
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for
an advanced degree from Emory University, I hereby grant to Emory University and
its agents the non-exclusive license to archive, make accessible, and display my thesis
or dissertation in whole or in part in all forms of media, now or hereafter known,
including display on the world wide web. I understand that I may select some access
restrictions as part of the online submission of this thesis or dissertation. I retain
all ownership rights to the copyright of the thesis or dissertation. I also retain the
right to use in future works (such as articles or books) all or part of this thesis or
dissertation.

Signature:

Parisa Sarikhani Date

Precision Neuromodulation Therapies Using Artificial Intelligence

By

Parisa Sarikhani
Doctor of Philosophy

Computer Science and Informatics

Babak Mahmoudi, Ph.D.
Advisor

Mayuresh Kothare, Ph.D.
Committee Member

Rishi Kamaleswaran, Ph.D.
Committee Member

Johnathan McKay, Ph.D.
Committee Member

Accepted:

Kimberly Jacob Arriola
Dean of the James T. Laney School of Graduate Studies

Date

Precision Neuromodulation Therapies Using Artificial Intelligence

By

Parisa Sarikhani
B.Sc., Shiraz University, Iran, 2014
M.Sc., Shiraz University, Iran, 2017
M.Sc., Emory University, GA, 2022

Advisor: Babak Mahmoudi, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Computer Science and Informatics

2023

Abstract

Precision Neuromodulation Therapies Using Artificial Intelligence
By Parisa Sarikhani

Implantable neuromodulation devices, such as deep brain stimulation (DBS) and
vagus nerve stimulation (VNS) have revolutionized neuroscience research and clini-
cal care thanks to their ability to directly intervene in pathological circuits. These
implantable devices provide a powerful paradigm for treating neurological disorders,
restoring and enhancing neural functions, and understanding the causal links between
neural and behavioral processes. Yet, despite their growing adoption in clinical care,
challenges persist, impeding their seamless integration into standard of care. Recent
advancements in next-generation implantable devices offer considerable customization
in stimulation parameters, paving the way for delivering precision neuromodulation
therapies. Moreover, given the variations in electrode placement, local anatomy,
and the diversity in symptom type and severity, it is imperative to design adaptive,
patient-specific treatments. Proper programming of implantable devices is a critical
step for optimizing patients’ therapeutic outcomes and avoiding inducing adverse side
effects. Despite the efforts in developing standard clinical guidelines for programming
neuromodulation devices, these approaches are very time-consuming and may lead to
sub-optimal therapy for patients. Additionally, these approaches do not take into ac-
count the complex and dynamic nature of the nervous system, which can change over
time and require ongoing adjustment of stimulation parameters. Therefore, there is a
growing need to develop automated intelligent closed-loop neuromodulation systems
(iCLON) to facilitate the programming of implantable devices.

Despite these challenges, the potential benefits of these systems for treating neu-
rological disorders make this a promising area of research and development. Design-
ing automated closed-loop neuromodulation systems is a complex task and requires
multifaceted considerations. This research is an effort toward facilitating the de-
sign and development of automated iCLON systems by developing a translational
design paradigm. This dissertation contributed to the development of multiple simu-
lation environments, pivotal in the design of novel and effective iCLON systems. The
simulation platforms offer a safe and controlled environment for rigorous testing and
refinement before clinical implementation. This research also introduces multiple con-
trol tasks, replicating the actual experimental and clinical applications and ensuring
reproducibility and easier translation from simulation to clinical practice. Moreover,
a control policy is at the core of iCLON systems which automatically learns and ad-
justs the stimulation parameters. In this research, I developed data-driven control
strategies using optimization and reinforcement learning techniques that are able to
learn and optimize neuromodulation control strategies autonomously, via closed-loop
interaction with the nervous system. Notably, I developed and clinically evaluated
a fully automated DBS programming framework for treatment of tremor in patients
with Parkinson’s disease and essential tremor that was shown to be efficient and safe
while providing outcomes comparable to that achieved by expert clinicians. Finally,

this research presents a collaborative effort towards developing an end-to-end trans-
lational platform for the design and implementation of iCLON systems. Utilizing
an algorithm-hardware co-design approach, the platform facilitates the exploration
of brain-implantable devices capable of autonomously learning and adapting control
policies. This platform aims to enable research and development of brain-implantable
iCLON systems for a wide community of neuroscientists, clinicians, and engineers.

Precision Neuromodulation Therapies Using Artificial Intelligence

By

Parisa Sarikhani
B.Sc., Shiraz University, Iran, 2014
M.Sc., Shiraz University, Iran, 2017
M.Sc., Emory University, GA, 2022

Advisor: Babak Mahmoudi, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Informatics
2023

Acknowledgments

I would like to express my gratitude to the incredible network of people that have

supported me throughout my journey towards completing this PhD thesis.

I extend my deepest gratitude to Dr. Babak Mahmoudi, my research advisor,

whose invaluable mentorship and support have significantly shaped my academic

journey. His remarkable expert guidance, constructive feedback, patience, and faith

in my abilities have been instrumental in shaping the direction of my research and in

academic growth. Being a part of his research group has been an invaluable opportu-

nity for which I am profoundly grateful. My gratitude also extends to Dr. Svjetlana

Miocinovic, whose endless support, expert perspectives, and constructive feedback

have greatly enriched my research and my professional development. I am equally

indebted to Dr. Mayuresh Kothare, whose invaluable expert insights and feedback

have been instrumental in my research. Working with his group has been a pleasure,

offering me numerous learning opportunities and enriching my academic experience.

I express profound gratitude to Dr. Joseph R. Manns and Dr. Hadi Esmaeilzadeh

for their expert perspectives. The immense knowledge I have gained from our many

enlightening discussions and working with their groups has been invaluable. I am

very thankful to my committee members Dr. Rishi Kamaleswaran, and Dr. Lucas J.

MacKay for their guidance and constructive feedback on my thesis.

I am lucky to have collaborated with talented colleagues and friends in Neuroin-

formatics and Intelligent Systems (NISys) lab Dr. Pradeeban Kathiravelu, Mahmoud

Zeydabadinezhad, Yusen Zhu, and Elizabeth Nemeti. I am grateful to my friends

Nasim and Yashar, who have been pillars of support throughout my journey. Their

presence and encouragement during all the ups and downs have been a source of

comfort. I am grateful to my lifelong friends Aida Afkhamizadeh and Mandana Ja-

hanbozorgi for their friendship and motivation.

Reflecting on my journey, I realize how good fortune in many small moments

has significantly affected my path to success. To my parents, whose sacrifices and

endless encouragement to pursue my dreams have shaped the person I am today, I am

forever indebted. Your belief in me has been a constant source of motivation. To my

sister, Afrooz, whose companionship have been priceless, thank you for always being

supportive. And to my best friend and husband, Mohammadreza, your continuous

support, patience, and love has been a constant source of strength and motivation.

This achievement is as much yours as is mine and I am incredibly grateful for having

such an incredible partner by my side.

i

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Challenges and requirements of designing intelligent closed-loop neu-

romodulation Systems . 2

1.3 Significance and contributions . 5

1.4 Thesis outline . 9

1.5 List of publications . 10

2 A review on closed-loop neuromodulation systems, with a focus on

control policy algorithms 14

2.1 Introduction . 14

2.2 Introduction to closed-loop neuromodulation control 17

2.3 Control strategies . 19

2.3.1 Open-loop control . 19

2.3.2 Closed-loop control . 20

2.3.3 Adaptive control . 21

2.3.4 Model-based control . 21

2.3.5 Model-free control . 22

2.4 Classical control algorithms in iCLON systems 22

2.4.1 On-Off and threshold-based controller 23

2.4.2 Proportional-integral-derivative control 24

2.4.3 Delayed-feedback controller 25

2.4.4 Fuzzy logic controller . 25

2.4.5 Model predictive control . 26

2.5 Recent trends in developing novel closed-loop neuromodulation systems 27

2.6 The need for developing research platforms to enable research and de-

velopment of implantable iCLON systems 30

3 Automated deep brain stimulation programming with safety con-

straints for tremor suppression in patients with Parkinson’s disease

and essential tremor 32

3.1 Introduction . 32

3.2 Patient selection criteria and clinical experiment procedure 35

3.3 Automated DBS programming framework: software design 38

3.4 GPR modelling of the effect of DBS settings using a quantified objec-

tive measure . 40

3.5 DBS programming algorithms . 44

3.5.1 Bayesian optimization . 44

3.5.2 Safe Bayesian optimization . 47

3.6 Stopping criteria and advanced optimization 52

3.7 Results . 54

3.7.1 Quantifying tremor response to stimulation 54

3.7.2 Comparison of the clinical settings and the automated settings 56

3.7.3 Speed of convergence of the automated DBS programming system 57

3.8 Discussion . 60

3.9 Conclusion . 65

4 Reinforcement learning for closed-loop regulation of cardiovascular

system with selective vagus nerve stimulation 67

4.1 Introduction . 67

4.2 Simulation environments . 73

4.2.1 Standard API for rat cardiac model 73

4.2.2 In-silico rat cardiac model . 74

4.2.3 Reduced order model of the physiological rat cardiac model

using temporal convolutional neural networks 75

4.3 Experimental design . 76

4.3.1 Regulating cardiovascular system using RL through designing

a set point tracking Task . 76

4.3.2 Designing a general policy using deep RL algorithms 77

4.3.3 Designing an adaptive policy using PILCO 78

4.4 Reinforcement learning agents . 79

4.4.1 Proximal policy optimization algorithm 80

4.4.2 Soft actor-critic algorithm . 81

4.4.3 Probabilistic inference for learning and control 81

4.4.4 Reward Function . 83

4.5 Results . 83

4.5.1 Performance of TCN model 83

4.5.2 Training performance of RL agents 84

4.5.3 Performance of Deep RL agents in set-point tracking task in

four cardiac models . 85

4.5.4 Performance of PILCO in set-point tracking task in four cardiac

models . 85

4.5.5 Adaptability of PILCO to variations in target set point 86

4.5.6 Adaptability of PILCO to variations in the underlying dynam-

ics of the environment . 87

4.5.7 Adaptability of deep RL agents to variations in the underlying

dynamics of the environment using transfer learning 88

4.6 Discussion . 89

4.7 Conclusion . 92

5 Neuroweaver: a translational platform for embedding artificial in-

telligence in closed-loop neuromodulation systems 94

5.1 Introduction . 94

5.2 Challenges and considerations . 98

5.3 Neuroweaver in a glance . 101

5.4 Neuroweaver platform . 103

5.4.1 Cross-domain programming interface in python 103

5.4.2 Multi-target cross-domain compilation 105

5.5 An example implementation with CNF program using the CDI in Python106

5.6 Simulation environments and control tasks for designing iCLON systems110

5.6.1 Interactive AI-enabled closed-loop synchrony suppression in Bon-

hoeffer–van der Pol model . 110

5.7 RL algorithms integrated in the design of iCLON systems 112

5.7.1 Proximal policy optimization 114

5.7.2 Soft actor-critic network . 115

5.7.3 Deep deterministic policy gradient 116

5.7.4 Model-based reinforcement learning with model predictive control116

5.7.5 Probabilistic inference for learning control 117

5.8 Results . 118

5.8.1 Synchrony suppression using reinforcement learning algorithms 118

5.8.2 CNF implementation of iCLON systems using deep RL algorithms120

5.8.3 FPGA execution of deep RL agents in inference mode 121

5.8.4 In-vivo experiments . 123

5.9 Discussion . 124

5.10 Conclusion . 126

6 Conclusion and future direction 128

6.1 Contributions to the field . 128

6.2 Future work . 130

Bibliography 132

vi

List of Figures

2.1 Comparison of (a) an open-loop versus (b) a closed-loop Neuromodu-

lation programming system. 19

2.2 Open-loop and closed-loop control strategies. The open-loop control

strategy is demonstrated with solid lines. 20

2.3 Overview of an adaptive control strategy. 21

2.4 Model-based vs. model-free control strategies. The model-free ap-

proach is demonstrated with solid lines. 23

3.1 Overview of the automated DBS optimization framework for tremor

programming. After performing the initial baseline tremor evaluation

tests without stimulation, at each iteration, the software automatically

sets the next DBS setting to be tested followed by 10 seconds wash-

in period, followed by tremor evaluation tests each for 10 seconds.

The recorded IMU data and side-effect reports are used to update the

surrogate GPR model and optimizer suggests the next best sample

to be tested. Before evaluating the next suggested DBS setting, the

stopping criteria module determines whether the optimum has been

found or advanced stimulation is needed. 37

3.2 A detailed schematic demonstrating the software design of the auto-

mated DBS programming system. The software application receives

IMU data over a Bluetooth connection from the smartwatch, as well

as side effects reported by the patient through a graphical user interface

and send the information to the Python section of the application. The

calculation of the objective measure (surrogate function) and choice of

the next DBS setting (acquisition function) are handled within the

Python section. The C# software application receives the stimulation

settings from the Python application and sends stimulation commands

to the Nexus-D, which communicates with patient’s implanted Activa

IPG. 39

3.3 GPR model mean surface of the combined objective measure (includ-

ing baseline-subtracted watch tremor score and side effect score) varies

across patients. (a) Mean surfaces for two patients with grid-search

sampling strategy from a prior study [4]. The sampling resolution is 1V

amplitude increments. (b) Mean surfaces for two patients from the cur-

rent study with sampling using Bayesian optimization that evaluates

more samples in areas with greater chance of tremor improvement and

with a finer resolution (0.2V amplitude increments). The surfaces are

color-coded with the value of the combined objective measure where

blue shows negative objective values reflecting tremor improvement

compared to baseline either without or with mild side effect and red

shows positive values reflecting that DBS settings are not effective or

side effects are pronounced. The black circles represent sampled DBS

settings during the automated DBS optimization. The red dashed lines

show the clinician-defined safe exploration boundaries of the parameter

space. 43

3.4 Example of patient-specific adaptive sampling of Bayesian optimiza-

tion (patient 02). Each panel shows the mean surface of the GPR

model that updates after each iteration. The value of the combined

objective measure is color-coded. The dashed dark red lines demon-

strate the clinician-defined maximum tolerable exploration boundaries.

The black circles show the previously collected samples and the green

square show the sample being tested at each iteration. The black circle

outside the red dashed lines at (0,0) demonstrates the baseline, where

the patient’s IPG was inactive. The sample suggestions are automated

by the DBS optimization framework. Samples are more densely dis-

tributed around the more promising regions of the parameter space

(more tremor improvement with fewer side effects). This adaptive be-

havior of the DBS optimization framework makes it patient-specific;

that is the samples are adaptively suggested based on the patient’s

response at previous iterations. 47

3.5 Safe Bayesian optimization during phase II of the experiments (patient

14). Selected iterations during monopolar stimulation. The mean sur-

face of the GPR model and safe stimulation exploration boundaries

(dashed lines) update as more data are collected at each iteration. The

value of the combined objective measure is color-coded. The black cir-

cles represent collected samples and the green square is the current

sample being tested at each iteration. The black circles outside the

red dashed lines at (0,0) demonstrates the baseline, where the patient’s

IPG was inactive. 51

3.6 High-level schematic of the decision-making process of the automated

DBS optimization framework. The darker gray area is the schematic

of the advanced optimization suggestion algorithm modelled after the

clinical decision-making process. 52

3.7 Additional validation of tremor score classifier [14]. Blue dots represent

the average watch tremor scores plotted against the average clinician

tremor score for selected tremor assessment tasks (rest, arms extended,

arms flexed, finger-to-nose motion). Each dot represents one DBS set-

ting that was tested during the experiments. The black solid line and

the grey shaded area show the mean and standard deviation of the

watch tremor scores. The red solid line is the line y = x and the

r-squared value of the fit to the y = x line is 0.69. 56

3.8 Clinical efficacy of automated DBS programming. Comparison of the

patients’ tremor severity scores at baseline stimulation off condition

and the optimal automated setting measured by the watch (left col-

umn) and the optimal automated setting scored by a blinded clini-

cian (right column). Top row refers to phase I (clinician-defined safe

amplitudes), and bottom row to phase II (safe Bayesian optimization

algorithm) experiments. The asterisk shows the conditions with sta-

tistically significant difference (∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001).

The tremor score is the sum of two tremor assessment tasks utilized

during the automated DBS optimization session (max 8). 58

3.9 Clinical efficacy of automated DBS programming compared to clinical

setting. Comparison of the patients’ tremor severity scores at baseline

(no stimulation), the best automated setting, and previously estab-

lished best clinical setting during phase I (a) and phase II (b) based on

the clinician scores during the comprehensive clinical exam. The com-

prehensive exam included the following items from FTM tremor scale:

rest, arms extended, arms flexed, and finger-to-nose motion arm tremor

contralateral to DBS lead, handwriting (if dominant hand tested), two

spiral drawings, and line drawing. Both the patient and clinician were

aware of the stimulation condition. The asterisk shows the conditions

with statistically significant difference (∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p <

0.001). 59

4.1 Overview of the architecture of the simulation environments for devel-

oping closed-loop VNS system demonstrating the interactions of the

RL agent with the rat cardiac model using the standard API. The

left block represents the reduced-order surrogates of the physiological

cardiac models wrapped with the standard Gymnasium API, where

the inputs of the model (color-coded as dark blue) are stimulation fre-

quency and stimulation amplitude across three different locations at

time t (At). The outputs of the model (color-coded as green) are the

response of HR and MAP to the VNS parameters. The model es-

timates the response of the cardiac system (HRt+1,MAPt+1) to the

action At taken at time step t given the current state of the system

(HRt,MAPt). The right block represents the reinforcement learning

agent, which takes action At according to its policy at time step t, and

observes the next state St+1, and Reward Rt+1. 72

4.2 The pipline used for developing the simulation environments using the

Gymnasium API to test and prototype RL algorithms for regulating

the cardiovascular system. (a) Used the physiological models of rat

cardiac system under multi- location VNS implemented in MATLAB,

(b) generated a simulated data set of the response of the cardiac system

by varying randomly selecetd VNS parameters, (c) trained the reduced-

order TCN model to model the response of HR and MAP to VNS

parameters, and (d) used the Gymnasium standard API wrapper over

the trained TCN models for easier compatibility with RL algorithms. 73

4.3 The overview of designing a general policy. The left panel represent

the structure of the simulation environment with the standard Gym-

nasium API during the training mode. The right panel depicts the

simulation environment in the inference mode. The policy network

of the RL agents was designed as a simple MLP model, where HRt

and MAPt are the current states of the environment. The input of

the policy network was extended by adding HRtargetand MAPtarget

(target set-points) to design a general policy. The environment is the

reduced-order surrogate of the physiological cardiac models wrapped

with the standard Gymnasium API, where the input of the model

(color-coded as dark blue) are stimulation frequency and stimulation

amplitude across three different locations at time t(At). The output of

the model (color-coded as green) are the response of HR and MAP to

the VNS parameters. 78

4.4 The workflow of adaptive policy using PILCO, illustrating the itera-

tive process where actions are executed according to the recent policy

(or randomly selected from the parameter space for the initial query)

for N iterations. PILCO collects state transitions and reward values

from the environment in response to the actions, augments its dataset,

updates the Gaussian Process (GP) model of the state transition, and

adjusts the policy parameters based on the augmented data. This

process is repeated to improve the adaptive policy over time. The en-

vironment is the reduced-order surrogate of the physiological cardiac

models wrapped with the standard Gymnasium API, where the input

of the model (color-coded as dark blue) are stimulation frequency and

stimulation amplitude across three different locations at time t(At).

The output of the model (color-coded as green) are the response of HR

and MAP to the VNS parameters. 79

4.5 Comparison of the HR and MAP values predicted from the original

biophysical model implement in MATLAB versus the predictions from

the reduced-order TCN model. The blue solid lines represent the HR

and MAP values generated from the HC biophysics model implemented

in MATLAB. The red dashed line represents the corresponding valued

generated with reduced-order TCN model. 84

4.6 Reward values of RL agents during the set-point tracking task in

four cardiac environments; (a) Normalized training reward values per

episode for SAC during the training mode, (b) Normalized training re-

ward values per episode for PPO during the training mode, (c) Reward

values of PILCO during the experiment. The normalized reward for

deep RL algorithms (a, b) represent the mean ± standard deviation of

the reward calculated through a moving average with window length

of 50 to provide a better representation of the agents’ performances

over time. 85

4.7 The performance of Deep RL algorithms in inference mode for set-point

tracking task across four cardiac environments using (a) PPO and (b)

SAC algorithms for 200 iterations. The red solid lines represent the

desired set points and the blue lines represent the states of the four

cardiac models (HR and MAP). The target set points were changed

after 100 iterations, where iterations are equal to the cardiac cycle. . 86

4.8 The stimulation parameters used during the inference mode for the set-

point tracking task across the four cardiac environments (a) using PPO

and (b) SAC algorithms for 200 iterations. The stimulation parameters

were amplitude and frequency across three VNS locations. The target

set points were changed after 100 iterations, where iterations are equal

to the cardiac cycle. 86

4.9 The performance of PILCO in set-point tracking task across four car-

diac environments using PILCO (a) and its corresponding stimulation

parameters (amplitude and frequency) across three stimulation loca-

tions (b). In the left figure (a), the red lines represent the desired set

points and the blue lines represent the states of the four cardiac models

(HR and MAP). 87

4.10 Adaptability of PILCO during the set point tracking task to variations

in the target set point (a-c) and to variations in the underlying dy-

namics of the environment (d-f). (a, d) Reward value; (b,e) the state

trajectory, and (c,f) stimulation parameters for 200 iterations, where

the changes where applied after 100 iterations. 88

4.11 Adaptability of PPO and SAC algorithms to the variations in the un-

derlying dynamics of the environment using transfer learning; (a) com-

parison of the reward values of PPO and SAC with random initializa-

tion (RI) and with transfer learning (TL), (b) performance of PPO

and SAC in set point tracking task with the trained policy using TL

approach. 89

5.1 Overview of the modular design of an iCLON system supported by

Neuroweaver that enables research and development of implantable

iCLON systems. Neuroweaver enables the modular design of iCLON

systems using simulation environments and computational models of

the nervous system for the design and prototyping of iCLON systems.

The modular design also allows for seamless integration with the in-

vivo experimental setup for evaluating the performance of the designed

algorithms. In addition, Neuroweaver enables cross-domain accelera-

tion that not only provides the flexibility of adapting to different algo-

rithmic domains but also improving the performance and efficiency of

hardware implementation in designing specialized implantable iCLON

systems. 96

5.2 A cross-domain closed-loop neuromodulation pipeline. A modular de-

sign of iCLON systems include multiple interoperable modules that

often include several analytic steps from multiple algorithmic domains

including DSP, analytics, RL. 102

5.3 Step-by-step conceptual design strategy enabled by the Neuroweaver

platform that enables research and development of iCLON systems.

The modular simulation environment allows the user to design, pro-

totype, and evaluate their candidate closed-loop neuromodulation al-

gorithms in simulation. This simulation step allows for efficient trans-

lation into in-vivo experimentation and flexible hardware implementa-

tion which eventually informs the design of brain-implantable chips. . 104

5.4 The modular architecture of the Neuroweaver simulation environment

including the computational model of the neural population under elec-

trical stimulation in closed-loop with RL-based control strategies to

learn a synchrony suppression control task; (a) neural network-based

model-free algorithms and PILCO, (b) Model-based RL with MPC. . 112

5.5 Learning performance (reward values) of different RL-based iCLON

systems using (a) Deep RL algorithms, (b) model-based RL with MPC,

and (c) PILCO. 120

5.6 Performance of different RL algorithms in the synchrony suppression

task during the inference mode. 120

5.7 Modular implementation of RL-based iCLON systems using Deep RL

algorithms. This modular design separates the training from inference

modes. The RL policy in inference mode is targeted to be implemented

on FPGA. 121

5.8 In-vivo experiments. (a) Schematic of the experimental design where

the LFP signals are being recorded from hippocampus in rats, DSP

techniques was used to preprocess the recorded LFP signals and calcu-

late the theta-band power. A simple threshold-based controller based

on the theta-band power is used to turn an LED on/off. The LED is

used as a surrogate of stimuli to close the loop. 125

xvi

List of Tables

3.1 Clinical characteristics and automated programming experiment out-

come during the phase I of the Experiments using the clinician-defined

maximum safe boundaries of the parameter space. 55

3.2 Clinical characteristics and automated programming experiment out-

come phase II with automated discovery of the safe parameter space

using safe Bayesian optimization algorithm. 55

4.1 Table 1. Sampling range of HR and MAP values ([minimum, maxi-

mum]) for the four cardiac environments. 78

4.2 Performance of TCN models; normalized mean squared error (NMSE)

of TCN models, and their computational efficiency compared to the

MATLAB implementations. 84

5.1 Runtime latency measurement in ms for CNF implementation of the

three iCLON systems for synchrony suppression using deep RL algo-

rithms. 121

5.2 Comparison of layer-by-layer and end-tot-end execution of Deep RL

algorithms in inference mode on FPGA compared to XPulpNN in terms

of speed up. 123

1

Chapter 1

Introduction

1.1 Motivation

Neuromodulation, as defined by the International Neuromodulation Society (INS),

is a field of science, medicine, and bioengineering that encompasses implantable and

non-implantable technologies, electrical or chemical, for the purpose of improving the

quality of life and functioning of humans [1]. Neuromodulation is a rapidly expand-

ing field of medicine that involves a wide range of specialties and affects hundreds

of thousands of patients worldwide who suffer from various disorders. There have

been significant advancements in the scientific understanding of neuromodulation,

its mechanisms, clinical applications, and technological development [1]. Neuromod-

ulation is being used to manage a wide range of conditions including disorders of

cardiac pacing [2], epilepsy [3], movement disorders [4], chronic pain [5], psychiatric

and neurobehavioral disorders [6], and many more conditions, especially in medication

refractory patients.

