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Abstract 

 

A cross-comparison of enteric pathogen prevalence and patterns of infection within and between 

wild-living Cross River gorillas (Gorilla gorilla diehli) and eastern chimpanzees (Pan 

troglodytes schweinfurthii) 

By: Emily Strahan 
 

 
Emerging infectious diseases represent a serious threat to biodiversity conservation and global 
health. This is of particular concern for the great ape species, whose close evolutionary 
relatedness to humans puts them at high risk for cross-species transmission events. As humans 
and great apes increasingly come into contact with one another, the potential for pathogen 
exchange and disease emergence is heightened—threatening both great ape conservation and 
human health. Given what we know about shared susceptibility and pathogen transmission 
between humans and great apes, it is vital to understand baseline information on what pathogens 
exist in wild ape populations. Few studies have broadly investigated the pathogen communities 
of great apes, and those that have often tend to be limited in scope. The goals of this study were 
therefore to survey wild Cross River gorillas (Gorilla gorilla diehli, critically endangered) and 
eastern chimpanzees (Pan troglodytes schweinfurthii, endangered) for an array of viral, parasitic, 
and bacterial enteric pathogens. A novel real-time PCR diagnostic platform, The TaqMan Array 
Card, was used to noninvasively screen fecal samples for 39 enteric pathogen-specific gene 
targets in these two great ape subspecies. Pathogen prevalence, as well as patterns of infection 
and coinfection, were compared between species and within species among gorilla and 
chimpanzee populations. All gorilla individuals and approximately 70% of chimpanzee 
individuals were infected with at least one enteric pathogen. Of the infected gorillas, 44% 
showed single infections and 56% showed coinfections. Of the infected chimpanzees, 51% 
showed single infections and 49% showed coinfections. Adenovirus and Cryptosporidium 
parvum were the most common pathogens detected in both species. Proportionally, gorillas 
harbored more parasitic and bacterial infections than chimpanzees. These findings offer a 
comparative look into the pathogen profiles of a highly elusive and understudied great ape (the 
Cross River gorilla) and a habituated and extremely well-known great ape (the eastern 
chimpanzee). This study highlights the need for further research in order to better define health 
risks, monitor populations, and guide management actions to protect human and great ape health.  
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1. Introduction 

1.1. Emerging Infectious Diseases 

Emerging infectious diseases are a growing and serious concern for global and ecosystem 

health. Over 75% of emerging infectious diseases are zoonotic—that is, transmissible from 

animals to humans (Jones et al., 2008; Taylor et al., 2001). Their emergence frequently entails 

complex interactions among people, wildlife, and livestock in fast-changing environments (Jones 

et al., 2013; Karesh et al., 2012; Wolfe et al., 2007). As the human population continues to 

expand, so too does the human-animal interface, further increasing the probability of cross-

species transmission and spillover events (Parrish et al., 2008; Streicker et al., 2010). The risk of 

zoonotic disease emergence is especially high in tropical regions (Allen et al., 2017). Other risk 

factors include areas of high human population density and wildlife biodiversity (Jones et al., 

2008; Keesing et al., 2010; Morse, 1995) and those experiencing human-induced land use 

changes related to agricultural or logging practices (Allen et al., 2017; Faust et al., 2018; 

McFarlane et al., 2013; Patz et al., 2004; Weiss & McMichael, 2004).  

The nature and frequency of human-wildlife interaction in tropical forest communities 

have changed drastically over the last few decades as human encroachment on wildlife habitats, 

research, ecotourism, and other activities have brought people and animals into close proximity 

or direct contact (Adams et al., 2001). These dynamics are especially prevalent between human 

and wild nonhuman primate populations, as rampant deforestation and fragmentation have forced 

primates out of their natural and often protected habitat into isolated patches of farmland, 

pastures, and human settlements (Chapman & Onderdonk, 1998; Marsh, 2003). Human-primate 

contact can also occur as local people engaged in subsistence living venture into primate habitat 

to harvest and extract natural resources (Gillespie & Chapman, 2006; Parsons et al., 2015). As 
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land becomes increasingly shared by humans, primates, and also domestic animals, opportunities 

arise for both anthroponotic and zoonotic pathogen exchange and exposure. Further exacerbating 

the potential for cross-species disease transmission is the close phylogenetic relatedness between 

humans and primates—especially the African great ape species (Calvignac-Spencer et al., 2012; 

Gilardi et al., 2015; Gillespie et al., 2008).  

1.2. Disease in Great Ape Conservation 
 

A rapidly expanding human-primate interface has made it increasingly apparent that 

disease plays an important role in great ape health and conservation (Gilardi et al., 2015; 

Gillespie et al., 2008). In fact, infectious disease is now listed among the top three threats to 

some great ape taxa, alongside poaching and habitat loss. Evidence suggests that pathogens such 

as Ebola virus (Leendertz et al., 2017; Leroy et al., 2004)—known to have decimated gorilla and 

chimpanzee populations—Anthrax (Hoffmann et al., 2017; Leendertz et al., 2006a), Simian 

immunodeficiency virus (SIV) (Keele et al., 2009), and a variety of human respiratory viruses 

(Kondgen et al., 2008; Palacios et al., 2011) pose potential risks to great ape individuals and 

populations. Studies have also shown the ease of wild ape exposure to enteric bacterial and 

parasitic pathogens from human populations in close proximity to parks and from tourism and 

research activities (Deere, 2019; Parsons et al., 2015, Rwego et al., 2008). It is important to note, 

however, that these pathogens and several others are transmitted through various routes and 

directions of exchange (Wolfe et al., 1998). Just as pathogens spreading from humans and 

domesticated animals to primates is a conservation concern (Chi et al., 2007; Gillespie & 

Chapman, 2006, 2008; Nizeyi et al., 2002; Sapolsky & Else, 1987), the reverse transmission path 

is also a serious threat to human health (Gao et al., 1999; Calvignac-Spencer et al., 2012).  
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1.3. Great Ape Pathogen Surveillance  
 

Although there has been an increase in awareness surrounding the threat of zoonoses on 

human and great ape populations, our current understanding of wild ape health and the pathogens 

they routinely carry is minimal (Gillespie et al., 2008; Travis et al., 2018). Further complicating 

this matter are the few available diagnostic tools and validated noninvasive techniques for health 

research and surveillance in remote, resource-scarce environments (Gillespie et al., 2008; Travis 

et al., 2018). Efforts to overcome these obstacles have primarily focused on primate populations 

that are closely monitored for long-term research (e.g. chimpanzees of Gombe National Park) 

and tourism—skewing most of what we know about wild primate pathogens towards a single 

species and/or specific pathogen or pathogen group. Respiratory pathogens for instance, have 

long been recognized as a significant cause of morbidity and mortality among great apes, most 

notably in chimpanzees (Goodall, 1983, 1986; Sugiyama, 2004; Williams et al., 2008). Enteric 

pathogens on the other hand, are less understood both in terms of potential exposure and typical 

baseline profiles in wild great ape populations (Gillespie et al., 2010; McLennan et al., 2018). 

