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Abstract 

 

Bagging for the highly adaptive lasso 

By Haoyong Yu 

 

 

Prediction is a common goal in the statistic world. Many new estimators are created every year to 

seek better quality of  prediction in various situation. A new estimator called highly adaptive lasso 

estimator was proved to be competitive with other popular machine learning methods and had 

theoretical advantages. Furthermore, the prediction performance of  this estimator may be 

furthered by combining with some unique methods. Bagging is a common ensemble method that 

can be utilized to improve the performance of  prediction. Feature bagging is a promising usage 

of  traditional bagging method. We propose a new estimator that we call bagged highly adaptive 

lasso estimator based on feature bagging approach. We show via simulation and public data 

analysis that our estimator seems not provide more benefits by additional aggregating bootstrap 

procedures. 
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1. Introduction 

Machine learning is currently one of the most significant and influential technologies around 

the world. In contrast to traditional data analysis, which combines relatively simple analytical 

approaches with data to find answers to a problem, machine learning uses complex 

computational algorithms to discover the rules behind a problem (Chollet, 2019). Uncovering 

underlying patterns in a problem can be useful for making predictions (Patel et al., 2015), 

recognizing images or speech (Hoang, 2018), making medical diagnoses (Lo & Jack Li, 2018), 

and investigating fraud (Awoyemi, Adetunmbi, & Oluwadare, 2017). Machine learning 

approaches are diverse and often rely on classic computational algorithms such as the decades-

old Expectation Maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977), Principal 

Component Analysis (Jolliffe, 1986), the Support Vector Machine (SVM) algorithm (Cortes & 

Vapnik, 1995), the Adaboost algorithm (Freund & Schapire, 1996), the Random Forests 

algorithm (Breiman, 2001), the modern Deep Convolutional Neural Networks algorithm 

(Krizhevsky, Sutskever, & Hinton, 2012), among others. 

Prediction performance is often an important criterion for assessing a model or an algorithm 

(Vihinen, 2012). Ensemble methods help produce better predictive performance by combining 

multiple predictions from one or several machine learning algorithms. Bootstrap Aggregation 

(Bagging) is a one of the most widely used ensemble methods, which can be used to reduce the 

variance of many algorithms that often exhibit prohibitively high variance and to avoid 

overfitting. Bagging involves taking a bootstrap sample of the data, training the predictive 

model on each bootstrap sample, and obtaining the final model by sensibly averaging each 

bootstrapped model. For example, bagging was found to reduce the misclassification rates of 
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classification and regression trees by at least 20% and 22%, respectively (Breiman, 1996). In 

order to reduce the correlations between each estimator, feature bagging was created by training 

models on random features rather than the entire set of features (Lazarevic & Kumar, 2005). 

Furthermore, feature bagging was seen to further improve performance, leading to the now- 

famous Random Forests algorithm.  

Highly Adaptive Lasso (HAL) is a new approach to machine learning that has been shown to 

have several theoretical advantages (Benkeser & Van Der Laan, 2016). The approach does not 

require local smoothness assumptions (e.g., differentiability of the underlying function that is 

estimated) and the convergence rate of the performance of the HAL estimator relative to that of 

the optimal prediction function converges faster than 𝑛−1/4 even in high dimensions. HAL 

has been shown to have competitive prediction performance compared to other popular 

machine learning algorithms in real and simulated data. Even still, it may be possible to further 

improve the performance of HAL by coupling it with bagging. In this work, we investigate 

whether this is indeed the case. We propose a computationally efficient approach to bagging 

the HAL estimator and explore using real and simulated data whether the approach leads to 

improvements in predictive performance.  