The use of neuromodulation devices has become a standard and widely accepted

treatment for many neurological disorders. However, to achieve the therapeutic ben-

efit, stimulation often requires time-consuming programming by an expert [7]. Most

2

of the current clinical approaches are based on trial-and-error evaluation of thera-

peutic response, which is very time-consuming and may lead to sub-optimal efficacy

of the stimulation treatment [8], [9]. Hence, there is a growing need to create in-

telligent closed-loop neuromodulation (iCLON) strategies that autonomously learns

the optimal stimulation settings and adapts to the complex underlying dynamics of

the nervous systems. The development of iCLON systems simplifies the initial pro-

gramming of the implanted pulse generator (IPG) [10], facilitating the programming

of neuromodulation devices, while also enhancing long-term therapy for patients by

automatically adjusting therapy to continuously optimize patient outcomes [11].

Designing iCLON systems is a complex and multidisciplinary task that requires

expertise from various backgrounds including neuroscience, engineering, signal pro-

cessing, etc. Moreover, the complexities of the interactions between the nervous sys-

tem and the neuromodulation systems, with large parameter spaces, pose challenges

for designing and effective clinical deployment of neuromodulation technologies [12].

Despite the challenges, the potential benefits of these systems for treating neurologi-

cal and psychiatric disorders make this a promising area of research and development.

The focus of this research is to contribute to the advancement of automated iCLON

systems by developing a translational design paradigm that facilitate the design, im-

plementation, and clinical translation of these potentially life saving treatments.

1.2 Challenges and requirements of designing in-

telligent closed-loop neuromodulation Systems

One critical aspect of designing closed-loop neuromodulation systems is ensuring mod-

ularity. The intricate nature of the nervous system motivates partitioning the design

of iCLON systems into multiple components [11]. By using a modular design, the

system becomes flexible and scalable, allowing for straightforward modifications and

3

customization, which is especially important for closed-loop neuromodulation systems

that need to adapt to individual patient responses and changing treatment needs [9].

In addition, the modular design facilitates collaboration among experts with different

expertise, allowing for the reproducibility of previous works, and ensuring that the

system can integrate new technologies and advancements in the field [11].

Another challenge is the limitations of the current standard of care in the pro-

gramming of neuromodulation devices. Typically, standard clinical approaches in

the programming of neuromodulation devices involve a trial-and-error evaluation of

therapeutic response (clinical benefit and unwanted side effects) at numerous stimu-

lation settings [7], [13]. This is often performed over several sessions, which can be

inconvenient and costly for patients and clinicians and can be a challenge for patients

who live far away from specialty care [14]. Developing automated iCLON systems

eliminates the need to frequently access to specialized centers and unlocks access to

a wider range of patients. Such frameworks could be beneficial for remote program-

ming for patients with limited access to the clinic. In addition, the standard clinical

approaches are often limited to a small subset of stimulation parameters, which may

not allow for optimal customization to individual patient needs [15]. Current clinical

approaches may not take into account the complex and dynamic nature of the nervous

system, which can change over time and require ongoing adjustment of stimulation

parameters. As a result, there is a growing interest in the development of automated

iCLON systems, which can provide real-time feedback and automatic adjustment of

stimulation parameters based on individual patient needs and changing physiological

conditions.

Moreover, automation of iCLON systems is an essential feature that plays a sig-

nificant role in various aspects of the system. First, it can help to reduce the burden

on clinicians by automating routine tasks such as parameter adjustment and data

logging allowing clinicians to focus on other tasks [14]. In addition, the evaluation of

4

the behavioral or neurophysiological response of patients to modifications in therapy

can be challenging given the subjective nature of visual observation. Automated dis-

covery of the target objective functions reduces the burden and helps to objectively

validate the subjects’ response to therapy [8, 11]. Another aspect of automation is

automating the treatment plan (control policy) which automatically adjusts stimula-

tion parameters based on patients’ state and reduces the delay between stimulation

updates compared to human intervention [11].

Another challenge in developing effective iCLON systems is to take the complex

and dynamic nature of the nervous system into account. Adaptability enables de-

signing adaptable systems in a patient-specific way based on each patient’s unique

needs and responses [16, 11]. Moreover, it enables the adjustment of stimulation pa-

rameters in real time based on individual patient needs and changing physiological

conditions. This can help to optimize treatment outcomes and improve patient sat-

isfaction. Furthermore, adaptability can also enhance patient safety by minimizing

the risk of overstimulation or unintended side effects.

Most of the current standard approaches of treatment planning (control policy)

are based on trial-and-error open-loop testing and evaluation of the subject’s response

to therapy. However, this method is very time-consuming, requires extensive training

and specialized skills, and tests a limited subset of the parameter space leading to

sub-optimal responses to therapy. Previous studies have made efforts to automate

treatment planning using classical control strategies [17, 18, 19, 20, 21] which have

several limitations. Although classical control approaches like proportional integral

(PI) controllers or model predictive control (MPC) has shown to be effective in many

studies, they have some disadvantages which make them impractical for many real-

world physiological applications. Some disadvantages of PI controllers are including

limited controllability which makes them less effective in transient responses, tun-

ing complexity, high sensitivity to model parameters, and sub-optimal performance

5

in non-linear systems [22], [23]. While MPC has been shown to address some of the

challenges of classical control algorithms, it still requires tuning of various parameters,

such as the prediction horizon and control weights, to achieve optimal performance

which can be challenging. In addition, MPC requires having access to an accurate

model of the system, and errors or inaccuracies in the model can affect the controller’s

performance [24]. Recent advances in artificial intelligence (AI) enable the design of

automated iCLON systems, that are able to learn and optimize neuromodulation con-

trol strategies autonomously, via closed-loop interaction with the nervous system with

minimal assumptions and requirements and may be used to address the algorithmic

challenges.

Finally, although recent advances in AI enable the design of iCLON systems that

are able to learn and optimize neuromodulation control strategies autonomously, there

are many challenges in designing iCLON systems and translating them in clinical set-

tings including software implementation, hardware integration, experimental valida-

tion, and clinical deployment in implantable devices. These complexities may make

designing iCLON systems out of reach for the broader biomedical research community

and may render designing systems that are not translatable into clinical settings. The

computational complexity of these classes of algorithms cannot be met with general-

purpose embedded systems and there is a need for specialized, yet programmable,

hardware.

1.3 Significance and contributions

Despite the challenges faced in developing and implementing the iCLON systems,

the potential benefits of utilizing them to treat neurological and psychiatric disorders

make this field of research and development highly promising. These systems hold the

potential to provide more targeted and effective treatment options, reduce the burden

6

of medication side effects, and improve the overall quality of life for patients. The

focus of this thesis is to develop a translational design paradigm that considers the

aforementioned requirements into account and facilitates quick design, prototyping,

and clinical translation of iCLON systems.

This thesis contributed to the development of multiple simulation environments,

pivotal in the design of novel and effective iCLON systems. The intricate and com-

plex nature of nervous systems, coupled with practical limitations and safety con-

cerns in interacting with them, presents significant challenges in designing successful

iCLON systems. To address this challenge and accelerate the development of new

and more effective iCLON systems, I developed and integrated multiple simulation

environments to accelerate the development of new and more effective iCLON sys-

tems. The simulation environments can provide a safe and controlled environment for

testing and prototyping such systems, and allow researchers to refine system param-

eters before clinical implementation. Furthermore, simulation environments enable

the reproducibility of results, facilitating the comparison of different systems and

methodologies. They also allow for the rapid prototyping of iCLON systems, en-

abling researchers to design, test, and optimize new systems quickly.

In addition to the simulation environments which are surrogates of the actual ner-

vous system, this thesis also introduces multiple control tasks replicating the actual

experimental and clinical applications for better reproducibility of the simulations and

easier translation into clinical practice. These tasks include designing a minimization

task to minimize tremor severity while avoiding adverse side effects for Parkinson’s

disease (PD) and essential tremor (ET) patients, a set-point tracking task for regu-

lating the heart rate (HR) and mean arterial pressure (MAP) for the treatment of

various cardiovascular diseases that include heart failure, arrhythmia, and hyperten-

sion, and a synchrony suppression task designed to suppress synchrony in a mean-field

model of the neural population which is known to be an underlying cause of many

7

adverse symptoms in PD patients.

Moreover, a control policy is at the core of iCLON systems which automatically

learns and adjusts the stimulation parameters in order to achieve the goals of a

desired neuromodulation control or optimization task. Most of the current stan-

dard approaches of treatment planning (control policy) are based on trial-and-error

open-loop testing and evaluation of the subject’s response to therapy. There have

been previous efforts to automate treatment planning using classical control strate-

gies which have multiple limitations as discussed in the previous section. Recent

advances in AI enable the design of automated iCLON systems, that are able to

learn and optimize neuromodulation control strategies autonomously, via closed-loop

interaction with the nervous system. One major contribution of this research is de-

veloping data-driven control strategies using optimization and reinforcement learning

techniques that are able to learn and optimize neuromodulation control strategies

autonomously, via closed-loop interaction with the nervous system. The developed

iCLON systems using novel data-driven control strategies has been designed and

evaluated in the context of multiple neuromodulation applications including an au-

tomated DBS programming framework for tremor, an automated closed-loop system

for regulation cardiovascular system with selective VNS, and an automated iCLON

system for synchrony suppression with adaptive DBS.

Additionally, this research presents a collaborative effort towards developing an

end-to-end translational platform, called Neuroweaver, for the design and imple-

mentation of iCLON systems. Utilizing an algorithm-hardware co-design approach,

the platform facilitates the exploration of brain-implantable devices capable of au-

tonomously learning and adapting control policies. AI and RL can lay a pathway since

they have proven to be effective in dynamic environments. However, the computa-

tional complexity of these classes of algorithms cannot be met with general-purpose

embedded systems and there is a need for specialized, yet programmable, hardware.

8

As such, a fixed architecture is incapable of accommodating design space explorations,

matching specific algorithmic needs, and/or operational constraints. Thus, this thesis

presents a template architecture that is a highly parametric design, capable of being

scaled down or scaled up before fabrication to match the requirements and enable

algorithm-hardware design exploration. After explorations and analyses, the frame-

work can generate a concrete design that can be deployed on Field Programmable

Gate Arrays (FPGAs) for prototyping/use in-vivo experimentation. This design is

also ready to be fabricated as a stand-alone programmable custom chip that can

be implanted. This platform aims to enable research and development of brain-

implantable iCLON systems for a wide community of neuroscientists, clinicians, and

engineers. Some lines of work in the development of Neuroweaver (as described in

sections 5.4, 5.5 and the results associated with them) are implemented by our col-

laborator, but are provided here to describe the comprehensive view of the research

platform. The dissertation contributed to the design of the platform and the devel-

opment of novel data-driven and interactive RL-based control strategies. In addition

to the success of the various RL-based iCLON control strategies in performing the

synchrony suppression task, these approaches are being used to explore the algorithm-

hardware co-design approach which enables the the design and development of novel

brain-implantable neuromodulation devices.

In summary, this research contributed to the advancement of automated interac-

tive iCLON systems from design and simulation to implementation. Novel interactive

data-driven control strategies that allow the iCLON systems learn and adapt through

interaction with the nervous system were designed. Data-driven and mechanistic mod-

els of the nervous systems under external stimuli were utilized for developing in-silico

simulation environments for prototyping and evaluating the performance of these

data-driven approaches. Additionally, software development efforts enabled clinical

implementation of my data-driven and patient-specific DBS programming approach

9

for further clinical evaluation of the system. Finally, the algorithm-hardware co-

design approach enabled the research and development of brain-implantable iCLON

devices using the proposed interactive AI-based strategies.

1.4 Thesis outline

This thesis comprises six chapters, besides the introduction and the conclusion, all

of the other chapters have been published or are under review in key journals and

conferences in the field (see section 1.5).

Chapter 2 presents the background of this thesis. This chapter provides an

overview of closed-loop neuromodulation systems, with a focus on control policy algo-

rithm development. This chapter provides insight on the recent trends in developing

closed-loop neuromodulation systems and emphasizes on the need for developing re-

search platforms that enable the research and development of intelligent closed-loop

neuromodulation systems.

Chapter 3 presents the design, implementation, and clinical validation of an auto-

mated DBS programming framework with safety constraints for tremor suppression in

patients with Parkinson’s disease and essential tremor. (Safe) Bayesian optimization

which is a sample-efficient global optimization method was used as the core of this

DBS programming framework to adaptively learn each patient’s response to DBS and

suggest the next best settings to be evaluated. This study demonstrated that fully

automated DBS programming framework for treatment of tremor is efficient and safe

while providing outcomes comparable to that achieved by expert clinicians.

Chapter 4 provides a novel interactive AI framework using RL which provides an

automated data-driven approach for closed-loop regulation of cardiovascular system

with selective VNS. The proposed VNS control policies was used to regulate HR and

MAP in computational models of rat cardiovascular system with minimal assumptions

10

and without the need for prior knowledge about the underlying physiological dynamics

of the system. The results from this study demonstrated the capabilities of the closed-

loop RL-based approaches to learn optimal VNS control policies and to adapt to

variations in the target set points and the underlying dynamics of the cardiovascular

system. The findings of this study highlighted the trade-off between sample-efficiency

and generalizability, providing insights for proper algorithm selection. In addition,

transfer learning was utilized to improve the sample efficiency of Deep RL algorithms

allowing the development of more efficient and personalized closed-loop VNS systems.

Chapter 5 presents an open-source end-to-end platform, called Neuroweaver, for

design and development of translatable embedded AI algorithms that enable intelli-

gent closed-loop neuromodulation devices autonomously to learn and adapt control

policies from interacting with the nervous system. Neuroweaver is an AI algorithm-

hardware co-design platform that provides an integrated environment for modular

designing and prototyping intelligent closed-loop neuromodulation control systems

and deploying AI pipelines in hardware through a Python-embedded cross domain

interface. Neuroweaver aims to build an end-to-end translational platform from de-

sign to implementation of iCLON systems to enable research and development of

iCLON systems for a broader community of neuroscientists, clinicians, engineers, and

developers.

1.5 List of publications

Journal Papers

• P. Sarikhani, H.-L. Hsu, M. Zeydabadinezhad, Y. Yao, M. Kothare, and B.

Mahmoudi, “Reinforcement Learning for Closed-loop Regulation of Cardiovas-

cular System with Selective Vagus Nerve Stimulation,” submitted to Journal of

Neural Engineering, 2023.

11

• P. Sarikhani, B. Ferleger, K. Mitchell, J. Ostrem, J. Herron, B. Mahmoudi,

S. Miocinovic, “Automated Deep Brain Stimulation Programming with Safety

Constraints for Tremor Suppression in Patients with Parkinson’s Disease and

Essential Tremor,” Journal of Neural Engineering, 2022. (link)

• P. Kathiravelu, M. Arnold, J. Fleischer, Y. Yao, S. Awasthi, A.K. Goel, A. Bra-

nen, P. Sarikhani, G. Kumar, M.V. Kothare, and B. Mahmoudi, “CONTROL-

CORE: A Framework for Simulation and Design of Closed-Loop Peripheral

Neuromodulation Control Systems,” IEEE Access, 2022. (link)

• J.K. Kim, B.H. Ahn, S. Kinzer, S. Ghodrati, R. Mahapatra, B. Yatham, S.T.

Wang, D. Kim, P. Sarikhani, B. Mahmoudi, and D. Mahajan, J. Park, H.

Esmaeilzadeh “Yin-Yang: Programming Abstractions for Cross-Domain Multi-

Acceleration,” IEEE Micro, 2022. (link)

• P. Kathiravelu, P. Sarikhani, P. Gu, B. Mahmoudi, “Software-Defined Work-

flows for Distributed Interoperable Closed-Loop Neuromodulation Control Sys-

tems,” IEEE Access, 2021. (link)

Conference Papers and Presentations

• P. Sarikhani, H. Xu, S.-T. Wang, S. Kinzer, Y. Zhu, J. Krasney, J. R. Manns,

H. Esmaeilzadeh, B. Mahmoudi, “Neuroweaver: a translational platform for

embedding artificial intelligent in closed-loop neuromodulation systems,” Neu-

roscience, 2023.

• Y. Zhu, S. Hossein, P. Sarikhani, P. Gu, S. Betters, S. Liu, R. Tweedy, P.

Kathiravelu, T. Pan, M. Treadway, B. Mahmoudi, “Nexus: an interoperable

and distributed platform for optimal closed-loop experimental design,” Neuro-

science, 2023.

https://iopscience.iop.org/article/10.1088/1741-2552/ac86a2/meta
https://ieeexplore.ieee.org/abstract/document/9739711
https://ieeexplore.ieee.org/abstract/document/9847104
https://ieeexplore.ieee.org/abstract/document/9541163

12

• P. Sarikhani, H.-L. Hsu, and B. Mahmoudi, “Automated Tuning of Closed-

loop Neuromodulation Control Systems using Bayesian Optimization,” 44th

Annual International Conference of the IEEE Engineering in Medicine and Bi-

ology Society (EMBC), 2022. (link)

• P. Sarikhani, H.-L. Hsu, J. K. Kim, S. Kinzer, E. Mascarenhas, H. Es-

maeilzadeh B. Mahmoudi, “Neuroweaver: Towards a Platform for Designing

Translatable Intelligent Closed-loop Neuromodulation Systems,” Bridging the

Gap: From Machine Learning Research to Clinical Practice, NeurIPS, 2021.

• P. Sarikhani, H.-L. Hsu, M. Zeydabadinezhad, Y. Yao, M. Kothare, B. Mah-

moudi, “Sparc: Adaptive Closed-loop Control of Vagal Nerve Stimulation for

Regulating Cardiovascular Function using Deep Reinforcement Learning: a

Computational Study,” Neuroscience, 50th Annual Meeting, 2021.

• P. Sarikhani, B. Ferleger, J. Herron, B. Mahmoudi, S. Miocinovic, “Au-

tomated Deep Brain Stimulation Programming with Safety Constraints for

Tremor Suppression,” 4th International Brain Stimulation Conference, 2021.

(link)

• P. Sarikhani, H.-L. Hsu, O. Kara, J. K. Kim, H. Esmaeilzadeh B. Mahmoudi,

“Neuroweaver: a Platform for Designing Intelligent Closed-loop Neuromodula-

tion Systems,” 4th International Brain Stimulation Conference, 2021. (link)

• P. Sarikhani, S. Miocinovic, B. Mahmoudi, “Towards Automated Patient-

Specific Optimization of Deep Brain Stimulation for Movement Disorders,” 41st

Annual International Conference of the IEEE Engineering in Medicine and Bi-

ology Society (EMBC), 2019. (link)

Patent

https://ieeexplore.ieee.org/abstract/document/9871006
https://www.brainstimjrnl.com/article/S1935-861X(21)00603-3/fulltext
https://www.brainstimjrnl.com/article/S1935-861X(21)00478-2/fulltext
https://ieeexplore.ieee.org/abstract/document/8857736

13

• S. Miocinovic, B. Mahmoudi, P. Sarikhani, “Systems and Methods for Au-

tomated Deep Brain Stimulation Programming,” U.S. Patent Application No.

17/315,129, filed on May 7, 2021. (link)

https://patents.google.com/patent/US20210346699A1/en

14

Chapter 2

A review on closed-loop

neuromodulation systems, with a

focus on control policy algorithms

2.1 Introduction

Neuromodulation stands at the intersection of science, medicine, and biomedical en-

gineering which encompasses implantable and non-implantable technologies for the

purpose of improving the quality of life and functioning of humans [1]. This is a

rapidly expanding field of medicine that involves a wide range of specialties and

affects hundreds of thousands of patients worldwide who suffer from various neu-

rological conditions including disorders of cardiac pacing [2], epilepsy[3], movement

disorders [4], chronic pain[5], psychiatric and neurobehavioral disorders[6], and many

more. The recent remarkable advancements in neurotechnology, underscore its poten-

tial for significant societal impact, necessitating tailored efforts to address its evolving

scientific, technical, and social needs.

Despite the widespread acceptance of neuromodulation devices, achieving ther-

15

apeutic efficacy heavily relies on time-consuming trial-and-error stimulation adjust-

ments by experts [7]. The open-loop trial-and-error process enables constant stimu-

lation regardless of patients’ symptoms and neurophysiological state. This arduous

process poses a significant challenge in their effective clinical deployment, limiting

the efficacy and accessibility of the therapy. The current approaches often lead to

sub-optimal stimulation settings [8, 9] due to the variations in individual recovery tra-

jectories, subjective symptom evaluation methods, and lack of a systematic approach

for stimulation adjustment with large parameter spaces. In addition, constant open-

loop stimulation may lead to over-stimulation and decrease in the device’s battery

lifespan [25, 26].

An alternative form of stimulation, known as closed-loop or adaptive stimula-

tion, has emerged to address the challenges of open-loop stimulation. Closed-loop

neuromodulation provides the benefit of continuously monitoring patients’ neuro-

physiological and/or behavioral activities. It allows for the on-demand adjustment of

stimulation parameters in response to alterations in the patients’ pathological states

and symptoms. Although conventional open-loop neuromodulation is a standard

treatment, many studies have demonstrated that closed-loop approaches are more

effective and efficient. Previous studies has reported improved therapeutic efficacy

of closed-loop DBS compared to standard open-loop approaches [25, 27]. A review

study [28] stated that adjusting stimulation parameters in closed-loop DBS could re-

duce adverse side effects induced by DBS in Parkinson’s disease. Additionally, recent

studies reported a reduction in the stimulation time by integrating closed-loop neu-

romodulation strategies, leading to less energy consumption of the neuromodulation

devices [25, 29]. The increased efficiency and reduced energy consumption leads to a

higher battery lifespan and fewer replacement surgeries.

Despite the numerous advantages of closed-loop neuromodulation strategies, there

are no commercially available closed-loop neuromodulation device that allows for de-

16

signing flexible and adaptive stimulation strategies. Since the FDA approval of com-

mercial DBS devices in 1997 for tremor treatment [30], they have been authorized for

treating other neurological disorders like Parkinson’s Disease [31], dystonia [32], and

obsessive-compulsive disorder [33]. The NeuroPace’s RNS system is a commercial

closed-loop DBS system which has been approved by FDA for treating drug-resistant

epilepsy [34]. The RNS system works by activating stimulation once a seizure-related

predefined pattern is detected in patients’ ECoG signal to disrupt the detected pat-

terns in brain signals and avoid seizures. Furthermore, Medtronic’s Activa PC + S is

an implantable sensing-stimulating DBS device designed for investigational purposes.

The Activa PC + S does not use the recorded LFP as a feedback signal to close the

loop, however, the user is able to compile a program to close the loop with limited

flexibility [26].

Designing and clinical implementation of closed-loop neuromodulation systems is

a challenging and multidisciplinary task that requires expertise from various back-

grounds including neuroscience, engineering, software, and hardware development.

The limited understanding of the dynamics of the nervous system with different time

scales in response to stimuli further complicates their effective clinical deployment.

Despite the challenges, the potential benefits of these systems for treating neurolog-

ical disorders make this a promising area of research and development. Developing

closed-loop neuromodulation systems holds the potential to revolutionize the stan-

dard of care in treatment-resistant neurological disorders. Hence, there is a growing

need to develop intelligent closed-loop neuromodulation (iCLON) systems that are

able to learn and optimize the neuromodulation control strategies autonomously, via

closed-loop interaction with the nervous system.

An iCLON system is composed of multiple essential component including the

signal acquisition, biomarker detection, optimization or control algorithm, stimulation

policy, and the hardware components to enable stimulation delivery (Figure 2.1b)

17

while software platforms enables seamless communication of these components [35,

36]. Although all of these components are crucial in designing a successful iCLON

system, the optimization and control algorithm is at the core of iCLON systems which

automatically learns and adjusts the stimulation parameters. In this narrative review,

I introduced the common closed-loop control strategies that has been used in the

literature. For the purpose of this review, the applications of deep brain stimulation

(DBS) and vagus nerve stimulation (VNS) are included. Based on the findings of

several recent studies of closed-loop DBS and VNS, I highlighted the recent trends in

developing novel iCLON systems and the need for developing research platforms to

facilitate designing novel and more effective approaches.

2.2 Introduction to closed-loop neuromodulation

control

Closed-loop control systems are designed to achieve and maintain a specified outcome

by autonomously adjusting their input parameters based on real-time feedback [37].

