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Abstract

Flexible Methods to Incorporate Covariates in Latent Class Analysis

By

Grace S. Kim

Mild Cognitive Impairment (MCI) is a neurocognitive disorder with a complex structure
that sometimes precedes dementia. It is comprised of heterogeneous subclinical entities,
which necessitates clinicians to assess different domains of cognitive, functional, neuropsy-
chiatric, and possibly biological features for an accurate diagnosis and early intervention.
Latent class analysis (LCA) is a method based on rigorous statistical derivation that can be
used to explore heterogeneity of MCI. Latent class regression, an extension of the latent class
framework established by Bandeen-Roche et al. (1997), can be used to incorporate covariates
as risk factors of class membership. Under the latent class regression model, the population
of interest consists of mixture of different subcategories of MCI with unobserved or latent
class membership, which is further associated with risk factors of interest.

The first aim of this research is to explore situations when covariates unintentionally
influence conceptualization of latent classes, and develop a flexible method for researchers
to incorporate covariates without distorting too extensively the clinical interpretation of the
latent classes in the maximum likelihood solution. Relative frequencies of latent classes
resulting from covariates will be used to help investigate the structure of MCI. The EM
algorithm will be used to provide optimal parameter estimates and latent class-specific means
of manifest variables.

The second aim expands on the first aim by focusing on high-dimensional and poten-
tially correlated covariates to develop a new method, termed compound LCA, that applies
dimension reduction in covariate space simultaneously with dimension reduction in manifest
variable space. Compound LCA will effectively avoid uncertainties or “fuzziness” in dimen-
sion reduction that are propagated in the LCA by introducing a second set of latent classes
that are formulated based on the observed high-dimensional covariate patterns. The EM
algorithm will be used to find the prevalence of classes of covariates and features, posterior
probabilities of each individual, and latent class-specific means of covariates and feature vari-
ables for clinical interpretation of the latent classes. The third aim introduces an extension
of compound LCA, which assumes that feature classes are nested within covariate classes.
We provide a likelihood ratio test that compares compound LCA and its extension.
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Chapter 1

Introduction
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1.1 Overview

Mild Cognitive Impairment (MCI) is defined to be an intermediary neurocognitive disorder

that sometimes precedes dementia (Petersen, 2011). While dementia is described to be a

debilitating disease that perturbs everyday routine and contributes to patient dependence

due to cognitive deficit (Petersen, 2011), MCI is a complex syndrome where patients exhibit

cognitive decline that is not as severe as those who suffer from dementia and tend to display

relatively normal functional abilities. That is, patients who are diagnosed with MCI do not

experience interference in instrumental activities of daily living (IADLs) such as cooking

and bill management, and can be distinguished from people who experience normal aging,

such as increased forgetfulness. Therefore, diagnosis of MCI can help with early detection

of cognitive decline before discernible functional impairment.

There is growing awareness that MCI is a highly heterogeneous syndrome (Hanfelt et al.,

2011; Diaz-Mardomingo et al., 2017). Researchers are finding that aside from the degener-

ation of brain cells, underlying medical conditions such as depression and anxiety disorder

may be attributing to cognitive decline (Petersen, 2016). Moreover, by expanding the phe-

notype of MCI beyond cognitive features to include neuropsychiatric features and IADLs,

improved predictions of subsequent cognitive decline and underlying neuropathology is pos-

sible (Hanfelt et al., 2018). However, characterization of subcategories in MCI is heavily

debated among clinicians.

Various statistical methods have been proposed to help clarify our understanding and

evaluation of MCI. Latent class analysis (LCA) is a powerful method based on rigorous

statistical derivation that can be used to explore heterogeneity of MCI. The traditional latent

class model (Lazarsfeld and Henry, 1968) aims to clarify the relationships among manifest

(observed) variables in the model by uncovering a structure of latent (unobserved) variables.

This approach adopts a finite mixture model and assumes that the manifest variables are

conditionally independent given the latent classes. An important extension is latent class

regression (Bandeen-Roche et al., 1997), which additionally incorporates covariates as risk
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factors of class membership and assumes that covariates are only associated with manifest

variables through latent class frequencies. The application of this method to MCI is founded

on the assumption that the MCI syndrome consists of a mixture of different subtypes of

MCI with unobserved or latent class membership, which is further associated with different

risk factors of interest. Under this rigorous statistical framework, the maximum likelihood

method is available to optimally estimate parameters and conduct inference.

Importantly, the latent class regression model (Bandeen-Roche et al., 1997) assumes

that covariates affect the latent class frequencies (i.e., mixture probabilities) but not the

conceptualization of the latent classes. Despite this assumption, we explore an application

to MCI where the presence of covariates altered not only the mixture probabilities but also

the conceptualization of the latent classes. We introduce a covariate activity governor to

more flexibly incorporate covariates into the model, allowing investigators to richly explore

the impact of covariates on study findings, and limit, or customize, the extent to which

covariates alter the clinical interpretation of the latent classes.

In addition, there has been an increasing interest in analyzing high-dimensional and po-

tentially correlated covariates associated with MCI, such as sociodemographic characteristics,

health history such as indicators of cerebrovascular disease, coronary artery disease and car-

diac dysrhythmias, genetics and biomarkers. The latent class regression model assumes that

there is a direct parametric relationship between covariates and the relative frequencies of

the latent classes, limiting this approach to covariates that are low-dimensional, i.e., less

than 10 covariates. We propose an alternative method to apply LCA on high-dimensional

and potentially correlated covariates, i.e., 20-30 covariates, which is a bigger magnitude

of what is usually handled by standard LCA. We outline the concept of compound LCA,

that introduces a second set of latent classes that are formulated based on the observed

high-dimensional covariate patterns. We extend compound LCA to assume that classes of

feature variables are nested within covariate classes, and provide a likelihood ratio test to

help determine which method to use.
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1.2 Motivating Example

1.2.1 Study Sample

We included individuals from the Uniform Data Set (UDS) of the National Alzheimer’s

Coordinating Center (NACC), which is a longitudinal study that includes patients who have

dementia, mild cognitive impairment and who are cognitively normal (National Alzheimer’s

Coordinating Center, 2021b). We focused on a sample of 6034 participants as of June 2015

freeze date and included standardized evaluations of functional abilities, neuropsychiatric

symptoms and assessments of cognitions as manifest variables. We included vascular risk

factors as covariates.

1.2.2 Assessments of Functional Abilities

The functional Assessment Questionnaire (FAQ) was used to evaluate functional abilities

of patients in the UDS dataset. The FAQ utilizes 10 questionnaires to measure a level of

functional ability relating to instrumental activities of daily living (IADL) in areas such

writing checks, assembling tax records or remembering appointments (Ito et al., 2012). A

patient can have scores ranging from 0=normal to 3=dependent, and the sum of all questions

becomes the FAQ score that ranges from 0 to 30 (Marshall et al., 2015).

1.2.3 Assessments of Neuropsychiatric Symptoms

The Neuropsychiatric Inventory Questionnaire (NPI-Q) was used to assess the severity of

neuropsychiatric symptoms of participants. It is a self-administered questionnaire that exam-

ines 12 neuropsychiatric symptom domains: delusions, hallucinations, agitation/aggression,

dysphoria/depression, anxiety, euphoria/elation, apathy/indifference, disinhibition, irritabil-

ity/lability, aberrant motor behaviors, night-time behavioral disturbances, and appetite/eat-

ing disturbances (Musa et al., 2017). The symptoms are evaluated in terms of severity, where

1=mild, 2=moderate and 3=severe, and the sum of NPI-Q scores can be up to 36 (Kaufer
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et al., 2000). Geriatric Depression Scale (GDS), which uses 15 questionnaires with yes/no

answers and scores of 12-15 indicate severe depression, was used to assess depression among

patients (Yesavage and Sheikh, 1986).

1.2.4 Assessments of Cognition

Assessments of cognition can be divided into evaluation of global cognitive status, memory,

attention, language, executive function and visuomotor. Mini-Mental State Exam (MMSE)

was used to assess an overall cognitive status of patients, where the test covers orientation,

memory and attention in the first part and the ability to name, follow verbal and written

commands, write a sentence spontaneously and copy a complex polygon in the second part

(Folstein et al., 1975). Memory function was evaluated with the Logical Memory test, where

patients are asked to recall a story immediately and from memory (immediate and delayed

recall) (Gavett et al., 2016). Memory function was additionally evaluated using Category

Fluency test, where participants are asked to name as many examples as possible in a specific

category, such as animals, within 60 seconds (Rosen, 1980). Attention was evaluated using

the Trail Making Test A, which tests a patient’s ability to sequentially connect numbers

in circles with lines (Tombaugh, 2004), and also using the Digit Span Forward test, which

tests a patient’s ability to read and recall a number in order (Richardson, 2007). Language

was evaluated by using the Boston Naming Test, which asks a patient to name drawing

of objects and the score is equivalent to the number of correct responses in the first 20

seconds (Kaplan et al., 1983). After 20 seconds, phonemic and/or semantic cues are provided.

Executive function was tested using the Trail Making Test B, which tests a patient’s ability to

sequentially connect numbers and alphabets in circles (e.g., 1-A-2-B...) (Tombaugh, 2004),

and also using the Digit Span Backward test, which tests a patient’s ability to read and recall

a number in reverse order (Richardson, 2007). Visuomotor skill was evaluated with the Digit

Symbol Test, or the Wechsler Adult Intelligence Scale (WAIS), and the test consists of a row

of numbers that a patient has to match with a provided key, where the key includes symbols
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corresponding to the numbers in the test (David Wechsler, 2008).

1.2.5 Vascular Risk Factors

The Rosen Modification of Hachinski Ischemic Score (RMHIS) was used to assess cerebrovas-

cular disease status of participants, which is a scale modified from Hachinski Ischemic Score

to include 8 features that would increase the accuracy of diagnosis of multi infarct dementia

(MID), a vascular disorder (Rosen et al., 1980). Participants whose RMHIS scores were

greater than 3 were determined to have cerebrovascular disease. Additional risk factors

of cerebrovascular disease such as diabetic status, hypercholesterolemia and hypertension

were included. Other correlates of cerebrovascular disease not included in the RHMIS were

also assessed including decades of smoking, coronary artery disease, hypercholesterolemia,

hypertension, stroke, and diabetes.

1.2.6 Analysis

We fitted models with 1-5 latent classes, 13 manifest variables and 7 covariates using Latent

Gold 5.1 software package (Statistical Innovations Inc., 2016). We found that the 5-class

model was preferred according to the ICL-BIC criterion. All 7 covariates, except smoking,

were significantly associated with the latent classes (Table 1.1, left column). Compared to

a simpler 5-class model without covariates, the clinical interpretation of the latent classes

in the 7-covariate model was influenced by covariates (Table 1.2). In the 7-covariate model,

the five classes consisted of:

1. “amnestic multi-domain i.e., memory impairment plus other cognitive domains, with

functional impairment and neuropsychiatric features” (24%)

2. “functional impairment and neuropsychiatric features” (22%)

3. “mildly impaired”, comprised of patients who were not cognitively normal as judged

by clinical experts but whose cognitive performances were within normal range by tests
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used in the UDS (21%)

4. “amnestic i.e., memory impairment without other cognitive domains, with functional

impairment and neuropsychiatric features” (19%)

5. “neuropsychiatric features only” (14%).

By contrast, under a model that included no covariates, a different 5-class solution re-

sulted (Table 1.2):

1. “mildly impaired” (27%)

2. “executive function with functional impairment” (24%)

3. “amnestic multi-domain with functional impairment and neuropsychiatric features”

(19%)

4. “amnestic with functional impairment and neuropsychiatric features” (15%)

5. “functional impairment and neuropsychiatric features” (15%).

Hence, the 0-covariate model revealed a clinically important class characterized by non-

amnestic cognitive features, specifically impairment in executive function, whereas the 7-

covariate model failed to detect this non-amnestic class and instead heightened the role of

neuropsychiatric features.

This example highlights the need to develop methods to handle covariates in LCA, and

simultaneous provide clinical interpretations of latent classes that can explore heterogeneity

of MCI.
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Table 1.1: Estimated Log Odds Ratios (and Standard Errors) of Covariates
Covariate Class* 7 Covariates No Covariates

Intercept 1 — —
2 −0.03(0.09) −0.11(0.04)
3 0.12(0.08) −0.36(0.04)
4 −0.05(0.09) −0.58(0.06)
5 −0.39(0.09) −0.60(0.06)

RMHIS 1 — —
2 −1.05(0.19) —
3 −1.32(0.19) —
4 −1.16(0.22) —
5 −0.57(0.19) —

Smoking (Per Decade) 1 — —
2 0.03(0.03) —
3 0.01(0.03) —
4 −0.04(0.03) —
5 0.05(0.03) —

Coronary Artery Disease 1 — —
2 0.03(0.09) —
3 −0.20(0.09) —
4 −0.14(0.10) —
5 −0.24(0.10) —

Hypercholesterolemia 1 — —
2 0.34(0.09) —
3 0.03(0.08) —
4 0.36(0.09) —
5 0.21(0.10) —

Diabetic Status 1 — —
2 −0.21(0.12) —
3 −0.22(0.11) —
4 −0.47(0.13) —
5 −0.24(0.13) —

Hypertension 1 — —
2 −0.27(0.09) —
3 −0.07(0.09) —
4 −0.26(0.10) —
5 −0.20(0.10) —

Stroke 1 — — —
2 −0.01(0.18) —
3 −0.06(0.18) —
4 −0.39(0.24) —
5 −0.99(0.26) —

*Row entries for classes 1-5 correspond with the latent classes in Table 1.2.
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1.3 Scope of Research

The goal of this dissertation research is to address problems that arise from incorporating

covariates within the latent class framework. A motivating example (Chapter 2) highlights

a unique problem in the application of latent class analysis to MCI, where risk factors

related to vascular comorbidity pose a challenge in exploring heterogeneity of MCI. The

first aim of this research (Chapter 3) explores situations when the presence of covariates

alters not only the mixture probabilities but also the conceptualization of the latent classes

by conducting different simulation studies. A new method is formulated to incorporate

covariates without potentially distorting the interpretations of the latent classes. The second

aim (Chapter 4) expands on the first aim by developing a method that can incorporate high-

dimensional and potentially correlated covariates by introducing a second set of latent classes

that are formulated based on the observed high-dimensional covariate patterns. The third

aim (Chapter 5) is an extension of the second aim which additionally assumes that there is

an underlying nested structure between the latent classes of feature variables and covariates.

Chapter 6 provides a summary of three main topics and recommendations for future research

in handling covariates within the latent class framework.
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Chapter 2

Literature Review
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2.1 Latent Class Analysis

2.1.1 Overview

Lazarsfeld and Henry (1968) developed the latent class framework, which is concerned with

measurement of characteristics that are not directly observable, and included indicator or

manifest variables to cluster individuals and measure discrete “subpopulations”. This tra-

ditional latent class model is used to clarify the relationships among discrete manifest (ob-

served) variables in the model by uncovering a structure of latent (unobserved) classes.

2.1.2 Methods

Latent class analysis is a statistical method with unique properties that makes it an ideal

tool for identifying heterogeneity within a study population. It is considered to be a method

of model-based clustering based on finite mixture models.

Finite mixture models are derived under the assumption that the overall population is a

mixture of C components. Using notations by McLachlan and Peel (2000), we first define a

vector of M dichotomous features for the ith individual in a sample size of n as

Yi = (yi1, ..., yiM)T , i = 1, ..., n.

Assuming that the components of the vector Yi are conditionally independent given their

class membership within the mixture model, we can write the density function of an obser-

vation Yi as

f(yi) =
C∑
j=1

πjf(yi; θj)

where π1, ..., πC are mixing proportions of C components with
∑C

j=1 πj = 1. Then the jth
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component density is given by

f(yi; θj) =
M∏
m=1

θyi1jm(1− θjm)1−yim

where θjm is a conditional probability of a response, i.e., yim = 1,m = 1, ...,M , given its

membership within the mixture and θj = (θj1, ..., θjM)T . Then the log-likelihood function of

latent class models can be derived as

l(β, θ) =
n∑
i=1

log

{ C∑
j=1

πijf(yi; θj)

}
.

More generally, this idea can be expanded to a mixture of latent classes of where component

densities can be Poisson, normal distribution, etc.

2.1.3 EM Algorithm

Using the Expectation-Maximization algorithm, we can maximize the log-likelihood function

to find estimates of (β, θ). In order to implement the EM algorithm, we first derive the score

equations for (β, θ):

S(β) =
l(β, θ)

β
=

n∑
i=1

C∑
j=1

τij
∂logπij
∂β

=
n∑
i=1

C∑
j=1

τij
∂logπj(xi; β)

∂β

S(θ) =
l(β, θ)

θ
=

n∑
i=1

C∑
j=1

τij
∂logf(yi; θj)

∂θ
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where τij is the posterior probability that subject i belongs to latent class j

τij = E(zij|xi, yi; β, θ)

= P (zij = 1|xi, yi; β, θ)

=
πijf(yi; θj)∑C
k=1 πikf(yi; θk)

and zij = 1 for some class j, and 0 otherwise. Starting with randomized initial values of

posterior probabilities, the EM algorithm is implemented by iteratively solving for joint score

equations and updating posterior probabilities until estimates of (β, θ) converge.

One limitation of using the EM algorithm is that it is easy to run into a multiple roots

problem when solving for score functions. Bandeen-Roche et al. (1997) advises usage of

multiple starting points to accurately detect global maximum of the log-likelihood function.

2.1.4 Information Matrix Under EM Algorithm

Efron and Hinkley (1978) provided theoretical and empirical evidence of inference of single

parameter problems using the observed Fisher’s information matrix. Using the EM algo-

rithm, computation of the information matrix is straightforward in cases of complete data.

In cases of incomplete data, however, it is necessary to include computation of the gradient

and second derivative matrix within the frame of EM algorithm. That is, the gradient and

second derivative matrix will go through iterations until convergence by the EM algorithm.

Consider the probability density f(x|θ) on a sample space χ, but we observe values of a

measurable function Y (x) = y ∈ Y rather than x. Defining R = {x : y(x) = y}, Louis (1982)

showed that when regularity conditions hold, the information matrix of an incomplete data

Y is expressed as

IY (θ) = I(θ̂) = IX − IX|Y

where the first term is the conditional expected full data observed information matrix and the
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last term is expected information for the conditional distribution of X given X ∈ R. These

terms can easily be computed using the gradient and second derivative matrix obtained from

EM algorithm, since

IX = Eθ{B(X, θ)|X ∈ R}

where B(X, θ) is negative of second derivative matrix and

IX|Y = Eθ{S(X, θ)ST (X, θ)|X ∈ R} − S∗(X, θ)S∗T (X, θ)

where S(X, θ) and S∗(X, θ) are gradient vectors of full data and incomplete data, respec-

tively. IY is also the observed Fisher’s information matrix defined by Efron and Hinkley

(1978), and it can be used to approximate true standard error values of parameter esti-

mates.

2.1.5 Model Selection

Assessing the number of components in a mixture model is a difficult task, especially when

we aim to do model-based clustering without a prior knowledge of the number of compo-

nents. One way to approach this issue is to use a classification-based information criteria

such as the integrated classification likelihood-classification likelihood criterion (ICL-BIC) to

overcome shortcomings of the Bayesian information criterion (BIC) of Schwarz (1978) and

the classification likelihood criterion (CLC).

The BIC is obtained by applying Laplace’s method of approximation,

−2 logL(ψ̂) + d log n

where the penalty term d log n penalizes models that are not parsimonious. It is a reliable

model selection criterion since the number of components are not underestimated asymptot-

ically (Leroux, 1992). However, the BIC fits too few components when the model for the
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component densities is valid and the sample size is not very large (Celeux and Soromenho,

1996).

Biernacki and Govaert (1997) developed the CLC by incorporating the likelihood and

the complete likelihood obtained within the structure of EM algorithm. That is, denoting a

vector of parameters as ψ = (β, θ), the log-likelihood can be expressed as

logL(ψ) = logLc(ψ)− log k(ψ)

where Lc(k) is a complete likelihood and

log k(ψ) =
n∑
i=1

C∑
j=1

zij log τij

where zij is the vector of component indicator variables for the observed data Yi and τij is

the posterior probability that subject i belongs to latent class j (Hathaway, 1986). This

concept can be expanded to define the entropy of fuzzy classification matrix C = ((τij)),

EN(τ) =
n∑
i=1

C∑
j=1

τij log τij

where−EN(τ) is derived from the conditional mean of log k(ψ) given a vector of observations

Yi. Combining these concepts, the CLC can be defined as

−2 logL(ψ̂) + 2EN(τ̂)

where ψ and τ are replaced by their maximum likelihood estimation (MLE) values. In this

information criterion, the entropy term penalizes models for their complexity. Biernacki

et al. (1999) noted that when the number of clusters within a mixture model were distinct,

EN(τ̂) was close to 0. However, when the clusters were not definitive within a population,

the entropy term was heavily penalized, resulting in an overestimated model.
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To compensate for the disadvantages of BIC and CLC, the ICL-BIC model selection

criterion was derived as a following objective function

−2 logL(ψ̂) + 2EN(τ̂) + d log n

where d is the number of unknown parameters in ψ and n is the number of subjects. The

number of latent classes, C, can be selected to minimize the objective function. Although

this is a useful objective guide to model selection, it is also important to consider clinical

interpretation of the latent classes.