2. Methods 

2.1 Highly adaptive lasso 

The highly adaptive lasso estimator is a nonparametric regression estimator (Benkeser & Van 

Der Laan, 2016). The method relies on relatively mild smoothness assumptions, while 

achieving a fast convergence rate to the true regression function. To implement a HAL of the 
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regression of a continuous-valued outcome Y on covariates X, one first generates a set of basis 

functions consisting of indicators of each data point. For example, if X is univariate and we 

have n observed data points, then the basis functions are 𝜙k(x) = I(x ≥ Xk), for k = 1, … , n. 

Thus, the regression function is  

𝐸(𝑌 |𝑋 = 𝑥) = β0 + β1𝜙i1(x) + β2𝜙i2(x) + ⋯ + β𝑛𝜙in(x). 

For each 𝑠 > 0, the regression coefficients are estimated by  

𝑎𝑟𝑔𝑚𝑖𝑛𝛽 ∑ (𝑦𝑖 − β0 − ∑ β𝑘𝜙ik(xi)
𝑝
𝑘=1 )

2𝑛
𝑖=1  subject to ∑ |β𝑘|𝑝

𝑘=1 ≤ 𝑠 ,  

where 𝑠 is the 𝐿1-norm of the coefficient vector. The value of 𝑠 is selected using ten-fold 

cross-validation.  

In the bivariate setting where 𝑋 = (𝑋1, 𝑋2), first-order basis functions are generated as above 

for X1  and X2  and second-order basis expansion functions are also created as 𝜙12,k(x) =

I(x1 ≥ X1k, x2 ≥ X2k ) for k = 1, … , n.  

2.2 Bagging 

Bootstrap Aggregation (Bagging) is a machine learning ensemble method to reduce variance 

and improve stability of an estimated prediction function. It mostly helps high-variance, low-

bias classifiers. The core procedures in bagging are as follows. Suppose we have dataset Z, 

where Z =  {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)}. We first generate a bootstrap data set by sampling 

with replacement from Z. For each bootstrap dataset 𝑍∗ = {(𝑥1
∗, 𝑦1

∗), (𝑥2
∗, 𝑦2

∗), … , (𝑥𝑛
∗ , 𝑦𝑛

∗)}, we 

can build a prediction model 𝑓∗𝑏(𝑥). With B models in total, the final model is obtained by 

averaging the predictions, 𝑓𝑏𝑎𝑔(𝑥) =
1

𝐵
∑ 𝑓∗𝑏(𝑥)𝐵

𝑏=1 .  

Another usage of bagging is so-called feature bagging. Here, we draw a random subset of 
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covariates from training dataset for the multivariate setting, where the number of random 

covariates to select is a user-selected tuning parameter. For example, when X is three-

dimensional, but we are using feature bagging to only sample two covariates, then if the original 

dataset is 𝑍 =  {(𝑥11, 𝑥12, 𝑥13, 𝑦1), (𝑥21, 𝑥22, 𝑥23, 𝑦2), … , (𝑥𝑛1, 𝑥𝑛2, 𝑥𝑛3, 𝑦𝑛)}, a bootstrap data 

set with feature bagging could be 𝑍∗ = {(𝑥11
∗ , 𝑥13

∗ , 𝑦1
∗), (𝑥21

∗ , 𝑥23
∗ , 𝑦2

∗), … , (𝑥𝑛1
∗ , 𝑥𝑛3

∗ , 𝑦𝑛
∗)}, where 

in this sample the first and third covariates were re-sampled. The final prediction model is 

obtained by averaging over repeated fits. 

2.3 Bagged highly adaptive LASSO 

We propose a bagged HAL method and investigate whether bagging improves predictions over 

a regular HAL. Our proposed algorithm for generating bagged HAL predictions is as follows. 

First, we generate a bootstrap data set using feature bagging as described above. For each 

bootstrap sample, we refer to the observations not included in the sample as the out-of-bag 

(OOB) observations. Using each bootstrap data set, a HAL model is fit. That is, we obtain a 

solution along the LASSO path for the regression function based on the bootstrap data. To select 

the L-1 bound on the coefficient vector, we use the OOB observations to compute a measure of 

predictive accuracy. The L-1 penalty that maximizes OOB predictive accuracy is selected, thus 

generating the b-th bagged HAL fit. The process is repeated nHAL times, where nHAL is a 

user-selected tuning parameter. The final bagged HAL estimator results from averaging the 

nHAL different fits.  