Growing evidence suggests a link between anthropogenic activity and human-primate 

pathogen transmission, but gaps still exist in our knowledge of baseline pathogen diversity and 

distribution in great ape populations (Bublitz et al., 2015; Gillespie et al., 2010; Goldberg et al., 

2007, 2008; McLennan et al., 2018; Rwego et al., 2008; Zhody et al., 2015). One particular study 

found that even in the most well-studied primate species, only about half of all micro- and 

macro-organisms are documented (Cooper & Nunn, 2013). Establishing baseline data of primate 

pathogens can be critical in providing site-specific indices of population health and assessing and 

managing disease threats to great apes and humans (Leendertz et al., 2006a, b; Travis et al., 

2018). As human-great ape contact continues to increase, it is vital that we gain a better 
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understanding of which pathogens are naturally occurring or human-induced in great ape 

populations, what conditions promote pathogen exposure and transmission, and how certain 

pathogens might impact conservation and disease-monitoring efforts on a broader scale.  

In order to improve our understanding of what enteric pathogens great apes are typically 

exposed to, I noninvasively examined two wild African great ape subspecies: 1) the Cross River 

gorilla (Gorilla gorilla diehli) and 2) the eastern chimpanzee (Pan troglodytes schweinfurthii). 

These two species—also our closest living relatives—share a higher proportion of pathogens 

with humans and are promising candidates for zoonotic pathogen screening (Calvignac-Spencer 

et al., 2012). Gorillas and chimpanzees also happen to be some of the slowest reproducing 

animals on earth, which makes them especially vulnerable to population declines (Genton et al., 

2012) and of critical importance for future conservation and disease research. By cross-

comparing pathogen profiles of one of the most endangered and elusive great apes—the Cross 

River gorilla—with one of the best understood and highly studied great apes—the eastern 

chimpanzee—I am able to investigate the diversity of pathogens among individual primates and 

variation of pathogens across species. 

In this study, I present the first enteric pathogen survey of Cross River gorillas and aim to 

better understand the similarities and differences of pathogen communities found in two distinct, 

yet closely related species. I will also investigate differences in infection prevalence and 

coinfection between and within species. This comparative approach can provide insight into how 

patterns of infection might be influenced by human habituation, as well as by variation in host 

traits across species (e.g. diet, terrestrial use and body mass) rather than within species (Gillespie 

et al., 2008). I also utilize the diagnostic platform, The TaqMan® Array Card (TAC, Life 

Technologies, Carlsbad, CA), to screen fecal samples from individuals for 39 unique enteric 
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pathogen targets (Table 1). These targets are pathogen-specific genes typically associated with 

either virulence or biology (i.e. specific outer membrane protein genes or housekeeping genes). 

To my knowledge, this is the first study to test wildlife specimens on this platform.  

1.4. Cross River Gorilla 
 

The Cross River gorilla, one of two subspecies of the Western Gorilla (Gorilla gorilla), is 

the least studied and most threatened of the African great apes and listed as critically endangered 

by the International Union for Conservation of Nature (Etiendem et al., 2013; IUCN, 2015; 

Robbins & Robbins, 2018). Having only been discovered in the early 20th century, a majority of 

Cross River gorilla research has focused primarily on their abundance and distribution (Dunn et 

al., 2014). The less than 300 individuals that remain in the wild occupy approximately 600 km² 

of severely fragmented habitat along the Cameroon-Nigeria border (Arandjelovic et al., 2015; 

IUCN, 2015; Robbins & Robbins, 2018). Individuals are dispersed across 11-14 geographically 

distinct subpopulations, which typically range from 2-20 individuals (McFarland, 2007; 

Sunderland-Groves et al., 2009; Sawyer, 2012).  

Groups mostly inhabit remote forested areas of high relief and dispersal is largely driven 

by avoidance of human activity (Dunn et al., 2014; Etiendem et al., 2013; Imong et al., 2014). 

Grouping and ranging behavior can also be attributed to the gorillas’ markedly seasonal habitat 

(Dunn et al., 2014). Terrestrial herbs and tree bark are commonly consumed throughout the year, 

with diversified fruit consumption occurring during periods of increased availability (Etiendem 

& Tagg, 2013).   

Despite legal protection in Nigeria and Cameroon, and designated protected area status 

across several of the localities where these gorillas occur, populations have continued to decline 

over the past decade (Etiendem et al., 2013; Thalmann et al., 2011). Some of the most imminent 
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threats populations face include poaching, habitat loss and fragmentation, and expanding human 

populations (Bergl et al., 2016; Dunn et al., 2014; Meder, 2015; Oates et al., 2003). Although 

cases of disease outbreaks have not yet been documented in this species, their close proximity to 

humans and domesticated animals, as well as their small and fragmented subpopulations, make 

them particularly vulnerable to the threat of emerging infectious diseases (Dunn et al., 2014).  

1.5. Eastern Chimpanzee 
 

The eastern chimpanzee, one of four recognized subspecies of the common chimpanzee 

(Pan troglodytes), is listed as Endangered by the IUCN and the most well-known and highly 

studied of any chimpanzee subspecies (Chapman et al., 1995; Goodall, 1986; Nishida, 1990; 

Reynolds, 2005; Wrangham et al., 1986, 1994). The vast majority of this subspecies reside in the 

Democratic Republic of Congo (Plumptre et al., 2010), with smaller numbers occurring mostly 

in western Uganda and Tanzania (Plumptre et al., 2003). They typically occupy lowland and 

submontane tropical forests, as well as savanna woodland habitat (IUCN, 2020). Eastern 

chimpanzees are omnivorous, with fruit constituting about half of their diet (IUCN, 2020). They 

also eat other plant parts, insects, and on occasion, small mammals (including other non-human 

primates) (IUCN, 2020; Nishida et al., 1983).  

While the total population size of this subspecies is unknown due to a lack of surveying 

across large parts of their potential range, significant declines in numbers have occurred in the 

past 20-30 years (IUCN, 2015). Recent estimates suggest there may be about 200,000-250,000 

individuals in the wild (Plumptre et al., 2010; Pusey et al., 2007). Chimpanzees are legally 

protected in their range countries, but often travel and live outside protected areas (IUCN, 2020). 

In Tanzania, for example, an estimated 60% of chimpanzees live outside protected areas (Moyer 

et al., 2006). Common threats populations face include hunting, habitat loss and fragmentation, 
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and disease (Plumptre et al., 2010). Though more numerous than the Cross River gorilla, 

chimpanzees occur in isolated, low density populations (20-150 individuals) across much of their 

range (Mitani & Watts, 2005). They also require large home ranges to sustain viable populations, 

which make them equally vulnerable to declines and mortality events (Plumptre et al., 2010).  

2. Goals and Hypothesis 
 

In this study, I aim to: 1) Provide a first-look into the enteric pathogen profiles of Cross 

River gorillas, 2) Broadly screen gorilla and chimpanzee fecal samples for enteric pathogens 

using a novel, noninvasive diagnostic platform, and 3) Compare patterns of pathogen prevalence, 

infection and coinfection between and within species.  

I hypothesize the following: a) between species: Cross River gorillas are reclusive and 

unhabituated to human presence, whereas eastern chimpanzees at Gombe National Park have 

been habituated to researchers for about 60 years. Given these differences in the levels of human 

interaction, I hypothesize that chimpanzees will exhibit higher infection prevalence and levels of 

coinfection than gorillas. b) within species: Between the two populations of each species, I 

expect individuals living in populations characterized by greater accessibility and higher levels 

of human presence will exhibit higher infection prevalence and greater levels of coinfection. 