2.1.6 Latent Class Regression Models

Let Yi = (Yi1, ..., YiM)′ denote a vector of M observed features for the ith individual in a

sample of size n. Define xi to be a vector of covariates for the ith person. Assume that there

are C latent classes and let Zi be the true latent class of individual i. Bandeen-Roche et al.

(1997) defines the probability of an individual i belonging to class j, given covariates xi, as

P (Zi = j|xi) = ηj(α, xi) =
exp(xTi αj)∑C
k=1 exp(xTi αk)

, j = 1, ..., C

where α1 = 0 and
∑C

j=1 ηj(α, xi) = 1. Adopting a finite mixture model framework (McLach-

lan and Peel, 2000), the latent class regression likelihood can be written as

f(yi1, ..., yim|xi) =
C∑
j=1

ηj(α, xi)f(yi1, ..., yim|xi, Zi = j)

where f(yi1, ..., yim|xi, Zi = j) is the joint response probability given class j. Importantly,

Bandeen-Roche et al. (1997) assume a non-differential measurement condition,

f(yi1, ..., yim|xi, Zi = j) = f(yi1, ..., yim|Zi = j) = fj(yi1, ..., yim).
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Under the conditional independence assumption, we can write this class-specific joint prob-

ability as a product:

fj(yi1, ..., yim) =
M∏
m=1

fj(yim)

where fj(yim) is either a univariate probability density function if yim is continuous or a

univariate probability mass function if yim is a discrete feature.

2.1.7 High-Dimensional Covariates in Latent Class Analysis

In investigating heterogeneity of MCI subgroups, incorporation of high-dimensional and po-

tentially correlated covariates such as sociodemographic characteristics, health history such

as indicators of cerebrovascular disease, coronary artery disease and cardiac dysrhythmias,

genetics and biomarkers should be considered. Studies show that African-Americans tend

to suffer from health conditions such as diabetes, hypertension, hypercholesterolemia and

congestive heart failure, which leads to a higher incidence of non-amnestic MCI with execu-

tive dysfunction compared to non-African Americans, leading to the development of vascular

dementia (Burke et al., 2018). In addition, APOE ε4 allele is a well-documented genetic risk

factor for Alzheimer’s Disease and associated with amnestic MCI (Li et al., 2016).

A common method of incorporating high-dimensional covariates to analyze their rela-

tionships with MCI subgroups is using principal component analysis to perform dimension

reduction on covariates for further analysis. For a set of variables, principal component anal-

ysis is used to explain their variance-covariance structure by using a linear combination of

such variables. It is often used as a dimension reduction method, and it can reveal unknown

relationships. It is used as a means to reduce dimension of variables, and used as inputs

into multivariate analysis, such as multiple linear regression or cluster analysis (Johnson and

Wichern, 2007).

Studies have been conducted using principal component analysis on high-dimensional risk

factors of MCI subgroups. For instance, PET scans can be used to analyze memory perfor-
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mance among patients diagnosed with amnestic MCI, then principal component analysis can

be applied for further analysis using ANOVA or discriminant analysis (Nobili et al., 2008).

Similarly, principal component analysis has been used on biomarkers of Alzheimer’s disease

such as triglycerides then further analyzed using linear regression models (Bernath et al.,

2020). However, a standard dimension reduction method such as principal component anal-

ysis is not a feasible option to apply to latent class analysis, and very little research has been

conducted to incorporate high-dimensional covariates within the latent class framework.
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Chapter 3

Latent Class Analysis with Covariates

Activity Governor
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3.1 Overview

The latent class regression model (Bandeen-Roche et al., 1997) assumes that covariates affect

the latent class frequencies (i.e., mixture probabilities) but not the conceptualization of the

latent classes. Despite this assumption, Table 1.2 demonstrated a previously unrecognized

limitation of latent class regression models, where the presence of covariates altered not only

the mixture probabilities but also the conceptualization of the latent classes. The 0-covariate

model revealed a clinically important class characterized by non-amnestic cognitive features,

specifically impairment in executive function, whereas the 7-covariate model failed to detect

this non-amnestic class and instead heightened the role of neuropsychiatric features. To

allow researchers the flexibility to incorporate covariates, without making them fully active

in the model and potentially distorting the interpretations of the latent classes, we introduce

the concept of a covariate activity governor.

3.2 Methods

3.2.1 Relative Frequencies Model

Consider two sets of covariates, xi and wi within a latent class model. Define covariates xi to

be ungoverned covariates, which are fully active in the model. Separately define covariates

wi to be governed covariates, whose activity within a latent class model will be adjusted

accordingly by an investigator. Denoting an indicator of latent class membership of each

subject as Zi = (zi1, ..., ziC) for n subjects and C latent classes, a relative frequencies model of

a two-component mixture model with ungoverned and governed components can be written

as

Pr(zij = 1|xi, wi;α, β, γ, φ) = pj(α, β, γ, φ, xi, wi)

= (1− φ)pju(α, xi) + φpjg(α, β, xi, wi), (0 ≤ φ ≤ 1) (1)
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where we have introduced a covariate activity governor φ, which is a constant specified by

the investigator to determine contribution of the governed component within a latent class

model. The ungoverned component, dependent on the fully active covariates xi, is the latent

polytomous logistic regression model of Bandeen-Roche et al. (1997)

pju(α, xi) =
exp(xTi αc)∑C
j=1 exp(x

T
i αj)

, j = 1, ..., C (2)

with α1 = 0 for identifiability and α = (αT1 , ..., α
T
C)T , and the governed component is extended

to include governed covariates wi

pjg(α, β, xi, wi) =
exp(xTi βc + wTi γc)∑C
j=1 exp(x

T
i βj + wTi γj)

, j = 1, ..., C (3)

with β1 = 0, γ1 = 0, β = (βT1 , ..., β
T
C)T and γ = (γT1 , ..., γ

T
C)T . Let φ be the covariates

activity governor, which an investigator can use to determine contribution of the governed

component within a latent class model. Covariates wi are inactive when φ = 0 and wi are

fully active when φ = 1. Hence, the activity governor provides a continuum of possibilities

of latent class models between models with inactive wi or fully active wi.

3.2.2 Maximum Likelihood Estimation

Assuming that there are n subjects and C latent classes, log-likelihood for the finite mixture

model can be derived as

lφ(α, β, γ, θ) =
n∑
i=1

log

{ C∑
j=1

pj(α, β, γ, φ, xi, wi)fj(yi; θ)

}
, 0 ≤ φ ≤ 1

where fj(yi; θ) is the density function of the observed features yi. Then for a fixed choice of

the activity governor φ, the EM algorithm can be applied to find estimators of (α, β, γ, θ)

that maximizes the log-likelihood function. This is derived by jointly solving for following



23

score equations:

Sφ(α) =
∂lφ
∂α

=
n∑
i=1

C∑
j=1

τij
(1− φ)pju(α, xi)

pj(α, β, γ, φ, xi, wi)

∂logpju(α, xi)

∂α

Sφ(β) =
∂lφ
∂β

=
n∑
i=1

C∑
j=1

τij
φpjg(β, γ, xi, wi)

pj(α, β, γ, φ, xi, wi)

∂logpjg(β, γ, xi, wi)

∂β

Sφ(γ) =
∂lφ
∂γ

=
n∑
i=1

C∑
j=1

τij
φpjg(β, γ, xi, wi)

pj(α, β, γ, φ, xi, wi)

∂logpjg(β, γ, xi, wi)

∂γ

Sφ(θ) =
∂lφ
∂θ

=
n∑
i=1

C∑
j=1

τij
∂logfj(yi; θ)

∂θ

where τij is the posterior probability that subject i belongs to latent class j

τij = E(zij|yi, xi, wi;α, β, θ, φ)

= P (zij = 1|yi, xi, wi;α, β, θ, φ)

=
pj(α, β, γ, φ, xi, wi)fj(yi; θ)∑C
j=1 pj(α, β, γ, φ, xi, wi)fj(yi; θ)

. (4)

The EM algorithm consists of iteratively solving the joint score equations for a fixed value of

τij and updating the posterior probability τij until convergence, where we use the following

steps:

1. Initialize the estimates of (α, β, γ) and values of τij.

2. Update α by fitting a polytomous logistic regression model with covariates Xi, and

update (β, γ) by fitting a polytomous logistic regression model with covariates (Xi,Wi).

Update predictions pju(α, xi) and pjg(β, γ, xi, ww).

3. Update the latent class-specific means θj = (θj1, ..., θjM) of M features by

θ̂jm =

∑
i τijyij∑
i τij

, m = 1, ...,M



24

4. Update τij using equation (4).

and repeat steps 2-4 until (α, β, γ, θ) converge.

3.2.3 Model-Averaging

Consider a governor G ∼ Bernoulli(φ) where G is independent of covariates (Xi,Wi), and

G determines the activity of covariates wi, such that Pr(zij = 1|xi, wi, G = 0) is given by

Equation (2) and Pr(zij = 1|xi, wi, G = 1) is given by Equation (3). Then we can derive a

two-component mixture model with ungoverned and governed components in Equation (1).

Moreover, it follows that the model-averaged effect of the ungoverned covariates X on the

relative frequencies of the latent classes can be expressed as the averaged log odds ratio

∆j(x) = Eg

{
log

Pr(zij = 1|X = x,w,G)/Pr(zi1 = 1|X = x,w,G)

Pr(zij = 1|X = x− 1, w,G)/Pr(zi1 = 1|X = x− 1, w,G)

}
= {(1− φ)αc + φβc}Tx

Similarly, the model averaged effect of the governed covariates W can be expressed as the

following averaged log odds ratio

δj(w) = Eg

{
log

Pr(zij = 1|x,W = w,G)/Pr(zi1 = 1|x,W = w,G)

Pr(zij = 1|x,W = w − 1, G)/Pr(zi1 = 1|x,W = w − 1, G)

}
= φγTc w

Hence, we can interpret the covariate effects easily by reporting the model-averaged effects

∆j(x) and δj(w). In order to compute the model-averaged effects, we can obtain standard

errors of ψ = (αT , βT , γT , θT )T and define

Q(ψ, y) =
n∑
i=1

Qi(ψ, yi) =
n∑
i=1

C∑
j=1

τij(ψ, yi)qij(ψ, yi)
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where column vector qij(ψ, yi) is

qij(ψ, yi) =



(1−φ)pju(α,xi)
pj(α,β,γ,φ,xi,wi)

∂logpju(α,xi)

∂α

φpjg(α,β,xi,wi)

pj(α,β,γ,φ,xi,wi)

∂logpjg(β,γ,xi,wi)

∂β

φpjg(α,β,xi,wi)

pj(α,β,γ,φ,xi,wi)

∂logpjg(β,γ,xi,wi)

∂γ

∂logfj(yi;θ)

∂θ


It follows that the maximum likelihood estimator ψ̂ is the root of Q. The empirical

Fisher’s information matrix can be expressed as

I =
n∑
i=1

Qi(ψ, yi)Qi(ψ, yi)
T

and an approximation of the variance-covariance matrix of ψ̂ is avar(ψ̂) = I−1. From this,

the standard errors of parameter estimates ψ̂, as well as the model-averaged effects ∆j(x)

and δj(w), can be computed.

3.2.4 Analysis of Underlying Population

Combining the relative frequencies model and maximum likelihood estimation from previous

sections, we can outline the analysis of underlying population using the activity governor

value φ, where Zi is an indicator of latent class membership of each subject. Zi is derived

by a parametric relationship with ungoverned covariate xi and governed covariates xi and

wi, and represented with parameter estimates α, β and γ.

This diagram emphasizes the necessity of using the activity governor values φ and 1− φ

to incorporate all relevant covariates in the form of governed and ungoverned covariates.

The ungoverned component (1− φ)pju(α, xi) and the governed component φpjg(β, γ, xi, wi)

provide relevant clinical interpretations of the latent classes from latent class-specific means

of feature variables, θ̂j1,..., θ̂jM .
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(1− φ)p1u(α, xi)
+φp1g(β, γ, xi, wi)

(1− φ)p2u(α, xi)
+φp2g(β, γ, xi, wi)

(1− φ)pju(α, xi)

+φpjg(β, γ, xi, wi)

xiUngoverned

xiGoverned wi

ZiPopulation

...

1− φ

φ

α

β γ

yi1

yiM

...

θ̂11

θ̂1M

yi1

yiM

...

θ̂21

θ̂2M

yi1

yiM

...

θ̂j1

θ̂jM

Figure 3.1: Latent Class Regression Model with Covariate Activity Governor
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3.3 Results

3.3.1 Simulation Studies

Simulation studies were conducted to investigate scenarios where the presence of covariates

might affect the conceptualization of latent classes, and gain insight into the practicality of

incorporating the covariate activity governor.

3.3.1.1 Design A: Unstructured Covariates Independent of Manifest Variables

The first simulation study is based on a 2-class finite mixture model where covariates do not

have a structure. A dataset was generated with one ungoverned covariate x1 and 8 governed

covariates w1, ..., w8. Let x1, w1, ..., w8
iid∼ N(0, 1). Outcome variables were generated as a

mixture of two populations for 500 subjects:

Class 1 (70%) Class 2 (30%)

Y1 Bern(0.1) Bern (0.25)
Y2 Bern(0.6) Bern(0.4)
Y3 Pois(1) Pois(3)
Y4 N(5,1) N(5,1)
Y5 N(0,1) N(-1.5,1)

Covariates xi and wi were unrelated to latent class memberships, so that the probability of

an individual i belonging to the first class, given covariates xi and wi, is 0.7, or Pr(zi1 =

1|xi, wi) = 0.7.

We fitted latent class models with covariate activity governor φ =0.001, 0.25, 0.50,

0.75 and 0.999. The results showed that ungoverned covariate x1 and governed covariates

w1, ..., w8 were not statistically significant (Table 3.1). The optimal model is obtained when

φ = 0.25, supported by the minimum ICL-BIC value. However, the ICL-BIC values did

not vary much between different models (Table 3.3). It is further observed that the latent

class-specific means for different activity governor values remained similar (Table 3.2).
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Table 3.1: Design A - Estimated Log Odds Ratios (and Standard Errors) of Governed and
Ungoverned Covariates with Class 1 as a Reference

Activity Governor

Estimate Class φ=0.999 φ=0.75 φ=0.50 φ=0.25 φ=0.001

Ungoverned Component
Intercept 2 0.37 (2.92) 0.96 (0.20) 0.03 (0.13) 1.03 (0.12) 0.71 (0.10)
x1 2 -0.35 (2.98) 0.13 (0.20) 0.29 (0.13) -0.32 (0.12) 0.05 (0.10)

Governed Component
Intercept 2 0.71 (0.10) 0.83 ( 0.12) -2.77 (0.33) -1.32 (0.60) 0.44 (3.89)
x1 2 0.04 (0.10) 0.05 (0.11) -0.96 (0.25) 5.25 (1.36) 0.28 (3.77)
w1 2 0.12 (0.10) 0.18 (0.12) -1.09 (0.25) 1.25 (0.56) 0.09 (3.92)
w2 2 0.02 (0.10) 0.01 (0.12) 0 (0.22) 1.71 (0.61) 0.47 (4.10)
w3 2 -0.10 (0.09) -0.16 (0.11) 0.33 (0.21) -6.56 (1.68) -0.42 (3.99)
w4 2 0.14 (0.09) 0.17 (0.11) -0.50 (0.23) 3.77 (1.03) -0.05 (3.57)
w5 2 0.08 (0.09) 0.14 (0.11) -0.75 (0.22) 0.90 (0.53) 0.74 (4.08)
w6 2 -0.04 (0.09) -0.06 (0.11) 0.29 (0.22) -2.78 (0.77) 1.24 (4.51)
w7 2 0.10 (0.10) 0.11 (0.12) -0.08 (0.23) 2.68 (0.79) 1.51 (5.42)
w8 2 -0.13 (0.09) -0.18 (0.11) 0.14 (0.22) -1.75 (0.63) -0.49 (3.86)

Estimate Activity Governor

(Model-Averaged) Class φ=0.999 φ=0.75 φ=0.50 φ=0.25 φ=0.001

x1 2 0.04 (0.09) 0.78 (0.10) -0.34 (0.06) 1.07 (0.09) 0.05 (0.09)
w1 2 0.12 (0.09) 0.13 (0.13) -0.54 (0.10) 0.31 (0.18) 0 (53.72)
w2 2 0.02 (0.10) 0 (0.14) 0 (0.10) 0.43 (0.20) 0 (60.98)
w3 2 -0.10 (0.10) -0.12 (0.13) 0.16 (0.09) -1.64 (0.21) 0 (58.67)
w4 2 0.14 (0.09) 0.13 (0.12) -0.25 (0.09) 0.94 (0.19) 0 (55.10)
w5 2 0.08 (0.09) 0.11 (0.12) -0.38 (0.09) 0.23 (0.18) 0 (50.69)
w6 2 -0.04 (0.09) -0.05 (0.12) 0.15 (0.09) -0.69 (0.20) 0 (53.30)
w7 2 0.10 (0.11) 0.09 (0.15) -0.04 (0.09) 0.67 (0.21) 0 (61.12)
w8 2 -0.13 (0.09) -0.14 (0.12) 0.07 (0.09) -0.44 (0.19) 0 (59.01)

Table 3.2: Design A - Latent Class-Specific Means (and Standard Errors)
Class φ = 0.999 φ = 0.75 φ = 0.50 φ = 0.25 φ = 0.001

Y1 1 0.22 (0.42) 0.23 (0.42) 0.23 (0.42) 0.22 (0.42) 0.23 (0.42)
2 0.09 (0.28) 0.09 (0.28) 0.08 (0.28) 0.09 (0.28) 0.09 (0.28)

Y2 1 0.46 (0.50) 0.46 (0.50) 0.46 (0.50) 0.47 (0.50) 0.47 (0.50)
2 0.57 (0.50) 0.56 (0.50) 0.56 (0.50) 0.56 (0.50) 0.56 (0.50)

Y3 1 2.94 (1.71) 3.01 (1.73) 2.93 (1.74) 2.90 (1.73) 2.97 (1.70)
2 1.06 (1.02) 1.11 (1.06) 1.09 (1.05) 1.07 (1.03) 1.06 (1.02)

Y4 1 4.93 (1.07) 4.93 (1.07) 4.97 (1.01) 4.94 (1.06) 4.92 (1.08)
2 4.97 (1.00) 4.96 (1.00) 4.92 (1.05) 4.96 (1.00) 4.97 (1.00)

Y5 1 -1.47 (0.93) -1.56 (0.90) -1.54 (0.90) -1.52 (0.91) -1.47 (0.94)
2 0.02 (0.98) 0 (0.97) 0.03 (0.96) 0.05 (0.95) 0 (0.98)
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Table 3.3: Design A-Model Selection
φ = 0.999 φ = 0.75 φ = 0.50 φ = 0.25 φ = 0.001

Log-Likelihood -1476.47 -1476.45 -1474.88 -1470.78 -1478.78
BIC 3114.52 3114.49 3111.34 3103.14 3119.13
Entropy 150.24 140.29 142.28 140.14 152.33
ICL-BIC 3414.99 3395.06 3395.91 3383.42 3423.80

3.3.1.2 Design B: Structured Covariates Independent of Manifest Variables

The second simulation study is updated to have a 2-class finite mixture model where covari-

ates, in addition to an underlying structure, are independent of manifest variables. That

is, an ungoverned covariate x1 and governed covariates w1, ..., w8 were generated to be in-

dependent of the latent classes of manifest variables within a generated dataset. If we let

x1 ∼ Bern(0.5), governed covariates were generated as w1, ..., w8
iid∼ N(2, 1) for x1 = 1 and

w1, ..., w8
iid∼ N(−2, 1) otherwise. Outcome variables were generated as a mixture of two

populations for 500 subjects,

Class 1 (70%) Class 2 (30%)

Y1 Bern(0.1) Bern (0.25)
Y2 Bern(0.6) Bern(0.4)
Y3 Pois(1) Pois(3)
Y4 N(5,1) N(5,1)
Y5 N(0,1) N(-1.5,1)

and covariates xi and wi were unrelated to latent class memberships, where the probabil-

ity of an individual i belonging to the first class, given covariates xi and wi, is 0.7, or

Pr(zi1 = 1|xi, wi) = 0.7.

We fitted latent class models with covariate activity governor φ =0.001, 0.25, 0.50, 0.75

and 0.999. Governed covariates tended to be statistically significant when fully governed (φ =

0.999), and became less statistically significant as activity governor decreased (Table 3.4).

