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Abstract 

 

Comparison of Imputation Methods on Metabolomics Data with Triplet Data 

By Xiangning Xue 

 

Missing value imputation in mass spectrometry-based metabolomics data is important for subsequent data 

analysis. There are many methods available for tackling the problem, most of which were initially 

developed for microarray or RNA sequencing data. Metabolomics data represent unique challenges in 

missing value imputation. Some missingness in the data are indeed missing, which we call true missings, 

while others may represent true non-existence of the metabolite, which can be called true zeros. It is 

difficult to differentiate the true missings from true zeros in the dataset. Most of the current imputation 

methods would impute all the missingness. In addition, assessment of imputation methods based on the 

knockout-impute scheme may not represent the true performance of the imputation methods on 

metabolomics data, as the true missingness mechanism is complicated. In this study, we utilized datasets 

with triplicate measures on each sample, which offers some unique advantage over the knockout-impute 

scheme. Taking one measurement from each sample at a time, the remaining two measurements offer 

information as to whether each missing location is more likely to be true missing or true zero. With this 

data set, we were able to evaluate the performance of different imputation methods, assessing their 

performance on true missing and true zeros. The result shows that SVD and LLS tend to have better 

performance with true missings, and scImpute performs better for the true-zeros but not as reliable for 

true missings. 
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1. Introduction 

 

Metabolites are all the small molecular weight intermediate products and end products involved 

in the metabolic processes. For example, in the tricarboxylic acid cycle, carbohydrates, fats, and 

proteins break down to metabolites and are oxidized to provide energy for the human body. 

Metabolomics is the study of metabolite profiles of biological samples like blood, urine, and 

tissues. It is widely acknowledged that the health status of an individual is determined by the 

genomic feature, personal behavior, and environmental exposure, and metabolomics has proved 

its ability to capture all these features (National Academies of Sciences & Medicine, 2016). 

Metabolomic profiles provide a snapshot of the biological processes, some of which closely 

related to disease status (Rodrigues et al., 2019). These metabolomic profiles can indirectly 

reflect the genomic features of individuals, thus is helpful in revealing the biological pathways of 

the disease. Some metabolic perturbations come from personal behavior/exposure, such as eating 

habits, and could affect the risk of certain chronic disease (Rothwell et al., 2019).  The study of 

exposome, i.e. environmental exposure, is a relatively new field. The metabolomic profile is a 

common tool for the study of exposome, such as detection of chemical compounds in the 

exposome (Bloszies & Fiehn, 2018).  

Liquid chromatography-mass spectrometry (LC-MS) is one of the most commonly used 

techniques for acquiring metabolomics data. To be quantified by the detector, the metabolite 

molecules are first converted into ions by an ion source, then they are resolved by the mass 

analyzer in a time-of-flight tube or an electromagnetic field. LC-MS can efficiently separate the 

metabolites in biological samples based on the mass-to-charge ratio of the chemicals (Turi, 

Romick-Rosendale, Ryckman, & Hartert, 2018). In addition to LC-MS, GC-MS and NMR are 

also used for generating metabolomics data (Madji Hounoum, Blasco, Emond, & Mavel, 2016).  
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The quality of LC-MS data is affected by many factors, such as sample loss during metabolite 

extraction and pre-processing of data. One of the most common problems associated is missing 

values. In statistical analyses, missing values are categorized into three types: missing completely 

at random (MCAR), missing at random (MAR), and missing not at random (MNAR). Missing 

completely at random (MCAR) happens when the missingness is not associated with any 

observable or unobservable parameters. Observations missing at random (MAR) are associated 

with certain variables but are independent of their value. On the other hand, missing not at 

random (MNAR) refers to missingness that is related to the value of the variables. LC-MS 

missingness is likely a combination of all three. In the LC-MS data generation process, MCAR 

arises from random errors such as incomplete ionization. One MAR example in LC-MS data is 

co-eluting compounds, which is chemical compounds that is difficult to separate and identify with 

chromatographic column. Increasing concentration of co-eluting compounds would suppress the 

signal. Limit of quantification (LOQ) is one common case of MNAR where metabolites with 

concentration lower than the detection threshold are found missing. Another cause of MNAR in 

LC-MS data is ion suppression caused by matrix effects, which is the presence of interfering 

components in the sample extract. The consequence of ion suppression is multiple, including 

affecting ion ratio, linearity, and non-detection of certain metabolites which lead to MNAR of 

that metabolite (Antignac et al., 2005).  

