
 

 

Distribution Agreement 

 

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced 

degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive 

license to archive, make accessible, and display my thesis or dissertation in whole or in part in all 

forms of media, now or hereafter known, including display on the world wide web.  I understand 

that I may select some access restrictions as part of the online submission of this thesis or 

dissertation.  I retain all ownership rights to the copyright of the thesis or dissertation.  I also retain 

the right to use in future works (such as articles or books) all or part of this thesis or dissertation. 

 

 

 

 

 

 

Signature: 

 

_____________________________   ______________ 

Zhichao Zhang                 Date 



  

 

How Software Companies Change Software Release Strategies after Platforms Become Obsolete  

 

By 

Zhichao Zhang 

Master of Business Studies 

 

Business 

 

 

 

_________________________________________ [Advisor’s signature] 

Ramnath K. Chellappa, Ph.D. 

Advisor 

 

 

 

_________________________________________ [Member’s signature] 

Kathryn Kadous, Ph.D. 

Committee Member 

 

 

 

_________________________________________ [Member’s signature] 

Zhongjian Lin, Ph.D. 

Committee Member 

 

 

 

 

 

Accepted: 

 

_________________________________________ 

Lisa A. Tedesco, Ph.D. 

Dean of the James T. Laney School of Graduate Studies 

 

___________________ 

Date 



 

 

 

 

 

 

 

How Software Companies Change Software Release Strategies after Platforms Become Obsolete  

 

 

 

By 

 

 

Zhichao Zhang 

Bachelor of Business Administration, Ohio University, 2013 

 

 

 

Advisor: Ramnath K. Chellappa, Ph.D. 

 

 

 

 

 

An abstract of  

A thesis submitted to the Faculty of the  

James T. Laney School of Graduate Studies of Emory University 

in partial fulfillment of the requirements for the degree of  

Master of Business Studies 

in Business 

2018 



 

 

 

 

 

Abstract 

 

How Software Companies Change Software Release Strategies after Platforms Become Obsolete  

By Zhichao Zhang 

 

This paper examines software companies’ decisions to introduce new software following 

cessation of support for the old version of the platform. Software companies and platform 

companies develop their own strategies for the release of a new product. Since software is 

running on a platform, platform obsolescence may affect software release strategies. I examined 

how software companies change their release strategies after old versions of platforms become 

obsolete. When software operates on multiple platforms, such as Windows and Mac, how do 

software companies’ release strategies differ? Using data from the software market, I found that 

software companies release software more frequently when the old platform becomes obsolete 

and that mature software was released more frequently than other software. I also found that 

software running on multiple platforms have different release speeds on each different operating 

system. 

 

 

 



 
 

 

 

 

 

 

How Software Companies Change Software Release Strategies after Platforms Become Obsolete  

 

 

 

By 

 

 

 

Zhichao Zhang 

Bachelor of Business Administration, Ohio University, 2013 

 

 

 

Advisor: Ramnath K. Chellappa, Ph.D. 

 

 

 

 

A thesis submitted to the Faculty of the  

James T. Laney School of Graduate Studies of Emory University 

in partial fulfillment of the requirements for the degree of  

Master of Business Studies 

in Business 

2018 

 

 

 

 

 



 
 

 

Table of Content 

1. Introduction ............................................................................................................................................. 1 

2. Literature review .................................................................................................................................... 3 

3. Data .......................................................................................................................................................... 6 

4. Model ........................................................................................................................................................ 8 

5.  Results ................................................................................................................................................... 10 

6. Conclusions ............................................................................................................................................ 11 

Table 1 ........................................................................................................................................................ 12 

Table 2 ........................................................................................................................................................ 13 

Table 3 ........................................................................................................................................................ 14 

Appendix I ................................................................................................................................................. 15 

Reference ................................................................................................................................................... 16 



 
 

 

1 

1. Introduction  

Technology develops rapidly over time, and over time platforms and software have been 

applied to many technological industries. A platform, also known as an operating system, 

provides essential support for software and modules used in the various technological 

applications. Platforms and software, while serving important roles in established products and 

industries, oftentimes become old or obsolete. Operating system companies, such as Microsoft 

and Apple, choose when to release a new operating system, and likewise, when stop supporting 

the old operating system. Some software, at the same time, can run on multiple platforms, 

making it necessary for companies to strategize while releasing a new version of the software. 