This self-regulating framework operates on the principle of a dynamic feedback loop

where the system’s output is continuously monitored and fed back into the system to

adjust the input, ensuring the output remains within the desired range. The input is

the variable that the system can manipulate directly, while the output is the response

that needs to be controlled, which could be either a single variable or a combination

of variables depending on the complexity of the system. In essence, closed-loop con-

trol systems are capable of adapting to disturbances and maintaining their function

without external intervention as opposed to open-loop systems which operate without

feedback and are thus unable to self-correct in the face of perturbations (Figure 2.2).

In neuroscience, closed-loop neuromodulation systems are aimed at regulating the

nervous system. Closed-loop neuromodulation systems, such as DBS and VNS, are

18

aimed to adjust therapeutic interventions in real-time, responding to neural signals

that signify changes in the patient’s condition. Here, the input takes the form of

electrical or optogenetic stimuli delivered to the target neural system, and the output

is the neurophysiological or behavioral response that represent the neural activity.

These iCLON systems not only deliver therapeutic stimulation but also must be

equipped with either internal sensors that monitor electrophysiological biomarkers or

external sensors to monitor behavioral biomarkers indicative of the current state of

the nervous system, thereby forming a feedback loop (Figure 2.1b).

A general design of iCLON systems consists of hardware modules to enable in-

teractions with the nervous system and algorithmic modules to enable intelligent

automation of the interactions to modulate and maintain the desired neural activity

(Figure 2.1b). The hardware modules consist of a sensing component called signal

acquisition in Figure 2.1b to measure the neurophysiological and/or behavioral re-

sponses of the nervous system to therapy and another component called stimulation

delivery in Figure 2.1b to apply stimulation or proper interventions when needed to

optimize therapeutic outcomes. The algorithmic component of the system needs to

be modular enough for easier modifications while replicating the clinical workflow for

better translatability of the system into clinical practice. In clinical practice, there is

typically a separation between patient assessment and treatment planning. Translat-

ing the clinical practice into an automated iCLON system motivates the partitioning

of the algorithmic component into a biomarker or objective identification module and

a control policy module. The biomarker or objective identification estimates the sub-

jects’ state or symptoms in response to therapy and replicates the clinical assessment,

while the control policy module replicates the treatment plan. A high-level overview

of the modular design of iCLON systems is depicted in Figure 2.1.

19

Figure 2.1: Comparison of (a) an open-loop versus (b) a closed-loop Neuromodulation
programming system.

2.3 Control strategies

2.3.1 Open-loop control

Open-loop also known as feed-forward control strategies operate on the principle of

generating commands for a system under control (plant) with the expectation of

achieving a specific output without the incorporation of feedback to modulate a com-

mand [38]. As illustrated in Figure 2.2, this control scheme relies on having access

to a perfectly defined model of the system’s behavior, assuming that the system will

respond predictably to the commands given. However, without the ability to mea-

sure the actual output or the error of the system, the open-loop controller lacks the

ability to adjust its commands in response to real-world variables such as noise or

measurement discrepancies. This assumption of a flawless system model is a signifi-

cant limitation of open-loop control, as it does not account for the unpredictable and

often complex variations that can occur in practical scenarios, making it less adaptive

and reliable when precision and adaptability are crucial.

20

2.3.2 Closed-loop control

Closed-loop control strategies, also known as feedback control, introduce a critical

component into the system: sensors. These sensors are intrinsic to the system’s

ability to self-regulate, as they continuously monitor the system’s output in response

to the commands issued by the controller. If there is any deviation from the expected

output the sensors provide an error signal that quantifies the discrepancy. This error

signal is then utilized by the feedback controller to adjust subsequent commands, fine-

tuning the system’s behavior. This dynamic process of monitoring and adjustment

is mathematically sophisticated, with various algorithms available to optimize the

controller’s response [37, 39]. Through this continual loop of action, measurement,

and correction, closed-loop control systems achieve greater accuracy and stability,

adapting in real-time to ensure the desired outcome is maintained. A block diagram

of a closed-loop control strategy is depicted in Figure 2.2.

Figure 2.2: Open-loop and closed-loop control strategies. The open-loop control strategy is
demonstrated with solid lines.

21

Figure 2.3: Overview of an adaptive control strategy.

2.3.3 Adaptive control

Adaptive control [40] strategies integrate with both open-loop and closed-loop sys-

tems, using sensor data to tailor the controller’s actions to real-time environmental

changes or shifts within the underlying dynamics of the system. This approach al-

lows for a flexible control strategy that compensates for the lack of complete system

knowledge and is especially advantageous when dealing with non-stationary systems.

Although not always optimal, adaptive controllers excel by tuning parameters to

maintain stability and convergence with evolving system’s characteristics (Figure 2.3).

2.3.4 Model-based control

Model-based control strategies hinge on the utilization of an accurate mathematical

representation of the system to predict its behavior and formulate control commands

accordingly [41]. This comprehensive model encapsulates the dynamics of the system,

including its responses to various inputs and disturbances. By incorporating this

knowledge, the control algorithm can anticipate the system’s reactions to different

22

control actions and adjust the inputs to achieve the desired outcome. The strength

of model-based approaches lies in their predictive power, which enables foresight and

planning in the control process. However, this also implies that inaccuracies in the

model predictions can lead to sub-optimal control performance. When the model

precisely reflects the system’s actual dynamics, model-based control can achieve high

levels of efficiency and accuracy, making it ideal for systems where the underlying

processes are well-understood and can be reliably captured.

2.3.5 Model-free control

Model-free control strategies represent a paradigm shift in control systems, designed

to operate effectively without a comprehensive mathematical model of the system

they regulate. These strategies rely on real-time data and adaptive algorithms to

make appropriate control decisions, learning directly from interactions with the sys-

tem. This approach is particularly useful in complex or highly uncertain environments

where developing an accurate system model is challenging or impractical. By employ-

ing techniques such as reinforcement learning [42], neural networks [43], or fuzzy logic

[44], model-free controllers can deduce the optimal control actions through continuous

trial and error and pattern recognition, thus improving their performance over time.

This methodology not only bypasses the need for exact model of the underlying dy-

namics of the system but also enhances flexibility, enabling control systems to adapt

to the changes.

2.4 Classical control algorithms in iCLON systems

Control policies can be implemented by one or multiple control strategies as described

in section 2.3. In this section, the common control algorithms used to design closed-

loop DBS or VNS systems are provided.

23

Figure 2.4: Model-based vs. model-free control strategies. The model-free approach is
demonstrated with solid lines.

2.4.1 On-Off and threshold-based controller

The on-off control is activated when a measured variable or a target biomarker

is passed a predefined threshold. This simple control scheme has been in many

closed-loop neuromodulation studies and is capable of preventing brain from over-

stimulation. Authors in [29] employed an on-off control scheme which was was uti-

lized to modulate electrical stimulation with the objectives of suppressing locomotion

and inducing freezing when hippocampal theta oscillations, measured from local field

potential (LFP) signals, exceeded a specified threshold. Numerous studies designed

an on-off closed-loop control system based on beta band frequency for synchrony sup-

pression in PD [45, 46, 47]. Authors in [25, 48, 49] designed a threshold-based on-off

controller based on beta frequency amplitude using subject-specific threshold values.

Other studies have designed phase-responsive closed-loop DBS for tremor suppression

[50, 51].

24

2.4.2 Proportional-integral-derivative control

The Proportional Integral-Derivative (PID) controller [52] is a very common approach

in designing closed-loop systems which has been widely explored in the context of

closed-loop neuromodulation systems. The PID controller operates through three

key components: the proportional element, which adjusts the control action in di-

rect proportion to the error signal; the integral element, which targets the reduction

of steady-state errors by implementing low-frequency compensation through an in-

tegrator; and the derivative element, which enhances transient response by offering

high-frequency compensation via a differentiator. This three-tiered approach equips

the PID controller with a comprehensive mechanism to offer a simple yet efficient

solution to many applications [52].

Authors in [53] presented a PID controller for synchrony suppression of neural

activity. Proportional (P) and proportional-integral (PI) closed-loop controllers for

amplitude and frequency modulation were investigated in [54] for regulating network

beta-band activity whilst accounting for clinical considerations. A P controller based

on beta power has been used in [55] to reduce motor symptoms of PD in parkinsonian

rats. An adaptive P controller is presented in [56] in which the gain of a feedback

controller is continuously adjusted to sustain suppression of pathological beta-band

oscillatory activity at a desired level. A multivariable control architecture based on

PID control is presented in [57] to selectively target suppression of either tremor or

subthalamic nucleus beta band oscillations. In addition, model-based algorithms that

operate based on PID feedback has been studied in [58, 59]. I introduced a data-driven

approach to automated tuning of PI controller to modulate the dominant frequency

of neural activity in a computational model [60]. I used Bayesian optimization for

the automated parameter tuning of a PI neuromodulation controller.

25

2.4.3 Delayed-feedback controller

The idea of the delayed-feedback control (DFC) algorithm is to apply a feedback signal

that is proportional to the difference between the current state and a delayed state

of the system [61]. This delay element is crucial as it enables the control mechanism

to effectively adjust for deviations from desired behavior. The DFC algorithm has

been used fro the suppression of pathological oscillations in a neural mass model [62].

To restore the desynchronized dynamics in networks of oscillatory neurons, multiple

model-based closed-loop stimulation methods have been developed including single-

site linear [63, 64], multi-site linear [65, 66] DFC algorithm. In addition, non-linear

DFC has been studied in other studies to restore desynchronized dynamics of neural

activity [67, 68, 69, 70], where the LFP signal was used as a feedback to adjust the

stimulation amplitude using linear or nonlinear DFC.

2.4.4 Fuzzy logic controller

A Fuzzy Logic Controllers (FLCs) are adaptive and versatile control system intro-

duced in [71, 72] that has garnered popularity due to its their adaptability and high

performance. Unlike traditional control systems, FLCs utilize linguistic or qualita-

tive information for its control algorithm,allowing them to manage multivariable and

inconsistent processes, where the exact measurement of input and its effect is diffi-

cult. FLCs rely on fuzzy sets and fuzzy reasoning and their design involves creating

“if ... then ...” rules based on historical data and expert knowledge. This flexible

framework enables FLCs to make effective decisions in complex real-world scenarios

where traditional binary logic does not work.

FLCs have been utilized in the literature to design closed-loop DBS for seizure

suppression [73]. This study has utilized adaptive fuzzy terminal sliding mode con-

trol (AFTSMC) for eliminating the oscillatory spiking behavior in childhood absence

epilepsy in a computational model consisting of cortical, thalamic relay, and reticular

26

nuclei neurons. Authors in [74] used a robust multi-input multi-output AFTSMC

approach to control of membrane potential of thalamic neuron populations through

continuous adaptive DBS current applied to the thalamus. A previous study [75]

presented a multi-disease closed-loop DBS device that can detect the disease using

a classifier and adaptively deliver electrical stimulation pulses based on the disease

state. Both the classifier and controller are designed using the fuzzy algorithm [75].

A combined control strategy using intelligent single input interval type-2 fuzzy logic

(iSIT2-FL) and non-integer sliding mode control (SMC) was presented in [76] to con-

trol Parkinson’s tremor and reduce the value of stimulation intensity efficiently.

2.4.5 Model predictive control

Model Predictive Control (MPC) is a control methodology characterized by its optimization-

driven approach [41]. In MPC, the control strategy aims to minimize a cost function

for a constrained dynamical system over a finite, receding horizon. At each discrete

time step, the MPC controller acquires or estimates the current state of the system

and employs this information to compute a sequence of control actions that optimally

minimize the cost over the prediction horizon. This computation involves solving a

constrained optimization problem utilizing an internal model of the plant and the

current system state as inputs. However, unlike traditional control methods, MPC

only implements the first control action from the calculated sequence while disregard-

ing the subsequent ones. This process then iterates at each time step, allowing MPC

to adaptively and optimally control dynamic systems in real-time.

MPC has been widely explored in designing iCLON systems. MPC has been

shown to be effective in minimizing patient symptoms and device power consumption

based on identifying patient-specific models of symptom response to DBS [77]. These

patient-specific models was used to formulate a model predictive control strategy for

closed-loop DBS.

27

A recent study developed a closed-loop brain-computer interface system of predic-

tive neuromodulation for treating major depressive disorder (MDD) [78]. This study

used a biophysically plausible ventral anterior cingulate cortex (vACC)-dorsolateral

prefrontal cortex (dlPFC) neural mass model of MDD to simulate nonlinear and

multiband neural dynamics in response to DBS [78] and integrated a MPC strategy

that takes the estimated MDD brain state as the feedback signal and optimally ad-

justs DBS parameters. Nonlinear MPC (NMPC) is an extension of linear MPC which

was used in [79] to design a closed-loop stimulation strategy in a delayed neural fields

model of parkinsonian STN-GPe network. Authors in [80] used a NMPC strategy

for for adaptive adjustments of deep brain stimulation parameters in basal ganglia-

thalamic network. Other studies investigated the use of NMPC in the context of

closed-loop VNS for regulating heart rate and blood pressure [81, 82].

2.5 Recent trends in developing novel closed-loop

neuromodulation systems

The majority of the literature employed classical control theory approaches as de-

scribed in the previous section. Although the classical control approaches has proven

to be effective in many studies, they have multiple limitations that can hinder their

efficacy in many complex and dynamic systems including the nervous system. These

limitations include difficulties in handling nonlinearities, uncertainties and noise of

measurement, and time-varying dynamics, as well as the need for accurate mathe-

matical models of the system, which are often challenging or impossible to obtain for

the complex neural dynamics. Data-driven optimization and control approaches, on

the other hand, are suitable for situations where classical control methods struggle

by learning directly from data, allowing for adaptive control strategies that do not

rely on precise models of the underlying dynamics of the target nervous system under

28

neuromodulation interventions.

Some data-driven optimization strategies like Bayesian optimization [83] eliminate

the need of having access to underlying equations of the system to develop automated

closed-loop neuromodulation systems. Bayesian optimization is a non-parametric

global optimization approach that is suitable for optimizing black-box objective func-

tions that are unknown or expensive to evaluate. Bayesian optimization does not

require prior knowledge regarding patients’ response to neuromodulation therapy

and tries to find the optimal setting in a purely data-driven manner and through

interactions with the nervous system. Bayesian optimization has been successfully

adopted for developing closed-loop neuromodulation applications in the context of

optimizing the experimental design with closed-loop real-time functional magnetic

resonance imaging (fMRI) [84], optimizing electrical stimulation for seizure control

[85], searching through a large transcranial alternating current stimulation (tACS)

parameter space based on relative judgment [86], and for predicting optimal DBS

parameters using fMRI data for PD patients [87]. The authors in [88] introduced a

semi-automated approach to optimize DBS parameters in PD patients for minimizing

rigidity and provided preliminary evidence on the utility of using Bayesian optimiza-

tion in determining optimal DBS parameters. In addition, Bayesian preference learn-

ing was used in [89] for identifying personalized optimal stimulation patterns based

on the participant’s expressed preference for stimulation settings. The authors in [90]

introduced a Bayesian adaptive dual control in a computational model of Parkinson’s

disease to reduce the beta power. In chapter 3, I designed, implemented and clinically

evaluated an automated deep brain stimulation programming for tremor suppression

in patients with Parkinson’s disease and essential tremor [60]. These data-driven

optimization strategies have been successfully implemented in various applications

of closed-loop neuromodulation systems. However, they share a common underlying

assumption regarding the objective function’s stationary, implying that its behavior

29

remains relatively constant within the region of interest. This assumption is essential

for the acquisition function to effectively estimate regions of high uncertainty and is

not applicable to dynamic systems like the cardiovascular system.

Alternatively, machine learning and deep learning techniques can capture com-

plex system behaviors, adapt to changing conditions, and handle nonlinearity and

uncertainty effectively. Integration of ML approaches has been widely explored in the

literature to detect biomarkers of the disease state. However, they have been mainly

used in conjunction with a simple classical control strategies to design iCLON sys-

tems. A recent study [91] used a logistic regression used a logistic-regression model

to detect freezing of gait and used the model predictions as a control signal. This

study combined this ML-based biomarker detection approach combined with a simple

decision-table controller [91]. A similar combined approach is used in [92] to design a

binary classifiers for extracting patient-specific features from cortical signals and de-

termining when volitional, tremor-evoking movement is occurring to alter stimulation

voltage in real time. The control strategy is a simple condition-based controller [92].

A neural network-based design of an on-off adaptive control for Deep Brain Stimula-

tion in movement disorders is presented in [93]. To eliminate the need of having an

accurate model of the neural dynamics, a recent study [81] employed a data-driven

modeling approach using long short-term memory (LSTM) neural networks. Au-

thors in [81]demonstrated the utility of an LSTM model by generating synthetic data

from the computational cardiac model introduced in [94] and developed an MPC

controller to regulate heart rate (HR) and mean arterial pressure (MAP). However,

this approach still requires access to a substantial amount of experimental data to

sufficiently cover the stimulation parameters space annd accurately model the effect

of VNS parameters on HR and MAP, which is not practical due to the limitations in

experimental data collection.

RL, in particular, provides a framework for learning optimal control policies

30

through interactions with the nervous system, making it well-suited for cases where

classical control approaches are not efficient or lack predefined control laws. These

data-driven approaches have the potential to enhance control strategies, making them

more versatile and robust across a wide range of neuromodulation applications. De-

spite the recent success of RL in many applications, its utility in the context of

closed-loop neuromodulation has not been extensively explored. A previous study

presented a simulation environment, called the ContinuousFlappyBird, to resemble

the dynamic environment in PD patients for early development of adaptive DBS

systems using RL approaches [95]. Authors in [96] presented a closed-loop DBS tech-

nique for rehabilitation in PD patients in which a RL algorithm is used to adaptively

tune the parameters of a PID controller. In chapter 4, I presented a novel interactive

AI framework using RL which provides an automated data-driven approach to design

closed-loop VNS control policies with minimal assumptions and without the need for

prior knowledge about the underlying physiological dynamics of the cardiovascular

system.

2.6 The need for developing research platforms to

enable research and development of implantable

iCLON systems

Designing intelligent closed-loop neuromodulation (iCLON) control strategies involves

creating a modular design capable of seamlessly integrating with in-vivo experimental

setups and computational approaches from multiple domains. Most of the current im-

plantable neuromodulation devices offer limited computational capabilities and does

not support designing adaptive stimulation policies to account for the underlying com-

plex and varying dynamics of the nervous system. recent advances in AI may enable

31

designing intelligent neuromodulation systems, that are able to learn and optimize

neuromodulation control strategies autonomously, via closed-loop interaction with

the nervous system. However, the computational complexity of these class of algo-

rithms cannot be met with general-purpose embedded systems and there is a need for

specialized, yet programmable, hardware. In chapter 5, I introduced an open-source

platform, dubbed Neuroweaver, for end-to-end designing, prototyping and deploying

iCLON algorithms without the complexities of translating AI algorithms to imple-

mentation.

32

Chapter 3

Automated deep brain stimulation

programming with safety

constraints for tremor suppression

in patients with Parkinson’s

disease and essential tremor1

3.1 Introduction

Deep brain stimulation (DBS) surgery has become a standard treatment for neu-

rological disorders such as Parkinson’s disease (PD) and essential tremor (ET), to

ameliorate tremor when medications are insufficient. DBS significantly improves both

symptoms and quality of life, however to achieve therapeutic benefit, stimulation often

requires time consuming programming by an expert [7]. DBS devices enable consid-

erable customization of stimulation parameters including contact configuration (cath-

1© IOP Publishing. Reproduced with permission. All rights reserved.

33

ode and anode selections), current amplitude, pulse width and frequency allowing for

customization of stimulation to account for variations in electrode placement, differ-

ences in local anatomy, symptom type, and severity [97]. Typically, a programming

session involves a trial-and-error evaluation of therapeutic response (clinical benefit

and unwanted side effects) at numerous stimulation settings. This is often performed

over several sessions, which can be a challenge for patients who live far away from

specialty care. In addition, evaluation of clinical response can be challenging given

the subjective nature of visual observation to determine if tremor and other motor

symptoms are responding to stimulation. Therefore, designing objective markers of

therapeutic response to DBS is needed. Recently DBS device innovations (8-contact

electrodes, current fractionation, widened pulse width range and anodic stimulation)

have significantly expanded the parameter space making programming even more

complex [12]. These limitations suggest a need for an automated and patient-specific

DBS programming framework that facilitates DBS programming without requiring

an expert clinician.

We previously presented an automated DBS programming framework using an

exhaustive grid search-based sampling strategy that mimics heuristic clinical DBS

programming [14]. Although this automated framework was effective in programming

DBS devices, sampling similar settings for all patients using a grid-search sampling

method is a suboptimal approach since each patient responds to DBS differently [98].

Moreover, the number of required samples to converge to an optimal DBS setting was

high, and we hypothesize that more advanced sampling and optimization techniques

could improve the process. Two recent studies have assessed the efficacy of a closed-

loop optimization algorithm for DBS programming using external motion sensor-

based motor assessments in patients with PD [99, 100]. The details of the proprietary

algorithm have not been published and the system required presence of a clinician to

manually change the DBS settings based on algorithm recommendations and if side

34

effects occur. In addition, the algorithm-based DBS suggestions have only been tested

with monopolar stimulation settings which may be suboptimal for some patients.

In this study, we combined the knowledge from clinical decision-making strategies

with Bayesian optimization, to develop an automated real-time DBS programming

framework that enables sample-efficient and patient-specific DBS programming to

simultaneously ameliorate tremor and avoid side effects. Bayesian optimization has

been successfully adopted for developing closed-loop neuromodulation applications in

the context of optimizing the experimental design with closed-loop real-time func-

tional magnetic resonance imaging (fMRI) [84], optimizing electrical stimulation for

seizure control [85], searching through a large transcranial alternating current stim-

ulation (tACS) parameter space based on relative judgment [86], and for predicting

optimal DBS parameters using fMRI data for PD patients [87]. The authors in [88] in-

troduced a semi-automated approach to optimize DBS parameters in PD patients for

minimizing rigidity and provided preliminary evidence on the utility of using Bayesian

optimization in determining optimal DBS parameters. In addition, Bayesian prefer-

ence learning was used in [89] for identifying personalized optimal stimulation pat-

terns based on the participant’s expressed preference for stimulation settings. The

authors in [90] introduced a Bayesian adaptive dual control in a computational model

of Parkinson’s disease to reduce the beta power.

In addition, several recent studies explored DBS programming in closed-loop

paradigm using tremor measurements. The authors in [101] investigated the use of

isostable amplitude using computational models of ET patients to optimize DBS. An-

other study modelled the dynamics of patient tremor and their phase response curve

to investigate the effect of phase-locked DBS in tremor suppression and proposed a

closed-loop phase tracking stimulation regimens [21]. Several studies explored the

utility of surface electromyography (EMG) and acceleration in tremor prediction and

the design of a simple on-off DBS controller in closed-loop [102, 103, 104, 105, 106].

35

The authors in [107] used electrocorticography for sensing movement intention along-

side with worn accelerometers and EMG sensors to deliver responsive closed-loop

stimulation to treat tremor in a closed-loop fashion.

To the best of our knowledge Bayesian optimization with safety constraints has

not been tested in the context of clinical DBS programming for tremor suppression.

We hypothesized that implementation of a Bayesian optimization [83] algorithm for

DBS programming for tremor suppression would have high efficiency (fewer samples

than the grid search) and that safe programming (avoidance of uncomfortable side

effects) can be achieved in an automated system using safe Bayesian optimization

algorithm. We further provided clinical assessment of the closed-loop DBS program-

ming framework in a cohort of 15 PD and ET patients [108, 109].

3.2 Patient selection criteria and clinical experi-

ment procedure

Patients with ET or tremor-dominant PD were recruited from a large academic move-

ment disorders clinic. Patients had been implanted with Medtronic Activa neurostim-

ulator systems for at least six months and had DBS settings optimized during stan-

dard clinical programming visits prior to study enrollment. The Emory University

Institutional Review Board (IRB) approved the study and all patients signed written

informed consent.

At the beginning of each experimental session, DBS was turned off, and clinical

setting stimulation effects washed out for 10 minutes. Patients were asked to hold

their tremor or PD medications for at least 12 hours prior to testing to avoid medica-

tion fluctuations during optimization. DBS optimization was performed in one lead

for each patient, contralateral to the arm with more severe tremor. The non-tested

lead was kept off during optimization unless rest tremor was too bothersome to sit

36

comfortably. DBS implantable pulse generator (IPG) was reprogrammed to create

4 groups (4 contact configurations with amplitude control) that the optimization al-

gorithm could explore (at the beginning of the experiment, the four groups are set

as monopolar contact configuration, where the IPG case is set as an anode and each

of the four contacts are set as a cathode, and if ‘advanced’ stimulation was needed

based on algorithm’s decision scheme, we set the four groups as bipolar or multipolar

contact configurations). Stimulation pulse width and frequency were not changed

during optimization and were the same as the patient’s clinical setting. For phase

I experiments, clinician determined maximum allowable amplitude for each stimula-

tion group that could be safely sampled by the automated optimization algorithm

(to prevent the automated system from inducing severe side effects). In phase II

experiments, the maximum allowable amplitude was set to 5V for all groups, and the

safe Bayesian optimization algorithm was utilized to avoid inducing severe side effects

(additional safety feature allowed rapid stimulation shut off if necessary).