3. Simulation 

We evaluated the prediction performance of bagged nHAL estimators with 𝑛𝐻𝐴𝐿 ∈ {10, 20,
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50, 100} compared to single HAL in four data generating scenarios. The outcomes of first two 

scenarios are continuous, while the latter two are binary. We changed the dimension of X (d) 

and d ∈ {3,7} for each type of outcome. In dimension d = 3, the distributions of X1, X2 and 

X3 and the regression function were as follows: 

X1 ∼ Uniform(0, 1); X2 ∼ Normal(30, 5); X3 ∼ Normal(3, 0.5) 

Y = 3x1 − 0.3x2 + ε where ϵ ∼ Normal(0, 0.5) for continuous outcome 

Logit Y = 3x1 − 0.1x2 − 0.5 for binary outcome 

If dimension d = 7, the regression was created as follows: 

X1 ∼ Bernoulli(0.3); X2 ∼ Uniform(−3, 3); X3 ∼ Normal(30, 0.5) 

X4 ∼ Normal(3, 0.5); X5 ∼ Bernoulli(0.7); X6 ∼ X5 ∼ Bernoulli(0.2) 

X7 ∼ Poisson(2). 

Y = 5x1 − 0.5x2 + ε where ϵ ∼ Normal(0, 0.5) for continuous outcome 

Logit Y = 5x1 − 0.5x2 + 0.5 for binary outcome 

For each scenario, only two features are predictive of the outcome, while the others are noise. 

We considered training sets of size 𝑙 ∈ {50, 100, 200, 500, 1000}. Prediction performance was 

assessed according to MSE or AUC, which is computed on another independent testing set with 

m = 5000 observations. The whole simulation procedure was repeated 1000 times. 

The results of scenarios with binary outcomes are displayed in Figure 1. The boxplots in each 

row represent MSE in different scenarios and the boxplots in each column represent MSE of 

HAL and Bagged HAL with different n. The bottom margin displays the overall results of MSE 



6 
 

of HAL and Bagged HAL across two scenarios combined. The lower the MSE values, the better 

the prediction performance. We found that HAL performs considerably better than bagged HAL 

in all cases in light of the MSE and stability. For the bagged HAL, as the n enlarges, both the 

MSE and stability of prediction performance grows. However, the difference between HAL and 

bagged HAL doesn’t change with sample size increasing in training sets. The results of 

scenarios 2 and the overall results show the same thing. But note that the stability decreases as 

dimension of X increases. In a nutshell, HAL performs better than the bagged HAL in 

regression functions with continuous outcome. 

Figure 2 shows the results of latter two scenarios with binary outcomes in the simulation study. 

The format of Figure 2 is the same as that of Figure 1, except the vertical axis in each boxplot 

represent AUC rather than MSE. The higher the AUC values, the better the prediction 

performance. From the top row, we can notice that when the sample size of training set is small 

(l = 100), the Bagged HAL performs a little better than single HAL in terms of AUC and 

stability. However, as the sample size increases to 200, the prediction performance of HAL 

jumps to the highest and keeps a high-level performance with sample size growing. But when 

the sample size of training set is large enough, HAL and bagged HAL perform comparably. 

Meanwhile, the performance of bagged HAL is gradually improved as n increases. The growth 

trend for bagged HAL in higher dimension is similar to that in scenario 3. However, the 

performance of HAL is much better than that of bagged HAL in scenario 4 no matter how much 

the sample size of training set is. Across all the dimensions and sample sizes, the single HAL 

has the best overall performance. To sum up, HAL performs better than bagged HAL in the 

setting of binary outcome, but bagged HAL take the lead when the sample size of training set 
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is small in low dimensions. 

