij, (3.18)

where τ is the deviatoric stress, µ is an effective coefficient of friction, P is the to-

tal pressure, ϵ̇ is the strain rate, and ϵ̇e is the second invariant of the strain rate

(ϵ̇e =
√
1/2 (Tr(ϵ̇)2 − Tr(ϵ̇ · ϵ̇))). Non-local granular rheologies depend on a param-

eter called the granular fluidity g′, which modifies the effective friction coefficient,

µ = ϵ̇e/g
′. The fluidity adjusts the behaviour of the material depending on the

amount of stress applied, and it incorporates both local and far away stresses [67].

The fluidity evolves based on a diffusion equation:

∇2g′ =
1

ξ2
(g′ − g′loc). (3.19)
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Here, ξ is the cooperativity length within the granular material, which determines the

distance the fluidity spreads, and g′loc is the local granular fluidity [67, 148]. Granular

fluidity models ultimately depend on four parameters, the grain size d, the static yield

stress µs, and two dimensionless coefficients A and b. Amundson et al. [5] shows the

variability in mélange properties with choice of parameters in Fig. 3.15. The two most

important panels are Fig. 3.15b and Fig. 3.15e, which show the mélange steady state

thickness and across fjord velocity profiles respectively. The steady states developed

here are a balance between calving rates, basal and surface melt of the mélange, and

the rearrangments of the mélange. The fjord profiles are calculated at a distance

halfway down the mélange length. Changing the static yield coefficient changes the

point at which mélange can flow, and so decreasing it allows the mélange to speed up

and thin. A is a quantification of the cooperativity length within a granular material,

and is generally thought to be of order 1 [148–150]. Cooperativity length is a way

to dictate how far we expect grains to interact, and for the default values here, it

comes out to a few kilometers in the x direction. The dimensionless constant b is

the ratio of the range of effective friction coefficients to the inertial number [148],

and for this model increasing b creates a mélange that is thick, extensive, and rigid.

Finally, it is hard to attribute a single characteristic grain size d in mélange, given

that the consensus is that the iceberg sizes follow a power law distribution [2, 70].

Nevertheless, if d is reduced, then the mélange thins and speeds up. The model also

predicts how the width average buttressing force scales with the granular fluidity.

Equation 28 from Amundson et al. [5] says:

F/W =

(
−2H0P̄ ϵ̇xx

gx + ϵ̇xx
+H0P̄

)
(3.20)

where gx is the fluidity for shear dominant flow in the x direction. Recalling the

fact that the depth averaged pressure P̄ scales as the thickness of the mélange H0
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(Eq. 3.12), we come back to the fact that the force mélange exerts on the glacier

terminus scales as H2
0 . However, Amundson et al. [5] observes a slight decrease in the

buttressing strength when basal melt and calving are nonzero, caused by extension

of the mélange. They also find observe a sinusoidal variation in the basal melt rate,

calving rate, and buttressing force, with a lag time between the two mass flux rates

(melt and calving) and the buttressing force. But, the continuum model, now more

robust and able to incorporate thermodynamic and mechanical coupling to the glacier-

ocean system with a non-local granular rheology, still cannot account for the inherent

fluctuations and stick slip behaviour of real ice mélange. Given that we know motion

in the mélange precedes calving events only a few hours beforehand [14], these short

term fluctuations and how to incorporate them into modelling efforts are an open

area of investigation.
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Chapter 4

Summary

This thesis has covered the experimental efforts I have undergone in understanding

the dynamics of several geophysical flows. My focus was on flows where the particle

shape mattered a lot, and where inertia is dissipated quickly, leading to long ranged

correlations throughout the system. Using iterative design, a host of measurement

techniques, and physical intuition, I have verified theoretical predictions and show-

cased unseen dynamics in mass-polar sediments and ice mélange. While these systems

are ultimately two disparate phenomena, physics provides a way to understand them

both through a similar framework. The main conclusions are summarized as follows:

4.1 Sedimentation of Mass-Polar Spheroids

Sedimentation has a long, storied history within fluid dynamics. It has a great deal of

importance in both industrial and natural environments, and is tricky to understand

due to the coupling between particles, fluids, and the long ranged hydrodynamics

that arise from the Stokes equation. I conducted experiments to understand the role

of mass distributions and particle shape in sedimenting suspensions. First, I studied

the motion of a single particle in a quasi-2D environment. Using a simple analytic

expression, I was able to reconstruct the particle’s mobility matrix from a trajectory.
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I then moved to characterizing the interaction between pairs of mass-polar sediments,

and found a generic repulsion for prolate spheroids. The observed scaling with differ-

ent center-of-mass offsets, χ, and particle aspect ratios, κ, confirmed the predictions

made by Goldfriend et al. [41]. Finally, I calculated probability distributions of mass

polar sediments in 3D environments, and found that the effective repulsion between

particles persisted, and resulted in sedimented layers that are more uniform than

non-mass polar sediments. There are several avenues to explore in the future. For

instance, our particles are all non-chiral. Chiral particles have been shown to exhibit

exotic, complex trajectories [42, 45, 46, 101, 112, 113], and can be implemented with

our particle fabrication technique. Also, I was able to confirm the repulsive effect pre-

dicted by Goldfriend et al. [41], however the attractive prediction was not observed.