Imputation is commonly used to fill the missing data before down-stream analyses. Common 

strategies for imputing MCAR/MAR data include local similarity approaches like KNN (K 

nearest neighbors) and global-structure approaches like BPCA (Bayesian principal component 

analysis). For MNAR, we expect the missing values to be lower than a certain threshold if the 

reason for missing is LOQ. Usually, the MNAR data are imputed with single-value approaches 

that use a constant or a random abundance to replace the missing value. Common single-value 

approaches include replacing all the missing values with the global limit of detection (LOD) - 



  

 

3 

 

minimum of the observed abundance (LOD1), half of the minimum value (LOD2), a randomly 

generated value from the left tail of the proposed distribution of the dataset (RT1), zeros, mean of 

the global data set, or median of the global data set.   

Different imputation methods suit different missing types. However, in practice, it is difficult to 

identify the nature of the missingness in a dataset. As a result, MCAR/MAR imputation methods 

are often used to fill all the missing values in data analysis. Numerous studies have indeed shown 

that MCAR/MAR imputation methods applied to all missing data tends to generate better results 

than using only MNAR method for all the missing data (Armitage, Godzien, Alonso-Herranz, 

López-Gonzálvez, & Barbas, 2015; Lazar, Gatto, Ferro, Bruley, & Burger, 2016; Webb-

Robertson et al., 2015). This result makes sense because MNAR is usually small values. The 

imputation methods for MNAR would perform badly because of their focus on left-censored data 

(Lazar et al., 2016). An added difficulty in LC/MS data is that MNAR can be caused by ion 

suppression, which means the true value may not be below the detection threshold (Antignac et 

al., 2005). 

One potential solution to the issue of mixed types of missingness is to identify the MNAR from 

all the missing values and assign the imputed value as zero while imputing the rest of the missing 

values with common MCAR/MAR imputation methods. One such method is scImpute (Li & Li, 

2018). scImpute was proposed to address the “dropout” phenomenon in single-cell RNA 

sequencing (scRNA-seq) data, where a gene is observed in one cell but undetected in another cell. 

This method could be applied to metabolomics data because of the similarity of the situation. 

However given the differences in data characteristics, as well as the different mechanisms of 

MNAR, we do not yet know whether the MNAR estimation in scImpute works in metabolomics 

data. In this study, scImpute was evaluated along with common MCAR/MAR methods, i.e. K-

nearest neighbors (KNN), Bayesian principal component analysis (BPCA), Singular value 

decomposition (SVD) and (Local least squares) LLS.  
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One major difficulty of generating MNAR data for the evaluation of imputation methods is the 

lack of knowledge of the true mechanism of missingness. A knockout-impute scheme cannot 

faithfully represent MNAR situations in real data. In this study, we tried to answer the question 

using a triplicate metabolomics dataset. In this dataset, each subject has three measurements of 

abundance for each metabolic feature. Thus, the abundance of the feature might be missing in one, 

two, or all three measurements. Since the three measurements were taken from the same sample, 

their true measures of abundance should be close, and the probability for them to be missing 

should be the same, assuming the pre-processing of the data gave a constant performance in the 

three measurements. It is unlikely that three measurements would be all be missing due to MCAR 

and MAR, then we can presume that the values with one or two missing measurements, 

especially one missing, are MCAR/MAR, while those with three missing measurements are more 

likely a combination of true zero and MNAR.  