During optimization, two standard clinical motor tasks were performed at each

stimulation setting to assess tremor, depending on each patient’s tremor profile (rest,

arms extended, arms flexed, or finger-nose motion). A commercial smartwatch (LG-

W100) worn on patient’s wrist was used to determine a tremor score using a previously

validated classifier [14] and this score was used as input into the optimization algo-

rithm (Figure 3.1). A clinician blinded to the stimulation setting also scored the

tremor during optimization using Fahn-Tolosa-Maŕın rating scale (FTM) [110] to fur-

ther assess previously validated tremor classifier [4]. At each stimulation setting, the

patient reported stimulation-induced side effects (typically tingling or muscle con-

tractions in the face, arm or leg) and rated them on a scale from 0-3 (none, transient

or mild, moderate, severe). At the end of the optimization session, DBS IPG was

set to the best ‘automated setting’ and a clinical tremor exam and objective watch

tremor measurement were performed after a 5-minute wash-in (examiner and patient

37

Figure 3.1: Overview of the automated DBS optimization framework for tremor program-
ming. After performing the initial baseline tremor evaluation tests without stimulation, at
each iteration, the software automatically sets the next DBS setting to be tested followed
by 10 seconds wash-in period, followed by tremor evaluation tests each for 10 seconds. The
recorded IMU data and side-effect reports are used to update the surrogate GPR model and
optimizer suggests the next best sample to be tested. Before evaluating the next suggested
DBS setting, the stopping criteria module determines whether the optimum has been found
or advanced stimulation is needed.

were aware of the stimulation condition). Clinical tremor exam for both PD and

ET patients was a subset of FTM scale and included rest, postural, and action arm

and leg tremor contralateral to DBS lead, handwriting (if dominant hand tested) and

spiral and line drawings. DBS IPG was then set to patient’s ‘clinical setting’ and

after another 5-minute wash-in period, tremor was reassessed by exam and watch

(for the first two patients, tremor assessment at clinical setting was done at the be-

ginning of the visit, but protocol was changed for subsequent subjects to facilitate

direct comparison between automated and clinical settings).

38

3.3 Automated DBS programming framework: soft-

ware design

We performed these automated DBS programming experiments using a custom soft-

ware application developed for a Windows PC (Figure 3.2). This application collected

patient-reported side effect data and inertial measurement unit (IMU) data from the

smartwatch. Side effects were entered through a user interface and constituted a total

of 13 common acute side effects of DBS therapy and included reports of magnitude

(“0: none,”, “1: mild”, “2: moderate”, “3: severe”), type (“paraesthesia”, “muscle

spasm”, “speech”, “vision”, “dizziness”, “dyskinesia”), and body location (“head”,

“arm”, “leg”, “torso”). IMU data, constituting 3 dimensions each of accelerometer

and gyroscope data for a total of 6 channels, was streamed to the study PC via Blue-

tooth at 100Hz for processing and feature extraction. All data was logged on receipt

in CSV format, as were DBS stimulation parameters.

The software application made use of a previously developed C# application

programming interface (API) [111, 112, 113] for interfacing with the Nexus-D, a

Medtronic research communication bridge that allows an application to update IPG

stimulation parameters. IMU data collection and interfacing with the DBS device

through the Nexus-D was conducted through this application. Time-series IMU data

review and side effect inputs were conducted using an application written in Python

to take advantage of superior data processing and capacity to deploy advanced ma-

chine learning and optimization techniques. Lab streaming layer, a publicly available

library for cross-platform port handling and communication of time-series data in

research applications, formed the interface between these applications.

Using this combination of side effect data and tremor severity estimate, a quanti-

tative therapeutic value was derived for each DBS setting using Python. The details

of this derivation are described in more detail in the following sections. Updated

39

Figure 3.2: A detailed schematic demonstrating the software design of the automated DBS
programming system. The software application receives IMU data over a Bluetooth connec-
tion from the smartwatch, as well as side effects reported by the patient through a graphical
user interface and send the information to the Python section of the application. The cal-
culation of the objective measure (surrogate function) and choice of the next DBS setting
(acquisition function) are handled within the Python section. The C# software application
receives the stimulation settings from the Python application and sends stimulation com-
mands to the Nexus-D, which communicates with patient’s implanted Activa IPG.

settings were forwarded to the C# application. Both the therapeutic value of the

preceding DBS settings and the recommended next settings were recorded at this

point. Following a brief final review and safety check, these settings were then com-

municated via USB connection to the Nexus-D. The C# application was also capable

of manual override in case of emergency.

40

3.4 GPR modelling of the effect of DBS settings

using a quantified objective measure

Gaussian process regression [114] is a nonparametric, Bayesian regression approach,

which is well-suited for small datasets and provides the measurement uncertainty

for the predictions. In this study, the patient-specific GPR models used the Matern

kernel function [83] and were trained using the cumulatively collected samples D =

{(xi, yi)|i = 1, . . . , n} from each patient, where xi were stimulation parameters, i.e.,

stimulation amplitude and stimulation contact configuration and yi represented the

corresponding combined objective measure as defined in equation (4). A GP is a

nonparametric model that is fully characterized by its mean and covariance function

as following

f(x) ∼ GP (m(x), K(x, x
′
)) (3.1)

where we can define the mean function as m(x) = E[f(x)] and the covariance function

as K(x, x
′
) = E[(f(x)−m(x))(f(x

′
)−m(x

′
))]. Here, we used Matern kernel function

as in

KMATERN3(x, x
′
) = σ2

fexp(−
√

3r(1 +
√

3r)) + σ2
nI, (3.2)

where r2 = (x− x
′
)TΛ(x− x

′
) and Λ is the diagonal matrix of squared length scales.

The output variance σ2
f , the length-scales, and the noise variance σ2

n are hyperparam-

eters of the covariance function. By incorporating the knowledge from the training

data (prior distribution in equation 3.1), we can make predictions at any new test

point (x∗, f∗), where f∗ = f(x∗). The predictive conditional distribution of f∗ given

the training data and test input is calculated as in

f∗|X, y,X∗ ∼ N(f̄∗, cov(f∗)), (3.3)

41

where f̄∗ = E[f∗|X, y,X∗] = K(X∗, X)[K(X,X) + σ2
nI]−1y, cov(f∗) = K(X∗, X∗) −

K(X∗, X)[K(X,X) + σ2
nI]−1K(X,X∗), and σ2

n denotes the noise variance.

This GPR modelling technique is used as a surrogate model for Bayesian opti-

mization described in the following section. We employed the GPflow library [115] for

implementing GPR models. We defined a combined quantitative measure of clinical

efficacy consisting of a quantitative objective tremor score, measured by the smart-

watch IMU and patient-reported side-effects, with the goal of maximizing tremor

improvement and minimizing side-effects. The quantification measure of DBS setting

value, JDBSi
, is calculated based on the results of the tremor assessment tests while

the patient’s IPG was active in a particular DBS setting DBSi as in

JDBSi
= Jtremori + JSE (3.4)

Each DBS setting DBSi is evaluated based on the tremor score improvement,

Jtremori , which is a baseline subtracted tremor severity score as in equation 3.5, and

JSE which is the patient-reported side effect severity scores defined as in equation 3.6.

A predictive model of clinical tremor assessment from IMU data was trained and

validated in a previous study [14], where features from accelerometer and gyroscope

data were used to train an ordinal multinomial logistic regression classifier based on

the neurologist’s provided tremor ratings [14]. To directly compare the performance

of our Bayesian automated DBS optimization framework with the state-of-the-art

automated DBS programming framework introduced in [14], which uses a grid-based

search approach, we used the same classifier [14] in order to avoid introducing new

parameters to the system. The output of this classifier was used to calculate the

tremor score improvement, Jtremori , as in equation 3.5.

The term (tremorDBSi
) in equation 3.5 is the average watch tremor severity score

(predicted from the classifier) over the selected tasks while the patient’s IPG was

42

active with the ith DBS setting DBSi. The term tremor0 is the average watch tremor

severity scores (predicted from the classifier) over all selected tasks with inactive IPG

that reflects patients’ baseline tremor score obtained at the beginning of optimization

session.

Jtremori = tremorDBSi
− tremor0 (3.5)

The magnitude of the overall baseline subtracted tremor score (Jtremori) shows the

level of change in the average tremor score comparing to the baseline and a negative

sign reflects tremor improvement compared to the baseline. The lower the Jtremori ,

the more clinical benefit the DBSi setting provides.

In addition, each DBS setting DBSi is penalized by the patient-reported side

effect severity scores. We defined the term JSE in equation 3.4 as follows based on

patients’ reports.

JSE =



0 if no SE

1 if mild SE

4 if moderate SE

inf(5 in practice) if severe SE

(3.6)

Watch tremor severity scores are on a scale of 0 to 4, so the Jtremori term could

get any value in the [−4, 4] interval depending on the baseline score and the tremor

score in the DBSi setting. Specifically, Jtremori = 0 means no tremor improvement,

Jtremori < 0 reflects a tremor score improvements compared to baseline, and Jtremori >

0 corresponds to cases where the watch tremor score is worse than the watch tremor

score at baseline. If the patient experiences some level of side effect, we penalize

Jtremori by adding a positive value to it. If the side effect is mild, we penalize it by

1, meaning that a DBS setting with a score of 1 for tremor improvement with mild

43

Figure 3.3: GPR model mean surface of the combined objective measure (including baseline-
subtracted watch tremor score and side effect score) varies across patients. (a) Mean surfaces
for two patients with grid-search sampling strategy from a prior study [4]. The sampling
resolution is 1V amplitude increments. (b) Mean surfaces for two patients from the current
study with sampling using Bayesian optimization that evaluates more samples in areas
with greater chance of tremor improvement and with a finer resolution (0.2V amplitude
increments). The surfaces are color-coded with the value of the combined objective measure
where blue shows negative objective values reflecting tremor improvement compared to
baseline either without or with mild side effect and red shows positive values reflecting that
DBS settings are not effective or side effects are pronounced. The black circles represent
sampled DBS settings during the automated DBS optimization. The red dashed lines show
the clinician-defined safe exploration boundaries of the parameter space.

side effect will have a total score 0 which is similar to a setting with no improvement

and no side effects. If the side effect is moderate, we penalized it by 4 because any

amount of tremor improvement with moderate SE will be considered as untenable for

clinical use (resulting in a non-negative JDBSi
score). If the SE is severe, we penalize

it even more to prevent the optimizer from testing that area again.

The quantified objective measure in equation 3.4 was calculated for each DBS

setting tested on the patients and the cumulatively collected samples were used to

train a GPR model that models patients’ response to DBS. The mean surfaces of

GPR models of the combined objective measure defined in equation 3.4 capture both

the effect of baseline-subtracted watch tremor score and the side effect severity scores

simultaneously and justifies the use of the combined objective measure for Bayesian

optimization to ameliorate tremor while avoiding side effects (Figure 3.3). Further-

more, the mean surface of the GPR model varies across patients (Figure 3.3). Specif-

ically, the general shape of the surface, the location of the optima, and the maximum

tolerable boundaries vary between individuals reflecting their unique response to stim-

44

ulation profile. These variations are partly due to disease type and tremor severity,

DBS lead position (which varies even for patients with the same target nucleus),

and individual anatomy. This subject variability necessitates designing a patient-

specific DBS optimization framework with an adaptive sampling strategy, while still

remaining sample-efficient. Due to variability in patients’ responses, a grid search-

based approach with 1V amplitude increments for each contact configuration that

was utilized in a previous similar study [14] was hypothesized to be inefficient (Fig-

ure 3.3.a). The Bayesian optimization which we have utilized in this study evaluates

more samples in areas with greater chance of tremor improvement and searches for

the optimal point with a finer resolution of 0.2V increments in amplitude for each

contact configuration (Figure 3.3.b).

3.5 DBS programming algorithms

3.5.1 Bayesian optimization

We formulated the automated DBS programming as a global optimization problem

over the stimulation parameter space, D, as in:

min
x∈D

f(x), (3.7)

where f(x) was the objective measure that represented the desired clinical out-

come, and D is the two-dimensional space of the DBS parameters including stimula-

tion amplitudes and contact configurations. One of the main challenges in solving this

problem was that the functional relationship between the DBS parameter space and

clinical outcome was not known. Bayesian optimization is a non-parametric global

optimization approach that is suitable for optimizing black-box objective functions

that are unknown or expensive to evaluate.

45

The objective function f(x) ,which represents a mapping between the DBS param-

eters and the clinical outcome, is unknown and does not have a closed form. Although

f(x) is unknown at every x ∈ D, we can observe its measurements at sampled DBS

settings (the objective measure as described in equation (3.4) is a measurement of

f(x) at the suggested DBS settings DBSi by the optimizer). Bayesian optimization

proceeds by maintaining a probabilistic belief over f(x) by building a GPR surrogate

model as described in section 3.4 using the cumulatively collected data from each

patient. The GPR model prescribe a prior belief over the possible objective functions

given the cumulatively collected data. In a previous study we characterized the func-

tional relationship between the clinical outcome and DBS parameters using the GPR

modeling approach [98].

The Bayesian optimization algorithm is based on a sequential decision-making

process to search for the optimal stimulation parameters in two steps. First, it builds

a surrogate probabilistic model of the latent objective function f(x) based on the

available data at each iteration and sequentially retrain the model as more data is

observed. Second, it proposes the next DBS setting to be evaluated by optimizing

a surrogate-dependent acquisition function. The acquisition function assesses the

utility and the informativeness of the candidate points for the next evaluation of

the objective measure (f(x)) by leveraging the uncertainty in the posterior to guide

exploration [83].

During the burn-in phase of Bayesian optimization, the objective function was

evaluated at predefined stimulation settings in a randomized order (at 40% and 80%

of maximum amplitude for each contact configuration). Then, a GPR prior based

on these initial evaluations of the burn-in phase was employed. Thereafter, a new

stimulation setting was sequentially selected by optimizing the acquisition function to

be evaluated at next iteration. At each iteration, we augmented the dataset, updated

the surrogate GPR prior, and optimized the updated surrogate-dependent acquisition

46

function to suggest the next samples to be tested in the patient until convergence.

Our stopping criteria is explained in section 2.6. For the first round of experiments,

with amplitude limits determined by a clinician, we used the expected improvement

(EI) acquisition function [116] which automatically balanced exploration versus ex-

ploitation. The EI acquisition function calculates the expectation of improvement

over the current best observation with respect to the predictive distribution of the

surrogate model and is defined as in:

EI(x) = E[max(fmin −m(x), 0)] = (fmin −m(x))Φ(z) + σ(x)ϕ(z) (3.8)

,where ϕ(.) and Φ(.) are the standard normal density and distribution functions,

respectively. In equation (3.8), z = (fmin−m(x))
σ(x

), m(x) is the predictive mean and

σ(x) is the predictive standard deviation of a point x ∈ D and fmin is the optimum

observed value. We implemented the EI acquisition function using the GPflowOpt

library [117].

The global optimization problem defined in equation (3.7) is straightforward to

solve using Bayesian optimization algorithm if the parameter space is fully defined.

To show the feasibility of Bayesian optimization as the core of the automated DBS

optimization framework during the first phase of the experiments, the maximum

amplitude for each contact configuration is defined at the beginning of the experiment

by the expert neurologist and will stay fixed during the experiment as shown in red

dashed boundaries in Figure 3.4. The minimum exploration boundary of stimulation

amplitude in the parameter space is set to 0.5V (that is the dashed horizontal red

line at 0.5V in Figure 3.4); meaning that the optimizer will not explore the effect of

DBS settings with amplitudes smaller than 0.5V .With more samples being collected

at each iteration, the underlying GPR model gets updated. At each iteration, the

updated GPR model is used to build the acquisition function and get the next DBS

47

Figure 3.4: Example of patient-specific adaptive sampling of Bayesian optimization (patient
02). Each panel shows the mean surface of the GPR model that updates after each iteration.
The value of the combined objective measure is color-coded. The dashed dark red lines
demonstrate the clinician-defined maximum tolerable exploration boundaries. The black
circles show the previously collected samples and the green square show the sample being
tested at each iteration. The black circle outside the red dashed lines at (0,0) demonstrates
the baseline, where the patient’s IPG was inactive. The sample suggestions are automated
by the DBS optimization framework. Samples are more densely distributed around the more
promising regions of the parameter space (more tremor improvement with fewer side effects).
This adaptive behavior of the DBS optimization framework makes it patient-specific; that is
the samples are adaptively suggested based on the patient’s response at previous iterations.

setting suggestions to be evaluated at the next iteration. DBS settings are adaptively

sampled during the DBS optimization session based on patient’s response in a patient-

specific manner (Figure 3.4).

Since the objective function f(x) is unknown, our Bayesian optimization algorithm

does not assume convexity. As a result, if multiple optima are found, the setting with

the lowest amplitude was selected as the optimum automated setting to ensure lower

power is used when possible.

3.5.2 Safe Bayesian optimization

The DBS optimization problem is safety-critical, as there is a safety constraint for

each DBS setting. The safety constraints are defined by the side effects that patients

48

may experience for each DBS setting. In the second phase of the experiments, instead

of using the clinician-defined safe exploration boundaries, we modified the problem

statement as a global optimization problem with safety constraint as in:

min
x∈D

f(x); such that gi(x) < 3 for i = 1, 2, 3, 4, (3.9)

where gi(x) is the magnitude of patient-reported side effect for each DBS setting x

and i is the contact configuration number. Since the safety boundaries for each con-

tact configuration are different, a separate GP model was trained for each contact

configuration based on the patient-reported side-effects. To solve the above con-

straint optimization problem, we used safe Bayesian optimization [118, 119] which

is an extension of regular Bayesian optimization. We used the GPflow [115] and

GPflowOpt [117] libraries for our implementation of the algorithm.

Safe Bayesian optimization combines a GP model of the safety constraints with

discretization of the parameter space to define a set of DBS parameters Sn, called the

safe set, with a high probability to satisfy the safety constraints [118]. The safe set

was defined by the upper bound of the safety GP models (gi(x)) and contained the

points where the GP upper bound was smaller than the safety threshold. Our param-

eter space for the DBS programming was discrete, with four contact configurations

and stimulation amplitudes with 0.2V increments. The safe Bayesian optimization

algorithm defined two sets of parameters within the safe set called potential mini-

mizers and expanders. The set Mn ⊆ Sn contains potential minimizers that is the

parameters that could potentially obtain the minimum within the current safe set.

The minimizers set (Mn) was defined by the mean and confidence interval of the

GPR model of the objective measure, f(x), and contained the subset of safe param-

eters in which the lower confidence bound of the GPR model was lower than the

upper confidence bound at the best measurement at each iteration. The expander

49

set Gn ⊆ Sn is considered to be the points that if tested, their measurements would

lead to values in the lower confidence bound and hence potentially expand the safe

set [119]. In this paper, we directly used the confidence bounds of the GPR models

to define the aforementioned sets, which is mainly used in practice with limited prior

knowledge of the underlying objective and safety models (considers the Lipschitz con-

stant to be infinity). This modified version has been shown to be more aggressive

in expanding the safe set [119]. Hence, to further ensure safety, we considered the

maximum allowable amplitude expansions based on the maximum severity of the

patient-reported side effects for each contact configuration. The safe set would only

expand by the minimum of the safe set suggested by the safe Bayesian optimization

algorithm and the maximum allowable constant defined as follows. In general, the

lesser the reported side effect, the more the parameter space could expand. In other

words, the expanded space gets closer to the safety boundaries as the patient begins

to experience mild side effects by increasing the stimulation amplitude. Hence, the

expansion should be done with more caution. Another consideration in selection of

the constant was that patients were more likely to experience more severe side ef-

fects during the monopolar stimulation settings than advanced stimulation settings.

Therefore, the constant during the monopolar stimulation was selected to be smaller.

If the patient experienced no side effects for a particular contact configuration, then

the constant was set to 1V for monopolar stimulation and 1.5V for the advanced

stimulation settings, respectively; these amplitudes represent the maximum allowed

jump in the stimulation amplitude for each contact configuration. If the maximum

side effect severity level was mild, then the constant was set to 0.5V for monopo-

lar stimulation and 0V for advanced stimulation settings (zero because we aimed for

no side effects at optimal stimulation setting during advanced stimulation; during

monopolar stimulation mild side effects were tolerated during optimization as results

were informative for selection of advanced stimulation configurations). If the patient

50

experienced moderate or severe side effects either during the monopolar or advanced

stimulation, the constant was 0V and the expansion of the stimulation amplitude was

stopped for the corresponding contact configuration.

Safe Bayesian optimization starts with evaluating a set of initial parameters that

is known to be safe, which defines the initial safe parameter space. Here, we started

with testing 1V for each of the four contact configurations as the initial safe set of

parameters (Sn). The initial evaluations were used to train GP models on the safety

constraints which were used to safely expand the parameter space at each iteration.

After the safe expansion of the parameter space, the next DBS settings to be tested

were suggested by optimizing the surrogate-dependent acquisition function at each

iteration. As mentioned above, we used GPR modeling technique to model the con-

straint/safety functions. A common assumption in training GPR models is that a GP

prior is zero-mean. However, this assumption did not apply to the DBS programming

problem since the side effect severity report was a monotonically increasing function

of stimulation amplitude. Hence, we fitted a second-degree polynomial function of

the collected samples and used that as the prior mean of the safety GP models. In

addition, in phase II of the experiments, we changed the acquisition function to min-

value entropy search [120] as it was more sample efficient and had a more exploratory

behavior that is required given the nature of Safe Bayesian optimization algorithm

with gradual expansion of the parameter space.

A visual representation of the sampling behavior and safe exploration boundary

expansion of the automated framework is presented for some sample iterations in

Figure 3.5 for patient 14. Each figure shows the mean surface of the GPR model that

gets updated as we collect more data at each iteration. Note that the safe boundaries

shown in dashed red line are updated after evaluating the suggested DBS setting at

each iteration.

In both phases of the experiments, we considered some modifications of the reg-

51

Figure 3.5: Safe Bayesian optimization during phase II of the experiments (patient 14).
Selected iterations during monopolar stimulation. The mean surface of the GPR model and
safe stimulation exploration boundaries (dashed lines) update as more data are collected
at each iteration. The value of the combined objective measure is color-coded. The black
circles represent collected samples and the green square is the current sample being tested
at each iteration. The black circles outside the red dashed lines at (0,0) demonstrates the
baseline, where the patient’s IPG was inactive.

ular (safe) Bayesian optimization algorithm to account for the requirements of the

automated DBS programming in practice. First, we considered a discrete parame-

ter space including four contact configurations and stimulation amplitude with 0.2V .

The optimization of the acquisition function is performed by evaluating the acquisi-

tion function at every setting in the parameter space at each iteration and the next

best sample is selected using the selection of the best strategy. One challenge in

designing Bayesian optimization in discrete parameter spaces is the suggestion of re-

peated samples. In order to avoid suggesting repeated samples, we used a rank and

select strategy; that is if the best sample suggested by optimizing the acquisition

function is already sampled, the next best sample will be suggested.

52

Figure 3.6: High-level schematic of the decision-making process of the automated DBS
optimization framework. The darker gray area is the schematic of the advanced optimization
suggestion algorithm modelled after the clinical decision-making process.

3.6 Stopping criteria and advanced optimization

Our automated programming framework combined prior knowledge from standard

clinical DBS programming approaches with Bayesian optimization. Clinical DBS

programming is guided by clinical decision-making strategies to maximize stimulation

benefit and minimize side effects [121]. During clinical DBS programming sessions,

the clinician often performs a monopolar screening, where each of the four electrode

contacts are set as cathode and IPG case as anode. Clinicians evaluate the tremor

suppression benefits and side effects by incrementally increasing the amplitude for

each of the four monopolar contact configurations. If a monopolar configuration

leads to a satisfactory tremor suppression without side effects, this setting is chosen

for chronic stimulation. If not, contact configuration may be changed to one of

the advanced optimization settings (bipolar, double-monopolar, and double-bipolar)

based on patients’ responses to monopolar stimulation (Figure 3.6).

Similar to the standard clinical approaches, the proposed automated DBS pro-

gramming framework started with the monopolar screening with four different contact

configurations. The monopolar optimization was terminated either once the stopping

53

criteria was satisfied or the predefined budget of maximum 30 iteration was exhausted

(to avoid patient fatigue). The stopping criterion was defined as no objective score

improvement of 0.3 or greater for five consecutive iterations. The threshold of 0.3

was defined by our expert movement disorder neurologist that reflected a clinically

meaningful score improvement.