Changes in statistical significance did not happen until φ ≤ 0.25 for model-averaged values

(Table 3.4, Model-Averaged values). With minimum ICL-BIC model selection criterion

value of 3325.55, the 2-class solution when φ = 0.50 was the best fitting model (Table 3.6).

However, as in Design A, ICL-BIC values did not vary between models despite different
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φ values. In addition, conceptualization of latent class solutions did not vary much across

different models (Table 3.5).

Table 3.4: Design B - Estimated Log Odds Ratios (and Standard Errors) of Governed and
Ungoverned Covariates with Class 1 as a Reference

Activity Governor

Estimate Class φ=0.999 φ=0.75 φ=0.50 φ=0.25 φ=0.001

Ungoverned Component
Intercept 2 -0.02 (2.84) -0.21 (0.19) 0.12 (0.13) -0.56 (0.11) 0.65 (0.09)
x1 2 -0.04 (2.85) 0.70 (0.21) -0.78 (0.15) -0.42 (0.12) 0.14 (0.10)

Governed Component
Intercept 2 -3.20 (0.44) 1.05 (0.13) -6.07 (1.01) -6.64 (1.72) 71.50 (878)
x1 2 -6.07 (0.85) -0.06 (0.12) 2.85 (0.57) 4.26 (1.19) 28.51 (343.3)
w1 2 1.81 (0.30) 0.30 (0.12) -1.43 (0.37) -3.08 (0.86) 19.82 (260.7)
w2 2 -0.20 (0.20) 0 (0.11) -0.50 (0.32) -1.55 (0.58) 84.63 (1029.5)
w3 2 -2.48 (0.40) 0.28 (0.12) -3.19 (0.62) -3.54 (0.98) 56.13 (676.8)
w4 2 0.67 (0.23) 0.18 (0.11) 0.94 (0.31) 1.33 (0.52) -4.62 (98.61)
w5 2 3.24 (0.45) -0.09 (0.11) -0.24 (0.29) -0.14 (0.43) -33.07 (393.6)
w6 2 -4.49 (0.61) -0.24 (0.12) 0.67 (0.33) 1.11 (0.53) 45.14 (538.2)
w7 2 -0.05 (0.21) -0.20 (0.11) 1.83 (0.42) 3.52 (1.01) -168.4 (2050.5)
w8 2 2.12 (0.35) -0.17 (0.11) 1.18 (0.33) 1.11 (0.47) 16.98 (222.7)

Estimate Activity Governor

(Model-Averaged) Class φ=0.999 φ=0.75 φ=0.50 φ=0.25 φ=0.001

x1 2 -6.07 (0.06) 0.93 (0.09) 1.03 (0.06) 0.75 (0.06) 0.17 (0.09)
w1 2 1.80 (0.05) 0.22 (0.13) -0.72 (0.09) -0.77 (0.19) 0.02 (41.95)
w2 2 -0.20 (0.05) 0 (0.12) -0.25 (0.09) -0.39 (0.19) 0.09 (36.33)
w3 2 -2.48 (0.06) 0.21 (0.13) -1.59 (0.09) -0.89 (0.18) 0.06 (38.67)
w4 2 0.67 (0.05) 0.13 (0.12) 0.47 (0.09) 0.33 (0.20) 0 (36.21)
w5 2 3.24 (0.05) -0.07 (0.14) -0.12 (0.08) -0.03 (0.17) -0.03 (41.67)
w6 2 -4.49 (0.06) -0.20 (0.14) 0.33 (0.08) 0.28 (0.17) 0.05 (42.49)
w7 2 -0.05 (0.05) -0.15 (0.13) 0.92 (0.09) 0.88 (0.18) -0.17 (42.42)
w8 2 2.11 (0.05) -0.12 (0.15) 0.59 (0.08) 0.28 (0.17) 0.02 (48.78)

Table 3.5: Design B - Latent Class-Specific Means (and Standard Errors)
Class φ = 0.999 φ = 0.75 φ = 0.50 φ = 0.25 φ = 0.001

Y1 1 0.12 (0.33) 0.08 (0.27) 0.08 (0.27) 0.08 (0.27) 0.08 (0.27)
2 0.19 (0.39) 0.26 (0.44) 0.27 (0.44) 0.27 (0.44) 0.27 (0.44)

Y2 1 0.57 (0.50) 0.56 (0.50) 0.56 (0.50) 0.56 (0.50) 0.56 (0.50)
2 0.44 (0.50) 0.46 (0.50) 0.45 (0.50) 0.46 (0.50) 0.46 (0.50)

Y3 1 1.85 (1.71) 1.11 (1.03) 1.13 (1.04) 1.13 (1.05) 1.12 (1.04)
2 1.69 (1.55) 3.07 (1.86) 3.12 (1.86) 3.11 (1.86) 3.09 (1.86)

Y4 1 4.98 (1.05) 5.06 (1.04) 5.05 (1.04) 5.06 (1.04) 5.06 (1.04)
2 5.24 (0.95) 5.07 (0.99) 5.08 (1.00) 5.08 (1.00) 5.07 (1.00)

Y5 1 -0.39 (1.30) 0.16 (0.93) 0.15 (0.94) 0.16 (0.93) 0.16 (0.93)
2 -0.37 (1.02) -1.40 (1.01) -1.42 (1.01) -1.45 (0.99) -1.42 (1.01)
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Table 3.6: Design B -Model Selection
φ = 0.999 φ = 0.75 φ = 0.50 φ = 0.25 φ = 0.001

Log-Likelihood -1519.42 -1458.40 -1450.56 -1453.81 -1462.84
BIC 3200.42 3078.38 3062.70 3069.20 3087.26
Entropy 65.48 139.62 131.43 131.23 140.61
ICL-BIC 3331.37 3357.61 3325.55 3331.66 3368.48

3.3.1.3 Comorbidity Design

The comorbidity design mimics the mild cognitive impairment study, where the dataset

contains not only covariates representing risk factors of disease, xi, but also covariates rep-

resenting strong risk factors of comorbidity, wi.

Let xi, wi
iid∼ N(0, 1). For any given individual, let Z1 ∼ Bern(p1) be the indicator of the

disease class, where p1 = exp(η1)
1+exp(η1)

and η1 = xi. Similarly, let Z2 ∼ Bern(p2) be the indicator

of comorbidity, where p2 = exp(η2)
1+exp(η2)

and η2 = logit(0.1) + 3 ∗ wi. One response variable,

Y1, was generated to be a manifestation of disease, while the other response variable, Y2,

was primarily a manifestation of comorbidity. Specifically, Y1 ∼ N(−1.5, 1) if Z1 = 1 and

Y1 ∼ N(0, 1) otherwise. The distribution of Y2 depended on both Z1 and Z2: Y2 ∼ N(2, 1)

if (Z1, Z2) = (1, 1), Y2 ∼ N(1.1, 1) if (Z1, Z2) = (0, 1), Y2 ∼ N(0.3, 1) if (Z1, Z2) = (1, 0) and

Y2 ∼ N(−0.3, 1) if (Z1, Z2) = (0, 0). If we were to marginalize over Z2, then Y2 has a mean of

0.75 in the disease group (Z1 = 1) and 0.07 in the non-disease group (Z1 = 0). Alternatively,

if we were to marginalize over Z1, then Y2 has a mean of 1.55 in the comorbidity group (Z2

= 1) and 0.00 in the group without comorbidity (Z2 = 0).

We fitted latent class models with covariate activity governor φ =0.001, 0.10, 0.20, 0.50

and 0.999. The model-averaged effect of ungoverned covariates xi was significant for 0.20 ≤

φ ≤ 0.50, whereas the governed covariate wi was significant when φ ≥ 0.50 (Table 3.7). To

interpret the latent classes, we looked for class-specific means in Table 3.8 that were at least

1.0 unit apart. At the extremes, a model in which wi was almost fully inactive (φ = 0.001)

revealed the structure of the disease only, whereas a model in which wi was almost fully

active (φ = 0.999) revealed the structure of comorbidity only. Values of φ between 0.10 and



32

0.25 yielded latent classes that separated the sample based on both disease and comorbidity.

The ICL-BIC criterion selected the model with φ = 0.50 (Table 3.9).

Table 3.7: Comorbidity Design - Estimated Log Odds Ratios (and Standard Errors) of
Governed and Ungoverned Covariates with Class 1 as a Reference

Activity Governor

Estimate Class φ=0.999 φ=0.50 φ=0.20 φ=0.10 φ=0.001

Ungoverned Component
Intercept 2 2.35 (430.66) -0.57 (0.14) -0.71 (0.33) -0.66 (0.34) -0.16 (0.23)
x1 (Risk Factor of Disease) 2 3.40 (481.77) 0.72 (0.15) 0.90 (0.29) 1.14 (0.28) 1.02 (0.19)

Governed Component
Intercept 2 -1.13 (0.29) -2.55 (0.46) -1.69 (2.87) -1.16 (4.99) -1.49 (845.11)
x1 (Risk Factor of Disease) 2 0.64 (0.23) 0.71 (0.78) 1.32 (2.73) 2.02 (6.92) 6.28 (2850.97)
w1 (Risk Factor of Comorbidity) 2 1.51 (0.24) 5.17 (0.85) 6.07 (8.04) 6.08 (16.45) 13.90 (6022.45)

Estimate Activity Governor

(Model-Averaged) Class φ=0.999 φ=0.50 φ=0.20 φ=0.10 φ=0.001

Intercept 2 −1.13(0.39) −1.64(0.61) −0.91(0.53) −0.71(0.50) −0.16(0.85)
x1 2 0.64(0.54) 0.72(0.29) 0.98(0.46) 1.23(0.64) 1.02(2.83)
w1 2 1.51(0.24) 2.59(1.24) 1.21(1.61) 0.61(1.64) 0.01(6.02)

Table 3.8: Comorbidity Design - Latent Class-Specific Means (and Standard Errors)

Class φ = 0.999 φ = 0.50 φ = 0.20 φ = 0.10 φ = 0.001

Y1 1 -0.46 (1.24) -0.43 (0.09) -0.29 (1.20) -0.09 (1.12) 0.12 (0.10)
2 -1.20 (1.33) -1.22 (0.12) -1.37 (1.21) -1.64 (1.01) -1.58 (1.00)

Y2 1 -0.22 (0.96) -0.28 (0.07) -0.26 (0.97) -0.10 (1.09) -0.10 (1.11)
2 1.65 (0.89) 1.67 (0.07) 1.42 (1.02) 1.09 (1.20) 0.87 (1.26)

Table 3.9: Comorbidity Design-Model Selection
φ = 0.999 φ = 0.50 φ = 0.20 φ = 0.10 φ = 0.001

Log-Likelihood -695.06 -691.99 -708.36 -713.35 -717.43
BIC 1470.91 1464.78 1497.52 1507.49 1515.65
Entropy 115.88 114.97 157.16 163.47 161.42
ICL-BIC 1702.67 1694.71 1811.84 1834.43 1838.48



33

3.3.1.4 Missingness Design

For each of 500 subjects, let covariates x1, w1, w2, w3
iid∼ N(0, 1) where the three governed

covariates each have an independent 10% probability of being missing. Moreover, assume

that the latent classes based on manifest variable Y1 are more widely separated when any

governed covariate is missing than when w1, w2, w3 do not have any missing values. Standard

latent class analysis excludes observations with missing values of covariates, which may

yield a misleading interpretation of the latent classes. Specifically, let the true latent class

membership indicator Z ∼ Bern(p), where p = exp(η)
1+exp(η)

and η = logit(0.7) + 2 ∗ x1. Assume

that the distribution of Y1 depends on both Z and the missingness of covariates: Y1 ∼

N(−0.4, 1) if Z = 1 and there are any missing values, Y1 ∼ N(0.4, 1) if Z = 1 and there

are no missing values, Y1 ∼ N(1.9, 1) if Z = 0 and there are any missing values, and

Y1 ∼ N(1.1, 1) if Z = 0 and there are no missing values.

We fitted latent class models with covariate activity governor φ =0.001, 0.25, 0.50, 0.75

and 0.999. Results for selected values of φ are shown in Table 3.10 and Table 3.11. The

model-averaged effect of ungoverned covariates xi was significant for φ = 0.50 and 0.20,

whereas the governed covariate wi was significant when φ ≥ 0.50 (Table 3.10). To interpret

the latent classes, we looked for class-specific means in Table 3.11 that were at least 1.0

unit apart. At the extremes, a model in which wi was almost fully inactive (φ = 0.001)

revealed the structure of the disease only, whereas a model in which wi was almost fully

active (φ = 0.999) revealed the structure of comorbidity only. Values of φ between 0.10 and

0.25 yielded latent classes that detected the influence of both disease and comorbidity. The

ICL-BIC criterion selected the model with φ = 0.50.
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Table 3.10: Missingness Design - Estimated Log Odds Ratios (and Standard Errors) of
Governed and Ungoverned Covariates with Class 1 as a Reference

Activity Governor

Estimate Class φ=0.999 φ=0.75 φ=0.50 φ=0.25 φ=0.001

Ungoverned Component
Intercept 2 -2.18 (1099.02) -1.02 (1.13) 0.59 (0.57) 0.54 (0.41) 0.65 (0.48)
x1 2 13.13 (6237.23) 1.50 (0.98) 1.66 (0.53) 1.08 (0.26) 1.16 (0.29)

Governed Component
Intercept 2 5.24 (2.80) -4.08 (1.94) 6.02 (4.72) 3.81 (6.44) 2.12 (762.13)
x1 2 0.20 (0.92) -0.21 (0.65) -1.12 (1.13) 0.75 (2.19) 0.45 (413.35)
w1 2 -2.20 (1.52) -1.78 (1.09) -3.97 (3.28) -6.27 (9.84) -2.41 (798.06)
w2 2 1.11 (1.28) -0.38 (0.66) 1.40 (1.17) 0.70 (1.92) 0.68 (337.61)
w3 2 0.87 (0.82) -0.60 (0.67) 2.43 (2.18) 2.46 (3.74) 1.11 (444.20)

Estimate Activity Governor

(Model-Averaged) Class φ=0.999 φ=0.75 φ=0.50 φ=0.25 φ=0.001

Intercept 2 5.23 (2.93) -3.32 (1.41) 3.31 (2.33) 1.35 (1.61) 0.65 (0.84)
x1 2 0.22 (6.26) 0.22 (0.48) 0.27 (0.60) 1.00 (0.54) 1.16 (0.40)
w1 2 -2.20 (1.52) -1.33 (0.82) -1.98 (1.64) -1.57 (2.46) 0 (0.80)
w2 2 1.11 (1.38) -0.29 (0.50) 0.70 (0.58) 0.17 (0.48) 0 (0.34)
w3 2 0.87 (0.82) -0.45 (0.50) 1.21 (1.09) 0.61 (0.94) 0 (0.44)

Table 3.11: Missingness Design - Latent Class-Specific Means (and Standard Errors)

Class φ = 0.999 φ = 0.75 φ = 0.50 φ = 0.25 φ = 0.001

Y1 1 1.18 (1.58) 1.01 (1.10) 1.67 (1.06) 1.57 (1.03) 1.43 (1.12)
2 0.59 (1.05) -0.46 (0.81) 0.30 (1.01) 0.19 (0.98) 0.30 (1.05)

Table 3.12: Missingness Design-Model Selection
φ = 0.999 φ = 0.75 φ = 0.50 φ = 0.25 φ = 0.001

Log-Likelihood -641.74 -646.44 -643.57 -648.22 -662.38
BIC 1359.47 1368.87 1363.12 1372.43 1400.75
Entropy 114.84 282.49 369.06 414.25 457.25
ICL-BIC 1589.15 1933.85 2101.25 2200.94 2315.25

3.3.2 MCI Dataset

3.3.2.1 Overview

In this section, we further analyzed the MCI dataset from the motivating example (Chapter

1, Section 1.2), introducing the covariate activity governor to control for the influence of 7

covariates related to vascular comorbidity. All 7 vascular covariates were used as governed

covariates and only an intercept (i.e. no covariates) was used in the ungoverned component
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of the model. By specifying different values of covariate activity governor, φ, changes in

clinical interpretation of the 5 latent classes were detectable. Assuming that the 7-covariate

model from the motivating example is equivalent to when the activity governor value is φ = 1

(ICL-BIC=213773.64), and the 0-covariate model is equivalent to when the activity governor

value is φ = 0 (ICL-BIC=208670.62), we found that φ = 0.75 was preferred according to

both the objective ICL-BIC criterion and clinical judgment when we compared the results

from the motivating example (Table 3.16).

3.3.2.2 Analysis of Underlying Population

Figure 3.2 outlines the application of activity governor value φ = 0.75 in the UDS dataset. In

this diagram, we assigned 7 vascular covariates to be governed covariates in order to derive

latent class membership through Zi and find the parameter estimate γ. φ = 0.75 was also

used to derive relative frequencies model (1−φ)pju(α, xi)+φpjg(γ, xi, wi), which can control

for the effect of vascular covariates on clinical interpretations of the latent classes derived

from functional, neuropsychiatric and cognitive test scores. The clinical interpretations were

based on latent class-specific means of functional, neuropsychiatric and cognitive tests and

written as θ̂j1..., θ̂jM for M features and j = 1, ..., C classes.
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(1− φ)p1u(α, xi)
+φp1g(β, γ, xi, wi)

(1− φ)p2u(α, xi)
+φp2g(β, γ, xi, wi)

(1− φ)pju(α, xi)

+φpjg(β, γ, xi, wi)

RMHISGoverned

Smoking (Decades)

Coronary Artery Disease

Hypercholesterolemia

Diabetic Status

Hypertension

Stroke

ZiPopulation

φ=0.75

γ

Functional Test

Cognitive Test

...
θ̂11

θ̂1M

Functional Test

Cognitive Test

...

θ̂21

θ̂2M

Functional Test

Cognitive Test

...

θ̂j1

θ̂jM

...

Figure 3.2: Application to MCI Data with Covariate Activity Governor
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3.3.2.3 Analysis

The changes in statistical significance were prominent in parameter estimates as φ decreased

(Table 3.13). When φ = 0.75, the model-averaged effects of all covariates, except stroke,

were significant (Table 3.14). As seen in Table 1.2, the resulting 5-class solution was quite

similar to the 0-covariate solution when φ = 0.75,

1. Non-amnestic with functional impairment and neuropsychiatric features

2. Mildly impaired

3. Functional impairment and neuropsychiatric features

4. Amnestic with functional impairment and neuropsychiatric features

5. Amnestic multi-domain with functional impairment and neuropsychiatric features

where with the exception that the first class, “non-amnestic with functional impairment and

neuropsychiatric features”, had an expanded phenotype that included cognitive impairment

in not only executive function but also attention and language as well as neuropsychiatric

features. Hence, this model successfully partially incorporated the information from vascular

covariates, demonstrating that these covariates were risk factors affecting latent class fre-

quencies and, importantly, also identifying the class characterized by non-amnestic cognitive

impairment (as found in the solution with no covariates but missed in the model with 7 fully

active covariates).