Further efforts into creating oblate spheroids with non-zero χ are needed. While

strong assumptions and approximations ultimately narrow the scope of the results,

I have set a framework here for future experiments on the sedimentation of complex

particles.

4.2 Quasistatic Flow of Ice Mélange

The interface between tidewater glaciers and the ocean will continue to be an impor-

tant area to watch when monitoring sea level rise in the near future. Ice mélange is

thus a crucial component of understanding the total mass flux of ice out of Greenlandic

fjords. It is known that ice mélange provides a significant buttressing force to glacier

termini, and can potentially inhibit and control calving rates [11, 12, 15, 143–146].

However, measurements of ice mélange in the field cannot yield the time evolution

of its buttressing force, or direct visualizations of its thickness. Scaling down ice

mélange into laboratory scale experiments allows for the observation of these mea-

surements, and control over other parameters of the system, such as particle shape
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and strength of wall friction. By examining thickness profiles, surface velocity fields,

and time evolution of the buttressing strength, and comparing them to predictions

made by a continuum depth and width averaged model, we deduced the following:

the model predicts the average force (F0 ≈ H2
0 ) well, but it cannot account for the

stochasticity in the mélange, which can cause fluctuations in the force up to 50% of

the mean. We explored several particle shapes and wall roughness, and determined

that the continuum model works best when there is a large amount of shear generated

in the mélange. By fitting the thickness profiles to predictions made by the contin-

uum model (Eq. 3.15), we are able to extract a friction coefficient at the walls of

the fjord. Comparing to friction coefficients measured outside of the model fjord, the

model overestimates the friction. DEM simulations were performed by Meng et al. [4]

to corroborate and confirm our results. Results show remarkable agreement, except

between rectangular particles. The discrepancy is most likely caused by a limitation

of the simulation software. The next step is to incorporate turbulent mixing of fresh,

glacial water, and salty ocean water. Subglacial plumes [135], bring cold, fresh melt-

water off the bottom of the glacier up through the mélange. The water turbulently

mixes with the warm ocean water, which might change the dynamics and properties

of the ice mélange. Adding this ingredient into our model fjord would provide an

estimate the effect of sub-glacial plumes on the buttressing strength of ice mélange.

4.3 Conclusion

The work presented in this thesis incorporates a wide range of mathematical, ex-

perimental, and analytic techniques that have helped develop our understanding of

geophysical phenomenon. The findings here can be used as a stepping stone towards a

holistic model of geophysical flows of complex particulate matter. The physics which

underpins much of this work has been studied for hundreds of years, but there are
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always opportunities for new applications and perspectives which can advance our

understanding of the natural world.
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[99] P. N. Segrè, E. Herbolzheimer, and P. M. Chaikin. Long-range correlations in

sedimentation. Phys. Rev. Lett., 79:2574–2577, 9 1997.

[100] J.M. Ham and G.M. Homsy. Hindered settling and hydrodynamic dispersion

in quiescent sedimenting suspensions. Int. J. Multiph. Flow, 14(5):533 – 546,

1988. ISSN 0301-9322.



103

[101] Tomer Goldfriend, Haim Diamant, and Thomas A. Witten. Hydrodynamic

interactions between two forced objects of arbitrary shape. i. effect on alignment.

Phys. Fluids, 27(12):123303, 2015.

[102] Tomer Goldfriend, Haim Diamant, and Thomas A. Witten. Hydrodynamic in-

teractions between two forced objects of arbitrary shape. ii. relative translation.

Phys. Rev. E, 93:042609, Apr 2016.

[103] Johannes Schindelin, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig,

Mark Longair, Tobias Pietzsch, Stephan Preibisch, Curtis Rueden, Stephan

Saalfeld, Benjamin Schmid, Jean-Yves Tinevez, Daniel James White, Volker

Hartenstein, Kevin Eliceiri, Pavel Tomancak, and Albert Cardona. Fiji: an

open-source platform for biological-image analysis. Nature Methods, 9(7):676–

682, 2012. ISSN 1548-7105.

[104] Daniel B. Allan, Thomas Caswell, Nathan C. Keim, Casper M. van der Wel,

and Ruben W. Verweij. soft-matter/trackpy: Trackpy v0.5.0, 2021.

[105] Tsevi Beatus, Roy H. Bar-Ziv, and Tsvi Tlusty. The physics of 2d microfluidic

droplet ensembles. Physics Reports, 516(3):103–145, 2012. ISSN 0370-1573.

The physics of 2D microfluidic droplet ensembles.

[106] William Mitchell and Saverio Spagnolie. Sedimentation of spheroidal bodies

near walls in viscous fluids: glancing, reversing, tumbling, and sliding. J. Fluid

Mech., 772:600–629, 09 2014.

[107] Maria Veronica D’Angelo, Mario Cachile, Jean-Pierre Hulin, and Harold Au-

radou. Sedimentation and fluttering of a cylinder in a confined liquid. Phys.

Rev. Fluids, 2:104301, Oct 2017.

[108] Bram Bet, Sela Samin, Rumen Georgiev, Huseyin Burak Eral, and René van
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