Software is a durable good which lasts for a long period of time, therefore, a new version 

of software may compete with an old version. To avoid such competition, firms may strategically 

stop producing or supporting the old generation of the product. This kind of behavior is known 

as “planned obsolescence.” Additionally, when the demand for parts becomes low enough, or the 

old technology or material becomes unavailable, the manufacturer may decide to stop producing 

the old parts. However, software companies may also put an end to software while it is still 

popular because the old product competes with the new product. For example, Microsoft 

strategically stopped supporting Windows XP, the most popular operating system in the world at 

the time, after Microsoft releasing Windows 10.  

On the other hand, the old version does not compete with the new version in every case. 

When the old products and new products are perfect substitutes (Swan, 1980), the producers do 

not have an incentive to stop production of the old version of the products. In these scenarios 

there may be other reasons that motivate firms to produce new versions of products. For 

instance, the firm may need to maintain its market size because the demand for their products 



 
 

 

2 

decreased when a new technology or function appeared on a competitor’s product. However, this 

pressure does not always come from competitors’ products, and very frequently new products 

cause cannibalization. For example, Apple simultaneously announced two flagship products, the 

iPhone 8 and the iPhone X in September 2017, but the sales of the iPhone 8 were lower than 

predicted because the iPhone X included more new technology and features. Therefore, 

strategically releasing new products and stopping support for or production of old products can 

benefit the firm.   

In a platform-based market, the decision to allow old products to become obsolete 

depends not only on new technologies or competing products, but also on the choices made by 

the relevant platform company. For example, when Microsoft announced that Windows XP 

would no longer be supported on April 8, 2014, software companies had to decide whether or not 

new versions of software should support the old platform in future iterations and, if so, when 

new versions of the software will stop supporting the old platform.  

Two-sided markets are another key research area in a platform-based market. It attacks 

two distinct group of users to enter the market. In the software industry, the two groups are 

developers and users. Software developers face potential competition from other developers and 

need to attract more users to use their software.   

Planned obsolescence has been broadly studied, but most of the work is theoretical. 

Likewise, there is a large amount of theoretical literature on software release strategies and two-

sided markets. While two-sided markets have a large amount of literature reporting empirical 

examinations, empirical examinations on planned obsolescence and software release strategies 

have been limited due to a lack of data. Furthermore, empirical studies which combine all three 

topics are rare. For this study, a new dataset containing information on software release 



 
 

 

3 

information was collected. By empirically examining this new data set, this paper answers the 

question of how platform obsolescence impacts software release strategies. The software 

industry is an ideal market for studying strategies and behaviors for the following reasons. First, 

unlike the second-hand market for used cars or textbooks, the second-hand market for software is 

rare because software often contains codes that restrict transfers. Second, used automobiles vary 

in terms of color, model, year, etc., whereas software can be viewed as homogeneous when it has 

the same edition and version number.  

The data for this paper was collected from CNet.com, which includes the majority of 

computer-based software and smartphone-based apps which were available in the market from 

1993 to 2017. For this study, I only used computer-based software that is compatible with 

Windows and Mac. The data set includes approximately 700,000 observations. For each 

observation, the website included detailed software information including the name, version 

information, release date and the number of downloads. To analyze this data, I applied a Cox 

Hazard model with time-varying covariates.  

In this paper, I study how software companies change their release strategies as platforms 

become obsolete. The paper studies which kinds of software change their release strategies, 

aiming to answer the following questions: 1. How do software companies change their release 

strategies after a platform becomes obsolete? 2. How are software release strategies influenced 

when software operates on multiple platforms, i.e. both Windows and Mac?  