3. Materials and Methods 
 

3.1. Cross River Gorilla Study Site 
 

Kagwene Gorilla Sanctuary (KGS) and Mone River Forest Reserve (MRFR) are gorilla 

conservation sites located in Cameroon (figure 1). KGS, established in 2008, is the longest 

running Cross River gorilla research site and has been continuously monitored by the Wildlife 

Conservation Society since 2002 (Dunn et al., 2014). It is located at the far eastern edge of the 

Mbulu Forest between 06° 05' 55" and 06° 08' 25" North and 09° 43' 35" and 09° 46' 35" East 
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(De Vere et al., 2011). The sanctuary covers approximately 19 km2 of submontane and montane 

forest, reaching elevations over 2000 m—the highest altitude site at which this subspecies is 

found. A population of about 20-25 gorillas occupy this area (Arandjelovic et al., 2015; 

Ikfuingei, 2012). While a traditional ban on hunting and consumption of gorillas has protected 

the population from poaching, surrounding human settlements have significantly reduced viable 

habitat for these gorillas, threating their future status within the Sanctuary (De Vere et al., 2011; 

Dunn et al., 2014).  

 
Figure 1. Location of Kagwene Gorilla Sanctuary and Mone Forest Reserve, Cameroon within the 
geographical range of Cross River gorillas (Gorilla gorilla diehli) (slightly modified from Sunderland-
Groves et al., 2009).  
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The Mone River Forest Reserve is located southeast of the Takamanda Forest Reserve 

and covers approximately 538 km2 of topographically diverse landscape (Arandjelovic et al., 

2015; Dunn et al., 2014). The reserve, a site more characteristic of a typical gorilla locality, 

consists mostly of large contiguous forested areas across hilly terrain with elevations ranging 

from 350-1200 m (Arandjelovic et al., 2015; Oates et al., 2004). Having only confirmed the 

existence of gorillas at MRFR in 2000, population numbers and ranging behavior patterns are 

much less understood than those at KGS (Arandjelovic et al., 2015; Dunn et al., 2014). One 

estimate suggests the presence of about 20-30 individuals at this site (Dunn et al., 2014). While 

there are no human settlements within the boundaries of the reserve, no formal protection 

currently exists for hunting, timber exploitation, and resource extraction that occurs throughout 

the site. 

3.2. Eastern Chimpanzee Study Site 

 Gombe National Park is located on the eastern shore of Lake Tanganyika in northwestern 

Tanzania (4°53′S, 29°38′E) (figure 2) (Gillespie et al., 2010). The park spans approximately 35 

km2 of mountainous landscape and is the site of the longest continuous field study—60 years of 

behavioral and ecological data collection—of wild chimpanzees in the world (Gillespie et al., 

2010; Plumptre et al., 2010). Most of the park contains a series of steep-sided valleys that fall 

from a rift escarpment approximately 1,500 m above sea level. The valleys’ lower slopes consist 

of evergreen and semideciduous forest, while the upper slopes contain a mosaic of thicket, 

woodland, and grassland vegetation (Goodall, 1986).  

An estimated 100-115 chimpanzees reside in the park and are further divided among 

three recognized social communities that inhabit separate, but overlapping territories: the 

Mitumba Community, the Kasakela Community, and the Kalande Community (Gillespie et al., 
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2010; Moyer et al., 2006; Wroblewski et al., 2015). Kasakela and Mitumba are both habituated 

and overlap slightly in habitat range (Pusey et al. 2007; Parsons et al., 2015). They differ, 

however, in the level of human encroachment (Pusey et al. 2008). The Kasakela community 

inhabits the central portion of the park in less disturbed forest, whereas the Mitumba community 

resides the park’s northern range in close proximity to the village of Mwamgongo (4°40′S, 

29°34’60′ E), home to ∼5000 inhabitants and their livestock (Parsons et al., 2015). Another large 

village occurs at the park’s southern border. The park is managed by Tanzania National Parks 

and access is mostly restricted to researchers, ecotourists, park staff, and local field assistants 

(Gillespie et al., 2010; Plumptre et al., 2010).   

 

 
Figure 2. The eastern chimpanzee ((Pan troglodytes schweinfurthii ) study site in Gombe National Park, 
Tanzania. A: Relative location of Gombe National Park within Africa and Tanzania. B: Ranges of the 
three chimpanzee groups of Gombe; Mitumba, Kasekela, and Kalande (n = chimpanzee community size) 
(Gillespie et al., 2010). 
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3.3. Sample Collection 
 

Between December 2011 and January 2012, 58 fresh fecal samples (1-3 days old) were 

noninvasively collected from 18 individual gorillas across both study sites (KGS and MRFR) 

following the protocol outlined in Arandjelovic et al. (2015). The samples screened in this study 

are based on repeated sampling of these individuals: 10 individuals from KGS (i.e. ~50% of the 

population) and 8 individuals from MRFR (i.e. ~ 35-40% of the population). Samples were 

collected at nest sites or along trails by Working Dogs for Conservation and the WCS monitoring 

team. Multiple aliquots were prepared from each sample collection. One used a two-step ethanol-

silica procedure outlined by Nsubuga et al. (2004), which were used to identify individual gorilla 

sample donors via fecal DNA extract and microsatellite genotyping as reported in Arandjelovic 

et al. (2015). An additional aliquot was added to an equivalent volume (roughly 20-25 mL) of 

RNAlater® (Ambion, Austin, TX), and stored at ambient temperature until shipment to the 

United States (stored at−80°C thereafter). 

Between September 2016 and February 2018, fresh fecal samples were noninvasively 

collected from 56 individual chimpanzees following the protocol outlined in Wroblewski et al. 

(2015). The samples screened in this study are based on single samples from those 56 individuals 

(i.e. ~ 50% of the population). Samples were collected from each of the three communities that 

reside within the park: 38 samples from the Kasakela Community, 15 samples from the Mitumba 

Community, and 3 samples from the Kalande Community. Given the fission-fusion dynamics of 

chimpanzee communities, individuals could not be followed only a daily basis. To account for 

this, the most recent sample from each individual was provided for use in this study. Samples 

were collected as soon as possible following defecation, placed in an equivalent volume (roughly 

20-25 mL) of RNAlater® (Ambion, Austin, TX), and frozen and stored in the Gombe National 
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Park field lab until shipment to the United States (stored at−80°C thereafter). Identification of 

individual chimpanzee sample donors was confirmed via fecal DNA extract using a variety of 

methods such as PCR-based sex determination (Sullivan et al., 1993; Wroblewski et al., 2009) 

and microsatellite genotyping (Constable et al., 2001; Liu et al., 2008; Rudicell et al., 2010; 

Wroblewski et al., 2009) (procedures further described in the respective references).  

3.4. TaqMan Array Card Diagnostic Platform 
 

The TaqMan Array Card is a novel testing platform that uses real-time PCR to 

simultaneously screen multiple specimens for multiple pathogens (Diaz et al., 2013). These 

microfluidic cards consist of 384 wells, each with primers and probes for a specific pathogen. 