After completing the monopolar stimulation trials, the advanced stimulation mod-

ule used the data that was collected during the monopolar stimulation to determine

if advanced stimulation was necessary, and which contact configurations should be

utilized (Figure 3.6). If there was at least one DBS setting with sufficient thera-

peutic effect and without any side effect (acceptable monopolar setting), then the

monopolar setting with the lowest average tremor score was selected as the optimized

setting. Otherwise, if there was sufficient therapeutic effect with the presence of side

effects, then bipolar stimulation was suggested. The sufficient therapeutic effect was

dependent on the baseline score. If the average baseline tremor score was less than

1, then sufficient therapeutic effect was defined as 50% improvement in watch tremor

score. Otherwise, having a watch tremor score of less than 1 for all of the tremor

assessment task was considered as having sufficient therapeutic effect. In cases where

there was no setting with sufficient therapeutic effect and no side effect for amplitudes

less than 4V , then double-monopolar stimulation was suggested. If there was no set-

ting with sufficient therapeutic effect and side effects at less than 4V were present,

double-bipolar stimulation was suggested. If no acceptable monopolar setting was

identified, the advanced stimulation suggestion script (darker gray area in Figure 3.6)

provided four advanced contact configurations based on clinical heuristics. Since the

number of possible advanced stimulation settings is high and due to the limitations

of the Medtronic research communication bridge, we could only test four contact con-

figurations at each round of automated DBS programming. We used the advanced

stimulation suggestion script to use the clinical heuristics and narrow down the num-

54

ber of advanced settings to 4 best settings to be tested (as depicted in the blue box

in Figure 3.6). Testing new settings continued until either the stopping criteria was

satisfied, or the maximum number of iterations was reached.

3.7 Results

We recruited 15 patients (9 with tremor-dominant PD and 6 with ET) with the

average age of 709 years (range 57−85) to undergo the automated DBS optimization.

All ET patients and one PD patient had leads implanted in ventral intermediate

nucleus of thalamus (VIM), while the remaining PD patients had leads implanted in

subthalamic nucleus (STN). The average time since DBS lead implantation was 5219

months (range 30 − 105 months). We evaluated the performance of the automated

DBS optimization framework in two phases. In the first phase, the software used

the clinician-defined maximum tolerable amplitudes for each contact configuration to

define the safe boundaries of the parameter space. The main goal of the first phase

of the experiments was to evaluate the performance of the automated framework in

finding the optimized settings using Bayesian optimization algorithm. Data from

10 patients (5 PD and 5 ET) were acquired for the first phase (table 3.1). We

further expanded the work and used safe Bayesian optimization to gradually expand

the parameter space and automatically discover a safe and tolerable parameter thus

avoiding severe side effects as reported by the patient. Seven patients (5 PD and 2

ET; 2 from phase 1) underwent the automated DBS optimization in the second phase

of experiments (table 3.2).

3.7.1 Quantifying tremor response to stimulation

The automated DBS optimization framework automatically quantifies and calculates

the target objective measure that includes tremor scores and side effects (Figure 3.1).

55

Table 3.1: Clinical characteristics and automated programming experiment outcome during
the phase I of the Experiments using the clinician-defined maximum safe boundaries of the
parameter space.

Patient
ID

Age,
Sex

Dx DBS
Target

Time since
DBS surgery
(months)

Time since
selection of

clinical setting
(months)

Tremor
Score* at
Baseline

Clinical DBS
Setting

Tremor
Score* at
Clinical
Setting

Automated
DBS Setting

Tremor Score*
at Automated

Setting

Number of Tested
DBS Settings

Patient
Prefer-
ence

1 63,
M

PD R STN 34 28 7
C+3-, 3.5V,
90µs, 130Hz

1
C+3-, 2.3V,
90µs, 130Hz

1
Monopolar = 15,
Advanced = NA

Same

2 71,
F

PD L STN 42 12 17
2-3+, 4.6V,
90µs, 160Hz

8
C+1-, 1.9V,
90µs, 160Hz

1
Monopolar = 17,
Advanced = NA

Same

3 61,
M

PD R STN 63 17 12
C+2-, 3.5V,
60µs, 165Hz

9
C+1-, 0.7V,
60µs, 165Hz

7
Monopolar = 15,
Advanced = NA

Automated

4 82,
F

ET L VIM 54 1 24
1-3+, 2.4V,
90µs, 130Hz

3
C+1-, 1.1V,
90µs, 130Hz

7
Monopolar = 15,
Advanced = NA

Clinical

5 79,
M

ET R VIM 54 1 22
9-11+, 2.5V,
60µs, 190Hz 11

C+10-, 2.3V,
60µs, 190Hz

6
Monopolar = 14,
Advanced = NA

Automated

6 76,
M

ET L VIM 37 11 9
1-3+, 2.5V,
90µs, 170Hz

3
1-2+, 3.5V,
90µs, 170Hz 3

Monopolar = 15,
Advanced = 14

Same

7 77,
M

ET L VIM 43 1 18
1-2-0+, 4.6V,
60µs, 170Hz

7
C+1-, 1.1V,
60µs, 170Hz

10
Monopolar = 15,
Advanced = NA

Clinical

8 76,
F

ET L VIM 63 1 19
2-3+, 3.6V,
90µs, 160Hz

4
2-1+, 4V,

90µs, 160Hz 4
Monopolar = 15,
Advanced = 15

Same

9 69,
M

PD R STN 70 5 12
0-1-2+, 4V,
60µs, 140Hz

5
1-0+, 3.7V,
60µs, 140Hz 7

Monopolar = 15,
Advanced = 15

Clinical

10 57,
M

PD R STN 42 1 24
0-3+, 4.7V,
90µs, 130Hz

5
2-1+, 4.7V,
90µs, 130Hz 5

Monopolar = 15,
Advanced = 15

Same

* Clinician administered FTM tremor scale subset including rest, postural (extended and flexed),
and action arm tremor contralateral to optimized DBS lead, handwriting (if dominant hand
tested), and drawings (max score 28-32).

Table 3.2: Clinical characteristics and automated programming experiment outcome phase
II with automated discovery of the safe parameter space using safe Bayesian optimization
algorithm.

Patient
ID

Age,
Sex

Dx DBS
Target

Time since
DBS surgery
(months)

Time since
selection of

clinical setting
(months)

Tremor
Score* at
Baseline

Clinical DBS
Setting

Tremor
Score* at
Clinical
Setting

Automated
DBS Setting

Tremor Score*
at Automated

Setting

Number of Tested
DBS Settings

Patient
Prefer-
ence

11 67,
F

ET R VIM 108 2 16
0+1-3+, 5.2V,
90µs, 150Hz

4
3-2+, 4.8V,
90µs, 150Hz 3

Monopolar = 13,
Advanced = 13

Automated

10 57,
M

PD R STN 45 3 28
0-3+, 4.7V,
90µs, 130Hz

7
2-3+, 4.8V,
90µs, 130Hz 6

Monopolar = 17,
Advanced = 13

Same

12 60,
M

PD L STN 49 21 23
0-1-3+, 4.9V,
90µs, 180Hz

6
C+0-1-, 2.2V,
60µs, 180Hz

7
Monopolar = 28,
Advanced = 19

Same

5 79,
M

ET L VIM 58 4 26
2-3+, 3.7V,
120µs, 190Hz 9

2-1+, 3.8V,
120µs, 190Hz

7
Monopolar = 13,
Advanced = 13

Clinical

13 61,
M

PD R STN 49 6 26
1-2+, 4.4mA,
90µs, 130Hz

2
3-1+, 4V,

90µs, 130Hz 0
Monopolar = 21,
Advanced = 15

Automated

14 85,
M

PD L VIM 33 2 32
0-2+, 2.8V,
90µs, 130Hz

11
0-2+, 3.6V,
90µs, 130Hz 7

Monopolar = 15,
Advanced = 14

Automated

15 68,
M

PD L STN 63 3 15
C+3-, 2.6V,
60µs, 150Hz

4
C+2-, 1.6V,
60µs, 150Hz

3
Monopolar = 17,
Advanced = NA

Same

* Clinician administered FTM tremor scale subset including rest, postural (extended and flexed),
and action arm tremor contralateral to optimized DBS lead, handwriting (if dominant hand
tested), and drawings (max score 28-32).

56

Figure 3.7: Additional validation of tremor score classifier [14]. Blue dots represent the
average watch tremor scores plotted against the average clinician tremor score for selected
tremor assessment tasks (rest, arms extended, arms flexed, finger-to-nose motion). Each
dot represents one DBS setting that was tested during the experiments. The black solid
line and the grey shaded area show the mean and standard deviation of the watch tremor
scores. The red solid line is the line y = x and the r-squared value of the fit to the y = x
line is 0.69.

We confirmed that the tremor classifier [14] performed well in this cohort of patients

and its estimated tremor scores matched well with clinician scores (r2 = 0.69; Fig-

ure 3.7). The clinician tremor score includes only tremor assessment tasks during

the automated programming sessions and was used to further validate watch tremor

classifier. The clinician administered FTM tremor scale is a more comprehensive

examination consisting of a subset of FTM scale items used to evaluate tremor sever-

ity before and after automated programming session. Only the automated classifier

tremor scores were used as the input into the optimization algorithm.

3.7.2 Comparison of the clinical settings and the automated

settings

There was a statistically significant improvement in tremor scores from baseline (no

stimulation) to the best automated setting, using both the objective watch scores

and blinded clinician scores during both phases of the experiment (Figure 3.8) (the

57

clinician tremor score is the score for selected tremor assessment tasks during the

experiment where the clinician was blinded to the DBS settings). The patients also

underwent a comprehensive tremor assessment exam at baseline (no stimulation), best

automated setting, and their chronic clinical settings (tables 3.1 & 3.2 and Figure 3.9).

We demonstrate that best automated setting and clinical setting significantly reduce

the tremor to the same extent (in other words, residual tremor at automated setting

was comparable to tremor at clinical setting) (Figure 3.9).

In phase I experiments with the clinician-defined safe and tolerable exploration

boundaries, two patients preferred the automated setting, five had no preference,

and three preferred their clinical settings. In phase II experiments with automated

discovery of the safe exploration boundaries, three patients preferred the automated

setting, three had no preference, and one preferred the clinical setting.

3.7.3 Speed of convergence of the automated DBS program-

ming system

We hypothesized that our Bayesian DBS programming framework would improve

sample efficiency compared to the grid search-based method in terms of the number

of stimulation settings had to be tested to arrive at the optimal solution (not in terms

of the required time). The grid-search approach closely resembled clinical monopolar

mapping (testing all contacts and amplitudes, 0−5V , in 1V increments). We could not

compare the current algorithm directly against clinical monopolar mapping in terms

of time since these patients had already been clinically optimized. In order to provide

a fair comparison between the two approaches, we only considered the number of

required samples during the monopolar programming. Grid search algorithm tested

in a prior study (in a different cohort of patients) required 25.2±4.8 samples on

average [14], while Bayesian automated programming in this study used 15.1±0.7

(phase I), and 17.7±4.9 samples (phase II).

58

Figure 3.8: Clinical efficacy of automated DBS programming. Comparison of the pa-
tients’ tremor severity scores at baseline stimulation off condition and the optimal au-
tomated setting measured by the watch (left column) and the optimal automated set-
ting scored by a blinded clinician (right column). Top row refers to phase I (clinician-
defined safe amplitudes), and bottom row to phase II (safe Bayesian optimization algo-
rithm) experiments. The asterisk shows the conditions with statistically significant differ-
ence (∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001). The tremor score is the sum of two tremor
assessment tasks utilized during the automated DBS optimization session (max 8).

59

Figure 3.9: Clinical efficacy of automated DBS programming compared to clinical setting.
Comparison of the patients’ tremor severity scores at baseline (no stimulation), the best
automated setting, and previously established best clinical setting during phase I (a) and
phase II (b) based on the clinician scores during the comprehensive clinical exam. The com-
prehensive exam included the following items from FTM tremor scale: rest, arms extended,
arms flexed, and finger-to-nose motion arm tremor contralateral to DBS lead, handwriting
(if dominant hand tested), two spiral drawings, and line drawing. Both the patient and
clinician were aware of the stimulation condition. The asterisk shows the conditions with
statistically significant difference (∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001).

60

3.8 Discussion

In this pilot study, we describe and evaluate an automated and patient-specific DBS

programming framework for tremor treatment in 15 patients with PD or ET. A fully

automated system with the Nexus-D communication bridge was developed that auto-

matically activates the patients’ IPG with the optimizer recommended DBS settings.

We showed that DBS programming framework using Bayesian optimization was able

to find DBS settings that were comparable in efficacy to clinical settings (previously

determined by expert clinician programmers). Bayesian optimization was more effi-

cient than previously tested grid-search method. We also describe how to use safe

Bayesian optimization to automatically find safe stimulation boundaries. Finally, by

incorporating the information from monopolar stimulation and clinical heuristics, we

were able to add advanced DBS contact configurations (bipolar, double monopolar)

that some patients require for optimal therapy into the automated DBS programming

workflow and perform further optimization using four advanced DBS contact configu-

rations. These developments may reduce the need for an expert clinician programmer

to be present at the DBS programming session to perform DBS device control, symp-

tom and side effect assessment, DBS programming decision making, and defining the

safe and tolerable amplitudes for each contact configuration.

A physician can manually explore any number of settings; they are limited by

the time available for a clinical visit and the patient’s ability to actively participate.

The purpose of the algorithm was to test only the settings most likely to yield the

optimal solution. Because of the type of DBS device that the patients were implanted,

the algorithm was limited to amplitude changes in 4 contact configurations during

each optimization, so we tested 4 configurations during monopolar stimulation, and

additional 4 during advanced stimulation if monopolar did not yield the optimal

setting. Future DBS devices may provide more flexible interfaces for automated

stimulation adjustments allowing wider parameter exploration.

61

Bayesian optimization has unique properties that make it a suitable choice to

be employed at the core of an automated DBS optimization framework. Bayesian

optimization is a sample-efficient and global optimization algorithm that is suitable

for cases where the objective function is unknown or expensive to evaluate (the pa-

tients’ response to DBS settings are unknown prior to testing and evaluating patients’

responses to DBS settings is expensive from optimization standpoint as prolonged ses-

sions are fatiguing which may compromise the accuracy with which tremor is assessed

during testing). We confirmed our hypothesis that Bayesian optimization was more

sample-efficient than the state-of-the-art grid-search sampling strategy introduced

in [14] which closely resembled clinical monopolar mapping and directly compared

the results in terms of the number of required samples to be tested to arrive at the

optimal solution. Other recent studies investigated the utility of developing an ob-

jective measure for the automated selection of DBS parameters [122] and introduced

a computer-guided DBS programming framework that is designed based on the clin-

ical DBS programming strategies for the monopolar survey [123] using a grid-search

approach resembling the standard clinical approaches. Their sampling strategy was a

grid-search approach with 0.5V and 0.3V amplitude increments, respectively, leading

to an even larger number of required samples to be tested compared to the grid-search

approach with 1V increment introduced in [14]. Two recent clinical papers compared

their proprietary algorithms with the standard of care (SoC) DBS programming in

terms of the number of steps (stimulation settings) required to be tested to arrive at

an optimal solution [99, 100]. The SoC was designed to be similar to the grid-search

based approach. However, we could not conduct a direct and fair comparison with

approaches used in [99, 100] since their parameter space was different (8 monopolar

contact configurations and stimulation current (mA)). Due to very different work-

flows in SoC and the proposed closed-loop algorithm, the authors did not perform

significance testing between the two programming modalities for time consumption.

62

Here, I could not compare the current algorithm directly against clinical monopolar

mapping in terms of time since these patients had already been clinically optimized.

Another recent work [124] used Bayesian optimization to develop a semi-automated

approach for optimizing DBS parameters and provided preliminary data that shows

the efficacy of Bayesian optimization in DBS programming. Here, we presented and

evaluated the utility of Bayesian optimization in a fully automated DBS programming

framework for tremor in a cohort of 15 PD and ET patients.

I further showed that employing safe Bayesian optimization algorithm enables un-

supervised determination of safe stimulation parameters. Safe Bayesian optimization

is less sample efficient in nature than the regular Bayesian optimization as it grad-

ually expands the parameter space. To improve the sample efficiency, I used ideas

from [119] to balance the tradeoff between exploring, expanding, and optimizing in

addition to using a more efficient acquisition function (min-value entropy search). I

showed that although safe Bayesian optimization in phase II experiments required

more samples to converge than the regular Bayesian optimization in phase I, it is still

more sample-efficient than the grid-search approach.

Incorporating clinical heuristic into the optimization pipeline allowed us to effi-

ciently explore advanced contact configurations (bipolar, double monopolar). The

number of possible contact configurations beyond simple monopolar is very large and

I could only test a relatively small number given that patients fatigue after prolonged

and repetitive testing. As a result, I used information obtained from monopolar

stimulation to determine which contact configurations should be tested during ad-

vanced stimulation using clinical guidelines programmed into the programming plat-

form rather than allowing the optimizer to make this decision. Integrating other

algorithms that are more efficient for high-dimensional parameter spaces or other

methods such as image-guided programming [124] to more efficiently reduce the di-

mensionality of the parameter space before performing the DBS optimization is a

63

promising approach for future applications.

Our DBS programming framework relied on automated tremor detection using a

wrist-worn sensor which has challenges [125], but we demonstrate that some of the

issues can be overcome through GPR modeling. Tremor assessment tasks need to

be synchronized with IMU recordings during the assigned tasks so patients need to

be instructed to start and stop at appropriate times. Furthermore, artifact and vol-

untary movements unrelated to assigned tasks are often included in raw IMU data

which affects the prediction of watch tremor scores, while an expert clinician pro-

grammer could detect those unrelated movements and ignore them while making

judgment about the tremor severity scores. In this study, we monitored the patients

and gave instructions to minimize the unrelated movements (including repeating a

task if performed incorrectly), however variability in task performance (e.g. speed

of movement) particularly during kinetic tremor assessment led to score predictions

that were at times inconsistent with clinical scoring. Another challenge with auto-

mated tremor detection is that tremor severity can change depending on patient’s

internal state; for example, there can be less tremor when relaxed, and more tremor

when nervous or talking, regardless of DBS settings. For example, tremor intensity

during the optimization session varied significantly in patients 03 and 09 regardless of

applied stimulation. A clinician can easily incorporate this information into clinical

decision-making however an external sensor is agnostic to patient’s internal state. To

compensate for imperfections with tremor scoring, we employed the GPR model as

the surrogate model of Bayesian optimization which is robust to noise of observations.

Our results confirmed that the automated DBS programming method could identify

effective DBS settings even in the presence of the measurement and prediction (i.e.

classifier) noise. GPR model takes the uncertainty of observations into account and

the model can be trained in a patient-specific manner which makes it suitable for the

DBS optimization application.

64

The GPR modeling could be integrated in clinical decision-making process as a

visualization technique that provides insight into the patient’s response to DBS even

without utilizing the fully automated platform. This would be particularly useful

when addressing symptoms other than tremor which are even harder to quantify using

sensors (e.g. bradykinesia or rigidity in PD). This visualization technique could pro-

vide insight into the spatial information (location of the active contacts) for clinicians

that may not be straightforward to capture using the traditional clinical programming

approaches. There have been attempts to improve visualization of DBS programming

outcomes for clinicians especially with more complex segmented electrodes (e.g. [126]).

We propose that GPR models could be used to not only track clinical responses but

also provide suggestions for the clinicians for further DBS parameter exploration.

The success of the optimization algorithm will also depend on the choice of tremor

assessment tests which are performed at each stimulation setting. In this study, we

used two out of four available tremor tests (rest, postural extended, postural flexed,

and kinetic) that were integrated into the automated programming software system,

based on patient’s clinical presentation. Although the limited set of tremor assessment

tests was sufficient to evaluate DBS response in majority of patients, some patients

may require other types of tests including spiral and line drawing or handwriting tests

to effectively find an optimal DBS setting. For example, Patients 04 and 07 had worse

tremor control on automated setting than on clinical setting, likely because they had

more tremor on handwriting and spiral drawing tasks, which were not tested during

automated programming session.

The automated system relied on patient reports of side effect severity as part of

the combined objective measure for Bayesian optimization. Although this approach

has been effective in avoiding parameters that lead to side effects in our study, this

is a potential limitation since some patients find it difficult to give a score to the side

effects that they experience. Developing automated side effect detection techniques

65

could be possible for certain types of side effects (e.g. muscle contractions measured

by electromyography or stimulation outside DBS target volume estimated by compu-

tational DBS activation models [124]), and could further streamline implementation

of automated programming.

The objective measure defined in this study is based on aggregation of two terms

including the baseline subtracted tremor score and patient-reported side effect severity

score. This works since the two aggregated terms are in a comparable range. If

another out of range term needs to be added to the objective measure, methods like

adding a multiplier should be used to map the new term to the same range. Moreover,

the work in this study can be extended to multi-objective optimization to incorporate

more advanced objective measures of the clinical outcomes.

Finally, the proposed automated DBS programming framework could be benefi-

cial for remote DBS programming for patients with limited access to the clinic. For

example, a smartwatch could be mailed to the patient prior to a remote program-

ming session or patient’s own phone could provide accelerometer signal to quantify

tremor. The optimization algorithm could be implemented as a standalone system

providing guidance to the remote programmer, or even incorporated into the remote

programming software.

3.9 Conclusion

This study developed and tested automated and patient-specific closed-loop DBS

programming framework based on Bayesian optimization. This approach was more

efficient than grid search method employed in clinical practice, and it yielded com-

parable clinical outcomes for tremor reduction as traditional clinical programming.

Using such system would eliminate the need for an expert clinician programmer to

be present at the DBS programming sessions. This would be particularly valuable for

66

patients without easy access to DBS center such as those living in remote geographical

locations or patients receiving care via telemedicine. Automated DBS programming

methodologies will be of increasing importance as next generation DBS systems ex-

pand the number of possible parameters for delivering precise, optimized therapy to

patients.

67

Chapter 4

Reinforcement learning for

closed-loop regulation of

cardiovascular system with

selective vagus nerve stimulation

4.1 Introduction

Cardiovascular diseases (CVDs) pose a significant health hazard and financial strain [127].

The primary cause of death attributed to CVDs in the US is coronary heart dis-

ease, followed by stroke, high blood pressure, heart failure, diseases of the arteries,

and other CVDs, as per the annual statistical report by the American Heart Asso-

ciation [128]. The insufficient effectiveness of existing pharmaceutical therapies in

treating cardiovascular diseases has motivated research into alternative therapeutic

options. Vagus nerve stimulation (VNS) has been identified as a potential treatment

for various cardiac conditions, including heart failure, hypertension, atrial fibrillation,

and stroke [129, 130].

68

VNS refers to delivering electrical stimulation to the vagus nerve through a pulse

generator and is characterized by various stimulation parameters that include current

amplitude (mA), pulse width (mµ), and pulse frequency (Hz). One major challenge

in delivering effective VNS therapy is determining optimal VNS parameters that can

produce the desired physiological response. Currently, the optimal VNS parameters

are determined through an open-loop trial-and-error approach as was used in three

recent clinical papers that studied the effectiveness of VNS in the treatment of heart

failure [131, 132, 133]. Authors in [129, 134] provided a review of available evidence

regarding the effectiveness of VNS for preventing heart failure and emphasized the

lack of systematic approaches for optimizing the VNS parameters. Hence, there is

a need to develop systematic approaches aimed at optimizing VNS parameters to

maximize the therapeutic effects.

Closed-loop VNS strategies offer the advantage of systematically tuning the stim-

ulation parameters. Previous studies used classical control theory approaches to inves-

tigate the utility of developing closed-loop VNS. Authors in [18] utilized a proportional-

integral (PI) controller [135] for real-time regulation of instantaneous heart rate

through closed-loop VNS. There have been other investigations exploring the use

of proportional-integral controller designs for heart-rate regulations [19, 136, 20].

In addition, the utilization of state-space transition models was examined by [137]

for the development of closed-loop VNS systems. While these classical control ap-

proaches have demonstrated their effectiveness in recent studies, they have inher-

ent drawbacks that make them impractical for real-world physiological applications.

For instance, PI controllers have limited controllability making them less effective in

transient responses. Tuning complexity, high sensitivity to model parameters, and

sub-optimal performance in non-linear systems are among other disadvantages of PI

controllers [22, 23]. While model predictive control (MPC) has been shown to address

some of the challenges of classical control algorithms, it still requires extensive tuning

69

of parameters such as the prediction horizon and control weights to achieve optimal

performance [138]. Moreover, MPC requires having access to an accurate model of

the system, where inaccuracies in the model predictions can affect the controller’s

performance [138]. In practice, it can be challenging to obtain an accurate model of

a complex system, and uncertainties can lead to sub-optimal control. There is a need

to design novel closed-loop VNS techniques to address these limitations.

Developing and prototyping novel closed-loop VNS strategies requires utilizing

in-silico simulation environments for evaluating the performance of these closed-loop

systems before integrating in in-vivo experimental setups. Computational models of

cardiac system under the effect of VNS play a crucial role in developing simulation

environment to effectively design closed-loop VNS control strategies. However, the

lack of the necessary variables to account for the physiological effect of VNS in most

of the existing computational models makes it challenging to adopt these models for

applications of closed-loop VNS. Previous research predominantly concentrated on the

optimization of VNS parameters for a sole physiological signal (i.e. heart rate (HR))

and for only one VNS stimulation location [136, 20, 19]. A recent study conducted

an in silico study to develop a rat cardiac model subjected to VNS in multiple VNS

locations and implemented a MPC framework for regulating multiple physiological

signals, i.e., HR and mean arterial pressure (MAP) [94].