2. Literature review  

This section reviews papers related to software release strategies, two-sided markets, and 

planned obsolescence. Software release strategies have been widely studied in the field of 

information systems and engineering. Each commercial software firm develops its own strategies 



 
 

 

4 

regarding the release of new versions of software, which can include new functions and features 

or upgrades. The timing of the release of new versions or upgrades affects the profitability of 

firms (Turner, Mitchell, and Betties, 2010). Moreover, the speed of upgrading also impacts the 

profitability of a firm. Releasing a new version can meet consumers demand for new features and 

improve competitiveness with rivals. The software developers have many strategies to updating 

software. Prior research found that firms with stronger technology power or the majority market 

share are more likely to release software as early as possible and not wait for the software to be 

perfected since they have the ability to fix bugs in a short period of time (Choudhary and Zhang, 

2015). However, developers spend more on bug fixes after software is released than if they wait 

to perfect software before release (Arora, Caulkins, and Telang, 2006). A company may choose 

to release software prematurely and fix the errors at a later time, which is a popular strategy for 

large companies that can afford the expense. 

In the field of engineering, software development depends on a quality measure which is 

usually determined by algorithm and statistical methods. Due to the unpredictable nature of the 

software development processes, the testing phase of a software’s lifecycle has become a major 

field of study in engineering. In software reliability literature, researchers commonly design 

mathematical models to make decisions regarding the duration of the testing phase of software. 

When the firm releases software too early, the software may have undefined errors which will 

affect the reliability of the software, while if the testing phase is too long, the cost of testing will 

increase, and the firm may lose the early entry advantage. Therefore, optimization of the testing 

phase is commonly studied in the literature and researchers use this approach to find a software 

release time that minimizes cost and maximizes reliability (Okumoto and Goel 1979, Yun and 

Bai 1990, Kapur, Pham, Gupta and Jha, 2011).   



 
 

 

5 

The studies of two-sided markets, on the other hand, mainly focus on the competition. 

There are two types of network effects, the same-side network effect and the cross-side network 

effect. The same side-effect is the increase in value of a platform as the number of software 

products on that platform increase. Therefore, that platform will be more attractive and will 

attract more customers to software that is compatible with that platform. However, there is a 

negative side to the same side-effect. As a platform becomes more attractive, more developers 

join the market, resulting in more competition for developers. Parker and Van Alstyne (2000a, 

2000b, and 2005) demonstrated the network effect in the software industry. The two-sided 

market often contains two groups, which, in the software industry, are the users and software 

developers. The user base attracts a developer to join the platform, which is also called the cross-

side effect and as the market grows bigger the developers have more incentive to develop 

software. On the other hand, the more software developed for one platform, the more 

competition there is on that platform.  

Planned obsolescence, as noted before, has mostly been studied from a theoretical 

approach and empirical examinations on the topic are limited due to a lack of data. There are two 

areas of study regarding planned obsolescence. The first area studies the duration of durable 

goods. Specifically, the study of the competition between new products and old products. 

Producers can explore this competition and potentially reduce the useful lifetime of products to 

fall under the social optimal level or profit maximizing level. However, Swan (1970, 1972) 

determined that, under the constant returns to scale assumption, producers do not necessarily 

need to reduce the lifetime of products to maximize their profit. One exception to this is, as 

Bulow (1982, and 1986) demonstrated, that the monopolist would be willing to limit the lifetime 

of a product to fall under the useful lifetime when relaxing Swan’s assumption.  



 
 

 

6 

The second topic of planned obsolescence concerns producers who release new models or 

new products and stop supporting or producing old products. There are two viewpoints on this 

topic and how producers are affected by secondhand markets. Swan (1980), for one, had the 

independent finding asserting that monopolists do not have an incentive to eliminate the 

secondhand market. While others argue that durable goods producers have an incentive to cut the 

secondhand market. Benjamin and Kormendi (1974) found that the monopoly producer can 

improve their profit by eliminating the secondhand market, but this statement can change 

(Miller, 1974).  