The Centers for Disease Control and Prevention (CDC, Atlanta, Georgia)—the site of technical 

and expert support for this technology—has validated 125 targets that can be customized to 

create a multipathogen panel, such as those for respiratory pathogens (Kodani et al., 2011), 

enteropathogens (Liu et al., 2013), or biothreat agents (Rachwal et al., 2012; Weller et al., 2012). 

TAC can be used to rapidly determine etiologies of disease outbreaks and also for large-scale, 

population-based disease surveillance (Liu et al. 2013; Vernet et al., 2011).  

The TAC platform is ideal for multiple-pathogen detection and offers several advantages 

over traditional PCR assays: (1) Specimens can be tested for multiple pathogens (up to 40 on one 

card) within 3 hours, about a sixth of the time required if using traditional methods, (2) The 

closed-system design is simple to use and requires fewer steps, which minimizes potential for 

contamination or other operator error that may lead to inaccurate results, (3) The platform 

requires relatively small amounts of specimen for testing, and (4) Target tests are replicated, 

increasing confidence in data interpretation and validity of results (CDC, 2017; Diaz et al., 

2019). This technology can provide a snapshot in time of what pathogens and/or disease 
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etiologies might be circulating in a given population, allowing labs to customize future 

surveillance efforts based on presence /absence, rather than continuously screen for large 

numbers of pathogens. 

Despite these advantages, however, there are also some limitations that come with using 

TAC. One in particular is that pathogen targets are chosen a priori, which creates a potential bias 

toward detections. Another challenge is the lack of commercial availability of complete TAC 

configurations; up-front production and quality control testing are often labor-intensive and 

expensive for the buyer (Diaz et al., 2013). Lastly, the ability to screen for multiple pathogens 

and use small reaction volumes might come at the expense of overall sensitivity and detection 

rates (although this can be mitigated by running replicate reactions) (Rachwal et al., 2012; Diaz 

et al., 2019).  

3.5. Molecular Analysis 
 

DNA and RNA were extracted from each fecal specimen and analyzed in a molecular 

testing laboratory at the CDC. Samples were prepared for total nucleic acid extraction using the 

Child Health and Mortality Prevention Surveillance (CHAMPS) Rectal Swab/Stool Specimens 

Extraction Standard Operating Procedure (SOP 7.1.2.3; Version 1.1; May 2019). In brief, 400 µL 

of prepared fecal specimen (1mL Phosphate-buffered saline solution: 100mg feces) was added to 

VWR® 2 mL Pre-Filled Bead Tubes, each containing reagents of specified amounts (e.g. TE 

buffer, Roche Bacterial Lysis Buffer, MS2 phage dilution, Proteinase K). Bead-beating tubes 

were incubated at 56°C for 15 minutes, then homogenized at 5,000 rpm (2x1 min), and 

centrifuged at 10,000xg for 1 min. 700 µL of supernatant was extracted and eluted in 100 µL 

using the Roche MagNA Pure Compact Extractor (Roche Diagnostics, Indianapolis, Indiana) 
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with Nucleic Acid Isolation Kit I and Total NA Plasma External Lysis protocol (Diaz et al., 

2013).  

Following the extractions, TAC assays were performed using the CHAMPS TaqMan 

Array Card Testing Standard Operating Procedure (SOP 7.1.1). In brief, cards were loaded by 

mixing 50 µL TNA extract with 50 µL enzyme mix (qScript XLT 1-step RT-qPCR ToughMix). 

The reaction mix was then loaded into the fill port of each channel. Each card consisted of a no 

template control, positive control, and six samples. Cards were centrifuged at 1,200 rpm (2x1 

min) sealed, and run on the Applied Biosystems ViiA7 Real-Time PCR system (Life 

Technologies, Foster City, CA, USA) with the following cycling conditions: 45°C for 10 

minutes, 94°C for 10 minutes, 45 cycles of 94°C for 30 seconds, and 60°C for 60 seconds (Diaz 

et al., 2019). 

3.5. Analysis 
 

QuantStudio 7 Flex Real-Time PCR Systems Software and the TaqMan Array Card 

Supplemental Analysis Standard Operating Procedure (SOP 7.1.2; Version 1.0; May 2019) were 

used to analyze each card’s results; assign positive, negative, or indeterminate comments for 

each target replicate, internal control, positive control and no-template control on the card; and 

export results for each replicate, associated cycle threshold (Ct) values, and other data associated 

with the run (Diaz et al., 2019).  

Overall infection prevalence was calculated as the proportion of individuals carrying any 

pathogen divided by the total number of individuals sampled for that species or population. 

Pathogen prevalence was calculated as the proportion of individuals carrying pathogen x divided 

by the total number of individuals sampled for that species or population. Coinfection was 

calculated as the proportion of individuals infected with two or more pathogens divided by the 
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total number of individuals sampled for that species or population. Coinfection by number of 

pathogens was determined by dividing the number of infected individuals with x number of 

pathogens by the total number of coinfected individuals for that species or population. 

Statistical analyses were performed in IBM SPSS Statistics 26.0 (SPSS Inc., Armonk, 

NY). Analyses for between-species comparisons assessed all individuals (n = 18 for Cross river 

gorillas; n = 56 for eastern chimpanzees). Analyses for within-species comparisons assessed all 

gorilla individuals and only those from the two habituated chimpanzee communities of Kasakela 

(n = 38) and Mitumba (n = 15).  

All E. coli pathotypes (enterotoxigenic (heat-stable (ST) and -labile (LT) enterotoxins; 

enteropathogenic (bfpA and eae genes); and enteroaggregative (aaiC and aatA genes)), though 

distinct targets, were grouped together as “diarrheagenic E. coli” for statistical analysis (M. 

Parsons, personal communication, March 11, 2020). The E. coli/Shigella (ipaH gene) target was 

not included in this grouping given the inability to distinguish between these highly-related 

species. While they can be distinguished by physiological and biochemical characteristics, 

screening for the presence of the ipaH gene alone cannot separate the two (van den Beld & 

Reubsaet, 2012). For infection and prevalence parameters, it was not necessary to differentiate 

between the diarrheagenic categories. Pathotypes were treated as distinct pathogens, however, 

when comparing coinfection by number of pathogens between and within species.  

By constructing 2x2 contingency tables, Fisher’s exact test of independence (two-tailed) 

was used to test for differences in percent infection prevalence and pathogen prevalence between 

and within species. I also tested for differences in the percentage of parasitic, viral, and bacterial 

infections between and within species. I evaluated whether coinfections of pathogen pairs within 

species were more frequent than would be expected by chance based on the assumption of 
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independent transmission (Table 2). In chimpanzees specifically, I looked at SIV status 

(provided by Gombe Stream Research Center staff) in relation to coinfection with 

Cryptosporidium parvum and adenovirus, common opportunistic pathogens in HIV-infected 

humans and SIV-infected primates (Wachtman & Mansfield, 2008). Values less than 0.05 were 

considered statistically significant.  