Using “non-amnestic with functional impairment and neuropsychiatric features” class

as a reference group, we interpreted the exponentiated model-averaged log odds ratios of

covariates when φ = 0.75 (Table 3.14). The results indicated that mildly impaired partici-

pants were 0.15 times as likely to suffer from probable cerebrovascular disease, 0.73 times as

likely to suffer from coronary artery disease and 0.55 times as likely to suffer from diabetes

compared to the reference group (OR: e−1.90 = 0.15, e−0.32 = 0.73, e−0.59 = 0.55). Moreover,

participants in the “functional impairment and neuropsychiatric features” class were 0.22
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times as likely to suffer from probable cerebrovascular disease, 0.58 times as likely to suffer

from diabetes but 1.79 times more likely to have high levels of cholesterol compared to the

reference group (OR: e−1.51 = 0.22, e−0.54 = 0.58, e0.58 = 1.79). Participants in the “amnestic

with functional impairment and neuropsychiatric features” were 0.20 times as likely to suffer

from probable cerebrovascular disease, 0.91 times as likely to smoke, 0.49 times as likely to

suffer from diabetes, 0.64 times as likely to suffer from hypertension but 1.77 times more

likely to have high levels of cholesterol compared to the reference group (OR: e−1.59 = 0.20,

e−0.09 = 0.91, e−0.72 = 0.49, e−0.45 = 0.64, e0.57 = 1.77). Finally, participants in the “amnes-

tic multi-domain with functional impairment and neuropsychiatric features” class were 0.21

times as likely to suffer from probable cerebrovascular disease, 0.86 times as likely to smoke,

0.41 times as likely to suffer from diabetes but 1.52 times more likely to have high levels of

cholesterol compared to the reference group (OR: e−1.54 = 0.21, e−0.15 = 0.86, e−0.90 = 0.41,

e0.42 = 1.52).
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Table 3.13: Estimated Log Odds Ratios (and Standard Errors) of Governed and Ungoverned
Covariates with Class 1 as a Reference

Activity Governor

Covariate Class φ=0.75 φ=0.50 φ=0.25

Ungoverned Component
Intercept 1 — — —

2 -0.90 (1.45) 0.11 (0.80) 0.04 (0.21)
3 -0.98 (1.57) -0.64 (0.56) 0.11 (0.28)
4 -3.77 (24.94) 0.09 (0.77) 0.18 (0.25)
5 -2.90 (8.84) -0.04 (0.74) 0.14 (0.27)

Governed Component
Intercept 1 — — —

2 1.41 (0.75) 0.30 (1.02) 0.25 (1.32)
3 0.88 (0.96) -1.40 (0.86) 1.00 (1.32)
4 1.83 (0.58) 0.54 (0.86) 1.03 (1.23)
5 1.18 (0.76) 0.99 (0.78) 1.37 (1.17)

RMHIS 1 — — —
2 -2.54 (0.77) -0.55 (0.52) -0.52 (1.08)
3 -2.01 (0.53) 1.56 (0.61) -6.22 (41.92)
4 -2.12 (0.49) -6.05 (96.28) -5.83 (31.65)
5 -2.05 (0.49) -2.31 (1.11) -5.08 (8.97)

Smoking (Per Decade) 1 — — —
2 -0.09 (0.06) -0.27 (0.12) 0.17 (0.15)
3 -0.02 (0.08) -0.09 (0.09) 0 (0.13)
4 -0.12 (0.06) -0.10 (0.07) 0.08 (0.15)
5 -0.20 (0.09) -0.11 (0.07) -0.18 (0.19)

Coronary Artery Disease 1 — — —
2 -0.42 (0.21) -0.16 (0.26) 0.47 (0.58)
3 -0.20 (0.23) -0.16 (0.34) -0.10 (0.50)
4 -0.34 (0.20) -0.41 (0.24) -0.17 (0.56)
5 -0.28 (0.22) -0.27 (0.22) 0.10 (0.52)

Hypercholesterolemia 1 — — —
2 0.37 (0.26) -0.03 (0.28) 1.03 (0.82)
3 0.77 (0.27) -0.72 (0.41) 0.20 (0.73)
4 0.76 (0.26) -0.28 (0.22) 1.33 (0.69)
5 0.56 (0.26) -0.40 (0.20) 0.88 (0.64)

Diabetic Status 1 — — —
2 -0.78 (0.28) -1.12 (0.24) -0.31 (0.67)
3 -0.71 (0.28) 0.83 (0.41) -0.80 (0.65)
4 -0.96 (0.26) -0.46 (0.24) -1.59 (0.67)
5 -1.19 (0.26) -0.85 (0.21) -2.52 (0.62)

Hypertension 1 — — —
2 -0.34 (0.29) 0.15 (0.53) -1.57 (0.78)
3 -0.57 (0.31) 0.42 (0.49) 0.16 (0.73)
4 -0.60 (0.30) 0.03 (0.31) -1.16 (0.87)
5 -0.40 (0.37) -0.41 (0.30) -0.50 (1.38)

Stroke 1 — — —
2 -0.17 (0.32) 0.23 (0.47) -1.34 (0.91)
3 -0.47 (0.40) 0.86 (0.45) -0.54 (0.89)
4 -0.41 (0.29) -0.30 (0.55) -1.53 (1.72)
5 -0.23 (0.33) -0.45 (0.52) -0.33 (1.01)
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Table 3.14: Model-Averaged Estimated Log Odds Ratios (and Standard Errors) of Governed
and Ungoverned Covariates with Class 1 as a Reference

Activity Governor

Covariate Class φ=0.75 φ=0.50 φ=0.25

Intercept 1 — — —
2 0.83 (0.42) 0.20 (0.27) 0.09 (0.20)
3 0.41 (0.43) -1.02 (0.33) 0.33 (0.17)
4 0.43 (6.08) 0.32 (0.42) 0.40 (0.18)
5 0.16 (1.85) 0.48 (0.26) 0.45 (0.17)

RMHIS 1 — — —
2 -1.90 (0.58) -0.28 (0.26) -0.13 (0.27)
3 -1.51 (0.40) 0.78 (0.31) -1.56 (10.48)
4 -1.59 (0.37) -3.03 (48.14) -1.46 (7.91)
5 -1.54 (0.37) -1.16 (0.55) -1.27 (2.24)

Smoking (Per Decade) 1 — — —
2 -0.07 (0.04) -0.14 (0.06) 0.04 (0.04)
3 -0.02 (0.06) -0.04 (0.05) 0 (0.03)
4 -0.09 (0.04) -0.05 (0.04) 0.02 (0.04)
5 -0.15 (0.07) -0.06 (0.04) -0.05 (0.05)

Coronary Artery Disease 1 — — —
2 -0.32 (0.16) -0.08 (0.13) 0.12 (0.14)
3 -0.15 (0.17) -0.08 (0.17) -0.03 (0.12)
4 -0.25 (0.15) -0.21 (0.12) -0.04 (0.14)
5 -0.21 (0.16) -0.13 (0.11) 0.03 (0.13)

Hypercholesterolemia 1 — — —
2 0.28 (0.20) -0.02 (0.14) 0.26 (0.20)
3 0.58 (0.20) -0.36 (0.20) 0.05 (0.18)
4 0.57 (0.19) -0.14 (0.11) 0.33 (0.17)
5 0.42 (0.20) 0.20 (0.10) 0.22 (0.16)

Diabetic Status 1 — — —
2 -0.59 (0.21) -0.56 (0.12) -0.08 (0.17)
3 -0.54 (0.21) 0.42 (0.20) -0.20 (0.16)
4 -0.72 (0.19) -0.23 (0.12) -0.40 (0.17)
5 -0.90 (0.19) -0.43 (0.11) -0.63 (0.15)

Hypertension 1 — — —
2 -0.25 (0.22) 0.08 (0.26) -0.39 (0.20)
3 -0.43 (0.23) 0.21 (0.24) 0.04 (0.18)
4 -0.45 (0.22) 0.02 (0.15) -0.29 (0.22)
5 -0.30 (0.28) -0.21 (0.15) -0.13 (0.34)

Stroke 1 — — —
2 -0.12 (0.24) 0.11 (0.23) -0.34 (0.23)
3 -0.35 (0.30) 0.43 (0.22) -0.13 (0.22)
4 -0.31 (0.22) -0.15 (0.28) -0.38 (0.43)
5 -0.17 (0.25) -0.22 (0.26) -0.08 (0.25)
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Table 3.15: Class-Specific Means or Proportions of Functional, Neuropsychiatric, and Cog-
nitive Features in Five-Class Model. Shown are the results for φ = 0.75, 0.50, 0.25.Cognitive
test scores were standardized by demographics so that a cognitive value of -1.5 indicates
that an individual with MCI performed 1.5 standard deviations worse than a cognitively
normal person of the same age, race, and years of education. Neuropsychologists typically
regard cognitive standardized scores of -1.5 or worse as evidence of impairment in a specific
cognitive domain.

Non-Amnestic With Amnestic With Amnestic Multi-Domain
Functional Impairment Functional Impairment Functional Impairment With Functional Impairment

And Neuropsychiatric Features Mildly Impaired And Neuropsychiatric Features And Neuropsychiatric Features And Neuropsychiatric Features
Model Type Test Type (Relative Frequency=22%) (Relative Frequency=22%) (Relative Frequency=17%) (Relative Frequency=26%) (Relative Frequency=13%)

φ=0.75 Functional No. of IADL impaired 3.53 (2.87) 0 (<0.01) 2.03 (2.00) 2.82 (2.50) 3.51(2.60)
(7 Governed Neuropsychiatric % with GDS ≥ 5 29.43 (0.46)% 9.89 (0.30)% 18.84 (0.39)% 15.91 (0.37)% 19.91 (0.40)%
Covariates) No. of NPI-Q symptoms present 2.53 (2.29) 0 (<0.01) 2.05 (1.82) 2.19 (1.92) 2.16 (1.92)

Cognitive Global
MMSE -2.21 (1.92) -1.27 (1.78) -0.51 (1.20) -1.50 (1.69) -3.05 (1.88)

Logical Memory
Immediate -1.04 (0.88) -0.95 (1.11) -0.05 (0.69) -1.59 (0.68) -2.54 (0.63)
Delayed -1.11 (0.89) -0.97 (1.11) -0.09 (0.71) -1.81 (0.74) -2.64 (0.47)

Semantic Memory
Category Fluency -1.23 (0.97) -0.76 (0.94) -0.48 (0.94) -0.77 (0.86) -1.60 (0.85)

Attention
Trails A 2.34 (2.22) 0.52 (1.51) 0.10 (0.85) -0.04 (0.69) 0.76 (1.03)*

Digit Span Forward -0.64 (1.04) -0.27 (1.01) -0.10 (0.99) -0.07 (0.98) -0.54 (1.07)
Language

Boston Naming -1.67 (2.09) -1.07 (1.80) -0.43 (1.22) -0.44 (1.12) -2.04 (2.36)
Executive Function

Trails B 3.18 (1.74) 1.02 (1.68) 0.39 (1.03) 0.22 (0.75) 1.91 (1.80)*

Digit Span Backward -0.85 (0.89) -0.44 (0.95) -0.19 (0.95) -0.28 (0.98) -0.76 (0.84)
Visuomotor

Digit Symbol -1.70 (0.98) -0.61 (1.03) -0.40 (0.93) -0.38 (0.90) -1.17 (1.01)

Executive Function Amnestic Multi-Domain Non-Amnestic With
With Functional Impairment With Functional Impairment Functional Impairment Functional Impairment

And Neuropsychiatric Features And Neuropsychiatric Features And Neuropsychiatric Features Mildly Impaired And Neuropsychiatric Features
Model Type Test Type (Relative Frequency=21%) (Relative Frequency=20%) (Relative Frequency=9%) (Relative Frequency=22%) (Relative Frequency=28%)

φ=0.50 Functional No. of IADL impaired 3.13 (0.04) 3.69 (0.03) 3.48 (0.03) 0 (0.03) 2.10 (0.06)
(7 Governed Neuropsychiatric % with GDS ≥ 5 26.79 (0.08)% 21.43 (0.36)% 30.55 (0.32)% 9.84 (0.05)% 13.09 (0.04)%
Covariates) No. of NPI-Q symptoms present 2.77 (0.03) 2.34 (0.05) 2.21 (0.05) 0 (0.08) 1.79 (0.09)

Cognitive Global
MMSE -1.03 (0.07) -2.94 (0.06) -2.61 (0.03) -1.25 (0.04) -1.09 (0.03)

Logical Memory
Immediate -0.63 (0.03) -2.32 (0.08) -0.93 (0.07) -0.95 (0.04) -1.05 (0.02)
Delayed -0.70 (0.05) -2.45 (0.04) -0.99 (0.03) -0.97 (0.03) -1.21 (0.03)

Semantic Memory
Category Fluency -0.84 (0.07) -1.50 (0.04) -1.40 (0.06) -0.75 (0.13) -0.55 (0.10)

Attention
Trails A 0.73 (0.77) 1.24 (0.72) 3.01 (0.05) 0.48 (0.06) -0.23 (0.03)*

Digit Span Forward -0.36 (0.08) -0.51 (0.11) -0.76 (0.16) -0.27 (0.11) 0.01 (0.11)
Language

Boston Naming -0.70 (0.02) -1.82 (0.02) -2.24 (0.03) -1.04 (0.05) -0.36 (0.03)
Executive Function

Trails B 1.57 (0.03) 1.95 (0.03) 3.76 (0.05) 0.99 (0.06) -0.02 (0.03)*

Digit Span Backward -0.57 (0.06) -0.76 (0.06) -0.96 (0.05) -0.43 (0.05) -0.10 (0.13)
Visuomotor

Digit Symbol -1.08 (0.06) -1.21 (0.06) -2.01 (0.09) -0.60 (0.06) -0.13 (0.05)

Amnestic Multi-Domain Executive Function Amnestic With
With Functional Impairment With Functional Impairment Functional Impairment

And Neuropsychiatric Features And Neuropsychiatric Features Mildly Impaired Mildly Impaired And Neuropsychiatric Features
Model Type Test Type (Relative Frequency=18%) (Relative Frequency=18%) (Relative Frequency=21%) (Relative Frequency=21%) (Relative Frequency=22%)

φ=0.25 Functional No. of IADL impaired 3.27 (0.04) 3.80 (0.03) 0.11 (0.04) 1.40 (0.08) 3.44 (0.05)
(7 Governed Neuropsychiatric % with GDS ≥ 5 27.96 (0.08)% 31.08 (0.10)% 8.52 (0.08)% 11.94 (0.07)% 17.66 (0.06)%
Covariates) No. of NPI-Q symptoms present 2.14 (0.03) 3.23 (0.05) 0.18 (0.09) 1.39 (0.08) 2.19 (0.10)

Cognitive Global
MMSE -2.88 (0.08) -0.97 (0.05) -1.28 (0.04) -0.62 (0.04) -2.52 (0.04)

Logical Memory
Immediate -1.50 (0.03) -0.55 (0.04) -0.93 (0.06) -0.71 (0.03) -2.18 (0.05)
Delayed -1.56 (0.06) -0.64 (0.02) -0.95 (0.03) -0.81 (0.03) -2.39 (0.03)

Semantic Memory
Category Fluency -1.51 (0.05) -0.81 (0.03) -0.81 (0.06) -0.35 (0.06) -1.25 (0.11)

Attention
Trails A 2.98 (0.05) 0.71 (0.05) 0.50 (0.04) -0.34 (0.05) 0.26 (0.03)*

Digit Span Forward -0.76 (0.04) -0.30 (0.12) -0.35 (0.02) 0.08 (0.01) -0.29 (0.05)
Language

Boston Naming -2.42 (0.03) -0.50 (0.05) -1.13 (0.03) -0.18 (0.02) -1.21 (0.06)
Executive Function

Trails B 3.69 (0.03) 1.45 (0.03) 1.18 (0.02) -0.19 (0.02) 0.87 (0.03)*

Digit Span Backward -1.00 (0.06) -0.49 (0.03) -0.55 (0.03) 0.02 (0.03) -0.52 (0.04)
Visuomotor

Digit Symbol -1.91 (0.06) -1.06 (0.03) -0.75 (0.08) 0.08 (0.08) -0.75 (0.06)

*Higher scores on Trail A and Trail B indicate worse performance.

Table 3.16: MCI-Model Selection
φ = 0.75 φ = 0.50 φ = 0.25

Log-Likelihood -33788.04 -34170.53 -52815.73
BIC 68977.62 69742.58 107032.99
Entropy 1360.32 1676.21 2021.19
ICL-BIC 71698.25 73095.01 111075.37
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3.4 Discussion

In this chapter, we recognized a problem that arises with latent class regression models,

where covariates affect both latent class frequencies (i.e., mixture probabilities) and concep-

tualization of the latent classes. We provided different simulation studies to explore scenarios

where fully active covariates might affect the conceptualization of latent classes. We found

that despite having a pronounced internal structure, covariates did not change the interpre-

tation of the latent classes when they were unrelated to the patterns among the manifest

variables (i.e., α = 0, with the possible exception of intercepts, Section 3.2.1-Equation 2).

When covariates had a structure related to the manifest variables, however, we found that

fully active covariates can alter the conceptualization of latent classes.

The comorbidity design (Section 3.3.1) revealed that the activity governor can provide

the flexibility to explore the structure of a combination of disease and comorbidity and find

an optimal model that is based on clinical judgement. Hence, this simulation study success-

fully demonstrated that, when the relationship between covariates and manifest variables is

more complicated than assumed by the standard latent class regression model, our covariate

activity governor provides a flexible method to explore and customize the extent to which

covariates alter the clinical interpretation of the latent classes. The missingness design (Sec-

tion 3.3.1) demonstrated the possibility to explore the extent to which the structure of the

population will change with different activity governor values with inclusion of covariates.

In the MCI dataset, we selected seven covariates related to vascular comorbidity to be

governed, which were deemed important by an investigator. The results showed that the

activity governor was able to reveal unique MCI subtypes that were unobservable when the

covariates were fully active (φ = 1). In further application of our method, investigators will

have the option of including covariates suspected of influencing the clinical interpretation of

the latent classes as candidates to be governed.

Our method primarily depends on the investigator’s expertise to determine which covari-

ates should be governed, and we should consider techniques to empirically select covariates
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that should be governed. Moreover, the number of classes remain the same as values for the

covariates activity governor φ varies, but one could allow the number of classes to vary as φ

varies to explore how different number of components influence the scientific interpretation

of the latent classes.

By providing straightforward clinical interpretation of the latent classes and an option

to govern the activity of covariates, the activity governor will provide more flexibility than

the standard model in investigating the effects of covariates.
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3.5 Appendix

From section 3.2.3, we know

Pr(zij = 1|x,w,G = 0) =
exp(xTαj)∑C
k=1 exp(x

Tαk)
, j = 1, ..., C

and

Pr(zij = 1|x,w,G = 1) =
exp(xTβj + wTγj)∑C
k=1 exp(x

Tβk + wTγk)
, j = 1, ..., C.

Since G ∼ Bernoulli(φ), where G is independent of covariates (Xi,Wi), we can write

Pr(zij = 1|x,w,G) =

(
exp(xTβj + wTγj)∑C
k=1 exp(x

Tβk + wTγk)

)G(
exp(xTαj)∑C
k=1 exp(x

Tαk)

)1−G

, j = 1, ..., C

where α1 = 0, β1 = 0 and γ1 = 0 for identifiability and α = (αT1 , ..., α
T
C)T , β = (βT1 , ..., β

T
C)T

and γ = (γT1 , ..., γ
T
C)T .

The model-averaged log odds ratio of the effect of the ungoverned covariates X from

section 3.3 can be calculated as:

∆j(x) = EG

{
log

Pr(zij = 1|X = x,w,G)/Pr(zi1 = 1|X = x,w,G)

Pr(zij = 1|X = x− 1, w,G)/Pr(zi1 = 1|X = x− 1, w,G)

}
= EG

{
log

Pr(zij = 1|X = x,w,G)

Pr(zi1 = 1|X = x,w,G)

}
− EG

{
log

Pr(zij = 1|X = x− 1, w,G)

Pr(zi1 = 1|X = x− 1, w,G)

}
= φ(xTβj + wTγj) + (1− φ)(xTαj)− [φ{(x− 1)Tβj + wTγj}+ (1− φ){(x− 1)Tαj}]

= {(1− φ)αj + φβj}T

where

Pr(zij = 1|X = x,w,G)

Pr(zi1 = 1|X = x,w,G)
= {exp(xTβj + wTγj)}G{exp(xTαj)}1−G
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and

Pr(zij = 1|X = x− 1, w,G)

Pr(zi1 = 1|X = x− 1, w,G)
= {exp((x− 1)Tβj + wTγj)}G{exp((x− 1)Tαj)}1−G

for j = 1, ..., C.

Similarly, the model averaged effect of the governed covariates W can be expressed as

δj(w) = EG

{
log

Pr(zij = 1|x,W = w,G)/Pr(zi1 = 1|x,W = w,G)

Pr(zij = 1|x,W = w − 1, G)/Pr(zi1 = 1|x,W = w − 1, G)

}
= EG

{
log

Pr(zij = 1|x,W = w,G)

Pr(zi1 = 1|x,W = w,G)

}
− EG

{
log

Pr(zij = 1|x,W = w − 1, G)

Pr(zi1 = 1|x,W = w − 1, G)

}
= φ(xTβj + wTγj) + (1− φ)(xTαj)− [φ{xTβj + (w − 1)Tγj}+ (1− φ)(xTαj)]

= φγTj

where

Pr(zij = 1|x,W = w − 1, G)

Pr(zi1 = 1|x,W = w − 1, G)
= {exp(xTβj + (w − 1)Tγj)}G{exp(xTαj)}1−G.
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Chapter 4

Compound Latent Class Analysis
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4.1 Overview

Standard latent class analysis (LCA) methods were used in the first aim to explore the

relative frequencies of the latent classes resulting from covariates of the latent class model.

However, these methods are limited to low-dimensional covariates. When covariates are

high-dimensional and potentially correlated, standard methods are not feasible options. A

two-step procedure could be potentially used, where, any standard method can reduce the

dimension of the covariates, and the results of dimension reduction can be used as fixed inputs

into standard LCA. Although it is intuitive to implement standard dimension reduction

methods, the two-step procedure ignores uncertainties or “fuzziness” in dimension reduction

that are propagated in the LCA.

Instead, we propose an alternative method, namely compound LCA, that introduces a

second set of latent classes that are formulated based on the observed high-dimensional co-

variate patterns, and that has advantage of fully incorporating the fuzziness of the dimension

reduction in the LCA.