In prior papers, the main focus was the competition between the old and new products. 

However, to date, there has been no study of platforms that become obsolete, and how software 

companies change their strategies or updating phases in response.   

3. Data 

The major reason for the lack of empirical studies in this area is the difficulty of 

collecting the entire history of products. This study’s scope includes platforms and the software 

that are developed to run on each platform. To conduct our research, software information was 

collected from CNet.com1, which is one of the largest websites maintaining a large amount of 

commercial software history information. The software runs primarily on four major platforms: 

Android, iOS, Mac, and Windows. Each software has its own page which includes all previous 

version and release time. The physical information for each software includes release time of 

each version, version number, price of software, rating of software, categories, license type, 

reviews and download statistics. Since software developers have different strategies for phone-

based platforms and computer-based platforms, this paper studies only computer-based software 

                                                           
1 The software history information was collected from https://download.cnet.com/ 



 
 

 

7 

release strategies. The website has records of almost all software released on Mac and Windows 

since 1993. To be more precise, the history information of software is from March 1993 to 

March 2016 for Mac, and from June 1995 to March 2016 for Windows. It includes 24,034 

software and 178,208 observations on Mac, and 202,859 software and 722,239 observations on 

Windows.  

For this study, I mainly focused on the version history information for software, which is 

the version number, date of release, and platform history information. To study versioning 

strategy, software version is categorized as an upgrade, major update, minor update, or bug fix, 

these categories are based on the version numbers. I.e. upgrade is from 1.0 to 2.0, major update 

is from 1.1 to 1.2, minor update is from 1.1.1 to 1.1.2, and bug fixes are from 1.1.1.111 to 

1.1.1.222. The website also categorizes the software into 21 different categories, and I used 

category as a dummy variable. To capture the versioning strategy of major version, I kept the 

information of upgrade and major update since software companies usually fix bugs as soon as 

they can. It caused the observations to decrease to 107,806 on Mac and 492,395 on Windows.  

[Insert Table 1 about here] 

In addition, because software can have multiple editions for different users, such as 

student version and professional version, companies may release multiple editions in the same 

day. Therefore, I kept observations for only one version of this software on the same day. 

Software companies may also release multiple software with the same version number, only the 

oldest version was counted in the dataset since it was first version in the market. The versioning 

strategy was defined as the time duration between two adjacent versions which is counted in 

days. Specifically, the average time duration to release a new version was 140.8 days on Mac 

and 72.016 days on Windows. In order to study the software release strategies, any software that 



 
 

 

8 

only had one version in the entire history was removed from the dataset since the software will 

most likely exit the market. The date that Microsoft no longer supports the old version of 

Windows was collected from the official website2. The extended support end date was taken as 

the final support end date. For Mac, there was not a specific date when Apple announced they 

will no longer support the previous version of Mac operating system. Therefore, I used the date 

of the last update as the final support end date. The information regarding when Apple stopped 

supporting old version of Mac was also collected from their official website3. Since support for 

Windows Vista had been ended on April 11, 2017, the effect of platform obsolescence is not 

obvious. Therefore, I do not include Windows Vista in the dataset. For the same reason, OS 

10.10 and later versions were not included in the dataset as well. The final dataset included 

462,291 observations for both Windows and Mac software. 

4. Model 

To study the software release strategies after the platform companies stop supporting old 

version of platforms, I performed a Cox Proportional Hazard model (Cox, 1972), a widely used 

model for events times studies (Hofstede and Wedel 1999; Chiang, Chung, and Cremers 2002). 