4. Results 
 
4.1. Infection and Pathogen Prevalence 
 

All (100%) 18 gorillas tested positive for at least one enteric pathogen (Table 3), whereas 

39 (70%) of the 56 chimpanzees tested positive for at least one pathogen (Table 8). In terms of 

overall infection prevalence, gorillas were more likely to be infected with any pathogen than 

chimpanzees (p < 0.01). Overall prevalence of infection between populations of both species did 

not differ (p > 0.05 for both comparisons) (Table 4 & 9). Adenovirus and C. parvum were the 

most common pathogens detected in both gorillas and chimpanzees, occurring in 39% and 67% 

of gorillas and 52% and 13% of chimpanzees, respectively (Table 3 & 8). Gorillas were more 

likely to be infected with C. parvum (p < 0.01) than chimpanzees and there was no difference in 

adenovirus infections between species (p > 0.05). There was also no difference in C. parvum 

infection or adenovirus infection between populations of both gorillas and chimpanzees (p > 0.05 

for all comparisons). Among the other pathogens detected, gorillas were more likely to be 

infected with Enterococcus faecalis (p < 0.01) than chimpanzees. There was no difference 

between or within species for any other pathogens detected (p > 0.05 for all comparisons). 

When pathogens were broadly grouped as parasitic, viral, or bacterial (Table 7 & 12), 

gorillas were more likely to be infected with parasitic (p < 0.01) and bacterial (p < 0.05) 

pathogens than chimpanzees. There was no difference between species in viral pathogen 
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infections (p > 0.05). There was also no difference within species for each group of pathogens (p 

> 0.05 for all comparisons).  

4.2. Patterns of Coinfection 

Of the 18 infected gorillas, eight (44%) showed single infections and ten (56%) showed 

coinfections (Table 5). Cryptosporidium parvum was detected in seven out of ten (70%) 

coinfected individuals (Table 7). Of the ten infected gorillas at Kagwene, six (60%) showed 

single infections and four (40%) showed coinfections (Table 6). Of the eight infected gorillas at 

Mone, two (25%) showed single infections and six (75%) showed coinfections (Table 6). Of the 

39 infected chimpanzees, 20 (51%) showed single infections and 19 (49%) showed coinfections 

(Table 10). Adenovirus was detected in 17 of the 19 (90%) coinfected individuals (Table 12). Of 

the 27 infected chimpanzees in Kasakela, 12 (44%) showed single infections and 15 (56%) 

showed coinfections (Table 11). Of the ten infected chimpanzees in Mitumba, six (60%) showed 

single infections and four (40%) showed coinfections (Table 11).  

Groups of pathogens and specific pathogens commonly associated with opportunistic 

infection and/or coinfection were compared within species. Coinfection with diarrheagenic E.coli 

(DEC) and other diarrhea-associated pathogens, such as adenovirus, C. parvum, and 

E.coli/Shigella, was assessed. Diarrheagenic E.coli was detected in five (28%) gorillas and nine 

(17%) chimpanzees. Adenovirus was detected in seven (39%) gorillas and 28 (53%) 

chimpanzees, C. parvum in 12 (67%) gorillas and seven (13%) chimpanzees, and E.coli/Shigella 

in two (11%) gorillas and two (4%) chimpanzees. Three (17%) gorillas tested positive for both 

DEC-adenovirus and DEC-C. parvum coinfections and one (6%) tested positive for DEC-

E.coli/Shigella coinfection; expected frequencies of coinfection were 11% (~ 2 cases), 18% (~ 3 

cases), and 3% (~ 1 case), respectively. Six (11%) chimpanzees tested positive for DEC-



 
 

18 

adenovirus coinfection and one (2%) tested positive for both DEC-C. parvum and DEC-

E.coli/Shigella coinfection; expected frequencies of coinfection were 9% (~ 5 cases), 2% (~1 

case), and 0.6% (~ 0 cases), respectively. The coinfection frequencies that I detected in both 

species were not statistically different from the expected frequencies (p > 0.05 for all 

comparisons). This was also the case for all other pathogen-pathogen coinfection comparisons 

assessed within each species (p >  0.05 for all comparisons).  

In chimpanzees, coinfection of SIV with C. parvum and adenovirus was compared. Eight 

(15%) individuals were positive for SIV, 7 (13%) for C. parvum, and 28 (53%) for adenovirus. 

No individuals showed SIV-C. parvum coinfection and four (8%) showed SIV-adenovirus 

coinfection. The expected frequency of SIV-C. parvum coinfection was 2% (~1 case) and 8% 

(~2 cases) for SIV-adenovirus coinfection, both of which did not differ from the observed 

frequencies (p > 0.05 for both comparisons).  

Coinfections were also compared between viral, parasitic, and bacterial pathogens. 

Thirteen (25%) chimpanzees tested positive for parasitic infections, 32 (60%) for viral, and 12 

(23%) for bacterial. Eleven (21%) individuals had parasite-virus coinfection, five (9%) had 

parasite-bacteria coinfection, and eight (15%) had virus-bacteria coinfection. The expected 

frequency of parasite-virus coinfection was 15% (~ 8 cases), 5% (~ 3 cases) for parasite-bacteria 

coinfection, and 14% (~7 cases) for virus-bacteria coinfection. The coinfection frequencies that I 

detected in chimpanzees was not statistically different from the expected frequencies (p > 0.05 

for all comparisons). Twelve (67%) gorillas tested positive for parasitic infections, eight (44%) 

for viral, and nine (50%) for bacterial. Four (22%) individuals had parasite-virus coinfection, 

five (28%) had parasite-bacteria coinfection, and four (22%) had virus-bacteria coinfection. The 

expected frequency of parasite-virus coinfection was 29% (~ 5 cases), 33% (6 cases) for parasite-
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bacteria coinfection, and 22% (4 cases) for virus-bacteria coinfection. The coinfection 

frequencies that I detected in gorillas was not statistically different from the expected frequencies 

(p > 0.05 for all comparisons). 

5. Discussion 
 

The results from this study demonstrate a higher prevalence of overall infection, as well 

as parasitic and bacterial infections, in gorillas. Although a variety of environmental, social, and 

genetic factors could have affected differences in infection patterns between species, one 

possible reason for the higher observed prevalence in gorillas, especially those at Mone River, 

may be attributed to the increasing pressure they face from anthropogenic activity. According to 

Dunn et al. (2014), there is little to no law enforcement throughout the reserve, which has led to 

uncontrolled hunting, timber exploitation, resource extraction and an increase in small-scale 

farming. Habitat loss and fragmentation have also increased within Cross River gorilla habitat 

over the past years (Dunn et al., 2014; Goldberg et al., 2008), which can promote both bacterial 

and parasitic transmission between primates (Gillespie & Chapman, 2006; Goldberg et al., 

2008). Taken together, these anthropogenic pressures could elicit physiological stress responses 

that compromise immune function and consequently lead to increased infection susceptibility in 

gorilla individuals (Gillespie & Chapman, 2006; Hing et al., 2016). In contrast, measures 

specifically aimed at reducing anthropogenic disease risk to chimpanzees have been 

implemented at Gombe for years. The long-term success of ecosystem health approaches and 

methods to mitigate health risks at this site could further explain the lower infection prevalence 

observed in chimpanzees (Gillespie et al., 2010; Travis et al., 2018).  