2. Method 

 

2.1 The Data Set 

 

This data set comes from an untargeted study measured with liquid chromatography-mass 

spectrometry. The data set was generated from the Emory-Georgia Tech Predictive Health 

Initiative, Cohort of the Center for Health Discovery and Well Being (CHDWB). It contains both 

positive- and negative- ion mode data, each of which contains triplet measures of 498 individuals, 

i.e. the sample from each person were measured three times. The two matrices, one from positive 

ion mode and one from negative ion mode, were analyzed separately.  

The distribution of the original feature abundance is heavily right-skewed. We applied log-

transformation, 𝑦𝑖𝑗 = log(𝑥𝑖𝑗 + 1) (where 𝑥𝑖𝑗 is the original data and 𝑦𝑖𝑗 is the transformed data), 

to the data before imputation. The log transformation is already implemented in scImpute, so we 

passed the original data to the scImpute function.  
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2.2 Creating the Reference Matrices 

 

For both positive ion mode data and negative ion mode data, a reference matrix, which contains 

the true value of abundance for all metabolic features, was computed from the triplet data. Since 

there were three measures for each metabolic feature, the strategy for computing was as follows: 

(1) if all the three measures were missing, then the reference value was set to 0 according to the 

assumptions claimed in the introduction; (2) if not all three measures were missing, the reference 

value was the mean of the non-missing values. 

2.3 Imputation Method 

 

2.3.1 scImpute (Li & Li, 2018) 

 

R package scImpute implements this new method that tries to tackle the missing value problem in 

single-cell RNA sequencing data.  Single-cell RNA sequencing (scRNA-seq) is a technology that 

quantifies the RNA at the cellular level. scRNA-seq data contains the count values of different 

RNAs which displays some similar distribution properties with the abundance levels in 

metabolomics data. It also has the problem of MNAR that comprise the true zero caused by limit 

of detection (LOD). In the case of scRNA-seq data, the true zero represents the non-expression of 

certain genes in the subject cell.  

2.3.2 K-Nearest Neighbors (KNN) (Botstein et al., 2001) 

 

KNN finds the k nearest neighbors of the metabolite basing on the Euclidean metric of the 

abundance of the metabolite in samples where it is not missing. The distance between the 

metabolite and all other metabolites is defined as the average distance of all the non-missing 

abundance across the samples. The missing abundance is then imputed as the average abundance 

of the k nearest neighbors. This method is included in the R package impute. 
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2.3.3 Bayesian Principal Component Analysis (BPCA) (Oba et al., 2003) 

 

The extraction of Principal Components (PCs) reduces the dimension of the data. The values in 

the original matrix can be expressed as a linear combination of the PCs with an error term. BPCA 

assumes that the PCs and error terms obey normal distributions (Tipping & Bishop, 1999). The 

coefficients for the PCs and the missing values are estimated with an EM-like repetitive algorithm 

called variation Bayes (VB) algorithm. This method is included in the R package pcaMethod. 

2.3.4 Singular Value Decomposition (SVD) (Botstein et al., 2001) 

 

SVD imputation approximates the missing value as a linear combination of a set of mutually 

orthogonal eigenvalues that are derived from the principle components of the data matrix. The 

algorithm estimates the missing values iteratively until convergence.  

2.3.5 Local Least Squares (LLS) (Golub, Park, & Kim, 2004) 

 

This method selects several metabolic features that are most informative with regard to the 

specific feature to be imputed based on Pearson, Spearman or Kendall correlation coefficients. 

Then the imputation is conducted using linear regression.  

2.4 Imputation Scheme and Evaluation Criteria.  

 

2.4.1 Imputation Scheme 

For each of the two data sets, we split the data matrix into three sub-matrices, with each sub-

matrix containing a single measurement from each subject. We then run the imputation methods 

on the three sub-matrices respectively. The imputation results are compared with the 

corresponding reference matrix using the two criteria in the following sub-sections. The results 

from the three sub-matrices are averaged. 