4.2 Methods

4.2.1 Relative Frequencies Model

For subject i (i ∈ {1, ..., n}), let xi be the observed covariate vector and let yi be the

observed response vector. Let a ∈ {1, ..., A} denote the latent classes of covariates, and let

b ∈ {1, ..., B} denote the latent classes of responses. Assume that A and B, the numbers of

latent classes, are known. Then standard LCA is based on following finite mixture model of

the responses:

f(yi|xi) =
∑
b

π(b|xi)f(yi|b, xi) =
∑
b

π(b|xi)f(yi|b)

where we assume f(yi|b, xi) = f(yi|b) and π(b|xi) is a parametric model of the direct effect

of the covariates on the relative frequencies of the latent classes of the responses. When xi is
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high dimensional and possibly correlated, we propose replacing the relative frequency model

π(b|xi) with one of lower dimension, π(b|a), based on latent classes of covariates.

When we assume conditional independence between the covariates and responses given

the latent classes

f(xi, yi|a, b) = f(xi|a)f(yi|b)

then under compound LCA, the finite mixture model is given by

e`i = f(xi, yi;α, β) =
∑
a

∑
b

π(a, b)f(xi, yi|a, b;α, β)

=
∑
a

{
π(a)f(xi|a;α)

∑
b

π(b|a)f(yi|b; β)

}

with log-likelihood ` =
∑

i `i.

4.2.2 Maximum Likelihood Estimation

Using the EM algorithm, estimation can be carried out by iterating between estimation of

relative frequencies of the two sets of latent classes using EM algorithm:

π̂(a) = n−1
∑
i

ψia

π̂(b|a) = n−1π̂(a)−1
∑
i

τiab

and solving the weighted score equations for the parameters α and β of the conditional

distributions:

∂`

∂α
=
∑
i

∑
a

ψia
∂logf(xi|a;α)

∂α
= 0

∂`

∂β
=
∑
i

∑
a

∑
b

τiab
∂logf(yi|b; β)

∂β
= 0.
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Then posterior probabilities of membership in the two sets of latent classes are simultaneously

updated:

τiab = Pr(a, b|xi, yi;α, β) =
π(a)f(xi|a;α)π(b|a)f(yi|b; β)∑

a′{π(a′)f(xi|a′;α)
∑

b′ π(b′|a′)f(yi|b′; β)}

ψia = Pr(a|xi, yi;α, β) =
∑
b

τiab. (5)

We assume conditional independence of the covariates, so that f(xi|a;α) =
∏

k f(xik|a;α)

with distinct means αak. Additionally, we assume conditional independence of the responses,

so that f(yi|b; β) =
∏

j f(yij|b; β) with distinct means βbj. Then we use the following EM

algorithm to solve for the posterior probabilities of membership and latent class specific

means:

1. Initialize values of τiab, ψia, A and B.

2. Update the latent class specific means at each iteration of the EM algorithm, where

α̂ak =

∑
i ψiaxik∑
i ψia

β̂bj =

∑
i

∑
a τiabyij∑

i

∑
a τiab

3. Update the posterior probabilities of membership in the two sets of latent classes, τiab

and ψia, using Equation (5).

4. Repeat steps 2-3 until convergence.

4.2.3 Information Matrix

The empirical Fisher’s information matrix can be computed to find the standard errors of

parameter estimates. We can compute a column vector of weighted score equations for
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ζ = (π(a)T , π(b|a)T , αT , βT )T , defined by Q(ζ, xi, yi), where

Q(ζ, xi, yi) =



∂`
∂π(a)

∂`
∂π(b|a)

∂`
∂α

∂`
∂β


and the solution to Q(ζ, xi, yi) is the maximum likelihood estimator ζ̂. Then the empirical

Fisher’s information matrix can be written as

I =
∑
i

Q(ζ, xi, yi)Q(ζ, xi, yi)
T

=
∑
i



∂`
∂π(a)

∂`
∂π(b|a)

∂`
∂α

∂`
∂β





∂`
∂π(a)

∂`
∂π(b|a)

∂`
∂α

∂`
∂β



T

where

∂`

∂π(a)
=

n∑
i=1

ψia
π(a)

, a = 1, ..., A

∂`

∂π(b|a)
=

n∑
i=1

A∑
a=1

τiab
π(b|a)

, b = 1, ..., B

∂`

∂α
=

n∑
i=1

ψia
∂ log f(xi|a;α)

∂α
, a = 1, ..., A

∂`

∂β
=

n∑
i=1

A∑
a=1

τiab
∂ log f(yi|b; β)

∂β
, b = 1, ..., B.

We can derive the standard errors of parameter estimates ζ̂ by computing an estimator of

the asymptotic covariance matrix avar(ζ̂) = I−1.
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4.2.4 Model Selection Criterion

McLachlan and Peel (2000) recommend using the ICL-BIC model selection criterion to find

number of components C for latent class analysis, which includes penalty terms for parsimony

and complexity of the model. The ICL-BIC model section criterion can be defined as the

following objective function

−2 logL(ζ̂) + 2EN(τ̂) + d log n

that is minimized, where logL(ζ̂) is the log-likelihood function evaluated at parameter esti-

mates ζ̂, d is the number of parameters in the model and n is the number of subjects. EN(τ̂)

is the entropy of the fuzzy classification matrix ((τij)), defined by

EN(τ) = −
n∑
i=1

C∑
j=1

τij log τij

for C components of i subject.

We can expand the objective function to estimate the numbers of latent classes, A and B,

by following the guidelines of McLachlan and Peel (2000) to include both a BIC term for lack

of parsimony and an entropy penalty for fuzziness of latent class membership probabilities

−2 logL(ζ̂) + 2EN(τ̂) + p log n

where

EN(τ) = −
n∑
i=1

A∑
a=1

B∑
b=1

τiab log τiab

and the number of parameters is given by

p = dim(α) + dim(β) + (A− 1) + A(B − 1).

Entropy R2 is another model selection criterion that is often used in practice. Let entropy
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be the entropy of fuzzy classification matrix C = ((τij)), A be the number of classes of

covariates, B be the number of classes of feature variables and n be the sample size. Then

we can derive the following equation

R2 = 1− Entropy

Highest Possible Entropy

= 1− Entropy

−2
∑

i

∑
a

∑
b

1
AB

log 1
AB

= 1− Entropy

2 ∗ n log(AB)

where ideally, R2 ≥ 0.80.

4.2.5 Analysis of Underlying Subpopulations

Figure 4.1 visualizes derivation of methods in compound LCA. From the latent variable Zi,

we can derive the prevalence of classes of covariates, π(a), from a = 1, ..., A. From covariates

xi1..., xiK , we can derive latent class specific means α̂a1.., α̂aK for a = 1, ..., A.

To conduct dimension reduction in one step, we replace the relative frequency model

π(b|xi) with lower dimension π(b|a). Then for a fixed value of a, we can find the prevalence

of feature class given covariate class, π(b|a), ranging from b = 1, .., B. From feature variables

yi1..., yiJ , we can derive latent class specific means β̂b1.., β̂bJ for b = 1, ..., B.
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π(a)a=1

π(A)a=A

...
ZiPopulation

xi1

xiK

...

xi1

xiK

...

α̂11

α̂1k

α̂A1

α̂AK

π(b|a)a=1,b=1

π(b|a)a=1,b=B

Relative frequency model

π(b|xi) replaced with lower

dimension π(b|a)

...

π(b|a)a=A,b=1

π(b|a)a=A,b=B

...

yi1

yiJ

β̂11

β̂1J

...

yi1

yiJ

β̂B1

β̂BJ

...

yi1

yiJ

β̂11

β̂1J
...

yi1

yiJ

β̂B1

β̂BJ
...

Conditional independence: f(xi, yi|a, b) = f(xi|a)f(yi|b)

Figure 4.1: Compound LCA - Analysis of Underlying Subpopulation
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4.3 Results

A simulation study was conducted to evaluate the performance of our model with high-

dimensional and possibly correlated covariates.

4.3.1 Simulation Studies

Let a be the classes of covariates and b be the classes of feature variables. A sample with a size

of 600 was randomly generated from 2 classes of 6 covariates with the following distribution,

Table 4.1: Data Generation - Covariates
Class 1 Class 2

x1 N(0, 1) N(−1, 1)
x2 N(0.5, 1) N(−0.5, 1)
x3 Pois(1) Pois(3)
x4 Pois(2.5) Pois(4)
x5 Bern(0.3) Bern(0.45)
x6 Bern(0.5) Bern(0.25)

where class 1 has a prevalence of 40% and class 2 has a prevalence of 60%. We then generated

2 classes of 4 feature variables with the following distribution where if a = 1, we generate

the following 4 feature variables

Table 4.2: Data Generation - Feature Variables (a = 1)
Class 1 Class 2

y1 N(2, 1) N(−1, 1)
y2 N(0.5, 1) N(−2, 1)
y3 Pois(4) Pois(2)
y4 Bern(0.4) Bern(0.6)

where class 1 has a prevalence of 2/3% and class 2 has a prevalence of 1/3%. When a = 2,

we again generate 4 feature variables
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Table 4.3: Data Generation - Feature Variables (a = 2)
Class 1 Class 2

y1 N(2, 1) N(−1, 1)
y2 N(0.5, 1) N(−2, 1)
y3 Pois(4) Pois(2)
y4 Bern(0.4) Bern(0.6)

where class 1 has a prevalence of 1/3% and class 2 has a prevalence of 2/3%.

Then we define estimators of π̂(a), π̂(b|a), α̂ak and β̂bj as I(1), I(2), I(3) and I(4) and

conduct a simulation study, where we

1. Generate independent draws of x1, x2, x3, x4, x5, x6 and y1, y2, y3, y4

2. Compute estimators I(1), I(2), I(3) and I(4)

3. Repeat n times and obtain I
(1)
1 , ..., I

(1)
n , I

(2)
1 , ..., I

(2)
n , I

(3)
1 , ..., I

(3)
n and I

(4)
1 , ..., I

(4)
n

4. For different estimators, compute the bias and standard errors where

Biasπ(a) =
1

n

n∑
i=1

(I
(1)
i − π̂(a)), Standard Errorπ(a) =

1

n

n∑
i=1

(I
(1)
i − π̂(a))2

Biasπ(b|a) =
1

n

n∑
i=1

(I
(2)
i − π̂(b|a)), Standard Errorπ(b|a) =

1

n

n∑
i=1

(I
(2)
i − π̂(b|a))2

Biasα̂ak
=

1

n

n∑
i=1

(I
(3)
i − α̂ak), Standard Errorα̂ak

=
1

n

n∑
i=1

(I
(3)
i − α̂ak)2

Biasβ̂bj =
1

n

n∑
i=1

(I
(4)
i − β̂bj), Standard Errorβ̂bj =

1

n

n∑
i=1

(I
(4)
i − β̂bj)2

where n is the number of replicates, 500 in this study.

4.3.1.1 Simulation Results: Sample Size=600

Using a sample size of 600, we computed the bias and standard error of estimators of π̂(a),

π̂(b|a), α̂ak and β̂bj. We additionally computed average of analytical standard error, which

is derived from the observed Fisher’s information matrix. The estimators had small bias
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and standard error values, although average of analytical standard errors tended to be larger

than standard errors.

The standard error values of estimates of α̂15, α̂16, α̂25 and α̂26 were much smaller than

average of analytical standard errors (Table 4.6), while the bias and standard error values

of estimate of β̂24 were higher than that of other feature variables (Table 4.7).

Table 4.4: Bias, Empirical Standard Error and Average of Analytical Standard Error of π̂(a)
a Bias Standard Error Average of Analytical Standard Error

1 0.0043 0.0013 0.0289
2 -0.0043 0.0013 0.0417

Table 4.5: Bias, Empirical Standard Error and Average of Analytical Standard Error of
π̂(b|a)

b Bias Standard Error Average of Analytical Standard Error

1 0.0004 0.0025 0.0313
2 -0.0004 0.0025 0.0358

Table 4.6: Bias, Empirical Standard Error and Average of Analytical Standard Error of α̂ak
α̂ak a Bias Standard Error Average of Analytical Standard Error

α̂11 1 -0.0062 0.0068 0.0323
α̂12 1 0.0039 0.0076 0.032
α̂13 1 0.0069 0.0086 0.0372
α̂14 1 -0.0078 0.0158 0.0207
α̂15 1 0.0022 0.0013 0.0673
α̂16 1 0.0012 0.0015 0.0617
α̂21 2 0.0019 0.004 0.0253
α̂22 2 -0.009 0.0041 0.0255
α̂23 2 0.0067 0.0143 0.0154
α̂24 2 0.0092 0.0145 0.0123
α̂25 2 0.0014 0.0009 0.0479
α̂26 2 -0.0008 0.0008 0.0581

Table 4.7: Bias, Empirical Standard Error and Average of Analytical Standard Error of β̂bj
β̂bj b Bias Standard Error Average of Analytical Standard Error

β̂11 1 0.0001 0.0044 0.0256

β̂12 1 0.00009 0.0042 0.0254

β̂13 1 0.0038 0.0143 0.0125

β̂14 1 -0.0003 0.0009 0.0502

β̂21 2 -0.001 0.0037 0.0238

β̂22 2 -0.0003 0.0036 0.0239

β̂23 2 0.0053 0.0075 0.0165

β̂24 2 -0.1018 0.0112 0.0463
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4.3.1.2 Simulation Results: Sample Size=2000

Using a sample size of 2000, we computed the bias, standard error and average of analytical

standard error of estimators of π̂(a), π̂(b|a), α̂ak and β̂bj.

For a larger sample size, the estimators had even smaller values of bias, standard error,

and average of analytical standard error (Table 4.8-4.11). The standard error values of

estimates of α̂15, α̂16, α̂25 and α̂26 were still smaller than average of analytical standard errors

(Table 4.10), and the bias and standard error values of estimate of β̂24 were higher than that

of other feature variables (Table 4.11).

Table 4.8: Bias, Empirical Standard Error and Average of Analytical Standard Error of π̂(a)
a Bias Standard Error Average of Analytical Standard Error

1 -0.0002 0.0004 0.0085
2 0.0002 0.0004 0.0126

Table 4.9: Bias, Empirical Standard Error and Average of Analytical Standard Error of
π̂(b|a)

b Bias Standard Error Average of Analytical Standard Error

1 0.0009 0.0008 0.0093
2 -0.0009 0.0008 0.0107

Table 4.10: Bias, Empirical Standard Error and Average of Analytical Standard Error of
α̂ak

α̂ak a Bias Standard Error Average of Analytical Standard Error

α̂11 1 0.0036 0.0022 0.01
α̂12 1 0.0023 0.0023 0.0099
α̂13 1 -0.0024 0.0026 0.0112
α̂14 1 -0.0023 0.0053 0.0062
α̂15 1 -0.0002 0.0004 0.0204
α̂16 1 0.0008 0.0004 0.0185
α̂21 2 0.0003 0.0012 0.0075
α̂22 2 0.0013 0.0013 0.0075
α̂23 2 0.0016 0.004 0.0046
α̂24 2 -0.002 0.0047 0.0037
α̂25 2 0.0001 0.0003 0.014
α̂26 2 -0.0002 0.0002 0.0172
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Table 4.11: Bias, Empirical Standard Error and Average of Analytical Standard Error of β̂bj
β̂bj b Bias Standard Error Average of Analytical Standard Error

β̂11 1 -0.0001 0.0013 0.0077

β̂12 1 -0.0025 0.0011 0.0076

β̂13 1 0.0019 0.0044 0.0038

β̂14 1 -0.0007 0.0003 0.0152

β̂21 2 -0.0018 0.001 0.0071

β̂22 2 0.0002 0.001 0.0071

β̂23 2 -0.0022 0.0019 0.005

β̂24 2 -0.1005 0.0103 0.0139

4.3.2 MCI Dataset

4.3.2.1 Study Sample

Individuals from the Uniform Data Set (UDS) of the National Alzheimer’s Coordinating

Center (NACC), which is a longitudinal study that includes patients who have dementia,

mild cognitive impairment and who are cognitively normal (National Alzheimer’s Coordi-

nating Center, 2021b), were included in the analysis. Genetic data was available for a

limited NACC participants, where more than 75% of patients had records of APOE ε4 al-

lele (National Alzheimer’s Coordinating Center, 2021a). We focused on a sample of 6034

participants as of June 2015 freeze date and included standardized evaluations of functional

abilities, neuropsychiatric symptoms and assessments of cognitions from the motivating ex-

ample as manifest variables (Section 1.2). We included vascular risk factors, demographic

characteristics, and APOE ε4 carrier status as covariates.

4.3.2.2 Vascular Risk Factors

The Rosen Modification of Hachinski Ischemic Score (RMHIS) was used to assess cerebrovas-

cular disease status of participants, which is a scale modified from Hachinski Ischemic Score

to include 8 features that would increase the accuracy of diagnosis of multi infarct dementia

(MID), a vascular disorder (Rosen et al., 1980). Additional risk factors of cerebrovascular

disease such as diabetic status, hypercholesterolemia and hypertension were included. Both

coronary vascular disease and cardiac dysrhythmia were dichotomized to indicate diagnosis
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of corresponding disease for each participant.

4.3.2.3 Demographic Characteristics

Age was measured in decades at baseline, centered at age 70. Race was dichotomized to

indicate whether a participant is African-American or not. Education was measured in

years. Gender was additionally included as a covariate.

4.3.2.4 APOE

APOE ε4 carrier status was measured by whether a person is APOE ε4 positive or negative.

APOE data was missing for about 20% of participants.

4.3.2.5 Analysis

We analyzed the UDS data by applying the methods derived from compound LCA. Different

models were fit with the number of classes of covariates ranging from 1 to 4 classes and the

the number of classes of feature variables ranging from 2 to 4 classes (Table 4.12-Table 4.15).

The ICL-BIC model selection criterion (ICL-BIC=42385.99, Table 4.15), entropy R2 value

(R2 =0.84, Table 4.15) and analysis of clinical interpretation of the latent classes indicated

that the model with 3 classes of covariates (A = 1, 2, 3) and 3 classes of feature variables

(B = 1, 2, 3) is the best fitting model for the dataset. Using this solution, the latent class

solution of covariates revealed that the dataset consists of (Table 4.12):

1. A = 1: African-American patients, older, more females, with high risk of cholesterol,

diabetes and hypertension

2. A = 2: Non-African American patients, younger, with low vascular risk and high

prevalence of APOE

3. A = 3: Non-African American patients, older, more males, high vascular risk and

relatively high prevalence of APOE.
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The latent class solution of features revealed that different types of patients from the covariate

space can be diagnosed into following subtypes of MCI (Table 4.16):

1. B = 1: Mildly impaired

2. B = 2: Amnestic multi-domain with functional impairment and neuropsychiatric fea-

tures

3. B = 3: Amnestic with functional impairment and neuropsychiatric features.

Combining the solutions of covariates and feature variables, we can interpret relative frequen-

cies of latent classes by focusing on the prevalence of feature class given covariate class (Table

4.13). Among patients in the first covariate class, or who are African-American patients,

older, more females, with high risk of cholesterol, diabetes and hypertension, the prevalence

of feature classes show: the probability of being diagnosed with mild impairment is 0.24, the

probability of being diagnosed with amnestic multi-domain with functional impairment and

neuropsychiatric features is 0.76 and the probability of being diagnosed with amnestic with

functional impairment and neuropsychiatric features is 0.

The prevalence of feature classes with respect to the next two covariate classes can be

interpreted in a similar fashion. Among patients in the second covariate class, or patients

who are non-African American patients, younger, with low vascular risk and high prevalence

of APOE, the prevalence of feature classes indicate: the probability of being diagnosed with

mild impairment is 0.32, the probability of being diagnosed with amnestic multi-domain

with functional impairment and neuropsychiatric features is 0.07 and the probability of be-

ing diagnosed with amnestic with functional impairment and neuropsychiatric features is

0.61. Among patients in the third covariate class, or patients who are non-African American

patients, older, more males, high vascular risk and relatively high prevalence of APOE, the

prevalence of feature classes reveal: the probability of being diagnosed with mild impairment

is 0.26, the probability of being diagnosed with amnestic multi-domain with functional im-

pairment and neuropsychiatric features is 0.05 and the probability of being diagnosed with
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amnestic with functional impairment and neuropsychiatric features is 0.69.