I also found that coinfections were relatively common in both species (10 of the 18 [56%] 

infected and studied gorillas and 19 of the 39 [49%] infected chimpanzees [34% of all 
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chimpanzees studied]). This finding was in line with several studies that document high 

prevalence of multiple pathogen infections in humans, especially with diarrhea-associated agents 

(Elfving et al., 2014; Kabayiza et al., 2014; Kotloff et al., 2013; Shrivastava et al., 2017; Zhang 

et al., 2016; Zohdy et al., 2014). It is thought that enteric pathogen coinfection plays an 

important role in acute diarrhea, a major cause of childhood morbidity and mortality in 

developing countries (Andersson et al., 2018; Kabayiza et al., 2014). Patterns of coinfection and 

the mechanisms between coinfecting enteric pathogens are much less understood in wild primate 

populations, despite their pathogenic and zoonotic potential (Klaus et al., 2017). The enteric 

pathogens and high rates of coinfection I detected in this study could have important implications 

for gorilla and chimpanzee health and conservation.  

Groups of pathogens and pathogen pairs were evaluated based on commonly detected 

enteric pathogens and observed coinfection combinations in humans. For instance, diarrheagenic 

E.coli (Batabyal et al., 2013), Cryptosporidium (Kotloff et al., 2013; Sarkar et al., 2014), and 

Shigella (Livio et al., 2014), are major etiological agents of diarrheal disease, associated with 

coinfection, and linked to childhood morbidity and mortality events. Interestingly, coinfection 

with these specific pathogens were nonassociated in gorilla and chimp populations. I was also 

surprised to find that C. parvum and Adenovirus, both opportunistic pathogens, were not 

positively associated with SIV infection in chimpanzees. In humans, C. parvum is one of the 

most frequently identified Cryptosporidium spp. in AIDS patients (Fayer et al., 2000). Given that 

wild chimpanzees infected with SIV are known to experience AIDS-like immunopathology 

(Etienne et al., 2011; Keele et al., 2009), I expected coinfection between these pathogens to be 

dependent events. Butel et al. (2015) reported similar findings, however, suggesting that 
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Cryptosporidium spp. infection in wild chimpanzees was not significantly associated with an 

individual’s respective SIV status.  

Although the observed frequencies of all coinfections in gorilla and chimp populations 

did not differ from those expected, the synergistic effects could still result in more severe 

pathogenesis than infection with either pathogen alone (Shrivastava et al., 2017). Furthermore, 

these findings were based on statistical analyses and may not reflect the true behavior of these 

pathogens in the environment (Silva et al., 2019). Future research should focus on syndromic 

health data to further assess the pathogenic importance and severity of different pathogen pair 

coinfections.  

Adenovirus and Cryptosporidium parvum were the two most common pathogens detected 

in gorillas and chimpanzees. Adenovirus prevalence in both species fell within comparable 

ranges reported in previous studies. Seimon et al. (2015) detected adenoviruses in 69.6% of fecal 

samples from free-ranging central chimpanzees (Pan troglodytes troglodytes) (n = 23) and 

44.9% of samples from western lowland gorillas (Gorilla gorilla gorilla) (n = 136). Roy et al. 

(2009) detected adenovirus DNA in 40% of stool samples from wild chimpanzees in Central 

Africa (n = 67) and 50% of samples from mountain gorillas (Gorilla beringei beringei) (n = 6) in 

Rwanda. Though C. parvum infection in wild great ape populations is less understood, cases that 

have been documented also parallel the findings from this study. Nizeyi et al. (1999) reported 

11% infection prevalence of Cryptosporidium in wild human-habituated mountain gorillas of 

Bwindi Impenetrable National Park in Uganda. These same gorillas were later found to be 

infected with C. parvum (Graczyk et al., 2001), as were humans (Nizeyi et al., 2001) and cattle 

(Nizeyi et al., 2002) in the surrounding community. Mynářová et al. (2016) also detected C. 

parvum in habituated captive and semi-wild orangutans, though in very low prevalence.  
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Adenoviruses are common in both humans and nonhuman primates (Chen et al., 2011; 

Wevers et al., 2011), can cause mild to severe disease, such as respiratory infections and 

gastroenteritis, and are also associated with high morbidity and mortality in immunosuppressed 

individuals, especially in developing countries (Kojaoghlanian et al., 2003; Kotloff et al., 2013; 

Lion, 2014; Tan et al., 2016; Wasimuddin et al., 2019). While pathogenesis of adenovirus is less 

understood in primate populations, a recent study on Malagasy mouse lemurs (Microcebus 

griseorufus) found that infection with this pathogen was linked to the disruption of the gut 

microbiome (Wasimuddin et al., 2019). If this association holds true, and homeostasis of the 

gastrointestinal tract is disturbed, individuals could become more susceptible to enteric pathogen 

infection and coinfection (Chen et al., 2017; Moeller et al., 2013; Wasimuddin et al., 2018; Zhao 

et al., 2017). Although additional studies are needed to corroborate findings by Wasimuddin et 

al. (2019), the promotion of coinfection by adenovirus infection could help explain the high 

prevalence of this pathogen in chimpanzee (89%) and gorilla (50%) coinfections. 

It should also be noted that many of the observed Simian adenoviruses show high degrees 

of sequence relatedness to human strains, suggesting evidence of past cross-species transmission 

events and potential risk of such in the future (Pantó et al., 2015; Roy et al., 2009; Wevers et al., 

2011). Though identifying specific adenovirus strains were beyond the scope of this study, the 

high detection rate of this virus, its zoonotic potential, and the sheer prevalence of 

immunosuppressed HIV individuals in Sub-Saharan Africa (Bennett et al., 2007) warrants the 

need for further characterization of this viral group and continual monitoring of these great ape 

populations.  

Cryptosporidium parvum has been documented in over 150 mammalian hosts, including 

nonhuman primates (Fayer et al., 1997; Fayer, 2008; Xiao & Fayer, 2008), and has received 
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considerable attention given its zoonotic potential (Graczyk et al., 1997; Xiao & Fayer, 2008). Of 

the Cryptosporidium species, C. parvum appears to be the most widespread, have the broadest 

host range, and linked most often to human and livestock infections (Xiao et al., 2004). Studies 

that have detected Cryptosporidium spp. in nonhuman primates suggest a possible link between 

human-habituated great apes and enhanced zoonotic transmission (Fayer et al., 1997; Muriuki et 

al., 1997; Nizeyi et al. 1999; Gillespie et al., 2009; Gomez et al., 2000; van Zijll Langhout et al., 

2010). This association was not supported by my results, however, as the (habituated) 

chimpanzees displayed lower infection prevalence of C. parvum (13%) than the (non-habituated) 

gorillas (67%).  

Interestingly, Parsons et al. (2015) examined Gombe chimpanzees from the same 

communities and found no infection of C. parvum. The authors detected three other 

Cryptosporidium species, C. hominis, C. suis and C. xiaoi, which were not screened for in this 

study. The contrast between these findings and my results may be explained by differences in 

interannual or interseasonal variation (e.g. rainfall or temperature patterns), or more likely, by 

the use of diagnostic approaches to determine presence/absence of C. parvum. Parsons et al. 

(2015) utilized PCR and restriction fragment length polymorphism (PCR-RFLP) to target 

the Cryptosporidium SSU rRNA gene. While it is unclear which specific C. parvum gene was 

targeted on the TAC assay, Graczyk et al. (1996) noted that some tests highly sensitive to C. 

parvum showed cross-reactivity for non-parvum Cryptosporidium oocysts, which could lead to 

misidentification of species when using environmental samples.    