2.4.2 Normalized Root Mean Squared Error (NRMSE)  



  

 

7 

 

NRMSE is a common scale-free method to evaluate the accuracy of imputation with the 

following formula:  

𝑁𝑅𝑀𝑆𝐸{𝑖,𝑗:𝑦𝑖𝑗𝑚𝑖𝑠𝑠𝑖𝑛𝑔} = √
𝑚𝑒𝑎𝑛((𝑦𝑖𝑗−𝑦𝑖𝑗

𝑖𝑚𝑝𝑢𝑡𝑒
)2)

𝑣𝑎𝑟(𝑦𝑖𝑗)
, 

 

where 𝑦
𝑖𝑗

 represents the reference data and 𝑦
𝑖𝑗

𝑖𝑚𝑝𝑢𝑡𝑒
 represents the imputed data. We use NRMSE 

to select the optimal parameters for different algorithms.  

2.4.3 Log-transformed root mean squared error (LRMSE) 

For the true zero/MNAR group, i.e. the group with reference value of zero, NRMSE is not 

applicable. As a result, LRMSE is used to compare the imputation accuracy of metabolic features 

with different degrees of missingness (Brock, Shaffer, Blakesley, Lotz, & Tseng, 2008). LRMSE 

is calculated as:  

𝐿𝑅𝑀𝑆𝐸{𝑖,𝑗:𝑦𝑖𝑗𝑚𝑖𝑠𝑠𝑖𝑛𝑔} = √
∑(𝑦

𝑖𝑗
𝑖𝑚𝑝𝑢𝑡𝑒

−𝑦𝑖𝑗)
2

#{𝑦𝑖𝑗𝑚𝑖𝑠𝑠𝑖𝑛𝑔}
. 
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3. Result 

3.1 1. Relationship between the number of missings and metabolic feature 

abundance 

 

Figure 1: Relationship of number of missings in the triplets and the metabolic feature abundance 

In this study we assumed that missingness is random for those with one or two missing measures 

in the triplets. However, there is evidence against such an assumption. We have observed a 

difference in the log-scale abundance of those with different numbers of missing values (Figure 

1). Although not a clear distinction in the plot, the p-value of the t-tests shows that the three 

distributions have the relationship µ#𝑚𝑖𝑠𝑠𝑖𝑛𝑔=2 < µ#𝑚𝑖𝑠𝑠𝑖𝑛𝑔=1 < µ#𝑚𝑖𝑠𝑠𝑖𝑛𝑔=0 for both data sets 

(Table 1), i.e. the smaller the abundance is, the greater the probability that the value would be 

missing. This conflicts with the missing at random assumption. On the other hand, the scale of the 

difference is not substantial.  

 

Table 1: Mean Log Abundance vs. Number of Missing Values 

 µ#𝑚𝑖𝑠𝑠𝑖𝑛𝑔=0 µ#𝑚𝑖𝑠𝑠𝑖𝑛𝑔=1 µ#𝑚𝑖𝑠𝑠𝑖𝑛𝑔=2 

Positive ion mode  17.65 16.76 16.38 

Negative ion mode 15.36 14.06 13.52 
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3.2 2. Optimal parameters for the imputation methods 

 

Parameter setting might influence the performance of different methods. For the comparison to be 

more reasonable, it needs to be done with the optimal parameters of each method. In LLS, KNN 

and scImpute, we need to prespecify the number of clusters of the metabolic features, while for 

SVD and BPCA, the number of PCs need to be assigned. For scImpute, we need to set an extra 

parameter t, which is the threshold of dropout probability to determine if the function would 

impute the missing value or leave it as zero. The optimal parameters were selected with the least 

average NRMSE using grid search for the positive ion mode data set and the negative ion mode 

data set separately.  

For BPCA, we tested the number of PCs = 2, 4, …, 30 and selected nPCs = 14 for the positive ion 

mode and nPCs = 16 for the negative ion mode; for KNN, we tested the number of neighbors = 2, 

4, …, 30 and selected k = 12 for the positive ion mode and k = 28 for the negative ion mode; for 

LLS, we tested the number of clusters = 2, 4, …, 30 and selected k = 10 for both positive ion 

mode and negative ion mode; for SVD, we tested the number of PCs = 2, 4, …, 30 and selected 

nPCs = 22 for the positive ion mode and nPCs = 6 for the negative ion mode; for scImpute, we 

tested k = 2, 4, 6, …30, t = 0.1, 0.2, …0.9, 0.95, 0.99, and selected k = 12, t = 0.8 for the positive 

ion mode data and k = 18, t = 0.7 for the negative mode data. The selected parameters are also 

annotated in Figure 3.  