The model can be used to study probability of events happening, conditional on past activities or 

events. This study is interested in the timing of releasing a new software, which fit the model 

well. Since a software company may still introduce a new upgrade or update after the sample 

period, the data was right censored. Since hardware may also affect a software company’s 

                                                           
2 The information about Microsoft end supporting old Windows date is from 

https://support.microsoft.com/en-us/help/13853/windows-lifecycle-fact-sheet 
3 The information about Apple end supporting the old Mac OS date is from  

https://support.apple.com/en-us/HT201222 



 
 

 

9 

decisions, I assumed that the hardware can support all the software and hardware was not 

considered in this model. The equations are as follows, 

 

ℎ𝑖𝑗(𝑡) = ℎ0𝑖𝑗(𝑡) ∗ exp⁡(𝛽1count𝑖𝑗 + 𝛽2In(age𝑖𝑗) +∑ 𝛿𝑗𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚𝑗

14

𝑗=2
+∑ 𝛾𝑘𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑘

21

𝑘=2

+𝑊𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑗 + 𝑦𝑒𝑎𝑟𝑛)(1) 

 

Here, ℎ0𝑖𝑗 (t) represents the baseline hazard. t is duration between the two adjacent 

versions of software, counted in days. I use subscript j to denote platforms of Windows, which 

are Windows 95, Windows 98, Windows 2000, and Windows XP, and platforms of Mac, which 

are OS10.0, OS10.1, OS10.2, OS10.3, OS10.4, OS10.5, OS10.6, OS10.7, OS10.8, and OS10.9. 

Windows is the platform dummy which indicates whether the platform is Windows or Mac. 

When the platform is Windows, Windows equals 1, otherwise it equals 0. Additionally, Count𝑖𝑗 

is the number of old versions which were released before the current version, capturing the effort 

each firm spends on the software i; and In(age)𝑖𝑗 is a natural logarithm of the number of days 

since the first version of software i on platform j, was released in the market, which captures the 

software history. Furthermore, I included two fixed effects. First, category𝑘 controls for 

software characteristics, there are 21 different categories of software. The software category is 

independent of whether it is on Windows or Mac. Second, platform𝑗 controls for platform 

characteristics and one software may support multiple platforms at the same time. Specifically, 

Windows 95 is a reference platform, and video is a reference category. I also added 𝑦𝑒𝑎𝑟𝑛 as a 

time dummy. 



 
 

 

10 

In order to study each platform obsolescence effect individually, I tested the 14 platforms 

obsolescence effects individually. Each version of a platform is considered a subsample, which is 

from the release time of the platform and three years after its final support end date. The 

equations are listed as follows,  

 

ℎ𝑖𝑗(𝑡) = ℎ0𝑖𝑗(𝑡) ∗ 𝑒𝑥𝑝 ∗ (𝛽1count𝑖𝑗 + 𝛽2In(age𝑖𝑗) +∑ 𝛾𝑘𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑘
21

𝑘=2
+𝑊𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑗

+ 𝑜𝑏𝑠𝑖𝑗 + 𝑎𝑓𝑡𝑒𝑟𝑖𝑗 + 𝑦𝑒𝑎𝑟𝑛)⁡(2) 

 

In this model, I add two dummy variables. First, 𝑜𝑏𝑠𝑖𝑗 equals 1 when the platform j is not 

supported by Microsoft or Apple. Software duration was defined as the duration from the current 

version release and the next version release. If the old platform is not supported for the software 

duration, 𝑜𝑏𝑠𝑖𝑗 equals 1, otherwise it equals 0. Second, 𝑎𝑓𝑡𝑒𝑟𝑖𝑗  equals 1 when the version of 

software was released after platform j become obsolete, otherwise it equals 0.  

5.  Results 

[Insert Table 2 and 3 about here] 

The first column of table 2 shows the results of model 1 using the entire sample. Software 

running on Windows is updated to new versions faster than software running on Mac. The 

second column of table 2 shows the results of model 1 using only software that runs on both Mac 

and Windows. When software runs on both Mac and Windows, software companies choose to 

release the new version of software more frequently for Windows. Older software, which has a 

longer history, was released more frequently. Table 3 shows the result of model 2 using 14 

different subsamples for each version of the operating system. Each row includes the data from 

the release date of the platform to three years after the platform had become obsolete. Software 



 
 

 

11 

were upgraded fastest after Windows XP became obsolete among all other operating system. 