Even though we assumed conditional independence between the covariates and responses

given the latent classes, there exists some evidence that feature classes may be nested within

covariate classes. Using the posterior probabilities of membership in the two sets of latent

classes derived from 3 classes of covariates (A = 1, 2, 3) and 3 classes of feature variables

(B = 1, 2, 3) by using compound LCA, we applied a modal method on both covariate and

feature classes. Then we incorporated the results from using a modal method into linear

and logistic regression models, which indicated that the feature classes are nested within the

covariate classes (Table 4.17).
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Table 4.12: Latent Class-Specific Means (and Standard Errors) of Covariates
1 Class of Covariates, 1 Class of Covariates, 1 Class of Covariates, 2 Classes of Covariates, 2 Classes of Covariates, 2 Classes of Covariates,

Class 2 Classes of Feature Variables 3 Classes of Feature Variables 4 Classes of Feature Variables 2 Classes of Feature Variables 3 Classes of Feature Variables 4 Classes of Feature Variables

Hachinski Ischaemia Score 1 0.07 (0.01) 0.07 (0.01) 0.07 (0.01) 0.04 (0.02) 0.09 (0.01) 0.04 (0.02)
2 — — — 0.09 (0.01) 0.04 (0.02) 0.09 (0.02)

Hypercholesterolemia 1 0.55 (0.01) 0.55 (0.01) 0.55 (0.01) 0.36 (0.01) 0.77 (0.02) 0.34 (0.01)
2 — — — 0.76 (0.01) 0.35 (0.01) 0.78 (0.02)

Diabetic Status 1 0.15 (0.01) 0.15 (0.01) 0.15 (0.01) 0.03 (0.03) 0.28 (0.01) 0.03 (0.03)
2 — — — 0.28 (0.01) 0.03 (0.03) 0.28 (0.01)

Hypertension 1 0.56 (<0.01) 0.56 (0.01) 0.56 (0.01) 0.31 (0.01) 0.83 (0.02) 0.31 (0.01)
2 — — — 0.84 (0.02) 0.31 (0.01) 0.83 (0.02)

Education 1 15 (0.01) 15 (0.01) 15 (0.01) 16 (0.01) 15 (0.02) 16 (0.02)
2 — — — 14 (0.02) 16 (0.01) 15 (0.02)

Age 1 0.40 (<0.01) 0.40 (<0.01) 0.40 (<0.01) 0.24 (<0.01) 0.57 (0.01) 0.24 (0.01)
2 — — — 0.57 (<0.01) 0.24 (0.01) 0.57 (0.01)

Gender 1 0.50 (0.01) 0.50 (0.01) 0.50 (0.01) 0.54 (0.01) 0.46 (0.01) 0.54 (0.01)
2 — — — 0.46 (0.01) 0.54 (0.01) 0.46 (0.01)

Race 1 0.16 (0.01) 0.16 (0.01) 0.16 (0.01) 0.09 (0.02) 0.22 (0.01) 0.10 (0.02)
2 — — — 0.23 (0.01) 0.09 (0.02) 0.22 (0.01)

Cardiac Dysrhythmia 1 0.10 (0.01) 0.10 (0.01) 0.10 (0.01) 0.05 (0.02) 0.15 (0.01) 0.05 (0.02)
2 — — — 0.15 (0.01) 0.05 (0.02) 0.15 (0.01)

Coronary Vascular Disease 1 0.14 (0.01) 0.14 (0.01) 0.14 (0.01) 0.02 (0.05) 0.29 (0.01) 0.01 (0.01)
2 — — — 0.28 (0.01) 0.02 (0.07) 0.29 (0.01)

APOE 1 0.41 (<0.01) 0.41 (0.01) 0.41 (0.01) 0.43 (0.01) 0.40 (0.01) 0.43 (0.01)
2 — — — 0.40 (0.01) 0.43 (0.01) 0.40 (0.01)

3 Classes of Covariates, 3 Classes of Covariates, 3 Classes of Covariates, 4 Classes of Covariates, 4 Classes of Covariates, 4 Classes of Covariates,
Class 2 Classes of Feature Variables 3 Classes of Feature Variables 4 Classes of Feature Variables 2 Classes of Feature Variables 3 Classes of Feature Variables 4 Classes of Feature Variables

Hachinski Ischaemia Score 1 0.10 (0.02) 0.08 (0.03) 0.04 (0.02) 0.04 (0.02) 0.03 (1.53) 0.06 (0.03)
2 0.08 (0.03) 0.04 (0.02) 0.07 (0.03) 0.20 (0.02) 0.05 (0.03) 0.10 (0.11)
3 0.04 (0.02) 0.10 (0.03) 0.10 (0.03) 0.09 (0.04) 0.07 (0.03) 0.07 (0.04)
4 — — — 0.08 (0.03) 0.12 (0.03) 0.04 (0.03)

Hypercholesterolemia 1 0.82 (0.02) 0.64 (0.02) 0.34 (0.03) 0.04 (0.01) 0.52 (0.02) 0.25 (0.03)
2 0.65 (0.01) 0.35 (0.01) 0.67 (0.02) 0.84 (0.03) 0.29 (0.03) 0.88 (0.02)
3 0.35 (0.01) 0.82 (0.03) 0.81 (0.01) 0.34 (0.03) 0.71 (0.02) 0.67 (0.02)
4 — — — 0.74 (0.02) 0.82 (0.04) 0.38 (0.02)

Diabetic Status 1 0.21 (0.01) 0.31 (0.02) 0.03 (0.02) 0.04 (0.03) 0.08 (0.03) 0.02 (0.02)
2 0.33 (0.02) 0.03 (0.04) 0.34 (0.02) 0.20 (0.02) 0.02 (0.02) 0.22 (0.04)
3 0.04 (0.03) 0.20 (0.02) 0.19 (0.04) 0.09 (0.05) 0.37 (0.02) 0.35 (0.10)
4 — — — 0.41 (0.02) 0.19 (0.12) 0.04 (0.02)

Hypertension 1 0.76 (0.02) 0.85 (0.03) 0.29 (0.02) 0.29 (0.01) 0.37 (0.02) 0.50 (0.02)
2 0.87 (0.03) 0.29 (0.01) 0.89 (0.04) 0.76 (0.02) 0.30 (0.02) 0.78 (0.02)
3 0.30 (0.01) 0.76 (0.02) 0.75 (0.01) 0.62 (0.03) 0.91 (0.04) 0.89 (0.02)
4 — — — 0.95 (0.07) 0.77 (0.03) 0.26 (0.05)

Education 1 16 (0.02) 13 (0.03) 16 (0.02) 16 (0.01) 18 (0.02) 15 (0.03)
2 13 (0.03) 16 (0.02) 13 (0.03) 16 (0.02) 15 (0.02) 16 (0.02)
3 16 (0.01) 16 (0.03) 16 (0.02) 13 (0.08) 13 (0.03) 13 (0.03)
4 — — — 13 (0.03) 16 (0.04) 16 (0.03)

Age 1 0.68 (0.01) 0.47 (0.01) 0.23 (0.01) 0.12 (0.01) 0.25 (0.01) 1.34 (0.01)
2 0.44 (0.01) 0.21 (0.01) 0.42 (0.01) 0.68 (0.01) 0.26 (0.01) 0.61 (0.01)
3 0.22 (¡0.01) 0.67 (0.01) 0.68 (0.01) 1.08 (0.01) 0.38 (0.01) 0.34 (0.01)
4 — — — 0.27 (0.01) 0.77 (0.01) -0.02 (0.01)

Gender 1 0.23 (0.02) 0.72 (0.02) 0.55 (0.02) 0.54 (0.01 0.35 (0.02) 0.55 (0.03)
2 0.72 (0.02) 0.54 (0.01) 0.72 (0.02) 0.21 (0.03) 0.64 (0.03) 0.23 (0.02)
3 0.55 (0.01) 0.21 (0.02) 0.22 (0.01) 0.65 (0.03) 0.71 (0.02) 0.74 (0.02)
4 — — — 0.72 (0.03) 0.22 (0.02) 0.53 (0.02)

Race 1 0.02 (0.10) 0.47 (0.02) 0.07 (0.10) 0.07 (0.02) 0.01 (0.05) 0.05 (0.16)
2 0.49 (0.02) 0.06 (0.02) 0.49 (0.02) 0.02 (0.12) 0.12 (0.18) 0.02 (0.11)
3 0.07 (0.02) 0.01 (0.14) 0.01 (0.03) 0.20 (0.03) 0.48 (0.02) 0.53 (0.03)
4 — — — 0.55 (0.02) 0.02 (0.03) 0.07 (0.02)

Cardiac Dysrhythmia 1 0.21 (0.02) 0.08 (0.03) 0.05 (0.02) 0.04 (0.03) 0.06 (0.05) 0.19 (0.02)
2 0.07 (0.03) 0.05 (0.03) 0.07 (0.03) 0.21 (0.02) 0.05 (0.02) 0.20 (0.05)
3 0.05 (0.02) 0.21 (0.02) 0.21 (0.03) 0.16 (0.04) 0.07 (0.03) 0.06 (0.04)
4 — — — 0.06(0.04) 0.24(0.04) 0.03(0.04)

Coronary Vascular Disease 1 0.42 (0.01) 0.12 (0.03) 0 (0.02) 0 (0.19) 0.02 (0.17) 0.08 (0.03)
2 0.12 (0.03) 0 (0.35) 0.13 (0.03) 0.44 (0.02) 0 (0.02) 0.42 (0.02)
3 0 (0.22) 0.42 (0.02) 0.41 (0.33) 0.06 (0.06) 0.13 (0.03) 0.12 (0.74)
4 — — — 0.15 (0.03) 0.50 (0.47) 0 (0.03)

APOE 1 0.40 (0.02) 0.39 (0.02) 0.42 (0.02) 0.46 (0.01) 0.53 (0.02) 0.16 (0.02)
2 0.40 (0.02) 0.43 (0.01) 0.41 (0.02) 0.40 (0.02) 0.36 (0.02) 0.43 (0.02)
3 0.43 (0.01) 0.41 (0.02) 0.41 (0.01) 0.17 (0.05) 0.42 (0.02) 0.42 (0.02)
4 — — — 0.47 (0.02) 0.37 (0.03) 0.48 (0.02)
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Table 4.13: Latent Class-Specific Means (and Standard Errors) of Feature Variables
1 Class of Covariates, 1 Class of Covariates, 1 Class of Covariates, 2 Classes of Covariates, 2 Classes of Covariates, 2 Classes of Covariates,

Class 2 Classes of Feature Variables 3 Classes of Feature Variables 4 Classes of Feature Variables 2 Classes of Feature Variables 3 Classes of Feature Variables 4 Classes of Feature Variables

Functional No. of IADL impaired 1 1.58 (0.01) 0.19 (¡0.01) 1.32 (0.02) 1.59 (0.01) 0.19 (<0.01) 0 (0.01)
2 3.18 (0.01) 3.08 (0.17) 2.94(0.01) 3.17 (0.01) 3.27 (0.03) 3.65 (0.04)
3 — 3.23 (0.07) 2.94 (0.02) — 3.03 (0.06) 3.65 (0.04)
4 — — 2.94 (0.01) — — 3.60 (0.02)

Neuropsychiatric % with GDS ≥ 5 1 13.44 (0.01)% 9.31 (0.02)% 10.92 (0.02)% 13.49 (0.01)% 9.32 (0.02)% 13.80 (0.01)%
2 24.64 (0.01)% 22.72 (0.04)% 23.38 (0.02)% 24.62 (0.01)% 22.32 (0.02)% 21.35 (0.02)%
3 — 22.26 (0.02)% 23.38 (0.02)% — 22.55 (0.03)% 21.34 (0.04)%
4 — — 23.38 (0.01)% — — 21.24 (0.02)%

No. of NPI-Q symptoms present 1 1.39 (0.01) 0.54 (0.01) 0 (0.02) 1.40 (0.01) 0.54 (0.01) 0.87 (0.01)
2 2.19 (0.01) 2.16 (0.05) 2.86 (0.01) 2.18 (0.01) 2.32 (0.02) 2.27 (0.03)
3 — 2.30 (0.02) 2.86 (0.01) — 2.14 (0.04) 2.27 (0.03)
4 — — 2.86 (0.01) — — 2.27 (0.02)

Cognitive Global
MMSE 1 -0.96 (<0.01) -0.82 (0.01) -1.55 (0.01) -0.97 (0.01) -0.83 (0.01) -1.28 (0.01)

2 -2.42 (0.01) -2.19 (0.04) -1.69 (0.01) -2.42 (0.01) -2.87 (0.02) -1.83 (0.02)
3 — -1.87 (0.02) -1.69 (0.01) — -3.27 (0.03) -1.84 (0.03)
4 — — -1.69 (0.01) — — -1.86 (0.02)

Logical Memory
Immediate 1 -0.94 (0.01) -0.85 (0.01) -1.08 (0.01) -0.95 (0.01) -0.85 (0.01) -1.01 (0.01)

2 -1.48 (0.01) -1.48 (0.04) -1.26 (0.02) -1.47 (0.01) -2.30 (0.02) -1.30 (0.02)
3 — -1.27 (0.02) -1.26 (0.01) — -2.39 (0.03) -1.29 (0.02)
4 — — -1.26 (0.01) — — -1.28 (0.01)

Delayed 1 -1.05 (0.01) -0.89 (0.01) -1.16 (0.01) -1.06 (0.01) -0.89 (0.01) -1.03 (0.01)
2 -1.56 (0.01) -1.58 (0.04) -1.36 (0.01) -1.55 (0.01) -1.43 (0.02) -1.44 (0.02)
3 — -1.39 (0.02) -1.36 (<0.01) — -1.49 (0.03) -1.44 (0.02)
4 — — -1.36 (0.01) — — -1.41 (0.01)

Semantic Memory
Category Fluency 1 -0.63 (<0.01) -0.59 (<0.01) -0.84 (0.01) -0.63 (<0.01) -0.59 (<0.01) -0.77 (¡0.01)

2 -1.28 (<0.01) -1.19 (0.02) -0.98 (0.01) -1.28 (¡0.01) -1.03 (0.01) -1.02 (0.01)
3 — -1.01 (0.01) -0.98 (0.01) — -1.13 (0.02) -1.02 (0.01)
4 — — -0.98 (0.01) — — -0.99 (0.01)

Attention
Trails A 1 -0.03 (<0.01) 0 (<0.01) 0.63 (0.02) -0.03 (<0.01) 0 (0.01) 0.57 (<0.01)*

2 1.61 (0.01) 1.12 (0.05) 0.78 (0.02) 1.62 (0.01) 0.94 (0.03) 0.81 (0.03)
3 — 0.98 (0.02) 0.78 (0.01) — 1.21 (0.04) 0.81 (0.04)
4 — — 0.78 (0.01) — — 0.87 (0.02)

Digit Span Forward 1 -0.08 (<0.01) -0.14 (0.01) -0.28 (0.01) -0.08 (<0.01) -0.14 (0.01) -0.27 (0.01)
2 -0.57 (<0.01) -0.45 (0.02) -0.32 (0.01) -0.57 (<0.01) -0.34 (0.01) -0.33 (0.01)
3 — -0.34 (0.01) -0.32 (0.01) — -0.45 (0.02) -0.33 (0.01)
4 — — -0.32 (0.01) — — -0.33 (0.01)

Language
Boston Naming 1 -0.45 (<0.01) -0.56 (0.01) -1.10 (0.01) -0.46 (<0.01) -0.57 (0.01) -1.05 (0.01)

2 -1.75 (0.01) -1.57 (0.03) -1.02 (0.02) -1.76 (0.01) -1.09 (0.01) -1.04 (0.03)
3 — -1.11 (0.01) -1.02 (0.01) — -1.56 (0.03) -1.05 (0.03)
4 — — -1.02 (0.01) — — -1.06 (0.02)

Executive Function
Trails B 1 0.23 (<0.01) 0.29 (0.01) 1.14 (0.01) 0.23 (<0.01) 0.29 (0.01) 1.07 (0.01)*

2 2.52 (0.01) 1.84 (0.04) 1.33 (0.01) 2.54 (0.01) 1.52 (0.02) 1.35 (0.03)
3 — 1.59 (0.02) 1.33 (0.01) — 1.95 (0.03) 1.36 (0.02)
4 — — 1.33 (0.01) — — 1.42 (0.02)

Digit Span Backward 1 -0.22 (<0.01) -0.28 (0.01) -0.45 (0.01) -0.22 (<0.01) -0.28 (0.01) -0.46 (0.01)
2 -0.79 (<0.01) -0.65 (0.02) -0.50 (0.01) -0.80 (<0.01) -0.52 (0.01) -0.50 (0.01)
3 — -0.53 (0.01) -0.50 (0.01) — -0.66 (0.02) -0.50 (0.01)
4 — — -0.50 (0.01) — — -0.51 (0.01)

Visuomotor
Digit Symbol 1 -0.32 (<0.01) -0.34 (0.01) -0.68 (0.01) -0.32 (<0.01) -0.34 (0.01) -0.66 (0.01)

2 -1.41 (<0.01) -1.12 (0.03) -0.90 (0.01) -1.41 (0.01) -0.95 (0.01) -0.90 (0.01)
3 — -0.97 (0.01) -0.90 (0.01) — -1.15 (0.02) -0.91 (0.01)
4 — — -0.90 (0.01) — — -0.93 (0.01)

3 Classes of Covariates, 3 Classes of Covariates, 3 Classes of Covariates, 4 Classes of Covariates, 4 Classes of Covariates, 4 Classes of Covariates,
Class 2 Classes of Feature Variables 3 Classes of Feature Variables 4 Classes of Feature Variables 2 Classes of Feature Variables 3 Classes of Feature Variables 4 Classes of Feature Variables

Functional No. of IADL impaired 1 1.63 (0.01) 0.19 (<0.01) 0 (0.01) 1.64 (0.01) 0 (0.01) 0 (<0.01)
2 3.14 (0.02) 2.85 (0.03) 3.66 (0.04) 3.13 (0.02) 3.61 (0.03) 3.56 (0.05)
3 — 3.33 (0.02) 3.57 (0.03) — 3.66 (0.02) 3.63 (0.04)
4 — — 3.66 (0.04) — — 3.66 (0.04)

Neuropsychiatric % with GDS ≥ 5 1 13.53 (0.01)% 9.37 (0.02)% 13.80 (0.01)% 13.60 (0.01)% 13.80 (0.02)% 13.80 (0.03)%
2 24.72 (0.01)% 24.71 (0.02)% 20.58 (0.03)% 24.62 (0.01)% 22.62 (0.02)% 22.84 (0.04)%
3 — 21.00 (0.01)% 23.80 (0.02)% — 20.68 (0.02)% 21.55 (0.03)%
4 — — 20.91 (0.03)% — — 21.00 (0.04)%

No. of NPI-Q symptoms present 1 1.42 (0.01) 0.55 (0.01) 0.87 (0.01) 1.43 (0.01) 0.87 (0.01) 0.87 (0.01)
2 2.17 (0.01) 2.01 (0.02) 2.29 (0.02) 2.16 (0.01) 2.25 (0.02) 2.23 (0.04)
3 — 2.36 (0.01) 2.21 (0.02) — 2.28 (0.02) 2.28 (0.03)
4 — — 2.28 (0.03) — — 2.28 (0.04)

Cognitive Global
MMSE 1 -0.98 (0.01) -0.80 (0.01) -1.28 (0.01) -0.98 (0.01) -1.28 (0.01) -1.28 (0.01)

2 -2.42 (0.01) -2.04 (0.02) -1.83 (0.02) -2.42 (0.01) -1.88 (0.02) -1.88 (0.03)
3 — -1.93 (0.01) -1.90 (0.01) — -1.82 (0.01) -1.84 (0.03)
4 — — -1.83 (0.03) — — -1.83 (0.03)

Logical Memory
Immediate 1 -0.96 (0.01) -0.84 (0.01) -1.01 (0.01) -0.97 (0.01) -1.01 (0.01) -1.01 (0.01)

2 -1.46 (0.01) -1.08 (0.02) -1.33 (0.02) -1.46 (0.01) -1.23 (0.01) -1.21 (0.03)
3 — -1.46 (0.01) -1.17 (0.01) — -1.32 (0.01) -1.28 (0.02)
4 — — -1.31 (0.02) — — -1.31 (0.03)

Delayed 1 -1.07 (0.01) -0.88 (0.01) -1.03 (0.01) -1.08 (0.01) -1.03 (0.01) -1.03 (0.02)
2 -1.54 (0.01) -1.18 (0.02) -1.47 (0.02) -1.54(0.01) -1.36 (0.01) -1.34 (0.03)
3 — -1.58 (0.01) -1.30 (0.01) — -1.47 (0.01) -1.42 (0.02)
4 — — -1.45 (0.02) — — -1.45 (0.03)

Semantic Memory
Category Fluency 1 -0.64 (<0.01) -0.58 (0.01) -0.77 (<0.01) -0.64 (<0.01) -0.77 (<0.01) -0.77 (0.01)

2 -1.28 (<0.01) -0.89 (0.01) -1.03 (0.01) -1.27 (0.01) -0.94 (0.01) -0.93 (0.02)
3 — -1.15 (0.01) -0.88 (0.01) — -1.05 (0.01) -1.01 (0.01)
4 — — -1.04 (0.01) — — -1.03 (0.02)

Attention
Trails A 1 -0.02 (<0.01) -0.01 (0.01) 0.57 (<0.01) -0.03 (<0.01) 0.57 (<0.01) 0.57 (0.01)*

2 1.64 (0.01) 1.35 (0.02) 0.78 (0.03) 1.64 (0.01) 0.90 (0.02) 0.96 (0.04)
3 — 0.86 (0.01) 0.99 (0.02) — 0.78 (0.02) 0.83 (0.02)
4 — — 0.79 (0.04) — — 0.79 (0.03)

Digit Span Forward 1 -0.08 (<0.01) -0.14 (0.01) -0.27 (0.01) -0.09 (<0.01) -0.27 (0.01) -0.27 (0.01)
2 -0.57 (<0.01) -0.38 (0.01) -0.33 (0.01) -0.57 (0.01) -0.32 (0.01) -0.33 (0.02)
3 — -0.37 (0.01) -0.33 (0.01) — -0.33 (0.01) -0.33 (0.01)
4 — — -0.33 (0.02) — — -0.33 (0.02)

Language
Boston Naming 1 -0.45 (0.01) -0.55 (0.01) -1.05 (0.01) -0.45 (0.01) -1.05 (0.01) -1.05 (0.01)

2 -1.78 (0.01) -1.75 (0.02) -0.98 (0.03) -1.78 (0.01) -1.15 (0.02) -1.22 (0.03)
3 — -0.99 (0.01) -1.30 (0.02) — -1.00 (0.02) -1.06 (0.03)
4 — — -1.00 (0.03) — — -1.02 (0.03)

Executive Function
Trails B 1 0.22 (<0.01) 0.26 (0.01) 1.07 (0.01) 0.22 (<0.01) 1.07 (0.01) 1.07 (0.01)*

2 2.57 (0.01) 2.14 (0.02) 1.31 (0.02) 2.58 (0.01) 1.47 (0.02) 1.53 (0.04)
3 — 1.43 (0.01) 1.59 (0.02) — 1.32 (0.02) 1.38 (0.03)
4 — — 1.33 (0.03) — — 1.34 (0.03)

Digit Span Backward 1 -0.23 (<0.01) -0.27 (0.01) -0.46 (0.01) -0.23 (<0.01) -0.46 (0.01) -0.46 (0.01)
2 -0.80 (<0.01) -0.56 (0.01) -0.51 (0.01) -0.79 (0.01) -0.49 (0.01) -0.51 (0.02)
3 — -0.57 (0.01) -0.49 (0.01) — -0.50 (0.01) -0.51 (0.01)
4 — — -0.50 (0.01) — — -0.50 (0.02)

Visuomotor
Digit Symbol 1 -0.33 (<0.01) -0.33 (0.01) -0.66 (0.01) -0.33 (<0.01) -0.66 (0.01) -0.66 (0.01)

2 -1.42 (0.01) -1.09 (0.01) -0.90 (0.01) -1.42 (0.01) -0.93 (0.01) -0.95 (0.02)
3 — -0.97 (0.01) -0.94 (0.01) — -1.47 (0.01) -0.92 (0.02)
4 — — -0.90 (0.01) — — -0.90 (0.02)

*Higher scores on Trail A and Trail B indicate worse performance.