 

 

 

Figure 1 Simulation study results for continuous outcomes 
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Figure 2 Simulation study results for binary outcomes 
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4. Data Analysis 

We are interested in the prediction performance of Bagged HAL in real data examples, so we 

analyzed two publicly available data sets, wine and drugs (Benkeser, Petersen, & van der Laan, 

2019). The outcome of these two data sets are both binary. The sample sizes range from 1885 

to 6497 and each dataset has 12 covariates. In addition to the HAL and bagged HAL estimators, 

we considered traditional machine learning algorithm including Random Forest and Gradient 

Boosting as well. The split ratio of training set to testing set is 0.7. For the bagged HAL 

estimator, we randomly picked 5 features for wine and drugs, respectively. The average AUC 

over 100 repeated simulations was reported as follows. 

Table 1 AUC of four methods in two real data sets 

 HAL 

Bagged HAL  

nHAL=10 

Bagged HAL  

nHAL=20 

Bagged HAL  

nHAL=50 

Bagged HAL  

nHAL=100 

Random 

Forest 

Gradient 

Boosting 

Wine        

 0.87002 0.86380 0.86588 0.87080 0.87306 0.91287 0.89043 

Drugs        

 0.74623 0.74333 0.74294 0.74620 0.74590 0.72766 0.70655 

 

The prediction performance for the four algorithms regarding AUC on testing set are shown in 

Table 1. For the wine dataset, Random Forest and Gradient Boosting had better performance 

than HAL family; however, HAL and bagged HAL performed acceptably. In the drugs data set, 

HAL had the highest performance, though there was little to distinguish its performance from 

Bagged HAL or random forest. Overall, we can find that the performance of HAL is basically 

equivalent with that of Bagged HAL for these two datasets and increasing nHAL of bagged 

HAL does not affect the results much.  
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5. Conclusion 

In this project, we proposed a new highly adaptive lasso estimator based on bagging method. 

We assessed the prediction performance of this bagged HAL using both simulations and public 

data to investigate whether bagging improves predictions over a regular HAL.  

The results of simulations show that the overall performance of single HAL is better than 

bagged HAL, particularly for predicting continuous outcomes. Meanwhile, the stability of 

bagged HAL improves is not as fast as that of HAL regardless of the dimensions. Computational 

problems are more severe in bagged HAL, which is caused by the bootstrap step. Therefore, 

the bagged HAL appears not be an efficient estimator compared to HAL. However, in low 

dimensions, when the sample size of training set is small, the performance of bagged HAL is 

reliable, and we could further the investigation. 

The results of public data analysis display that both HAL and Bagged HAL are competitive 

methods comparing with traditional machine learning method, especially when the sample size 

of training set is limited. However, for these examples, we again found little difference between 

bagged HAL and regular HAL.  

Our analysis has several limitations. First, the results of our simulations are based on moderate 

sample sizes. In the future, it may be of interest to compare the performance in larger training 

samples. Second, a more comprehensive assessment of how sparsity affects performance may 

also be of interest. Because of the feature bagging step, bagged HAL only ever includes a subset 

of covariates in a given HAL fit. Thus, we may expect the relative performance to improve in 

more sparse settings. Finally, bagging has been noted to be successful in stabilizing the 
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performance of highly variable machine learning techniques that are prone to overfitting, such 

as regression trees. HAL may be too stable of an algorithm on its own to see much benefit from 

bagging. Therefore, it may be of interest to try a different approach, where for each bagged 

HAL fit we select L-1 norm of HAL larger than the one recommended based on OOB 

performance. In this case, the bias of the resultant HAL fit will decrease, bust variance will 

increase. However, by aggregating over many bagged HALs we may appropriately decrease 

the variance. 

In conclusion, our study found that bagging does not significantly improve the performance of 

HAL. Future studies may identify different approaches or scenarios to further improve HAL 

performances.  
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