Despite the many advantages of using the TAC platform, there were limitations to using 

this approach. The ability to broadly screen for enteric pathogens inherently reduces the 

opportunity to distinguish between specific strains and/or species. For instance, the assay for 
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detecting Salmonella spp. detects Salmonella bongori and all subspecies of Salmonella enterica. 

Though this platform proved extremely applicable for the scope of this study, the lack of 

molecular information provided could be seen as a potential drawback. My results are also based 

on small sample sizes, which should be considered when interpreting results. It is also possible 

that fecal degradation occurred from the time of sample collection to the time of analyses, which 

could result in underreporting of pathogen presence and diversity. Regardless of these 

limitations, findings from this study highlight the imperative need to continue efforts in defining 

health-related conservation threats and helping to guide managements actions towards protecting 

these great ape species.  

Our understanding of pathogens and the diseases they can cause in nonhuman primates is 

growing, yet there still remains a gap in what we know regarding the breadth of pathogens that 

routinely infect wild populations. Understanding what constitutes “normal,” in terms of which 

pathogens to expect, as well as their expected prevalence and severity, is a necessary step in 

managing disease risk (Travis et al., 2018).  This study aimed to partially close that knowledge 

gap by establishing a baseline of enteric pathogen diversity in gorillas and chimpanzees. These 

results are especially pertinent for monitoring populations of these subspecies given the 

previously documented cases of disease and epidemics (e.g. respiratory, polio, mange) in Gombe 

(Williams et al., 2008), and the lack of such in Cross River gorilla populations. Furthermore, the 

threat of forest encroachment by humans and livestock near Kagwene and Mone River puts 

gorillas increasingly at risk of novel pathogen exposure, which could have catastrophic impacts 

on the population (Dunn et al., 2014). Findings from this study warrant the need for continuous 

monitoring of these subspecies but have laid a promising foundation towards a better 

understanding of health and disease patterns, potential health risks, and the diversity of 
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pathogens to which these species are typically exposed. This knowledge can help further guide 

conservation measures aimed at optimizing disease surveillance systems and measures for risk-

management across a variety of great ape populations. 
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Tables  
 
Table 1. Enteric pathogen targets (n = 39) validated for use on TaqMan array cards. Distinct gene targets 
for the same pathogen were grouped together for simplicity (adapted from Diaz et al. 2019). 
 

Bacteria (n = 16)   

Aeromonas spp. Enterococcus faecium Salmonella enterica/bongori 

Campylobacter coli Enteroaggregative Escherichia coli 
(aaiC, aatA) Shiga toxin (stx1, stx2) 

Campylobacter jejuni Enteroinvasive E. coli/Shigella (ipaH) Vibrio cholerae (non-
toxigenic, toxigenic) 

Clostridioides 
difficile, nontoxigenic Enteropathogenic E. coli (bfpA, eae) Yersinia spp. 

C. difficile toxin A tcdA, 
toxin B tcdB Enterotoxigenic E. coli (LT, ST)   

Enterococcus faecalis  Mycobacterium tuberculosis  

Viruses (n = 12)   

Adenovirus Norovirus genogroup GI Rotavirus C 

Adenovirus serotype 40/41 Norovirus genogroup GII Rotavirus nontypeable 

Astrovirus Rotavirus A Sapovirus I/II/IV 

Enterovirus Rotavirus B Sapovirus V 

Parasites (n = 5)   

Ascaris lumbricoides Entamoeba histolytica Trichuris trichiura 

Cryptosporidium parvum Giardia spp.  
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Table 2. Contingency table comparing the observed and expected (in parenthesis) values of coinfection 
for SIV and C. parvum in eastern chimpanzees (Pan troglodytes schweinfurthii) in the Kasakela and 

Mitumba communities of Gombe National Park, Tanzania. 

 
C. parvum 

Total 
Not Infected Infected 

SIV    

Not infected 38 
(39.1) 

7 
(5.9) 45 

Infected 8 
(6.9) 

0 
(1.1) 8 

Total 46 7 53 

 
 
Table 3. Enteric pathogen prevalence of Cross River gorillas (Gorilla gorilla diehli) in Kagwene Gorilla 
Sanctuary and Mone River Forest Reserve, Cameroon (n=18).  

Assay Organisms Detected Pathogen 
Group 

No. (%) Positive 
Individuals  

Cryptosporidium parvum Cryptosporidium parvum Parasite 12 (66.67%) 

Adenovirus All Adenovirus serotypes except 40 and 
41 Virus 7 (38.89%) 

All diarrheagenic E. coli  Bacteria 5 (27.78%) 

Enterotoxigenic  
E. coli 

E. coli carrying the virulence gene for 
a heat-labile (LT) OR heat-stable (ST) 
enterotoxin 

 4 (22.22%) 

Enteropathogenic  
E. coli 

E. coli carrying the gene (eae) encoding the 
outer membrane protein intimin and causing 
pathogenesis through attachment and 
effacement of human epithelial cells 

 1 (5.56%) 

Enterococcus faecalis Enterococcus faecalis Bacteria 5 (27.78%) 

Escherichia coli/Shigella 
(ipaH gene) 

Escherichia coli and Shigella species 
carrying the invasion plasmid antigen H 
gene 

Bacteria 2 (11.11%) 

Salmonella spp. Salmonella bongori and all subspecies 
of Salmonella enterica Bacteria 2 (11.11%) 

Enterovirus all Enterovirus serotypes with 
the Enterovirus genus Virus 1 (5.56%) 
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Table 4. Comparison of enteric pathogen prevalence of two Cross River gorilla (Gorilla gorilla diehli) 
populations in Cameroon (Kagwene Gorilla Sanctuary, n = 10; Mone River Forest Reserve, n = 8). 

Assay Pathogen Group 
No. (%) Positive Individuals 

Kagwene Mone  

Cryptosporidium parvum Parasite 6 (60.00%) 6 (75.00%) 

Adenovirus Virus 5 (50.00%) 2 (25.00%) 

All diarrheagenic E. coli Bacteria 1 (10.00%) 4 (50.00%) 

Enterotoxigenic  
E. coli (LT, ST)  0 (0.00%) 4 (50.00%) 

Enteropathogenic  
E. coli (eae)  1 (10.00%) 0 (0.00%) 

Enterococcus faecalis Bacteria 1 (10.00%) 4 (50.00%) 

Escherichia coli/Shigella (ipaH gene) Bacteria 0 (0.00%) 2 (25.00%) 

Salmonella spp. Bacteria 1 (10.00%) 1 (12.50%) 

Enterovirus Virus 1 (10.00%) 0 (0.00%) 

 
 
Table 5. Number of enteric pathogens detected in coinfected Cross River gorillas (Gorilla gorilla diehli) 
in Kagwene Gorilla Sanctuary and Mone River Forest Reserve, Cameroon (n = 10).  

Pathogens Detected No. (%) Positive Individuals 

2 pathogens 6 (60.00%) 
3 pathogens 2 (20.00%) 
4 pathogens 2 (20.00%) 

 
 
Table 6. Comparison of the number of enteric pathogens detected in coinfected Cross River gorillas 
(Gorilla gorilla diehli) in two Cameroon populations (Kagwene Gorilla Sanctuary, n = 4; Mone River 
Forest Reserve, n = 6). 