Software companies also upgraded faster after Mac OS 6 became obsolete among other Mac 

operating systems. For Mac OS 1 and Mac OS 8, the dummy variables after and obs are negative 

and positive, respectively, which means that the platform obsolescence had significant 

immediate effect on software release strategies and increase the updating speed of software. 

Software companies react fast when platform obsolescence occurs. However, software 

companies choose to retain the normal updating speed after platform obsolescence event. 

Software companies choose to update software faster when platform obsolescence occur, but 

they do not maintain the same fast updating speed and will change the updating speed back to 

normal. When firms spend more effort developing software on only one platform, they have a 

lower updating speed. Compared to Mac, older software running on Windows is more likely to 

have a faster updating speed.  

6. Conclusions 

  

 Each software company has its own strategy for releasing new software and for ending 

support for the old version. Since software runs on, and is dependent upon, the platform, the 

decision of platform obsolescence affects the decisions of releasing new versions of software. It 

is unknown how platform obsolescence affects the decision to introduce a new version of 

software. In this paper, I attempted to find out how platform obsolescence affects software 

release strategies using the data from the software industry. The results show software companies 

react fast and update new version of software faster when the old platform become obsolete. 

However, software companies do not retain the faster updating speed all the time after platform 

become obsolete, and they will change the updating speed back to normal speed. 



 
 

 

12 

Table 1 

 

Table 1 Descriptive Statistic  

Variable N Mean Std Dev Minimum Maximum 

t 462,291 1728.61 1610.25 1 4207 

Number of 

upgrades per 

software 462,291 12.5007364 15.698614 0 98 

Number of 

updates per 

software 462,291 11.9496998 13.377867 0 96 

Count 462,291 16.485669 17.599012 1 100 

In(Age) 462,291 3.18345207 2.4571 0 3.860278 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

13 

Table 2 

Table 2 Cox Hazard Model estimates 

Parameter whole sample set (1) software runs on both Windows and Mac (2) 

In(age) 1.4578(***) 2.1475(***) 

Count 0.9457(***) 0.2145 

Windows 0.7457(***) 1.4782(***) 

Category YES YES 

Year YES YES 

Platform YES YES 

*** is a 1% significant level, ** is at 5%significant level, * is at 10% significant level 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

14 

Table 3 

Table 3 Cox Hazard Model estimates 

Parameter In(age) Count After Obs Year Category 

os1 0.7989 (***) 0.1859(***) -0.5659(**) 1.2473(***) YES YES 

os2 1.2387(***) 2.0147(*) 0.7541(**) 3.1247(***) YES YES 

os3 2.0147(***) 1.0215(**) 0.7563 1.2956 YES YES 

os4 0.9852(***) 0.3257(**) 0.8172(***) 1.1433(***) YES YES 

os5 0.9654(***) 0.2549(*) 1.2145(*) 1.4986(***) YES YES 

os6 0.3694(***) 0.6547(***) 2.4785(*) 4.1585(***) YES YES 

os7 0.7854(***) 0.5145 0.2147(***) 0.5478 (***) YES YES 

os8 0.1282 (*) 0.2356(**) -0.9657(**) 1.2145(***) YES YES 

os9 1.2548(*) 0.2547(*) 0.2147 0.7856(***) YES YES 

Win 95 1.7845(***) 0.6257(***) 1.1475 2.1774(***) YES YES 

Win98 1.2048(**) 0.2574(**) 2.7589(**) 1.1251 YES YES 

Win2000 0.2147(***) 0.9321(*) 1.1458 2.1542(***) YES YES 

Win XP 1.0985(***) 1.0475 2.9501(***) 6.2475(***) YES YES 

*** is a 1% significant level, ** is at 5%significant level, * is at 10% significant level 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