While developing computational models of the cardiac system under VNS guides

the design of novel closed-loop VNS strategies, the selection of correct underlying dy-

namics, parameter tuning, and difficulty of evaluation of such models caused by the

variability of fiber recruitment in the vagus nerve makes it a challenging task. Further-

more, the computational cost of simulating full-scale in silico physiological models for

real-time closed-loop control systems adds to the challenges. To address the challenges

of developing a computational cardiac model, a recent study [81] employed a data-

driven modeling approach using long short-term memory (LSTM) neural networks.

70

Authors in [81]demonstrated the utility of an LSTM model by generating synthetic

data from the computational cardiac model introduced in [94] and developed an MPC

controller to regulate HR and MAP. However, this approach still requires access to a

substantial amount of experimental data across sufficiently covering the stimulation

parameters space to accurately model the effect of VNS parameters on HR and MAP,

which is not practical due to the limitations in experimental data collection.

Some data-driven optimization strategies like Bayesian optimization [83] eliminate

the need of having access to underlying equations of the system to develop automated

closed-loop neuromodulation systems. Authors in [84] adopted Bayesian optimization

in the context of optimal experimental design with closed-loop real-time functional

magnetic resonance imaging (fMRI). Bayesian optimization has been successfully uti-

lized for seizure control [85], optimizing the DBS parameters using fMRI data [87] and

for minimizing rigidity [88] for PD patients. Authors in [98] and [60] used Bayesian

optimization and safe Bayesian optimization to develop an automated DBS program-

ming framework with safety constraints for tremor suppression in PD and essential

tremor patients. Bayesian adaptive dual control was introduced to reduce the beta

power in a computational model of PD [90]. These data-driven optimization strategies

have been successfully implemented in various applications of closed-loop neuromod-

ulation systems. However, they share a common underlying assumption regarding

the objective function’s stationarity, implying that its behavior remains relatively

constant within the region of interest. This assumption is essential for the acquisition

function to effectively estimate regions of high uncertainty and is not applicable to

dynamic systems like the cardiovascular system.

In order to overcome the aforementioned challenges while still achieving effective

closed-loop VNS control, this paper presented a novel interactive AI framework using

RL which provides an automated data-driven approach to design closed-loop VNS

control policies with minimal assumptions and without the need for prior knowledge

71

about the underlying physiological dynamics of the cardiovascular system. In ad-

dition, our approach enables continuous learning, where the system can learn from

its experiences and continuously improve its performance which makes it suitable for

developing long-term adaptive and patient-specific therapies.

By integrating the recent advancements in developing biophysics based models of

the rat cardiovascular system under multi-location VNS [42], multiple simulation envi-

ronments were developed with a standard application programming interface (API) to

design, prototype, and evaluate the performance of the proposed data-driven closed-

loop neuromodulation framework. The standard API is called Gymnasium (previ-

ously known as OpenAI Gym) [139] and is developed in Python. The original im-

plementation of the biophysical models was in MATLAB, which proved prohibitively

computationally expensive. To reduce the computational cost, a data-driven sur-

rogate of biophysics based computational models of the rat cardiovascular system

using temporal convolutional neural networks (TCN) [140] in Python. Since we are

modeling time-series data, integrating TCNs are useful as they can capture temporal

dependencies effectively. In addition, TCNs introduce several advantages over the

canonical Recurrent Neural Networks (RNN), such as longer memory retention and

ability to exploit parallelism which makes it more computationally efficient and suit-

able for this applications. This approach aims to reduce computational complexity

and provide a unified programming environment in Python.

In this research, I tested the hypothesis that the proposed closed-loop VNS pro-

gramming framework effectively learns the neuromodulation control task. Multiple

simulation environments of healthy and hypertensive rat cardiovascular system in

rest and exercise states were developed and designed a set point tracking task to

regulate HR and MAP. Two approaches of experimental design were introduced to

perform the set point tracking of HR and MAP in cardiovascular system. First, a

general policy was designed to regulate the cardiovascular system (HR and MAP)

72

Figure 4.1: Overview of the architecture of the simulation environments for developing
closed-loop VNS system demonstrating the interactions of the RL agent with the rat cardiac
model using the standard API. The left block represents the reduced-order surrogates of
the physiological cardiac models wrapped with the standard Gymnasium API, where the
inputs of the model (color-coded as dark blue) are stimulation frequency and stimulation
amplitude across three different locations at time t (At). The outputs of the model (color-
coded as green) are the response of HR and MAP to the VNS parameters. The model
estimates the response of the cardiac system (HRt+1,MAPt+1) to the action At taken at
time step t given the current state of the system (HRt,MAPt). The right block represents
the reinforcement learning agent, which takes action At according to its policy at time step
t, and observes the next state St+1, and Reward Rt+1.

using deep RL algorithms, i.e., soft actor-critic (SAC) [82] and proximal policy op-

timization (PPO) [141]. Additionally, since sample efficiency is critical in the design

of closed-loop neuromodulation systems, I designed a sample-efficient adaptive policy

using a model-based RL algorithm known as probabilistic inference for learning and

control (PILCO) [142], which represents a sample-efficient approach to policy search.

Furthermore, I examined the adaptability of the proposed frameworks to variations

in both the target set-point and the underlying dynamics of the environment. Fi-

nally, transfer learning [143] was employed to improve sample efficiency for deep RL

algorithms.

73

Figure 4.2: The pipline used for developing the simulation environments using the Gymna-
sium API to test and prototype RL algorithms for regulating the cardiovascular system. (a)
Used the physiological models of rat cardiac system under multi- location VNS implemented
in MATLAB, (b) generated a simulated data set of the response of the cardiac system by
varying randomly selecetd VNS parameters, (c) trained the reduced-order TCN model to
model the response of HR and MAP to VNS parameters, and (d) used the Gymnasium
standard API wrapper over the trained TCN models for easier compatibility with RL algo-
rithms.

4.2 Simulation environments

Multiple simulation environments were developed for evaluating the performance of

RL algorithms in developing closed-loop VNS systems. The high-level overview of the

proposed closed-loop VNS system is depicted in Figure 4.1. The pipeline of developing

the simulation environments with the standard Gymnasium API is presented in Figure

4.2. Detailed description of each component is provided in the following subsections.

4.2.1 Standard API for rat cardiac model

The simulation environments of the rat cardiac model under multi-location VNS were

developed using a standard API called Gymnasium for testing and prototyping RL

algorithm for regulating the cardiovascular system. Gymnasium (previously known

as OpenAI Gym [139]) is a standard environment for developing and testing learning

agents, especially reinforcement learning agents. Gymnasium API is adopted for

implementing the in-silico rat cardiac model to provide a standard interface for the

users and provide the flexibility of designing their own control task with their learning

agents of choice (Figure 4.2d). The details of the in-silico physiological rat cardiac

model are described in section 4.2.2.

74

4.2.2 In-silico rat cardiac model

In this study, a previously published physiological model of the integrated cardiovas-

cular system and baroreflex regulation under multi-location vagal nerve stimulation

was integrated [82]. The model was composed of three different parts including the

cardiovascular system, the baroreflex system, and the VNS device. The cardiovascu-

lar model uses a lumped-parameter approach to predict the blood circulation in five

elastic chambers representing the left heart, the arteries and veins in the upper and

lower body. The right heart and the pulmonary circulation are modelled by capaci-

tance, which is added to the venous capacitance in the upper body. The baroreflex

system functions to regulate the arterial pressure through the baroreceptor, afferent

pathway, efferent pathway and the effectors in cardiovascular system. Each of the

compartments in the baroreflex system was modelled using a firing-rate- based ap-

proach. The VNS device model predicts the response of firing rate of different fibers

to VNS parameters [144]. Three fiber types are engaged during VNS, representing

the baroreceptive fibers, the vagal fibers, and the sympathetic fibers. Each type of

fibers distributes nonhomogeneously in different locations. Activation of each fibre

type in each stimulation location due to stimulation amplitude is modelled by an ac-

tivation function, while the change of fibre activities due to stimulation frequency is

represented by a conduction map. The overall physiological model of the rat cardiac

system models the effect of VNS parameters (stimulation amplitude and frequency)

in three different locations (leading to six total VNS parameters) on two physiological

variables (HR (BPM) and MAP (mmHg)). The short-term effect of VNS parameters

on the output of HR and MAP was calculated through the interactions between the

cardiac systems and the neural regulation system. More details on the physiological

model is provided in [82].

A modification of the described physiological model is used in this study to simu-

late the physiological model in four different conditions adding the effect of hyperten-

75

sion and physical exercise (healthy and hypertensive rat cardiac models in rest and

exercise states) by changing the related internal states and parameters [42]. I refer to

the four models as healthy cardiac environment (HC Env), healthy cardiac environ-

ment with the effect of exercise (HCE Env), hypertension cardiac environment (HTC

Env), and hypertension cardiac environment with the effect of exercise (HTCE Env).

Hypertension is related to increased arterial stiffness, vascular remodelling, increased

sympathetic activities and decreased vagal activities. An offset in sympathetic and

vagal activity coupled with modifications on the gain of each effector are used to

represent the hypertensive condition. An acute exercise triggers multiple physiologi-

cal responses, including redistribution of blood flow and modification of sympathetic

and vagal activities by central command. An additional offset caused by exercise on

sympathetic and vagal pathway, as well as the separation of the peripheral resistance

into resting muscle resistance and active muscle resistance are used to represent the

exercise condition. The new steady state during exercise consists of a higher arterial

pressure, heart rate, stoke volume and cardiac output compared with rest state in

both healthy and hypertensive condition.

4.2.3 Reduced order model of the physiological rat cardiac

model using temporal convolutional neural networks

The physiological model of the rat cardiac system described in the previous sec-

tion originally was implemented in MATLAB using the dde23 solver [145] which is

computationally expensive. In addition, since the standard API for RL algorithms

(Gymnasium) as well as most of the common RL algorithm libraries are developed

in Python, data-driven reduced-order models of the physiological models were devel-

oped using temporal convolutional neural networks (TCN)[140] to not only reduce the

computational complexity, but also to provide a unified programming environment in

Python.

76

The four physiological models were used to generate a dataset by varying the

VNS parameters (stimulation amplitude and frequency) across the three VNS loca-

tions (leading to a six-dimensional parameter space) and measuring the effect of VNS

parameters on HR and MAP (Figure 4.2.a, 4.2.b). The range of VNS parameters in

generating the synthetic data was 0 − 50Hz for stimulation frequency and 0 − 1mA

for stimulation amplitude. The response of HR and MAP to randomly selected VNS

stimulation parameters was collected in 2000 runs. Each run consisted of 30 cardiac

cycles to generate the dataset. The data was divided into training and test sets with

an 80% − 20% split. The training set was then used to train a reduced-order model

using TCN (Figure 4.2.c). A TCN model with an input layer of width 8 and output

layer of width 2, and three hidden layers of width 16 with the dilation factors of 1,

2, 4 was used. The standard API of Gymnasium (the maintained fork of OpenAI’s

Gym library) was used to communicate between RL algorithms and the environments.

The pipeline of developing the simulation prototyping of RL agents for regulating the

cardiovascular function is depicted in Figure 4.2.

4.3 Experimental design

4.3.1 Regulating cardiovascular system using RL through de-

signing a set point tracking Task

Designing neuromodulation control systems depend on multiple factors including the

computational and sample efficiency within the constraints of the problem, having

access to related data sets or the equations of the underlying dynamics of the system,

etc. Here, the underlying dynamics of the environment are assumed to be unknown

and I hypothesized that utilizing RL eliminates this requirement while effectively

learning to perform a set point tracking task for regulating HR and MAP values.

The subsequent subsections outline the simulation design employed to optimize

77

the VNS parameters to regulate HR and MAP values during a set point tracking

task. Specifically, two experimental design approaches were considered to elaborate

the advantages and disadvantages of each method and provide guidance on future

experimental design selection. Both experimental design approaches were used to

perform the same set-point tracking task, where the set-point was a two-dimensional

vector of desired HR and MAP values, and the agents were trained to apply proper

stimulation parameters according to their policies with the goal of reaching the desired

set points. The RL algorithm’s reward function was defined to perform the set point

tracking task as described in section 4.4.4.

4.3.2 Designing a general policy using deep RL algorithms

The first experimental design approach was to design a general policy to perform the

set-point tracking task, where the agent learned the general policy during the training

mode and the trained policy was used in the inference mode to perform the set-point

tracking task. The overview of designing a general policy is depicted in Figure 4.3.

The term general is used to denote that the trained policy was designed to perform

the set-point tracking task for all of the potential set-points within the possible range

of HR and MAP values (Table 4.1) rather than learning to follow a single set-point

at a time. Here, PPO and SAC algorithms as described in sections 4.4.1 and 4.4.2

were used to train a general policy. In both algorithms, the policy architecture was a

fully connected feed-forward neural network also known as a multi-layer perceptron

(MLP) [146]. The input of the policy network is extended to account for learning

multiple set points at the same time (general policy) by feeding the desired set points

HRtarget and MAPtarget as additional inputs to the policy network besides the current

state of the environments HRt and MAPt as depicted in Figure 4.3. During training,

a randomly selected set point was assigned within the possible range of HR and MAP

values (Table 1) for each of the four models in each episode with an episode length

78

Table 4.1: Table 1. Sampling range of HR and MAP values ([minimum, maximum]) for the
four cardiac environments.

HC Env HCE Env HTC Env HTCE Env
HR (BPM) [234.4, 414.7] [309.6, 578.6] [245.8, 428.9] [290.36, 578.1]
MAP (mmHg) [71.9, 173.6] [117.4, 158.1] [86.6, 194.8] [117.3, 178.3]

Figure 4.3: The overview of designing a general policy. The left panel represent the struc-
ture of the simulation environment with the standard Gymnasium API during the training
mode. The right panel depicts the simulation environment in the inference mode. The pol-
icy network of the RL agents was designed as a simple MLP model, where HRt and MAPt

are the current states of the environment. The input of the policy network was extended
by adding HRtargetand MAPtarget (target set-points) to design a general policy. The envi-
ronment is the reduced-order surrogate of the physiological cardiac models wrapped with
the standard Gymnasium API, where the input of the model (color-coded as dark blue)
are stimulation frequency and stimulation amplitude across three different locations at time
t(At). The output of the model (color-coded as green) are the response of HR and MAP to
the VNS parameters.

of 500. After training the RL agents, the policy network was used in the inference

mode to perform the control task (right panel in Figure 4.3).

4.3.3 Designing an adaptive policy using PILCO

The second experimental approach aimed to dynamically learn an adaptive policy

through interactive engagement with the environment (see Figure 4.4). In this ap-

proach, PILCO was utilized, as described in section 4.4.3, to train the adaptive policy

on-the-fly. PILCO operates by executing actions based on its policy for N iterations,

gathering state transitions and reward values from the environment, augmenting its

dataset, updating the underlying Gaussian Process (GP) [147] model of the state

transition, and adjusting its policy parameters using the augmented data and repeats

the same process. The key distinction in designing an adaptive policy, as opposed to

79

Figure 4.4: The workflow of adaptive policy using PILCO, illustrating the iterative process
where actions are executed according to the recent policy (or randomly selected from the
parameter space for the initial query) for N iterations. PILCO collects state transitions
and reward values from the environment in response to the actions, augments its dataset,
updates the Gaussian Process (GP) model of the state transition, and adjusts the policy
parameters based on the augmented data. This process is repeated to improve the adaptive
policy over time. The environment is the reduced-order surrogate of the physiological
cardiac models wrapped with the standard Gymnasium API, where the input of the model
(color-coded as dark blue) are stimulation frequency and stimulation amplitude across three
different locations at time t(At). The output of the model (color-coded as green) are the
response of HR and MAP to the VNS parameters.

a general policy, lies in its ability to learn and track a specific setpoint during inter-

actions with the environment. In contrast, a general policy in the inference mode can

be used without further training to track multiple setpoints.

4.4 Reinforcement learning agents

A standard RL task can be formulated as a Markov Decision Process (MDP) defined

by a tuple (S,A,R, T, P), where S and A are state and action spaces, R is a reward

function (Rt = f(st, at, st+1)), T is the set of terminal conditions, and P is the state

transition probability. The goal of reinforcement learning is to find the optimal policy

π∗ by maximizing the cumulative reward, typically with the discount factor γ. The

overview of the standard RL framework is depicted in Figure 4.1. The closed-loop

flow of the interactions for the environment with the RL agents is as follows. At each

time step, the agent interacts with the environment to learn the policy purely from

interactions and without requiring prior knowledge about the underlying dynamics

80

of the environment. The agent observes the current state at time t and then takes

an action with respect to the policy. Next, the environment returns the next state

and reward at time step t + 1 (St+1, Rt+1). This information is used to improve the

policy. In this study, two deep RL algorithms (PPO and SAC) were designed to train

a general policy and PILCO was employed to train an adaptive policy. The details

of these algorithms are provided in the following sections.

4.4.1 Proximal policy optimization algorithm

Policy gradient (PG) algorithms are a type of RL algorithms that rely upon optimiz-

ing parametrized policies with respect to the expected long-term return using gradient

descent. Unlike vanilla PG [148] that keep new and old policies close in the parameter

space, trust region policy optimization (TRPO) [149] algorithm updates policies by

taking the largest step possible to enhance the performance while satisfying a con-

straint expressed in terms of KL-Divergence on how close the new and old policies

are allowed to be. Proximal policy optimization (PPO) combines the advantages of

vanilla PG and TRPO to ensure stability and scalability by employing a surrogate

objective function to update the policy parameters.

In this study, PPO-Clip was used, a variant of PPO that utilizes specialized clip-

ping in the objective function to prevent significant deviations of the new policy from

the old policy. As a result, PPO offers a simpler implementation, while empirically

performs at least as well as TRPO. PPO is applied in an actor-critic framework. The

actor maps the state to action and the critic gives an expectation of the agent’s reward

with its corresponding state. The policy is updated via a stochastic gradient ascent

optimizer to ensure the exploration while the agent will gradually tend to exploit what

it has learned over the course of training. A MLP model with input layer of width 4

(HRt,MAPt, HRtarget,MAPtarget), one hidden layer of width 64, and output layer of

width 6(At) was used to represent the policy network. Stable Baselines library [150]

81

for implementing PPO algorithm was used in this study.

4.4.2 Soft actor-critic algorithm

SAC [151, 143] is a RL algorithm widely employed in continuous action spaces for

various control tasks. Soft actor-critic (SAC) is from the family of off-policy RL

algorithms that optimizes a stochastic policy. As the name suggests, SAC is also

an actor-critic algorithm. A central feature of SAC is entropy regularization to en-

courage effective exploration during learning. The policy is trained to maximize a

trade-off between expected return and entropy, a measure of randomness in the pol-

icy, which has a close connection to the exploration-exploitation trade-off. Increasing

entropy results in more exploration, which can accelerate learning. It can also prevent

the policy from prematurely converging to a bad local optimum, resulting in stable

training. Moreover, SAC leverages neural networks to represent both the policy and

the value functions, enabling it to handle high-dimensional observation spaces effec-

tively. A MLP model with input layer of width 4 (HRt,MAPt, HRtarget,MAPtarget),

one hidden layer of width 64, and output layer of width 6(At) was used to repre-

sent the policy network. The same architecture of the policy network for both PPO

and SAC algorithms was used. The Stable Baselines library [150] was integrated for

implementing SAC algorithm.

4.4.3 Probabilistic inference for learning and control

PILCO is a model-based data-efficient approach to policy search [145], which offers

improved sample-efficiency compared to model-free RL algorithms. Model-based RL

algorithms rely on accurate models of the underlying dynamics of the system, which

can result in reduced performance in the presence of model bias. Model bias is par-

ticularly an issue in cases where there is limited prior knowledge available. PILCO

mitigates the need for prior access to the underlying dynamics of the environment

82

by learning the model from observed data. Furthermore, PILCO utilizes GP, a non-

parametric probabilistic model [147], to effectively address the issue of model bias

by accounting for model uncertainty. The main advantage of PILCO is that it re-

markably improves the sample efficiency in continuous state-action spaces which sets

the pathway for the integration of PILCO in the implementation and deployment of

closed-loop VNS systems in clinical settings and experimental setups.

Consider the following dynamics system

xt = f(xt−1, ut−1), (4.1)

where f is the unknown state transition function with continuous state, x, and action,

u domains. The goal of PILCO is to find a deterministic policy that maximizes the

expected return or minimizes the expected cost, c(xt) of following the policy π for T

time steps as in:

Jπ(θ) = ΣT
t=0Ext [c(xt)], x0 ∼ N(µ0,Σ0). (4.2)

PILCO assumes that π is a function parametrized by Θ and that the cost func-

tion c(x) encodes some information about a target state xtarget. I used the squared

exponential cost function as in equation 4.4. The GP model uncertainty is used for

planning and policy evaluation steps. PILCO evaluates the policy using the deter-

ministic approximate inference method which enables policy improvement through

analytic policy gradients. Analytic policy gradient is more efficient than estimating

policy gradients with sampling and enables using standard non-convex optimization

methods like LBFGS to find the optimal policy parameters. Here, the learned state-

feedback controller is the nonlinear radial basis function network as follows:

π(x, θ) = Σn
i=1ωiϕi(x), ϕi(x) = exp(−1

2
− µi)

TΛ−1(x− µi)), (4.3)

83

where the parameters of the RBF network controller were optimized using LBFGS

optimization. The implementation in this GitHub repository was integrated for im-

plementing PILCO.

4.4.4 Reward Function

The exponential reward function was used in training all RL algorithms, where xt was

the two-dimensional state of the environment at time t(HRt,MAPt) and xtarget was

the two-dimensional target set-point of HR and MAP values (HRtarget,MAPtarget).

c(xt) = 1 − exp(
||xt − xtarget||2

σ2
c

) (4.4)

4.5 Results

4.5.1 Performance of TCN model

The four different rat cardiac models (i.e. the healthy and hypertensive models in rest

and exercise states) were used to generate synthetic data for training a computation-

ally more efficient TCN model as a surrogate of the mechanistic model implemented

in MATLAB. I evaluated the performance of the TCN models in predicting HR and

MAP values as a function of stimulation parameters in three different locations. The

normalized mean squared error (NMSE) of the predictions from the TCN models was

calculated and reported in Table 4.2. In addition, the computational efficiencies (how

many times the predictions from the TCN model in the inference mode were faster

than the same predictions from the biophysics model implemented in MATLAB) of

the four reduced order TCN models are reported in Table 4.2. Additionally, a sample

comparison of the HR and MAP values using the MATLAB implementation versus

the predictions from the reduced order TCN model is depicted in Figure 4.5.

https://github.com/nrontsis/PILCO

84

Figure 4.5: Comparison of the HR and MAP values predicted from the original biophysical
model implement in MATLAB versus the predictions from the reduced-order TCN model.
The blue solid lines represent the HR and MAP values generated from the HC biophysics
model implemented in MATLAB. The red dashed line represents the corresponding valued
generated with reduced-order TCN model.

Table 4.2: Performance of TCN models; normalized mean squared error (NMSE) of TCN
models, and their computational efficiency compared to the MATLAB implementations.

HC Env HCE Env HTC Env HTCE Env
NMSE (on test set) 0.001142 0.001686 0.002336 0.002029
Computational efficiency (x
times faster than Matlab)

11.65 8.77 10.90 8.74

4.5.2 Training performance of RL agents

Multiple experiments were conducted to evaluate and compare the performance of RL

algorithms described in section 4.4 in performing the set-point tracking task for regu-

lating HR and MAP values (Figure 4.6). The normalized reward values of model-free

deep RL algorithms (PPO and SAC) were demonstrated in Figure 4.6a, 4.6b. The

total reward values per episode were normalized by the episode length of 500 and

passed through an moving average function with window length of 50 to provide a

better representation of the agents’ performances over time in four different environ-

ments (HC, HCE, HTC, and HTCE). As demonstrated in Figure 4.6, PPO converges

faster compared to SAC. The reward values of PILCO during the set-point tracking

task for 100 iterations were depicted in Figure 4.6c for the four rat cardiac models. As

shown in Figure 4.6, the convergence speed of PILCO is much faster than Deep RL

85

algorithms making it more suitable for experiments with a limited budget in terms

of the number of interactions with the nervous system of interest.

(a) SAC (b) PPO (c) PILCO

Figure 4.6: Reward values of RL agents during the set-point tracking task in four cardiac
environments; (a) Normalized training reward values per episode for SAC during the train-
ing mode, (b) Normalized training reward values per episode for PPO during the training
mode, (c) Reward values of PILCO during the experiment. The normalized reward for
deep RL algorithms (a, b) represent the mean ± standard deviation of the reward calcu-
lated through a moving average with window length of 50 to provide a better representation
of the agents’ performances over time.

4.5.3 Performance of Deep RL agents in set-point tracking

task in four cardiac models

The performance of Deep RL algorithms in inference mode for set-point tracking task

across four cardiac environment using PPO and SAC algorithms is depicted in Figures

4.7a and Figure 4.7b, respectively. Their associated actions (stimulation parameters)

taken during the inference mode were demonstrated in Figure 4.8a, 4.8b. The set-

points in Figure 4.7 are set to be 40% and 80% of the maximum range of HR and

MAP for each of the four environments. As shown in the figures, the trained general

policy in PPO and SAC algorithms learned to track the target set points.