Pathogens Detected 
No. (%) Positive Individuals 

Kagwene Mone 
2 pathogens 3 (75.00) 3 (50.00%) 
3 pathogens 1 (25.00%) 1 (16.67%) 
4 pathogens 0 (0.00%) 2 (33.33%) 
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Table 7. Enteric pathogens in coinfected Cross River gorillas (Gorilla gorilla diehli) in Kagwene Gorilla 
Sanctuary and Mone River Forest Reserve, Cameroon (n = 10). Red cells indicate bacterial pathogens, 
blue cells indicate viral pathogens, and yellow cells indicate parasitic pathogens. 

  E. coli/Shigella 
(ipaH

 gene) 

Enteropathogenic 
E. coli (eae gene) 

Enterotoxigenic 
E. coli (LT, ST

) 
 

Salm
onella spp. 

 

E. faecalis 
 

Enterovirus 
 

A
denovirus 

 

C. parvum
 

 

G020 X    X    

G019     X   X 

G004       X X 

G017  X     X  

G008      X  X 

G015 X  X    X  

G001    X   X X 

G016   X     X 

G013   X  X  X X 

G014   X X X   X 
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Table 8. Enteric pathogen prevalence of eastern chimpanzees (Pan troglodytes schweinfurthii) in the 
Kasakela, Mitumba, and Kalande communities of Gombe National Park, Tanzania (n = 56). 
 

Assay Organisms Detected Pathogen 
Group 

No. (%) Positive 
Individuals  

Adenovirus All Adenovirus serotypes except 40 and 
41 Virus 29 (51.79%) 

All diarrheagenic E. coli  Bacteria 9 (16.06%) 

Enterotoxigenic  
E. coli 

E. coli carrying the virulence gene for 
a heat-labile (LT) OR heat-stable (ST) 
enterotoxin 

 5 (8.93%) 

Enteroaggregative  
E. coli 

Escherichia coli carrying a virulence 
gene (aaiC) associated with causing 
pathogenesis through aggregation in the 
intestinal mucosa 

 4 (7.14%) 

Enteropathogenic  
E. coli 

Escherichia coli carrying the gene 
(bfpA) encoding the bundle-forming 
pilus and causing pathogenesis through 
attachment and effacement of human 
epithelial cells 

 1 (1.79%) 

Cryptosporidium parvum Cryptosporidium parvum Parasite 7 (12.50%) 

Enterovirus All Enterovirus serotypes with 
the Enterovirus genus Virus 5 (8.93%) 

Giardia spp.  All Giardia species infecting humans Parasite 5 (8.93%) 

Trichuris trichiura Trichuris trichiura (Trichocephalus 
trichiuris) Parasite 3 (5.36%) 

Escherichia coli/Shigella 
(ipaH gene) 

Escherichia coli and Shigella species 
carrying the invasion plasmid antigen H 
gene 

Bacteria 2 (3.57%) 

Aeromonas spp.  Aeromonas hydrophila, caviae, veronii, 
jandaei, salmonicida, schubertii, popofii Bacteria  1 (1.79%) 

Enterococcus faecalis Enterococcus faecalis Bacteria 1 (1.79%) 

Norovirus GII Norovirus belonging to genogroup 2  Virus 1 (1.79%) 

Rotavirus A Rotavirus A species from the Rotavirus 
genus Virus 1 (1.79%) 
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Table 9. Comparison of enteric pathogen prevalence in two eastern chimpanzee (Pan troglodytes 

schweinfurthii) communities in Gombe National Park, Tanzania (Kasakela, n = 38; Mitumba, n = 15). 

Assay Pathogen Group 
No. (%) Positive Individuals 

Kasakela Mitumba 

Adenovirus Virus 21 (55.26%) 7 (46.67%) 

All diarrheagenic E. coli Bacteria 5 (13.16%) 4 (26.67%) 

Enterotoxigenic  
E. coli (LT, ST)  4 (10.53%) 1 (6.67%) 

Enteroaggregative  
E. coli (aaiC)  2 (5.36%) 2 (13.33%) 

Enteropathogenic  
E. coli (bfpA)  0 (0.00%) 1 (6.67%) 

Cryptosporidium parvum Parasite 6 (15.79%) 1 (6.67%) 

Enterovirus Virus 5 (13.16%) 0 (0.00%) 

Giardia spp.  Parasite 3 (7.89%) 1 (6.67%) 

Trichuris trichiura Parasite 2 (5.36%) 1 (6.67%) 

Escherichia coli/Shigella (ipaH gene) Bacteria 1 (2.63%) 1 (6.67%) 

Aeromonas spp. Bacteria 0 (0.00%) 1 (6.67%) 

Enterococcus faecalis Bacteria 0 (0.00%) 1 (6.67%) 

Norovirus GII Virus 1 (2.63%) 0 (0.00%) 

Rotavirus A Virus 1 (2.63%) 0 (0.00%) 

 
 
Table 10. Number of enteric pathogens detected in coinfected eastern chimpanzees (Pan troglodytes 

schweinfurthii) in the Kasakela and Mitumba communities of Gombe National Park, Tanzania (n=19). 

Pathogens Detected No. (%) Positive Individuals 

2 pathogens 13 (68.42%) 
3 pathogens 5 (26.32%) 
4 pathogens 1 (5.26%) 



 
 

46 

Table 11. Comparison of the number of enteric pathogens detected in coinfected eastern chimpanzees 
(Pan troglodytes schweinfurthii) in the Kasakela and Mitumba communities of Gombe National Park, 
Tanzania (Kasakela, n = 15; Mitumba, n = 4). 

Pathogens Detected 
No. (%) Positive Individuals 

Kasakela Mitumba 
2 pathogens 12 (80.00%) 1 (25.00%) 
3 pathogens 2 (13.33%) 3 (75.00%) 
4 pathogens 1 (6.67%) 0 (0.00%) 
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Table 12. Enteric pathogens in coinfected eastern chimpanzees (Pan troglodytes schweinfurthii) in the 
Kasakela and Mitumba communities of Gombe National Park, Tanzania (n = 19). Red cells indicate 
bacterial pathogens, yellow cells indicate parasitic pathogens, and blue cells indicate viral pathogens. 

  E. coli/Shigella 
(ipaH

 gene) 

Aerom
onas spp. 

Enteropathogenic 
E. coli (bfpA gene) 

 

Enteroaggregative 
E. coli (aaiC gene) 

 

Enterotoxigenic  
E. coli (LT, ST) 

 

C. parvum
 

G
iardia spp. 

T. trichuria 

A
denovirus 

Enterovirus 

GM4680      X   X  

GM5178       X  X  

GM5123      X   X  

GM5181      X   X  

GM5006      X   X  

GM5161         X X 

GM5166         X X 

GM4973         X X 

GM5148         X X  

GM5145    X     X  

GM5044    X     X  

GM5171     X    X  

GM5139       X   X 

GM5107 X     X   X  

GM4968   X   X   X  

GM5177  X      X X  

GM5136    X X    X  

GM5162 X   X   X    

GM4674     X  X X X  
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