64

Table 4.14: Relative Frequencies of Latent Classes
a b π(a) π(b|a)

1 Class of Covariates, 1 1 — 0.54
2 Classes of Feature Variables 1 2 — 0.46

1 Class of Covariates, 1 1 — 0.29
3 Classes of Feature Variables 1 2 — 0.22

1 3 — 0.49

1 Class of Covariates, 1 1 — 0.39
4 Classes of Feature Variables 1 2 — 0.14

1 3 — 0.09
1 4 — 0.38

2 Classes of Covariates, 1 1 0.52 0.61
2 Classes of Feature Variables 1 2 0.52 0.39

2 1 0.48 0.46
2 2 0.48 0.54

2 Classes of Covariates, 1 1 0.48 0.25
3 Classes of Feature Variables 1 2 0.48 0.40

1 3 0.48 0.35
2 1 0.52 0.33
2 2 0.52 0.53
2 3 0.52 0.14

2 Classes of Covariates, 1 1 0.52 0.38
4 Classes of Feature Variables 1 2 0.52 0.43

1 3 0.52 0.13
1 4 0.52 0.06
2 1 0.48 0.35
2 2 0.48 0.35
2 3 0.48 0.12
2 4 0.48 0.18

3 Classes of Covariates, 1 1 0.27 0.58
2 Classes of Feature Variables 1 2 0.27 0.42

2 1 0.24 0.36
2 2 0.24 0.63
3 1 0.49 0.62
3 2 0.49 0.38

3 Classes of Covariates, 1 1 0.26 0.24
3 Classes of Feature Variables 1 2 0.26 0.76

1 3 0.26 0
2 1 0.48 0.32
2 2 0.48 0.07
2 3 0.48 0.61
3 1 0.26 0.26
3 2 0.26 0.05
3 3 0.26 0.69

3 Classes of Covariates, 1 1 0.48 0.37
4 Classes of Feature Variables 1 2 0.48 0.13

1 3 0.48 0.04
1 4 0.48 0.46
2 1 0.25 0.43
2 2 0.25 0.04
2 3 0.25 0.30
2 4 0.25 0.23
3 1 0.27 0.29
3 2 0.27 0.17
3 3 0.27 0.03
3 4 0.27 0.51

4 Classes of Covariates, 1 1 0.46 0.66
2 Classes of Feature Variables 1 2 0.46 0.34

2 1 0.25 0.58
2 2 0.25 0.42
3 1 0.12 0.16
3 2 0.12 0.84
4 1 0.17 0.43
5 2 0.17 0.57

4 Classes of Covariates, 1 1 0.21 0.33
3 Classes of Feature Variables 1 2 0.21 0.06

1 3 0.21 0.61
2 1 0.34 0.39
2 2 0.34 0.18
2 3 0.34 0.43
3 1 0.23 0.42
3 2 0.23 0.39
3 3 0.23 0.19
4 1 0.22 0.29
4 2 0.22 0.21
4 3 0.22 0.50

4 Classes of Covariates, 1 1 0.13 0.35
4 Classes of Feature Variables 1 2 0.13 0.03

1 3 0.13 0.11
1 4 0.13 0.51
2 1 0.25 0.28
2 2 0.25 0.07
2 3 0.25 0.17
2 4 0.25 0.48
3 1 0.22 0.45
3 2 0.22 0.17
3 3 0.22 0.16
3 4 0.22 0.22
4 1 0.40 0.37
4 2 0.40 0.03
4 3 0.40 0.14
4 4 0.40 0.46
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Table 4.15: Model Selection
1 Class of Covariates, 1 Class of Covariates, 1 Class of Covariates,

2 Classes of Feature Variables 3 Classes of Feature Variables 4 Classes of Feature Variables

Log-Likelihood -77803.83 -18153.48 48327.67
BIC 156034.21 36951.15 -95793.53
Entropy 905.90 2973.94 3424.30
Entropy R2 0.89 0.78 0.80
ICL-BIC 157846.02 42897.03 -88944.94

2 Classes of Covariates, 2 Classes of Covariates, 2 Classes of Covariates,
2 Classes of Feature Variables 3 Classes of Feature Variables 4 Classes of Feature Variables

Log-Likelihood -76781.58 -17070.85 66481.02
BIC 154424.96 35438.77 -131229.71
Entropy 2964.99 4977.68 5528.99
Entropy R2 0.82 0.77 0.78
ICL-BIC 160354.94 45394.13 -120171.73

3 Classes of Covariates, 3 Classes of Covariates, 3 Classes of Covariates,
2 Classes of Feature Variables 3 Classes of Feature Variables 4 Classes of Feature Variables

Log-Likelihood -75904.07 -15965.70 66942.91
BIC 153105.22 33881.35 -131282.97
Entropy 3778.82 4252.32 5890.31
Entropy R2 0.83 0.84 0.80
ICL-BIC 160664.87 42385.99 -119502.35

4 Classes of Covariates, 4 Classes of Covariates, 4 Classes of Covariates,
2 Classes of Feature Variables 3 Classes of Feature Variables 4 Classes of Feature Variables

Log-Likelihood -75442.85 67104.46 67102.22
BIC 152618.03 -131606.08 -130731.07
Entropy 4330.61 6080.12 6705.27
Entropy R2 0.83 0.80 0.80
ICL-BIC 161279.26 -119445.84 -117320.54

Table 4.16: Interpretation of Relative Frequencies of Latent Classes for 3 Classes of Covari-
ates and 3 Classes of Feature Variables using Compound LCA

Covariate Class Feature Class Prevalence of Prevalence of Feature Class
(a=1) (b=1, 2, 3) Covariate Class (π(a)) Given Covariate Class (π(b|a))

African American patients, older, Mild Impaired 0.26 0.24
more females, with high risk of AMN Multi + FX1+ NP2 0.26 0.76
cholesterol, diabetes and hypertension AMN + FX + NP 0.26 0

Covariate Class Feature Class Prevalence of Prevalence of Feature Class
(a=2) (b=1, 2, 3) Covariate Class (π(a)) Given Covariate Class (π(b|a))

Non-African American patients, Mild Impaired 0.48 0.32
younger, low vascular risk AMN Multi + FX + NP 0.48 0.07
and high prevalence of APOE AMN + FX + NP 0.48 0.61

Covariate Class Feature Class Prevalence of Prevalence of Feature Class
(a=3) (b=1, 2, 3) Covariate Class (π(a)) Given Covariate Class (π(b|a))

Non-African American patients, Mild Impaired 0.26 0.26
older, more males, high vascular risk AMN Multi + FX + NP 0.26 0.05
and relatively high prevalence of APOE AMN + FX + NP 0.26 0.69

1 FX: Functional Impairment 2NP: Neuropsychiatric Features
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Table 4.17: Logistic and Linear Regression Models
Parameter Estimate Standard Error Wald Chi-Square Pr > ChiSq

Logistic Regression Model
GDS Intercept 1.25 0.06 416.24 <0.0001

Class 2 (Covariates) -0.05 0.05 1.04 0.31
Class 3 (Covariates) -0.15 0.06 6.61 0.01
Class 2 (Feature Variables) 0.37 0.05 46.93 <0.0001
Class 3 (Feature Variables) 0.33 0.04 71.15 <0.0001

Source Type III SS Mean Square F Value Pr > F

Linear Regression Model
IADL Class 2 (Covariates) 85.27 85.27 14.66 0.0001

Class 3 (Covariates) 65.19 65.19 11.21 0.0008
Class 2 (Feature Variables) 937.64 937.64 161.18 <0.0001
Class 3 (Feature Variables) 5407.34 5407.34 929.52 <0.0001

NPI Class 2 (Covariates) 15.29 15.29 3.98 0.05
Class 3 (Covariates) 24.39 24.39 6.35 0.01
Class 2 (Feature Variables) 246.45 245.45 64.21 <0.0001
Class 3 (Feature Variables) 1189.75 1189.75 309.96 <0.0001

MMSE Class 2 (Covariates) 53.06 53.06 18.32 <0.0001
Class 3 (Covariates) 24.84 24.84 8.57 0.0034
Class 2 (Feature Variables) 371.29 371.29 128.17 <0.0001
Class 3 (Feature Variables) 3804.48 3804.48 1313.36 <0.0001

Logical Memory - Immediate Class 2 (Covariates) 0.15 0.15 0.16 0.69
Class 3 (Covariates) 0.51 0.51 0.56 0.45
Class 2 (Feature Variables) 42.83 42.83 47.29 <0.0001
Class 3 (Feature Variables) 1345.53 1345.53 1485.67 <0.0001

Logical Memory - Delayed Class 2 (Covariates) 0.16 0.16 0.17 0.68
Class 3 (Covariates) 0.01 0.01 0.01 0.91
Class 2 (Feature Variables) 72.80 72.80 76.64 <0.0001
Class 3 (Feature Variables) 1378.97 1378.97 1451.82 <0.0001

Category Fluency Class 2 (Covariates) 29.35 29.35 37.36 <0.0001
Class 3 (Covariates) 25.37 25.37 32.29 <0.0001
Class 2 (Feature Variables) 62.95 62.95 80.14 <0.0001
Class 3 (Feature Variables) 935.93 935.93 1191.46 <0.0001

Trails A Class 2 (Covariates) 27.23 27.23 12.90 0.0003
Class 3 (Covariates) 11.87 11.87 5.62 0.02
Class 2 (Feature Variables) 1634.06 1634.06 774.11 <0.0001
Class 3 (Feature Variables) 2203.95 2203.95 1044.09 <0.0001

Digit Span Forward Class 2 (Covariates) 1.90 1.90 1.86 0.17
Class 3 (Covariates) 3.00 3.00 2.94 0.09
Class 2 (Feature Variables) 131.65 131.65 128.97 <0.0001
Class 3 (Feature Variables) 289.53 289.53 283.63 <0.0001

Boston Naming Class 2 (Covariates) 164.86 164.86 57.25 <0.0001
Class 3 (Covariates) 260.52 260.52 90.46 <0.0001
Class 2 (Feature Variables) 591.72 591.72 205.46 <0.0001
Class 3 (Feature Variables) 1808.38 1808.38 627.92 <0.0001

Trails B Class 2 (Covariates) 29.61 29.61 15.08 0.0001
Class 3 (Covariates) 19.32 19.32 9.84 0.002
Class 2 (Feature Variables) 3492.09 3492.09 1778.77 <0.0001
Class 3 (Feature Variables) 4219.84 4219.84 2149.47 <0.0001

Digit Span Backward Class 2 (Covariates) 2.76 2.76 3.24 0.07
Class 3 (Covariates) 5.86 5.86 6.88 0.009
Class 2 (Feature Variables) 153.52 153.52 180.22 <0.0001
Class 3 (Feature Variables) 410.07 410.07 481.39 <0.0001

Digit Symbol Class 2 (Covariates) 0.94 0.94 1.02 0.31
Class 3 (Covariates) 5.92 5.92 6.42 0.01
Class 2 (Feature Variables) 663.68 663.68 720.07 <0.0001
Class 3 (Feature Variables) 1200.52 1200.52 1302.53 <0.0001
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4.4 Discussion

In this chapter, we first conducted a simulation study to investigate the performance of our

estimators of π̂(a), π̂(b|a), α̂ak and β̂bj. We examined the bias, standard error and average of

analytical standard error using sample sizes of 600 and 2000. These results showed that our

estimators perform well when covariates are high-dimensional and correlated, and average of

analytical standard errors decreased and tended to be similar to standard error values when

the sample size was larger. Our results also reflected the difficulty of computing estimators

based on Bernoulli distribution, where a bigger sample size did not necessarily improve the

difference in standard errors and average of analytical standard errors for these estimators.

We aimed to explore different subtypes of MCI using compound LCA and its extension.

With compound LCA, we were able to conduct latent class analysis for varying numbers

of classes of covariates and response variables despite having high dimensional and possibly

correlated covariates in the MCI dataset. Table 4.15 revealed different ICL-BIC model

selection criterion values and entropy R2 values for different models. Even though some

models had negative ICL-BIC values, indicating a potential solution, entropy R2 values were

useful in narrowing the models down, ultimately leading us to select a model with 3 classes of

covariates and 3 classes of feature variables when we also considered the relevance of clinical

interpretation of our model.

The results from Table 4.16 revealed heterogeneity of MCI subgroups for high-dimensional

and correlated covariates. For instance, as indicated by high risk of cholesterol, diabetes and

hypertension, the patients in the first covariate class most likely have vascular dementia,

where these conditions disproportionally affect African Americans. Vascular dementia tends

to be represented by a non-amnestic feature such as executive dysfunction, and this char-

acteristic was highlighted by an amnestic multi-domain feature class in our results, which

includes both amnestic and non-amnestic features (Table 4.16, prevalence: 0.76). In addi-

tion, patients in the second and third covariate class most likely have Alzheimer’s disease,

as shown by latent class solution of covariates indicating the high prevalence of APOE ε4
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allele and additionally supported by the research on APOE ε4 allele. This identification is

further confirmed by the high prevalence of a pure amnestic class in the second and third

covariate classes (Table 4.16, prevalence: 0.61, 0.69), as Alzheimer’s disease is predominant

among patients diagnosed with a pure amnestic MCI subtype.

However, the F-tests revealed that the classes of covariates are mostly statistically signif-

icant for each feature variable, implying that feature classes may be nested within covariate

classes. Even though our results using compound LCA provided results that were consistent

with underlying etiologies of MCI subgroups in literature, it is necessary to update the as-

sumptions of conditional independence between the covariates and responses given the latent

classes to reflect nesting between the classes of feature variables and classes of covariates.

Moreover, these results highlight the need to consider developing a statistical method that

would help us determine when a dataset has a nested structure.
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Chapter 5

Extension of Compound Latent Class

Analysis
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5.1 Overview

In this chapter, we explore an extension of compound LCA that can handle nested classes of

feature variables within classes of covariates when covariates are high dimensional and po-

tentially correlated. We outline the updated relative frequencies model, maximum likelihood

estimation and latent class specific means of covariates and feature variables. We provide a

likelihood ratio test that will compare between compound LCA and its extension to find the

best fitting model.

5.2 Methods

5.2.1 Relative Frequencies Model

We assume conditional independence between the covariates and responses given the latent

classes, where the classes of responses are nested within the covariate space

f(xi, yi|a, b) = f(xi|a)f(yi|b, a)

Then under compound LCA, the finite mixture model is given by

e`i = f(xi, yi;α, β) =
∑
a

∑
b

π(a, b)f(xi, yi|a, b;α, β)

=
∑
a

{
π(a)f(xi|a;α)

∑
b

π(b|a)f(yi|b, a; β, α)

}

with log-likelihood ` =
∑

i `i.
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5.2.2 Maximum Likelihood Estimation

Using the EM algorithm, estimation can be carried out by iterating between estimation of

relative frequencies of the two sets of latent classes using EM algorithm:

π̂(a) = n−1
∑
i

ψia

π̂(b|a) = n−1π̂(a)−1
∑
i

τiab

and solving for the following weighted score equations for the parameters α and β of the

conditional distributions when the classes of responses are nested within the covariate space:

∂`

∂α
=
∑
i

∑
a

ψia
∂logf(xi|a;α)

∂α
= 0

∂`

∂β
=
∑
i

∑
a

∑
b

τiab
∂logf(yi|b, a; β, α)

∂β
= 0.

Then posterior probabilities of membership in the two sets of latent classes are simultaneously

updated:

τiab = Pr(a, b|xi, yi;α, β) =
π(a)f(xi|a;α)π(b|a)f(yi|b, a; β, α)∑

a′{π(a′)f(xi|a′;α)
∑

b′ π(b′|a′)f(yi|b′, a′; β, α)}

ψia = Pr(a|xi, yi;α, β) =
∑
b

τiab. (6)

We assume conditional independence of the covariates, so that f(xi|a;α) =
∏

k f(xik|a;α)

with distinct means αak. We also assume conditional independence of the responses, so that

f(yi|b, a; β, α) =
∏

j f(yij|b, a; β, α) with distinct means βbj. Then we use the following EM

algorithm to solve for the posterior probabilities of membership and latent class specific

means:

1. Initialize values of τiab, ψia, A and B.

2. Update the latent class specific means at each iteration of the EM algorithm. Then we
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update the parameter estimates as

α̂ak =

∑
i ψiaxik∑
i ψia

β̂bj =

∑
i τiabyij∑
i τiab

3. Update the posterior probabilities of membership in the two sets of latent classes, τiab

and ψia, using Equation 6.

4. Repeat steps 2-3 until convergence.

5.2.3 Information Matrix

The empirical Fisher’s information matrix can be computed to find the standard errors of

parameter estimates. We can compute a column vector of weighted score equations for

ζ = (π(a)T , π(b|a)T , αT , βT )T , defined by Q(ζ, xi, yi), where

Q(ζ, xi, yi) =



∂`
∂π(a)

∂`
∂π(b|a)

∂`
∂α

∂`
∂β
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and the solution to Q(ζ, xi, yi) is the maximum likelihood estimator ζ̂. Then the empirical

Fisher’s information matrix can be written as

I =
∑
i

Q(ζ, xi, yi)Q(ζ, xi, yi)
T

=
∑
i



∂`
∂π(a)

∂`
∂π(b|a)

∂`
∂α

∂`
∂β





∂`
∂π(a)

∂`
∂π(b|a)

∂`
∂α

∂`
∂β



T

where we can define the components of column vector Q(ζ, xi, yi) as

∂`

∂π(a)
=

n∑
i=1

ψia
π(a)

, a = 1, ..., A

∂`

∂π(b|a)
=

n∑
i=1

A∑
a=1

τiab
π(b|a)

, b = 1, ..., B

∂`

∂α
=

n∑
i=1

ψia
∂ log f(xi|a;α)

∂α
, a = 1, ..., A

∂`

∂β
=

n∑
i=1

τiab
∂ log f(yi|b, a; β, α)

∂β
, b = 1, ..., A ∗B.

and the last component is changed to reflect the nested structure. We can derive the standard

errors of parameter estimates ζ̂ by computing an estimator of the asymptotic covariance

matrix avar(ζ̂) = I−1.

5.2.4 Likelihood Ratio Test

In order to compare two different methods and find the best method for different scenarios,

we propose using a likelihood ratio test. Define the null hypothesis to be

H0 : β1b = β2b = ... = βAb, B = 1, ..., B
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which assumes that the feature means are the same regardless of given covariate classes.

Define the alternative hypothesis to be

HA : there exists at least some inequalities for some b.