15 

Appendix I 

 

Category 

Category 

Number 

security 1 

browsers 2 

business 3 

communications 4 

desktop 5 

developer 6 

downloads 7 

digital 8 

educational 9 

entertainment 10 

games 11 

graphic 12 

home 13 

internet 14 

iTunes 15 

networking 16 

productivity 17 

screensavers 18 

travel 19 

utilities 20 

video 21 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

16 

Reference 

Arora, A, Caulkins, J, and Telang, R, (2006) Research Note—Sell First, Fix Later: Impact of 

Patching on Software Quality. Management Science 52(3):465-471.  

Benjamin, D.K. and R.C. Kormendi, 1974, “The Interrelationship between Markets for New and 

Used Durable Good,” Journal of Law and Economics, 17(2), 381–401.  

Bulow, J., 1982, “Durable Goods Monopolists,” Journal of Political Economy, 90(2), 314–332.  

Bulow, J., 1986, “An Economic Theory of Planned Obsolescence,” Quarterly Journal of 

Economics, 101(4), 729–749. 

Chiang, J., and Lee, L. F. (1992), “Discrete/Continuous Models of Consumer Demand With 

Binding Non-Negativity Constraints,” Journal of Econometrics, 54, 79–93. 

Choudhary, V., Zhang, Z.  (2015), Research Note: Patching the Cloud: Impact of SaaS on 

Patching Strategy and the Timing of Software Release. Information Systems Research, 26(4), 

845-858. 

Cox, D. R. (1972), “Regression Models and Life Tables,” Journal of the Royal Statistical 

Society, Ser. B, 34, 187–220. 

Goel, A.L., Okumoto, K., (1979), Time dependent error detection rate model for software 

reliability and other performance measures, IEEE Transaction Reliability, R-28(3), 206-211. 

Hofstede, F. T., and Wedel, M. (1999), “Time-Aggregation Effects on the Baseline of 

Continuous-Time and Discrete-Time Hazard Models,” Economics Letters, 63, 145–150. 

Kapur, P.K., Pham, H., Gupta, A. and Jha, P. C., Optimal release policy under fuzzy 

environment, International Journal of Systems Assurance Engineering and Management, 2(1), 

(2011), 48-58. 

 

Miller, L.H., 1974, “On Killing off the Market for Used Textbooks and the Relationship between 

Markets for New and Secondhand Goods,” Journal of Political Economy, 82(3), 612–619. 

 

Parker, G. and M. Van Alstyne (2005). “Two-Sided Network Effects: A Theory of Information 

Product Design.” Management Science, Vol. 51, No. 10 

 

Parker, G., M. Van Alstyne (2000b). “Internetwork Externalities and Free Information Goods,” 

Proceedings of the 2nd ACM conference on Electronic Commerce. 

 

Parker, G., M. Van Alstyne. (2000a). “Information complements, substitutes, and strategic 

product design.” Proceedings of the twenty first International Conference on Information 

Systems. Association for Information Systems, 13-15. 



 
 

 

17 

Swan, P.L., 1970, “Durability of Consumption Goods,” American Economic Review, 60(5), 884–

894. 

 

Swan, P.L., 1972, “Optimum Durability, Second Hand Markets, and Planned Obsolescence,” 

Journal of Political Economy, 80(3), 575–585. 

 

Swan, P.L., 1980, “Alcoa: The Influence of Recycling on Monopoly Power,” Journal of Political 

Economy, 88(1), 76–99. 

Yun, W.Y. and Bai, D.S., Optimum Software Release Policy with Random Life Cycle, IEEE 

transactions on Reliability, 39(2), (1990), 338-353. 

Scott F. Turner, Will Mitchell, Richard A. Bettis, (2010) Responding to Rivals and 

Complements: How Market Concentration Shapes Generational Product Innovation Strategy. 

Organization Science 21(4):854-872. 

 

 

 

 

 

 