4.5.4 Performance of PILCO in set-point tracking task in

four cardiac models

The performance of set-point tracking for the PILCO algorithm is depicted in Figure

4.9a.The associated actions (i.e. stimulation parameters) taken across the three VNS

86

(a) PPO (b) SAC

Figure 4.7: The performance of Deep RL algorithms in inference mode for set-point track-
ing task across four cardiac environments using (a) PPO and (b) SAC algorithms for 200
iterations. The red solid lines represent the desired set points and the blue lines represent
the states of the four cardiac models (HR and MAP). The target set points were changed
after 100 iterations, where iterations are equal to the cardiac cycle.

(a) PPO (b) SAC

Figure 4.8: The stimulation parameters used during the inference mode for the set-point
tracking task across the four cardiac environments (a) using PPO and (b) SAC algorithms
for 200 iterations. The stimulation parameters were amplitude and frequency across three
VNS locations. The target set points were changed after 100 iterations, where iterations
are equal to the cardiac cycle.

stimulation locations are demonstrated in Figure 4.9b. As shown in these figures,

PILCO started by taking N=10 random samples and gradually learned a GP model

of the underlying dynamics as well as a RBF network policy to track the target set-

point. As shown in Figure 4.6c and Figure 4.9a PILCO learns to track the target set

point in less than 100 iterations.

4.5.5 Adaptability of PILCO to variations in target set point

Unlike model-free deep RL algorithms (i.e. PPO and SAC) that were designed to

train a general policy that has the ability to track a wide range of set points, PILCO

is designed to track a single set point at a time. We designed an experiment to change

87

(a) (b)

Figure 4.9: The performance of PILCO in set-point tracking task across four cardiac envi-
ronments using PILCO (a) and its corresponding stimulation parameters (amplitude and
frequency) across three stimulation locations (b). In the left figure (a), the red lines repre-
sent the desired set points and the blue lines represent the states of the four cardiac models
(HR and MAP).

the target set-point after the first 100 iterations to test the performance of PILCO

in learning a new randomly selected set-point in the HC environment. The reward

values for PILCO in adapting to a new target set point for the HC environment was

provided in Figure 4.10a. As shown in Figure 4.10a-c, PILCO learned to track the

new set point in around 40 iterations.

4.5.6 Adaptability of PILCO to variations in the underlying

dynamics of the environment

Another experiment was designed to validate the ability of PILCO in performing the

set-point tracking task when the underlying dynamics of the system changes over time.

After 100 iterations, we changed the environment from HC to HTC environment.

The reward values for PILCO in adapting to a target set point in a new cardiac

environment (HTC) after 100 iterations was provided in Figure 4.10d. As shown in

Figure 4.10d-e, PILCO learned to track the new set point in the new environment in

around 20 iterations.

88

Figure 4.10: Adaptability of PILCO during the set point tracking task to variations in
the target set point (a-c) and to variations in the underlying dynamics of the environment
(d-f). (a, d) Reward value; (b,e) the state trajectory, and (c,f) stimulation parameters for
200 iterations, where the changes where applied after 100 iterations.

4.5.7 Adaptability of deep RL agents to variations in the

underlying dynamics of the environment using transfer

learning

An experiment was conducted to assess if PPO and SAC can adapt to changes in

the underlying dynamics of the environment. To achieve this, transfer learning (TL)

was employed, and the pre-trained policy in the HC model was used as the initial

policy instead of starting with a random policy. TL was adopted to fine-tune the

model to perform the set-point tracking task in the HTC environment. As depicted

in Figure 4.11a, TL considerably improves the speed of convergence for both RL

agents (PPO and SAC) and quickly adapts to the new dynamics of the environment.

SAC and PPO converge in less than 10 episodes with TL as opposed to more than

200 and 100 episodes without TL, respectively. The result of performing the set-point

tracking task with the fine-tuned policy using TL from the HC environment to HTC

environment is depicted in Figure 4.11b.

89

(a) (b)

Figure 4.11: Adaptability of PPO and SAC algorithms to the variations in the underlying
dynamics of the environment using transfer learning; (a) comparison of the reward values
of PPO and SAC with random initialization (RI) and with transfer learning (TL), (b)
performance of PPO and SAC in set point tracking task with the trained policy using TL
approach.

4.6 Discussion

In this study, I described and evaluated an interactive AI framework using RL for au-

tomated data-driven design of closed-loop VNS control systems. I implemented this

framework to regulate HR and MAP in computational models of rat cardiovascular

system under multi-locations VNS. I provided multiple simulation environments using

biophysics-based computational models of rat cardiovascular system in four different

conditions including healthy and hypertensive rat in rest and exercise states (HC,

HTC, HCE, and HTCE models). The simulation environments were built through

the standard Gymnasium API (previously known as OpenAI gym) to facilitate test-

ing and prototyping of the interactive RL-based closed-loop neuromodulation systems.

Furthermore, the utility of the framework in designing adaptive closed-loop neuro-

modulation systems through a set-point tracking task was demonstrated. In addition,

two experimental design approaches (i.e., general policy and adaptive policy) feasible

for the integration of RL algorithms were introduced which could be utilized based

on the limitations and requirements of the application of interest. I compared the

performance of the framework using multiple model-free and model-based RL algo-

rithms in terms of sample efficiency and quality of performing the set-point tracking

90

task as well as their ability to adapt to the new target set pints and to the variations

in the underlying dynamics of the environment.

Multiple simulation environments were provided for testing and prototyping RL

agents and designed a set-point tracking task to modulate the desired HR and MAP

values. TCN was used to build a reduced order model of the original MATLAB

implementation in Python with the standard OpenAI Gym environment and our

results confirmed the improved computational time (Table 4.2) while providing a

coherent programming environment in Python.

A control policy is at the core of an automated closed-loop neuromodulation sys-

tem which automatically adjusts the stimulation parameters to achieve the goals of a

desired neuromodulation task. Current approaches to adjusting VNS parameters are

based on open-loop trial-and-error method and a systematic approach of tuning VNS

parameters is needed [98, 99, 84]. Recent studies investigated the utility of MPC in

regulating HR and MAP values through VNS[81, 83], however, they required hav-

ing access to an accurate model of the underlying dynamics which is not practical

for many applications. Our results support the hypothesis that our interactive AI

framework can generate effective VNS control policies in a data-driven fashion with

minimal assumptions and without the requirement of having access to the exact un-

derlying dynamics of the nervous system. Our framework enables continuous learning

from the experience which makes it suitable for developing long-term patient-specific

therapies. Scalability to continuous state and action spaces, actively exploring to

improve the performance and the ability to learn in real-time from data are among

the other advantages of the RL-based control strategies.

The automated and adaptive VNS programming framework was evaluated using

multiple model-free and model-based RL algorithms. The comparison of PPO, SAC,

and PILCO algorithms provides insights into the performance of different classes of

RL approaches and guides the algorithm selection for the design of closed-loop VNS

91

neuromodulation system. Model-free deep RL algorithms have shown to be less sam-

ple efficient than PILCO at the expense of learning a general policy (Figure 4.6). PPO,

known for its stability and sample efficiency, demonstrated promising results in main-

taining control over the set-point tracking task across different cardiac environments

and over the range of potential target set points. SAC, with its emphasis on exploring

the action space, exhibited competitive performance with a smoother behaviour in

the action space (Figure 4.8). On the other hand, PILCO, an uncertainty-driven and

model-based algorithm, showed robustness in handling the inherent variability in the

neuromodulation system (underlying dynamics of the environment or the target set

point) while requiring a considerably smaller number of samples to learn the set point

tracking task.

In addition, two experimental design approaches were considered. First, I inte-

grated Deep RL algorithms to train a general policy capable of tracking a range of

set points in the inference mode. Additionally, PILCO was used to train an adaptive

policy on the fly, which is capable of tracking one predefined set of set points while

being able to adapt to the variations in the target set point over time. These findings

highlight the trade-offs between sample efficiency, generalizability, and adaptability

in the context of closed-loop VNS neuromodulation, offering researchers and practi-

tioners valuable insights for selecting the most suitable algorithm for their specific

application requirements. Further research could explore hybrid approaches or algo-

rithm modifications to enhance the performance of these algorithms in closed-loop

neuromodulation systems.

While PILCO demonstrated promising performance in quickly learning the set

point tracking task as well as in adaptability to the target set point and the varia-

tions in the underlying dynamics of the environment, one of the limitations of PILCO

is the use of GP approach and its limited generalizability to higher dimensions. While

GP modelling and PILCO have proven to be very sample-efficient effective in low-

92

dimensional control problems, their performance tends to degrade as the dimensional-

ity increases. Therefore, future directions should explore alternative approaches that

can enhance sample efficiency and improve generalizability to higher dimensions.

While Deep RL algorithms are less sample efficient than PILCO, their ability to

learn a general policy is valuable in the context of developing a generalized therapy

with the capability to adapt to the unique needs of individual patients. Therefore,

it is crucial to come up with potential approaches to improve their sample efficiency

which facilitates their integration in clinical and experimental setups. To address

this, I integrated TL as a potential approach to improve sample efficiency of deep

RL algorithms. By incorporating TL, we can leverage pre-existing knowledge from

related tasks or domains to initialize and guide the learning process of the deep RL

algorithms. In this study, I trained a general policy using the healthy rat cardiac

model in rest state (HC Env) and incorporated this prior knowledge by using TL to

improve sample efficiency for the hypertensive cardiac model in rest state (HTC Env).

Our results demonstrated a considerable improvement in sample efficiency of Deep RL

algorithms using TL (Figure 11a). TL offers a promising avenue paving the way for

the development of more efficient and personalized closed-loop VNS systems. Future

research can further explore novel TL techniques tailored specifically for closed-loop

VNS systems to enhance their performance and usability in real-world scenarios.

4.7 Conclusion

In this study, I developed and evaluated an interactive AI framework using RL for au-

tomated data-driven design of closed-loop VNS control systems. Multiple simulation

environments were created to model different cardiac conditions, and RL algorithms,

including PPO, SAC, and PILCO, were employed to autonomously learn the set-point

tracking tasks. Our results confirmed that the proposed interactive closed-loop VNS

93

control framework offer a data-driven alternative to classical control methodologies,

allowing for continuous learning and the development of precision neuromodulation

therapies that autonomously learns and adapts to the underlying dynamics of the car-

diovascular system. The integration of transfer learning (TL) was found to improve

the sample efficiency of deep RL algorithms, offering the potential for the development

of more efficient and personalized closed-loop VNS systems.

94

Chapter 5

Neuroweaver: a translational

platform for embedding artificial

intelligence in closed-loop

neuromodulation systems

5.1 Introduction

Designing intelligent closed-loop neuromodulation (iCLON) control strategies involves

creating a modular design capable of seamlessly integrating with in-vivo experimental

setups and computational approaches from multiple domains. This integration is cru-

cial to effectively account for the various components of the system, as illustrated in

Figure 5.1. To achieve this, the selection of algorithms may include approaches from

multiple domains including digital signal processing (DSP), control, AI and RL do-

mains. Each of these domains offers unique methodologies and techniques essential for

a comprehensive research and development platform that enables design and imple-

mentation of iCLON systems. The majority of the literature is focused on designing

95

iCLON systems using classical control and signal processing approaches. However,

recent advances in AI may enable designing intelligent neuromodulation systems, that

are able to learn and optimize neuromodulation control strategies autonomously, via

closed-loop interaction with the nervous system. RL is a data-driven approach to

design such iCLON control strategies with minimal assumptions and the need for

prior knowledge about the underlying physiological dynamics. These properties al-

low applying data-driven optimization and RL-based control strategies to real-world

applications including iCLON systems. However, there are many challenges in de-

signing AI-enabled iCLON systems and translating them in clinical settings including

algorithmic design, software implementation, hardware integration, experimental vali-

dation, and clinical deployment in implantable devices. These complexities may make

designing iCLON systems out of reach for broader biomedical research community

and may render designing systems that are not translatable into clinical settings.

Understanding the behavior and optimally designing novel and effective control

algorithms requires interactive simulation environments where the brain is in closed-

loop with various candidate neuromodulation control and optimization algorithms.

Due to the ethical, clinical, and experimental limitations of physical interaction with

the nervous system, a promising approach is to employ computational models of neu-

ral systems that enables designing, prototyping, and evaluating control algorithms

before testing in in-vivo experimental setups. Leveraging mechanistic models as a

surrogate of an in-vivo brain is a promising path that enables designing and proto-

typing various closed-loop neuromodulation strategies. The computational models

of brain dynamics can be used to create benchmarks for designing state of the art

closed-loop neuromodulation algorithms in different neuromodulation control tasks.

In this study, I have designed multiple closed-loop neuromodulation system using

advanced data-driven optimization and control strategies and compared them with

respect to challenges of integrating iCLON systems in clinical practice including sam-

96

Figure 5.1: Overview of the modular design of an iCLON system supported by Neuroweaver
that enables research and development of implantable iCLON systems. Neuroweaver enables
the modular design of iCLON systems using simulation environments and computational
models of the nervous system for the design and prototyping of iCLON systems. The
modular design also allows for seamless integration with the in-vivo experimental setup
for evaluating the performance of the designed algorithms. In addition, Neuroweaver en-
ables cross-domain acceleration that not only provides the flexibility of adapting to different
algorithmic domains but also improving the performance and efficiency of hardware imple-
mentation in designing specialized implantable iCLON systems.

97

ple efficiency and quality of the learned control policies. These features are designed to

emphasize the capabilities of the Neuroweaver platform for designing and prototyping

iCLON systems in-silico before integrating in in-vivo experimental setups.

Software implementation of iCLON algorithms requires programming expertise to

translate an algorithm to semantically equivalent code for hardware implementation,

while also carefully considering synchronization between an interactive prototyping

environment and the algorithm. Further complicating implementation challenges are

the timing, physical, and energy constraints imposed by real-time interaction with the

nervous systems. Clinical implementation of the AI algorithms for iCLON systems

may depend on design considerations such as power consumption, form factor, and

even operational temperature which cannot be achieved by general-purpose proces-

sors and therefore require highly specialized hardware. Furthermore, prototyping and

clinical testing of iCLON algorithms require translating high-level programs to op-

erational code on specialized hardware. Just designing a hardware module typically

takes years for design experts, let alone the end users without relevant technical ex-

pertise. The hardware modules and the associated programming stack need to enable

freedom in developing and adopting ever evolving and novel algorithms. This require-

ment is at odds with the conventional specialized hardware system design practices.

These challenges make translating AI algorithms for iCLON systems currently rather

infeasible.

To address these challenges, this research introduces an open-source platform,

dubbed Neuroweaver [152], for end-to-end designing, prototyping and deploying iCLON

algorithms without the complexities of translating AI algorithms to implementation.

Although there are various general purpose abstractions for accelerators such as

OpenCL [153], CUDA [154], and Weld [155], these frameworks do not incorporate

the algorithmic domain knowledge. The Neuroweaver platform specifically enables

the end-users to prototype iCLON systems in simulation environments through a

98

Python-embedded Domain-Specific Language (DSL) framework which compiles al-

gorithms to one or more software frameworks or target architectures, and introduce

open-source, flexible accelerators capable of efficiently executing algorithm kernels.

The framework is capable of taking the high-level algorithms and efficiently schedul-

ing different compute kernels of the algorithms to different targets while also ensuring

valid communication mechanisms for transferring data between frameworks.

In this research, to make progress toward addressing the translational challenges

of embedding AI algorithms in implantable iCLON devices, a cross-domain frame-

work enabling multi-acceleration is introduced in section 5.4. Thereafter, I introduce

the simulation environment using a computation model of the brain which can be

used in closed-loop with different interactive AI-enabled control policies to perform

a synchrony suppression task. The computational model of neural population un-

der electrical stimulation is described in section 5.6. This thesis also contributed to

the development of a library of RL-based closed-loop control strategies from different

classes as described in section 5.7. These algorithms has been used to design, pro-

totype, and evaluate the performance of iCLON systems in a synchrony suppression

tasks. This research represents a collaborative effort. Some key lines of work (as

described in sections 5.4, 5.5 and the results associated with them in sections 5.8.2,

5.8.3, and 5.8.4) are provided to describe the comprehensive view of the research

direction and has been the contribution of our collaborators.

5.2 Challenges and considerations

1. The need for a familiar programming interface: The need for a famil-

iar programming interface Even for seasoned software engineers, writing pro-

grams for accelerators is non-trivial, requiring careful consideration for low-level

hardware attributes to ensure things like memory allocation, operation schedul-

99

ing, and data communication are appropriately defined. Therefore, to achieve

widespread adoption by a broader community, an intuitive, concise, and high-

level interface for creating programs is required which minimizes the burden

of specifying how the program is executed to the compiler. In addition, the

programming interface should use syntax closely resembling the algorithmic no-

tations used in AI, DSP, and Control to further reduce the learning curve for

the users who are designing these algorithms instead of involving them in the

process of hardware design or compilation. Recall that Neuroweaver flexibly

generates the hardware and also compilers the code to that moving parame-

terized target. Neuroweaver defines such an programming interface through

a python-embedded, cross-domain interface (CDI) which captures the shared

mathematical notation in each of the target algorithm domains through it’s

syntax, and relieves the programmer of needing to specify low-level details of

how the program should execute. By embedding the programming interface in

a widely used language for intelligent and scientific computing (i.e., Python)

rather than defining a new, standalone language, the hurdles of installing and

setting up additional software are avoided, removing another possible barrier to

entry for neuroscientists.

2. The need to enable research and exploration: In this work, we take a

stance that is different than just offering a chip that is ready to be implanted in

brain. We as a community are not there yet. As such, we firmly advocate and

offer a framework that enables researchers to explore ideas so that the research

community get to a point that can build intelligent brain-implantable devices

for neuromodulation.

3. The need for cross-domain accelerations: To enable the use of the Ma-

chine Intelligence algorithms for biological neuromodulation, there is need for a

100

computation core that can run not only algorithms from the domain of AI but

also Digital Signal Processing (DSP) and Control. That is, the computational

core either needs to be general-purpose to accommodate the various domains

of algorithm (AI, DSP, Control) or go well beyond the state-of-the-art that

only offers specialized accelerator cores that are Domain-Specific Architectures

(DSA). Clearly, general-purpose cores cannot accommodate the needs of brain-

implantable devices, which require low energy consumption to preserve battery

life. Alternatively, DSAs are capable of meeting such requirements, but are

unable to adapt to algorithms outside of their target domain. Therefore, the re-

maining solution is to create a new design point between the flexible, but energy

inefficient general purpose processors and the rigid but energy efficient DSAs.

Such a solution requires a computation core capable of adapting to AI, DSP,

and Control algorithms, while also achieving orders of magnitude improvements

in performance and efficiency, called cross-domain acceleration.

4. The need for algorithm-hardware design space explorations: The ob-

jective of Neuroweaver is not to provide a single architecture for intelligent neu-

romodulation, rather, to provide a complete framework to explore algorithm-

hardware co-design for neuroscientists and clinicians to explore research in build-

ing such brain implantable devices. As such, a fixed architecture is incapable

of accommodating design space explorations, matching of specific algorithmic

needs, and/or operational constraints. Thus, we propose a template architecture

that is a highly parametric design, capable of being scaled down or scaled up

before fabrication to match the requirements and enable algorithm-hardware de-

sign exploration. After explorations and analyses, the Neuroweaver framework

can generate a concrete design that can be deployed on Field Programmable

Gate Arrays (FPGAs) for prototyping/use in-vivo experimentation. This de-

sign is also ready to be fabricated as a stand-alone programmable custom chip

101

that can be implanted.

5. The need for compilation to moving targets: As is the case with all com-

putation cores, a compiler is required to translate an abstraction to executable

code. However, by introducing a flexible, parametric architecture, additional

responsibility is placed on the compiler to not only perform translation, but

also identify optimal architecture parameters depending on the input program.

Traditional compilers have achieved a degree of adaptability to different tar-

gets by mapping fine-grained intermediate representations to Instruction Set

Architectures (ISAs) of general purpose processors. In the case of a parametric

architecture, an alternative solution is required because the compiler cannot rely

on pre-defined mappings, as different combinations of architectural parameters

create different possible mappings. Therefore, the compiler implements the de-

sign space exploration by ingesting architecture parameters in addition to the

input program, and identifying the parameters for generating an optimal pro-

gram. Depending on the architecture parameters, the compiler must also adapt

the translation of abstraction to executable to abide by constraints imposed by

the parameters, such as on-chip storage availability, bandwidth, and varying

degrees of parallelism. Compilation for Neuroweaver will have completed when

both a set of architecture parameters has been identified, and a valid executable

has been generated.

5.3 Neuroweaver in a glance

Designing, prototyping, and experimenting with neuromodulation control systems re-

quires implementing closed-loop analytic pipelines using interoperable modules (Fig-

ure 5.1). These systems can be modeled as several interacting modules (Figure 5.1) in

computational environments that are often not limited to a single domain as shown in

102

Figure 5.2: A cross-domain closed-loop neuromodulation pipeline. A modular design of
iCLON systems include multiple interoperable modules that often include several analytic
steps from multiple algorithmic domains including DSP, analytics, RL.

Figure 5.2. Closed-loop neuromodulation pipelines include several analytic steps in-

cluding biomarker detection and control policy that employ algorithms from multiple

domains including DSP, analytics, Deep learning, ML, and RL approaches. However,

most of these approaches are computationally expensive, and rely on compute kernels

spanning multiple domains of algorithm as well as multiple compute stacks, making

their integration into the design of iCLON systems an arduous task and implementa-

tion of these pipelines in resource-constrained computational infrastructures such as

implantable devices infeasible. To bridge the transnational gap and enable hardware

implementation of iCLON systems a framework capable of acceleration of a cross-

domain application on different accelerators, called cross-domain multi-acceleration,

is required.

To enable programmers to readily develop cross-domain applications using mul-

tiple accelerators on FPGA, we devised Neuroweaver, a full-stack framework com-

prised of a front-end which with a programming interface in Python for cross-domain

algorithmic specification and a back-end with the capabilities of domain-specific ac-

celerators. By delineating between front-end algorithm and the possible back-end

targets for the hardware implementation of that algorithm, cross-domain end-to-end

closed-loop neuromodulation applications can be compiled to multiple heterogeneous

103

accelerators.

To facilitate research and development in implantable iCLON systems, Neuroweaver

offers a programming interface within the most popular [156] programming language,

Python. The high-level users of the platform use this programming interface in

Python to design their novel iCLON systems. The modular simulation environ-

ment empowers users to design, prototype, and rigorously evaluate their candidate

closed-loop neuromodulation algorithms within a simulated environment. It allows

for rigorous testing and refinement of algorithms in a controlled virtual environment,

significantly reducing the risks and costs associated with in-vivo experimentation.

The users have the flexibility of either using the computational models as described

in section 5.6 or simply integrate their own data-driven or mechanistic models related

to their application of interest.

The pipeline design in simulation facilitates the transition from the simulation

to real-world in-vivo experimentation. By prototyping and fine-tuning algorithms

within the simulation environment, researchers gain insights and confidence in their

approaches before proceeding to in-vivo experiments. This not only minimizes po-

tential risks but also accelerates the pace of research and development. In addition,

the platform offers flexible multi-acceleration features for easier hardware design and

implementation which enables and informs the effective design of implantable chips

(Figure 5.3).

5.4 Neuroweaver platform

5.4.1 Cross-domain programming interface in python

To enable research and development in implantable iCLON systems, Neuroweaver

offers a programming interface within the most popular [156] programming language,

Python. Python was selected to minimize the barrier to entry for neuroscience re-

104

Figure 5.3: Step-by-step conceptual design strategy enabled by the Neuroweaver platform
that enables research and development of iCLON systems. The modular simulation en-
vironment allows the user to design, prototype, and evaluate their candidate closed-loop
neuromodulation algorithms in simulation. This simulation step allows for efficient trans-
lation into in-vivo experimentation and flexible hardware implementation which eventually
informs the design of brain-implantable chips.

searchers and practitioners instead of forcing them to learn a new language. With the

advent of domain-specific accelerators and architectures; there has been significant

research on domain-specific languages (DSL) [157, 158, 159, 160, 161, 162], some of

which have been also embedded in Python [163, 164]. However, iCLON crosses the

boundary of multiple domains and needs a novel interface that can incorporate mul-

tiple domains in a Cross-Domain Interface (CDI) for seamless programming and ease

of use.

A iCLON application crosses multiple algorithm domains including DSP, Analyt-

ics, and AI in each iteration to accomplish it’s goal, demonstrating the need for a

programming interface flexible enough to express each domain. To implement such

an application, the end user would therefore require intimate knowledge of possibly

one or more DSLs for each of the different algorithm domains, as well as how to com-

pose the DSLs as a single program with data communication across three different

devices. Instead, CDI allows users to write their application as a single program,

thus, eliminating the overhead of stitching together different programs and specifying

communication across multiple devices. Keeping the properties of target domains in

105

mind, CDI is designed to reduce the time to code a mathematical expression into a

formula-based textual format, enabled by the reuse of Python language constructs

for modularity and customized Python type annotations. Moreover for code organi-

zation and reduction in implementation time, CDI allows the use of Python function

decorators to capture user-defined functions as reusable components which perform

operations on flows of data.