The we can conduct a likelihood ratio test

TL = −2 ∗ Lcompound
Lcompoundext

= −2{`(β|b)− `(β|b,a)} ∼ χ2
AB−B

where L∗ denotes the likelihood of the respective model derived from compound LCA or its

extension. If our test statistic TL is statistically significant, we can reject the null hypothesis

and conclude that our extension of compound LCA produces the best fitting model.

5.2.5 Analysis of Underlying Subpopulations

Figure 5.1 is an updated version of Figure 4.1, where red arrows indicate our assumption

that feature classes are nested within covariate classes. The conditional independence is

updated to be f(xi, yi|a, b) = f(xi|a)f(yi|b, a).

Derivation of relative frequencies of the two sets of latent classes, π(a) and π(b|a), remains

the same. However, latent class-specific means of J features for b = 1, ..., B, β̂b1, ..., β̂bJ , are

updated to reflect the change in assumptions, where b classes of feature variables now include

a combination of covariate classes and feature classes to be b = 1, ..., A ∗B.
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Conditional independence: f(xi, yi|a, b) = f(xi|a)f(yi|b, a)

Figure 5.1: Extension of Compound LCA - Analysis of Underlying Subpopulation
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5.3 Results

5.3.1 MCI Dataset

5.3.1.1 Overview

In order to compare the results from using our extension of compound LCA with previous

results of compound LCA (Chapter 4), we again used 3 classes of covariates (A = 1, 2, 3)

and 3 classes of feature variables (B = 1, 2, 3) to apply updated methods of compound LCA.

5.3.1.2 Analysis

We first interpret the latent class-specific means of covariates, which revealed a different

group of patients in the dataset (Table 5.1):

1. A = 1: African American and non-African American patients with intermediate vas-

cular risk

2. A = 2: African American patients with high vascular risk

3. A = 3: Non-African American patients with low vascular risk and high APOE.

The latent class solution of feature variables provided a unique clinical interpretation when

we assumed that there is a nested structure between feature classes and covariate classes in

the MCI dataset (Table 5.2):

1. A = 1, B = 1: Mildly impaired

2. A = 1, B = 2: Mild functional impairment and neuropsychiatric symptoms

3. A = 1, B = 3: Mild functional impairment and neuropsychiatric symptoms

4. A = 2, B = 1: Amnestic multi-domain with functional impairment

5. A = 2, B = 2: Amnestic multi-domain with functional impairment and neuropsychi-

atric symptoms
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6. A = 2, B = 3: Functional impairment and neuropsychiatric symptoms with executive

dysfunction

7. A = 3, B = 1: Amnestic multi-domain with functional impairment and neuropsychi-

atric symptoms

8. A = 3, B = 2: Non-Amnestic with functional impairment and neuropsychiatric symp-

toms

9. A = 3, B = 3: Amnestic with functional impairment and neuropsychiatric symptoms.

Combining the latent class definitions of both covariate and feature space, we can inter-

pret the latent class frequencies when we use an extension of compound LCA (Table 5.3).

Among patients who are in the first covariate class, or African American and non-African

American patients with intermediate vascular risk, the prevalence of feature classes can be

interpreted as: the probability of being mildly impaired is 0.60, the probability of having

mild functional impairment and neuropsychiatric features are 0.26 and 0.14. Among pa-

tients in the second covariate class, or African American patients with high vascular risk,

the prevalence of feature classes can be interpreted as: the probability of being diagnosed

with amnestic multi-domain with functional impairment is 0.52, the probability of being

diagnosed with amnestic multi-domain with functional impairment and neuropsychiatric

features is 0.03, and the probability of being diagnosed with executive dysfunction with

functional impairment and neuropsychiatric features is 0.45. Among patients in the third

covariate class, or non-African American patients with low vascular risk and high APOE,

the prevalence of feature classes can be interpreted as: the probability of being diagnosed

with amnestic multi-domain with functional impairment and neuropsychiatric features is

0.20, the probability of being diagnosed with non-amnestic with functional impairment and

neuropsychiatric features is 0.20, and the probability of being diagnosed with amnestic with

functional impairment and neuropsychiatric features is 0.60.
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We then used the likelihood ratio test to compare between the two methods and determine

the best fitting model for our dataset. With the log-likelihood values of `(β|b) = −15965.70

for compound LCA and `(β|b) = −10168.37 for its extension, we computed TL = −2{`(β|b)−

`(β|b)} = 11594.66 which has a Chi-square distribution with 6 degrees of freedom. Using

the test statistic, we conclude that with p-value <0.005, our extension of compound LCA

provides the best fitting model.

Table 5.1: Latent Class-Specific Means (and Standard Errors) of Covariates
3 Classes of Covariates,

Class 3 Classes of Feature Variables

Hachinski Ischaemia Score 1 0.04 (0.04)
2 0.13 (0.05)
3 0.08 (0.03)

Hypercholesterolemia 1 0.54 (0.02)
2 0.65 (0.02)
3 0.49 (0.02)

Diabetic Status 1 0.14 (0.02)
2 0.28 (0.03)
3 0.08 (0.03)

Hypertension 1 0.55 (0.02)
2 0.72 (0.02)
3 0.47 (0.02)

Education 1 15 (0.02)
2 14 (0.04)
3 16 (0.03)

Age 1 0.36 (0.01)
2 0.50 (0.01)
3 0.41 (0.01)

Gender 1 0.52 (0.02)
2 0.51 (0.03)
3 0.45 (0.02)

Race 1 0.17 (0.03)
2 0.25 (0.02)
3 0.04 (0.04)

Cardiac Dysrhythmia 1 0.09 (0.03)
2 0.14 (0.03)
3 0.09 (0.03)

Coronary Vascular Disease 1 0.14 (0.02)
2 0.22 (0.03)
3 0.10 (0.03)

APOE 1 0.38 (0.02)
2 0.37 (0.02)
3 0.52 (0.02)
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Table 5.2: Latent Class-Specific Means (and Standard Errors) of Feature Variables
3 Classes of Covariates,

Class 3 Classes of Feature Variables

Functional No. of IADL impaired 1 0 (0.02)
2 2.70 (0.02)
3 2.38 (0.04)
4 2.91 (0.01)
5 3.51 (0.05)
6 5.45 (0.09)
7 4.55 (0.05)
8 3.99 (0.06)
9 4.00 (0.04)

Neuropsychiatric % with GDS ≥ 5 1 13.90 (0.03)%
2 14.84 (0.06)%
3 17.34 (0.04)%
4 18.42 (0.06)%
5 38.88 (0.06)%
6 36.72 (0.08)%
7 30.09 (0.04)%
8 31.18 (0.09)%
9 16.04 (0.03)%

No. of NPI-Q symptoms present 1 0.88 (0.02)
2 1.85 (0.02)
3 1.79 (0.03)
4 1.31 (0.01)
5 2.02 (0.03)
6 4.08 (0.08)
7 2.96 (0.04)
8 2.28 (0.05)
9 2.21 (0.03)

Cognitive Global
MMSE 1 -1.30 (0.02)

2 -1.15 (0.03)
3 -0.23 (0.03)
4 -2.49 (0.02)
5 -3.62 (0.04)
6 -1.66 (0.04)
7 -3.31(0.03)
8 -2.06 (0.05)
9 -2.38 (0.02)

Logical Memory
Immediate 1 -1.07 (0.01)

2 -1.13 (0.03)
3 0.37 (0.06)
4 -1.40 (0.02)
5 -1.76 (0.06)
6 -0.74 (0.06)
7 -2.15 (0.02)
8 -0.72 (0.04)
9 -2.31 (0.09)

Delayed 1 -1.09 (0.02)
2 -1.33 (0.03)
3 0.34 (0.02)
4 -1.48 (0.03)
5 -1.69 (0.08)
6 -0.84 (0.02)
7 -2.21 (0.05)
8 -0.77 (0.04)
9 -2.56 (0.03)

Semantic Memory
Category Fluency 1 -0.80 (0.03)

2 -0.63 (0.02)
3 -0.32 (0.03)
4 -1.21 (0.08)
5 -1.31 (0.02)
6 -0.88 (0.04)
7 -1.97 (0.03)
8 -1.25 (0.03)
9 -1.24 (0.05)

Cognitive Attention
Trails A 1 0.52 (0.03)

2 -0.08 (0.01)
3 0 (0.03)
4 1.85 (0.04)
5 6.43 (0.02)
6 0.98 (0.06)
7 2.16 (0.02)
8 2.64 (0.02)

9 0.33 (0.04)*

Digit Span Forward 1 -0.28 (0.04)
2 -0.04 (0.02)
3 -0.03 (0.02)
4 -0.63 (0.08)
5 -0.86 (0.01)
6 -0.38 (0.05)
7 -0.92 (0.03)
8 -0.62 (0.05)
9 -0.22 (0.06)

Language
Boston Naming 1 -1.06 (0.03)

2 -0.43 (0.03)
3 -0.29 (0.01)
4 -2.16 (0.04)
5 -3.02 (0.04)
6 -0.61 (0.02)
7 -2.34 (0.05)
8 -1.36 (0.02)
9 -1.03 (0.02)

Executive Function
Trails B 1 1.08 (0.06)

2 0.17 (0.04)
3 0.17 (0.02)
4 2.82 (0.05)
5 4.59 (0.08)
6 1.89 (0.01)
7 3.08 (0.09)
8 3.45 (0.03)

9 0.82 (0.05)*

Digit Span Backward 1 -0.48 (0.04)
2 -0.16 (0.02)
3 -0.02 (0.02)
4 -0.82 (0.09)
5 -1.10 (0.01)
6 -0.62 (0.03)
7 -1.13 (0.04)
8 -0.85 (0.04)
9 -0.45 (0.05)

Visuomotor
Digit Symbol 1 -0.68 (0.02)

2 -0.27 (0.04)
3 -0.25 (0.02)
4 -1.47 (0.05)
5 -1.72 (0.09)
6 -1.28 (0.01)
7 -1.89 (0.06)
8 -1.87 (0.04)
9 -0.69 (0.04)

*Higher scores on Trail A and Trail B indicate worse performance.
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Table 5.3: Interpretation of Relative Frequencies of Latent Classes - Extension of Compound
LCA

Covariate Class Feature Class Prevalence of Prevalence of Feature Class
(a=1) (b=1, 2, 3) Covariate Class (π(a)) Given Covariate Class (π(b|a))

African American and non-African American Mild Impaired 0.58 0.60
patients with intermediate vascular risk Mild FX1+ NP2 0.58 0.26

Mild FX + NP 0.58 0.14

Covariate Class Feature Class Prevalence of Prevalence of Feature Class
(a=2) (b=1, 2, 3) Covariate Class (π(a)) Given Covariate Class (π(b|a))

African American patients with high vascular risk AMN Multi+ FX 0.18 0.52
AMN Multi + FX + NP 0.18 0.03

FX + NP + Exec Dysfunction 0.18 0.45

Covariate Class Feature Class Prevalence of Prevalence of Feature Class
(a=3) (b=1, 2, 3) Covariate Class (π(a)) Given Covariate Class (π(b|a))

Non-African American patients with AMN Multi + FX + NP 0.24 0.20
low vascular risk and high APOE Non-amnestic + FX + NP 0.24 0.20

AMN + FX + NP 0.24 0.60

1 FX: Functional Impairment 2NP: Neuropsychiatric Features
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5.4 Discussion

In this chapter, we extended the methods of compound LCA from Chapter 4 to handle a

nested model when the F-Tests indicated that the classes of feature variables are nested

within the classes of covariates in the MCI dataset. The results showed that when the

assumptions were broadened to include such a scenario, we were able to gain a better insight

into heterogeneity of MCI subgroups.

For instance, the second covariate class revealed a unique solution of feature classes,

where African American patients with vascular dementia were spread out between amnestic

multi-domain and executive dysfunction features (Table 5.3, prevalence: 0.52, 0.03, 0.45), as

opposed to a concentration of patients in an amnestic domain feature from compound LCA

(Table 4.16, prevalence: 0.76). The results from the third covariate class were similar to those

from compound LCA, where patients most likely have Alzheimer’s disease, as indicated by

the high prevalence of APOE ε4 allele and diagnosis of a pure amnestic MCI subtype (Table

5.3, prevalence: 0.60).

Moreover, clinical interpretations revealed important features that were not available

when we used compound LCA. Latent class solutions of feature variables in compound LCA

were limited to 3 MCI subtypes–mildly impaired, amnestic multi-domain with functional

impairment and neuropsychiatric features and amnestic with functional impairment and

neuropsychiatric features–which were not sufficient in revealing non-amnestic features such

as executive dysfunction and instead provided an empty class of a pure amnestic feature

(Table 4.16, prevalence: 0). However, extended methods of compound LCA were able to

expand MCI subtypes into 9 different categories, which included non-amnestic and executive

dysfunction features.

Both compound LCA and its extension provided results that were consistent with under-

lying etiologies of MCI subgroups in literature, although compound LCA provided limited

perspective in heterogeneity of MCI. Results from Chapter 4 and Chapter 5 reflect the impor-

tance of investigating and comprehending the relationship between the classes of covariates
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and the classes of feature variables. When we finally applied accurate assumptions for the

MCI dataset, the latent class solutions and relative frequencies of latent classes provided

straightforward interpretations that can better explore heterogeneity of MCI from a clinical

point of view. The likelihood ratio test confirmed our assumptions and proved to be a poten-

tial tool in the future for investigators to confirm the underlying structure of a dataset. Both

methods will be able to provide clinicians with an opportunity to continue to use LCA with

high-dimensional and correlated covariates, i.e., 20-30 covariates, without compromising the

underlying probabilistic structure of those covariates.
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Chapter 6

Future Research
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6.1 Summary

This dissertation research can be divided into two broad approaches for handling risk fac-

tors within the latent class framework. The first approach is focused on exploring scenarios

when the latent class regression model (Bandeen-Roche et al., 1997) fails to provide latent

class definitions that are deemed plausible by clinical judgment, and introducing the activ-

ity governor that allows investigators to incorporate all clinically relevant covariates into

the model to simultaneously control for the effect of covariates on latent class definitions.

The second approach is focused on incorporating high-dimensional and possibly correlated

covariates in LCA by using compound LCA, which can incorporate 20-30 covariates while

preserving the underlying probabilistic structure. Additionally, an extension of compound

LCA is introduced to handle a nested structure where classes of feature variables are nested

within classes of covariates. Both approaches will be practical in exploring heterogeneity of

MCI using LCA.

6.2 Future Research

In future research investigating heterogeneity of MCI structure, we can consider including

biomarker data from imaging, proteomics and genetic sources to help better understand

etiologically relevant MCI subtypes. However, biomarker data tends to be high dimensional,

and we need to consider different directions for two approaches of this dissertation research.

In the application of latent class regression models, we can consider using the idea of

penalized regression, a popular choice for high-dimensional data analysis. Penalized regres-

sion can be used to find parameter estimates with a penalty for complexity, which includes

a tuning parameter λ. Types of penalized regression models include ridge regression model,

LASSO (least absolute shrinkage and selection operator) (Tibshirani, 1996) and elastic net.

Leoutsakos et al. (2011) developed penalized regression methods for latent class regression

models by using the ridge and LASSO penalties on covariates related to development of
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dementia. Additionally, these methods assume that the latent variables are discrete, which

can be useful for exploring heterogeneity of discrete MCI subtypes. Leoutsakos et al. (2011)

recommend using methods derived by Houseman et al. (2007), which is based on penalized

item response theory models for latent variables on a continuous scale.

In future research, penalized regression methods within the Bayesian framework can be

used in latent class regression models. For instance, Tibshirani (1996) noted that estimates

obtained by LASSO can be derived as the Bayes posterior mode under independent double-

exponential priors. Park and Casella (2008) introduced the concept of the Bayesian LASSO,

where the Gibbs sampler is used on a conditional Laplace prior and a hyperprior is assigned to

the tuning parameter λ. The Bayesian LASSO can be adapted to apply penalized regression

methods on latent class regression models.

In the application of latent class analysis, we can consider developing a hierarchical model.

Hierarchical model is a type of cluster analysis where the goal is to discover a natural grouping

of variables without using a method of model-based clustering (Johnson and Wichern, 2007).

The idea of incorporating a model-based hierarchical model within a latent class framework

has been explored in literature. For instance, Wang et al. (2020) introduced a conditional

independence model with hierarchical priors to construct a posterior distribution using Just

Another Gibbs Sampler (JAGS). In future research, we can similarly apply the concept of

model-based hierarchical models as a generalization of our nested compound latent class

model, which would enable us to handle an even larger number of covariates in LCA.



86

Bibliography

Bandeen-Roche, K., Miglioretti, D. L., Zeger, S. L. and Rathouz, P. J. (1997), ‘La-

tent variable regression for multiple discrete outcomes’, American Statistical Association

92(440), 1375–1386.

Bernath, M. M., Bhattacharyya, S., Nho, K., Barupal, D. K., Fiehn, O., Baillie, R.,

Risacher, S. L., Arnold, M., Jacobson, T., Trojanowski, J. Q., Shaw, L. M., Weiner,

M. W., Doraiswamy, P. M., Kaddurah-Daouk, R. and Saykin, A. J. (2020), ‘Serum triglyc-

erides in alzheimer disease: Relation to neuroimaging and csf biomarkers’, Neurology

94(20), e2088–e2098.

Biernacki, C., Celeux, G. and Govaert, G. (1999), ‘An improvement of the nec criterion

for assessing the number of clusters in a mixture model’, Pattern Recognition Letters

20, 267–272.

Biernacki, C. and Govaert, G. (1997), ‘Using the classification likelihood to choose the num-

ber of clusters’, Computing Science and Statistics 29, 451–457.

Burke, S. L., Cadet, T. and Maddux, M. (2018), ‘Chronic health illnesses as predictors of

mild cognitive impairment among african american older adults’, Journal of the National

Medical Association 110(4), 314–325.

Celeux, G. and Soromenho, G. (1996), ‘An entropy criterion for assessing the number of

clusters in a mixture model’, Journal of Classification 13, 195–212.



87

David Wechsler (2008), ‘Wechsler Adult Intelligence Scale–Fourth Edition’, https://doi.

org/10.1037/t15169-000.

Diaz-Mardomingo, M. C., Garcia-Herranz, S., Rodriquez-Fernandez, R., Venero, C. and

Peraita, H. (2017), ‘Problems in classifying mild cognitive impairment (mci): One or

multiple syndromes?’, Brain Sciences 7(9), 111.

Efron, B. and Hinkley, D. V. (1978), ‘Assessing the accuracy of the maximum likelihood

estimator: Observed versus expected fisher information’, Biometrika 65, 457–482.

Folstein, M. F., Folstein, S. E. and McHugh, P. R. (1975), ‘A practical method for grading the

cognitive state of patients for the clinician’, Journal of Psychiatric Research 12, 189–198.

Gavett, B. E., Gurnani, A. S., Saurman, J. L., Chapman, K. R., Steinberg, E. G., Martin,

B., Chaisson, C. E., Mez, J., Tripodis, Y. and Stern, R. A. (2016), ‘Practice effects on

story memory and list learning tests in the neuropsychological assessment of older adults’,

PLOS One 11(10), e0164492.

Hanfelt, J. J., Peng, L., Goldstein, F. C. and Lah, J. J. (2018), ‘Latent classes of mild

cognitive impairment are associated with clinical outcomes and neuropathology: Analy-

sis of data from the national alzheimer’s coordinating centert’, Neurobiology of Disease

117, 62–71.

Hanfelt, J. J., Wuu, J., Sollinger, A. B., Greenaway, M. C., Lah, J. J., Levey, A. I. and

Goldstein, F. C. (2011), ‘An exploration of subgroups of mild cognitive impairment based

on cognitive, neuropsychiatric and functional features: Analysis of data from the na-

tional alzheimer’s coordinating center’, American Association for Geriatric Psychiatry

19(11), 940–950.

Hathaway, R. J. (1986), ‘Another interpretation of the em algorithm for mixture distribu-

tions’, Statistics and Probability Letters 4(2), 53–56.



88

Houseman, E. A., Marsit, C., Karagas, M. and Ryan, L. M. (2007), ‘Penalized item re-

sponse theory models: application to epigenetic alterations in bladder cancer’, Biometrics

63(4), 1269–1277.

Ito, K., Hutmacher, M. M. and Corrigan, B. W. (2012), ‘Modeling of functional assess-

ment questionnaire (faq) as continuous bounded data from the adni database’, Journal of

Pharmacokinetics and Pharmacodynamics 39, 601–618.

Jekel, K., Damian, M., Wattmo, C., Hausner, L., Bullock, R., Connelly, P. J., Dubois,

B., Eriksdotter, M., Ewers, M., Graessel, E., Kramberger, M. G., Law, E., Mecocci, P.,

Molinuevo, J. L., Nyg̊ard, L., Olde-Rikkert, M. G., Orgogozo, J.-M., Pasquier, F., Peres,

K., Salmon, E., Sikkes, S. A., Sobow, T., Spiegel, R., Tsolaki, M., Winblad, B. and Frölich,
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