 

3.3 3. Correlation between imputed value and true value 

 

Overall, BPCA, KNN and LLS showed similar patterns of correlation between imputed values 

and reference values. The scatterplot of SVD showed greater variance of imputed values with the 
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positive ion mode data set. The scatterplot of scImpute shows that it gives imputed values that are 

a lot smaller than the reference values for a good portion of the data. 

We can also see that while other imputation methods fail to distinguish true zeros by giving 

imputed values to true zeros along the range of the other missing values, scImpute would impute 

many missing values as zero. The proportion of true zeros correctly identified is 17.1% for the 

positive data set and is 51.9% for the negative data set. However, we can see that scImpute 

wrongly identifies many missing values with non-zero reference value as true zeros. The false 

discovery rate is 66.3% for the positive data set and 60.0% for the negative dataset. Unlike single 

cell RNA-seq data, the clusters in the metabolomics data tend to be less compact, causing 

scImpute to make errors when attempting to identify the true-zeros.  
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Figure 2. Scatter plot of imputed values against reference values.  
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3.3.4. Imputation efficiency with different numbers of missing 

 

We expect that with more values missing in the triplicate measurements, we would have less 

information of the true value, thus less accurate evaluation of the imputation method and larger 

LRMSE. The trend is clear comparing the first and second rows of Figure 3.  

It is also noticeable that the LRMSE of scImpute is larger than other imputation methods for the 

single and double missing cases (Figure 3; first and second row) and is smaller than other 

imputation methods for those triple missing cases (Figure 3; third row). This makes sense if we 

consider its property of identifying true zeros that we saw in the scatterplot in Figure 2. Since the 

accuracy of such identification is limited, scImpute performs not so well when the reference value 

is non-zero but would perform better when the reference value is zero.  

We can see distinctively that the LRMSE is a lot larger for those metabolic features that are 

missing in all three triplets. This is because we assume the true value is zero, however, our 

current imputation methods do not perform well in terms of distinguishing true zeros from the 

missing values, including scImpute. The cases with three missings are a mixture of true zeros and 

MNAR cases caused by ion suppression. Thus, the results cannot fully reflect the true 

performance of the methods on the true zeros.  
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Figure 3. Imputation error vs. number of missings. 

 

4. Conclusion and Discussion  

 

Overall, the imputation accuracy of SVD, LLS, KNN and BPCA are close, shown by both 

LRMSE and scatterplots between imputed value and reference value on the log scale. The 

performance of scImpute varies between observations with different numbers of missingness due 
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to its feature of identifying true zeros in the dataset. The performance of scImpute is better than 

the other methods on true zeros. However, the accuracy of scImpute to identify the true zeros 

isn’t ideal, with the false discovery rate 66.3% for the positive data set and 60% for the negative 

data set.  

While scImpute has the strength of distinguishing some true zeros from missing values, the 

imputation method does not give satisfying imputation results with regard to those observations 

where neither the reference value nor the imputed value is zero. In such cases, scImpute does 

attempt to impute the values, yet the imputed values tend to be smaller than reference values. One 

possible solution is for scImpute to keep its feature of finding true zeros while imputing the rest 

of the missingness using other well-developed methods discussed in this thesis, e.g. KNN.  

In this study, we used a data set with triplet measures for each sample. We assumed that the 

probability of one metabolic feature to be missing in all three measures are low, thus missing in 

all three measures is non-random and should have been induced by the true absence of that 

metabolomic feature, or some other mechanism such as ion suppression. On the other hand, we 

found that for those metabolic features that are not missing in all three measurements, their 

chance of missing is associated with their value rather than totally random. Thus, further 

development for identification of true zeros, as well as the relation between missingness and 

metabolic feature abundance is needed.  
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