These Components encapsulate a task comprised of either other component(s) or

mathematical expressions which use syntax similar to the targeted algorithm domains

to facilitate familiarity for experienced programmers. For modularity and reusability,

component(s) have distinct boundaries and arguments which are distinguished by type

modifiers defined as Python type annotations, consisting of input, output, state, and

param; each of which is associated with how the component will use the argument. By

using type annotations in component arguments to explicitly identify data semantics,

CDI binds operations to data being operated on, allowing Neuroweaver to determine

data reuse and dataflow properties of programs.

CDI uniquely targets multiple domains, each of which is eventually compiled and

executed with one of multiple different possible compute cores. As such, CDI offers

a light-weight mechanism to specify the target device for component instantiations.

The device can also be left unspecified, which allows the compiler to select the com-

pilation target based on the available resources, as well as device annotations which

might be included in sub-components in the program. This relieves the programmer

from having to annotate all components within their program. More details on the

programming abstractions for cross-domain multi-acceleration is provided in [165].

5.4.2 Multi-target cross-domain compilation

Providing a high-level programming interface is necessary for enabling usability amongst

neuroscientists, but it also requires a compiler capable of scheduling and generating

106

code in the absence of low-level details included in other programming languages. To

facilitate algorithm-hardware design space exploration, the compiler must also have

the capability to adapt it’s workflow to different compilation targets with distinct

characteristics. The Neuroweaver compiler achieves these requirements by including

architecture parameters associated with the compilation target as inputs, in addition

to the high-level program. By using architecture parameters as inputs, compilation

can be repeatedly invoked for different compilation targets with a given program un-

til the optimal set of parameters is found, based on performance estimates. Finally,

once the architecture parameters are selected, the Neuroweaver compiler is capable

of generating code for the selected target.

CDI programs are defined with minimal specification for how the program should

be executed, to allow usability for neuroscientists. However, CDI preserves the

dataflow required for execution in it’s programs by creating a hierarchical dataflow

graph. By using a hierarchical approach, we preserve different levels of operation gran-

ularity, which is required for adapting to different compilation targets with support

for different operations. By combining the graph with input architecture parameters,

the compiler traverses the graph nodes and identifies operations supported by the

architecture parameters and maps them to the equivalent code templates used for

scheduling.

5.5 An example implementation with CNF pro-

gram using the CDI in Python

Neuroweaver provides a simple and lightweight programming interface, called Com-

ponent and Flow (CNF) programming model, which allows application programmers

to specify various components of their program to be targeted for acceleration. Neu-

roweaver is also equipped with a runtime system which creates a component and flow

107

graph, schedules the components and handles the data transfers between components.

These characteristics are demonstrated in the following example, which imple-

ments a very simple example consisting of two components connected together with

a defined flow and will be used to delve further into CDI.

Components: A programmer creating a new component for their application

extends the Component baseclass. The programmer optionally defines one or more

of the following four methods with the @property decorator: The input_names, the

output_names, the state_names, and the property_names. Each of them return a list

of strings which are the respective queue names. The programmer also extends the

baseclass with the following two methods: The initialize , and the execute methods.

In the following toy example first a simple component called Brain is created (lines

4-15). It has one output queue, called brain_signal. The initialize method can be

used for code to set up the initial state of the component and perform other one time

tasks The execute method contains most of the functionality of the code. The execute

function runs every time an input is available on any of the input queues.

The following example then creates another component called SignalSink (lines 17-

27). This component will receive a brain_signal input. The Component class provides

the following methods which initialize the queues for each of the interfaces with a

shape.

The Component class provides the following methods which initialize the queues for

each of the interfaces with a shape: set_input, set_output,and set_state. The shape

is provided as a tuple, e.g. (100, 1) for a 1-D array with 100 elements. Every element

pushed to the queue needs to be this particular shape. The following code snippet

initilizes Brain and SignalSink components. The output queue brain_signal of brain

instance is set to aceept shape (1, 1). The input queue brain_signal of sink instance

is set to accept shape (1, 1) as well (lines 36-38).

Graph: The graph class allows the programmer to declare a component and flow

108

program. The add_component method is used to add components to the graph. In

the following example, we add brain as a component to a graph called graph. The

add_flow method is used to connect two components with a flow. We specify source

and destination component instance along with their corresponding queue names.

In the following example, we add a flow to a graph called graph by specifying the

source component brain with its output queue name brain_singal and the destination

component with its input queue name brain_signal (lines 40-42).

The following code adds Brain and SignalSink components to a graph called

deep_brain_stimulation. Their queues are initialized. A flow is created between the

two components (lines 30-45).

Runtime: The runtime is initialized with an instance of the component and flow

graph object. The initialize method of the graph class is used to initialize all the

components in the graph. The execute method begins the execution. The runtime will

schedule ready components and do the data transfers according to the flows specified

(lines 47-51).

With the all the pieces from the previous sections, we now have a runnable CNF

program with two components.

1 from runtime.runtime import Runtime

2 from qfdfg.graph import Graph

3

4 class Brain(Component):

5 @property

6 def output_names(self) -> List[str]:

7 return ["brain_signal"]

8

9 def initialize(self):

10 print("brain -v0")

11

12 def execute(self , brain_signal):

109

13 signal = np.array ([10])

14 print(f"{self._name }: signal {signal}")

15 brain_signal.push(signal , (1,1))

16

17 class SignalSink(Component):

18 @property

19 def input_names(self) -> List[str]:

20 return ["brain_signal"]

21

22 def initialize(self):

23 print(f"initialize does nothing")

24

25 def execute(self , brain_signal):

26 signal = brain_signal.pop()

27 print(f"{self._name }: signal {signal}")

28

29 # Create a component and flow (CNF) graph. This is named

DeepBrainStim

30 deep_brain_stimulation = Graph("DeepBrainStim")

31

32 # Initialize the Brain and SignalSink components

33 brain = Brain ()

34 sink = SignalSink ()

35

36 # Bind the output and input names to Queues

37 brain.set_output("brain_signal", (1,1))

38 sink.set_input("brain_signal", (1,1))

39

40 # Add components to the graph

41 deep_brain_stimulation.add_component(brain)

42 deep_brain_stimulation.add_component(sink)

43

44 # Create a flow between the brain component and the sink component

110

45 deep_brain_stimulation.add_flow("brain_signal", brain , "brain_signal

", sink)

46

47 runtime = Runtime(deep_brain_stimulation)

48 # Run the initialize functions of all components

49 runtime.initialize ()

50 # Begin execution

51 runtime.execute ()

Listing 5.1: Example of a program using the cross-domain programming interface in Python.

5.6 Simulation environments and control tasks for

designing iCLON systems

Multiple simulation environments has been integrated to enable designing iCLON

systems in simulation. These simulation environments enabled the design and proto-

typing of iCLON systems in-silico before integrating with in-vivo experimental setups.

Details of the simulation environments using computational models of the brain are

provided in the following subsections.

5.6.1 Interactive AI-enabled closed-loop synchrony suppres-

sion in Bonhoeffer–van der Pol model

Pathological synchronous network activities in the brain is hypothesised as a potential

source of many neurological disorders like Parkinson’s disease [166]. The collective

synchronous activity of neural ensembles can lead to symptoms such as tremor. DBS

modulates the desired functionality of the neural systems through locally deliver-

ing stimulation to the targeted brain regions. Here, we consider to use a popula-

tion of N regularly oscillating neurons, i.e. Bonhoeffer–van der Pol also known as

111

FitzHugh–Nagumo oscillators, globally coupled via the mean field X which is imple-

mented as an OpenAI gym environment [167]. I employed this computational model

as a simulation framework to design closed-loop neuromodulation systems using dif-

ferent classes of RL algorithms during a synchrony suppression task. The regularly

oscillating neurons in Bonhoeffer–van der Pol model follow the equations below:

 ẋ = xk −
x3
k

3
− yk + Ik + ϵX + A

ẏ = 0.1(xk − 0.8yk + 0.7),

 (5.1)

where X = 1
N

∑N
k=1 xk is the mean field, A is the action stimuli applied to each

individual neuron k = 1, . . . , N of the total N neurons. Actions, are considered to be

ideal δ-shaped pulses with the amplitude −Amax ≤ At ≤ Amax which gets updated

at each time step tn = n∆ and ∆ is the sampling rate of the environment.

The state of the environment at time step t is the value of the mean field model,

i.e. X(t). We used the exponential reward function as in:

R(t) = exp(−(X(t)−<Xstate>)2−β∥At∥). (5.2)

In equation 5.2, < Xstate >t=
1
M

∑M
l=1X(t− l+1) consists of M most recent values of

the mean filed and it is considered to account for the oscillatory activity of the neural

populations. The total energy supplied to an ensemble of neurons is a measure that

we aim to minimize in practical DBS settings and the second term in equation 5.2 is

added in favor of minimizing the total stimulation energy.

This simulation environment, which is a mean field model of neural population

activity with electrical stimulation, was used to design and develop an interactive

AI-enabled iCLON systems for sunchrony suppression. Multiple interactive iCLON

strategies was designed as illustrated in Figure 5.4. The performance of five different

RL-based control strategies (see section 5.7) in performing the synchrony suppression

112

task was evaluated in terms of the quality of learning the task and sample efficiency

which are two key factors in designing iCLON algorithms.

Figure 5.4: The modular architecture of the Neuroweaver simulation environment including
the computational model of the neural population under electrical stimulation in closed-loop
with RL-based control strategies to learn a synchrony suppression control task; (a) neural
network-based model-free algorithms and PILCO, (b) Model-based RL with MPC.

5.7 RL algorithms integrated in the design of iCLON

systems

A standard RL task can be formulated as a Markov Decision Process (MDP) [168]

defined by a tuple (S,A, r, T, P), where S and A are state and action spaces, r = R(τ)

is a reward function, T is the set of terminal conditions, and P is the state transition

probability. The general goal of reinforcement learning algorithms are to find the

optimal policy π maximizing the discounted cumulative expected reward ,J(π), as

follows.

π⋆ = argmaxπJ(π), whereJ(π) = Eτ∼π[R(τ)] (5.3)

We provide an algorithm library for designing data-driven intelligent control strate-

gies which consists of candidates from multiple classes of RL algorithms. One of the

most important factors in dividing RL algorithms into different categories, is whether

the RL agent has access to or can learn an underlying model of the target environ-

113

ment, leading to two broad categories of model-based and model-free algorithms. In

model-based RL, having a model allows the agent to plan ahead by forecasting out-

comes of various choices of action, enabling it to derive a learned policy from these

projections. This results in substantial sample efficiency in model-based RL compared

to model-free RL algorithms. However, having access to a precise model of the target

environment is often not practical. In the absence of a ground-truth model, the agent

has to learn the transition model from experience, which can lead to biases causing

sub-optimal and poor performance in the actual environment. Model-free algorithms,

on the other hand, despite missing out on sample efficiency benefits, are simpler to

implement and tune, making them more popular and extensively explored compared

to model-based approaches.

Model-free RL algorithms are mainly categorized as policy optimization and Q-

learning methods. The policy optimization approaches optimizes policy parameters

θ either with respect to the actual performance objective J(πθ) or its local approxi-

mations in an on-policy way. However, Q-learning methods are off-policy strategies

that learn an approximator of the optimal action-value function. Policy optimization

methods tend to be more stable and reliable at the cost of being less sample efficient

compared to Q-learning approaches since the off-policy agents utilize the replay buffer

containing the old experiences in contrast to the on-policy agents. Many RL algo-

rithms has been developed which are able to carefully trade-off between the strengths

and weaknesses of either side.

The selection of a control policy in designing intelligent closed-loop neuromod-

ulation systems heavily relies on the dynamics of the underlying nervous system,

existence of prior knowledge about the dynamics of the environment and the effect

of stimulation, dimensionality of the action and state spaces, and more. In addition,

complexities of the interactions between the neuromodulation systems and the ner-

vous system as well as ethical constraints avoids us from testing any novel closed-loop

114

strategies in in-vivo experimental setups. Thus, I provided a library of RL algorithms

including model-free, model-based, on-policy, and off-policy RL algorithms for testing

in closed-loop using the the computational model described in section 5.6 for in-silico

prototyping of control strategies. We show the utility and the extensibility of this in-

silico simulation environment in providing insight on the behavior of RL algorithms

in the context of a neuromodulation tasks in terms of speed of convergence and the

quality of learning the optimal control policies which are two important performance

metrics in employing RL algorithms in clinical practice. The high-level explanations

of the RL algorithms are provided in the following sections. The high-level overview

of the modular simulation environment including the computational model in closed-

loop with RL agents is depicted in Figure 5.4.

I deployed three model-free RL algorithms in closed loop with the simulation

environment, including proximal policy optimization (PPO) [169], soft actor-critic

(SAC) [170], and Deep Deterministic Policy Gradient (DDPG) [171] to evaluate the

feasibility of utilizing model-free RL approaches in intelligent closed-loop neuromodu-

lation control systems. The advantage of model-free RL algorithms over more complex

methods is that they do not rely on constructing a sufficiently accurate environment

model and hence, their performance are not affected by model bias. These three algo-

rithms can be divided into two main categories: on-policy (e.g., PPO) and off-policy

(e.g., SAC and DDPG).

5.7.1 Proximal policy optimization

PPO is a policy gradient (PG) method that has shown high quality of performance

in many applications. PG algorithms are a type of RL algorithms that rely upon

optimizing parametrized policies with respect to the expected long-term return using

gradient descent. Unlike vanilla PG [148] that keep new and old policies close in the

parameter space, trust region policy optimization (TRPO) [149] algorithm updates

115

policies by taking the largest step possible to enhance the performance while satisfying

a constraint expressed in terms of KL-Divergence on how close the new and old policies

are allowed to be. PPO combines the advantages of vanilla PG and TRPO to ensure

stability and scalability by employing a surrogate objective function to update the

policy parameters.

In this study, we employed PPO-Clip, a variant of PPO that utilizes specialized

clipping in the objective function to prevent significant deviations of the new policy

from the old policy. As a result, PPO offers a simpler implementation, while empiri-

cally performs at least as well as TRPO. PPO is applied in an actor-critic framework.

The actor maps the state to action and the critic gives an expectation of the agent’s

reward with its corresponding state. The policy is updated via a stochastic gradient

ascent optimizer to ensure the exploration while the agent will gradually tend to ex-

ploit what it has learned over the course of training. Here, we used stable baseline

library [150] for implementing PPO algorithm.

5.7.2 Soft actor-critic network

SAC [151, 143] is an actor-critic RL algorithm widely employed in continuous action

spaces for various control tasks. SAC is from the family of off-policy RL algorithms

that optimizes a stochastic policy. A central feature of SAC is entropy regularization

to encourage effective exploration during learning. The policy is trained to maximize

a trade-off between expected return and entropy, a measure of randomness in the

policy, which has a close connection to the exploration-exploitation trade-off. In-

creasing entropy results in more exploration, which can accelerate learning. It can

also prevent the policy from prematurely converging to a bad local optimum, resulting

in stable training. Moreover, SAC leverages neural networks to represent both the

policy and the value functions, enabling it to handle high-dimensional observation

spaces effectively. We employed Stable Baselines library [150] for implementing SAC

116

algorithm.

5.7.3 Deep deterministic policy gradient

DDPG is a deep variant of the deterministic PG algorithm, which can also be viewed

as an actor-critic algorithm, using a Q-function estimator to enable off-policy learn-

ing, and maximizing this Q-function by an actor. Since DDPG is a deterministic

policy, we add adaptive noises to the parameters of the neural network to encour-

age exploration [172]. We employed Stable Baselines library [150] for implementing

DDPG algorithm.

5.7.4 Model-based reinforcement learning with model pre-

dictive control

To improve sample efficiency which is a critical factor in iCLON systems, we investi-

gate model-based RL algorithms. The first method is a combination of a model-based

RL algorithm with model predictive control (MPC). Fig. 5.4(b) shows the high-level

overview of this method that consists of two components: learning the underlying dy-

namics of the environment, and using a MPC controller to plan and execute actions.

To approximate the state transition model of the simulation environment, we initially

collect random trajectories and add the history of collected samples to the experi-

ence buffer. The estimated dynamical model f̂ is formulated as ŝt+1 = st + f̂θ(st, at),

where st and at are the state and action at step t respectively, following the setting

in this work [173]. We used as a neural network to model the dynamics, where the

parameter vector θ represents the weights of the neural network, aiming to minimize

the mean squared error ξ = 1/D
∑

(st,at,st+1)∈D ||δ − δ̂||2 between the observed differ-

ence of two consecutive time steps, i.e. δ = st+1 − st, and the model predictions, i.e.

δ̂ = f̂θ(st, at). After initialization, MPC selects the next actions to be evaluated with

117

the goal is to minimize the cost function to achieve the synchrony suppression task.

The cost function is in the same format as the reward function in equation 5.2 with

the negative sign and the different value of β.

5.7.5 Probabilistic inference for learning control

Probabilistic inference for learning control (PILCO) [145] is model-based data-efficient

approach to policy search without considering any prior domain knowledge about the

underlying dynamic. Model-based RL approaches often assume that the learned

dynamics model is sufficiently accurate which will lead to low performance in the

presence of model bias. Model bias is particularly an issue in cases where there is

limited prior knowledge or limited data available. PILCO employ Gaussian process

(GP), a non-parametric probabilistic model [114], that takes the model uncertainty

into account to address the model bias issue. The main advantage of PILCO is

that it remarkably improves the sample efficiency in continuous state-action spaces

which sets the pathway of integration of PILCO in closed-loop clinical settings and

experimental setups.

Consider the following dynamical system xt = f(xt−1), ut−1), Where f is the

unknown state transition function with continuous state, x, and action, u, domains.

The goal of PILCO is to find a deterministic policy that maximizes the expected

return or minimizes the expected cost, c(xt) of following the policy π over the time

horizon T as in Jπ(θ) =
∑T

t=0Ext [c(xt)], x0 ∼ N(µ0,Σ0). PILCO assumes that π is a

function parametrized by θ and that the cost function c(x) encodes some information

about a target state xtarget. We used the squared exponential cost function.

118

5.8 Results

5.8.1 Synchrony suppression using reinforcement learning al-

gorithms

We have created a suite of simulation environments using a biophysical models of

brain stimulation to design and test intelligent closed-loop neuromodulation systems.

We employed the mechanistic model of the population of N regularly oscillating neu-

rons, i.e. Bonhoeffer–van der Pol model implemented in the format of OpenAI gym

which is a standard environment for designing intelligent agents. Using this setup,

we demonstrated in-silico experiments to design iCLON systems using the state-of-

the-art RL algorithms for suppressing pathological synchrony. We evaluated the per-

formance of five different RL algorithms in the synchrony suppression task in terms

of the quality of learning the task and sample efficiency which are two key factors in

designing iCLON algorithms. We used the stable baseline library for implementation

of the model-free RL algorithms, i.e. PPO, SAC, and DDPG. In our implementa-

tions, we used two hidden layers MLPs with 64 neurons for all three model-free RL

algorithms. Fig. 5.5(a) shows the reward function during the training phase of the

three model-free algorithms. As shown in Fig. 5.5(a), SAC and DDPG which are

off-policy algorithms converge faster compared to PPO which is an on-policy method.

However, PPO achieves a higher reward and a better final performance in learning

the synchrony suppression task at the expense of more interaction with the neural

environment. The quality of performing the task after convergence is shown in Fig.

5.6(a)-(c), where the first 7500 samples are showing the oscillatory behavior of the

neural populations without taking any action, i.e. applying any stimulation pulses.

The middle 7500 samples is showing the neural states by taking actions with the

learned RL policies, and the last 7500 samples show that the population of neurons

start synchronizing again if we stop the intervention.

119

We further expanded the library of algorithms by adding two model-based ap-

proaches to improve sample-efficiency. The first approach is model-based RL with

MPC. In our implementations we used a single-layer MLP with 500 neurons for mod-

eling the underlying neural dynamics. Fig. 5.5(b) show the reward value of the MPC

approach. Although model-free methods require at least 1e6 samples to converge,

the model-based RL with MPC has shown improvement in terms of sample efficiency

and converges at around 2.5e4 steps. However, there is still room for improvement

in terms of its final performance in the synchrony suppression task as depicted in

Fig. 5.6(d) and having 2.5e4 interactions with the nervous system might still be

impractical for in-vivo experiments.

The next model-based RL algorithm that we tested is PILCO. As shown in Fig.

5.5(c), after a random initialization phase of length 300 steps, the RL agent quickly

converges and learns the synchrony suppression task as shown in Fig. 5.6(e). Al-

though the best final performance in terms of synchrony suppression and minimizing

the power of actions is achieved by PPO, but that is at the cost of having at least 3e6

interactions with the environment that is not practical for being integrated in iCLON

systems in clinical practice. On the other hand, PILCO shows a noticeable improve-

ment in sample efficiency at a cost of consuming slightly higher action power and

slightly higher level of synchrony which is much more well-suited for clinical practice.

In general, our evaluations support the hypothesis that RL algorithms are capable

of handling the decision-making process in closed-loop neuromodulation control sys-

tems. In addition, we showed the utility of simulation environment in designing and

prototyping iCLON systems in silico before testing in in-vivo experiments.

120

Figure 5.5: Learning performance (reward values) of different RL-based iCLON systems
using (a) Deep RL algorithms, (b) model-based RL with MPC, and (c) PILCO.

Figure 5.6: Performance of different RL algorithms in the synchrony suppression task during
the inference mode.

5.8.2 CNF implementation of iCLON systems using deep RL

algorithms

The three iCLON system designed to perform the synchrony suppression task using

deep RL algorithms have been implemented using CNF program. A modular design

has been considered to separate the training from inference mode of the RL agents as

depicted in Figure 5.7. The main reason behind separating the training and inference

mode is that the RL policies in inference mode are being implemented on FPGA

(see Figure 5.7, and section 5.8.3). In addition, the runtime latency measurements of

these implementations are added to table 5.1.

121

Figure 5.7: Modular implementation of RL-based iCLON systems using Deep RL algo-
rithms. This modular design separates the training from inference modes. The RL policy
in inference mode is targeted to be implemented on FPGA.

Table 5.1: Runtime latency measurement in ms for CNF implementation of the three iCLON
systems for synchrony suppression using deep RL algorithms.

Gym Environment RL Inference Rollout Collection End-to-End latency
PPO 2.67 3.43 9.45 28.4
SAC 2.58 1.18 1.34 5.93
DDPG 2.61 1.24 1.28 6.17

5.8.3 FPGA execution of deep RL agents in inference mode

The Deep RL policies during the inference mode was implemented in SystemVer-

ilog. We used Xilinx Vitis tools to synthesize and implement the design on a Xilinx

U280 FPGA. The FPGA prototype sustains an operating frequency of 100 Mhz. We

compare our hardware implementation with Mr.Wolf, a publicly available, state-of-

the-art fully programmable low-power SoC. Mr Wolf consists of a two-stage RISC-V

low-power processor for system control and a compute cluster of 8 RISC-V cores as an

accelerator for compute-intensive workloads. It is further augmented by the XPulpNN

ISA extension that enables SIMD arithmetic operations on INT8 data type. Mr Wolf

SoC consumes 153mW at 350MHz with an active Compute Cluster.

Quantization is a fundamental approach to enabling performance, energy/mem-

122

ory efficient Neural network inference on low-power architectures. Although there is

extensive research on the effect of quantization on accuracy for DNN, there is far less

research on how quantization affects the accuracy of RL networks. Recent works [174]

demonstrated that post-training quantization has minimal effect on network accuracy

for a wide range of RL networks. Based on the open-sourced evaluation framework

from QuaRL [174], we quantized the benchmark networks using the PyTorch quan-

tization tool and evaluated its effect on network accuracy. Our evaluation confirmed

the conclusion of previous work. Based on this finding, we use these quantized net-

works for compilation and performance evaluation on our FPGA prototype. We use

NEMO, a quantization tool developed by the same research group that developed

Mr. Wolf to o execute the quantized network on Mr. Wolf.

We evaluate the FPGA implementation through iso-power inference latency com-

parison with the baseline. The inference latency is measured in cycle count. To

measure the latency on the FPGA prototype, we first compile the benchmark net-

works’ ONNX format into executable binaries using the Neuroweaver compiler. The

compiled binaries and the network parameters are then stored in main memory buffers

shared with FPGA implementation using CDI and PyOpenCL. We launched the in-

ference task through CDI and a performance counter module integrated with the cycle

of execution during inference. Once the inference is done, the performance counter

passes the cycle count statistics back to the host through the CDI.

We obtained the performance number of Mr. Wolf using GVSoC, an open-source

software simulator developed by the same research group that developed Mr. Wolf.

GVSoC targets the full-platform simulation of the Mr. Wolf SoC and has less than

10% simulation error for performance analysis compared to an actual physical im-

plementation. To obtain the best possible performance on Mr.Wolf with GVSoC, we

employ the Neural Network deployment framework native to Mr.Wolf which consists

of NEMO, a network quantization tool, DORY, a neural network deployment tool

123

that generates memory-optimized code for neural network workloads, and XPulpNN,

a RISC-V ISA extension that enables low-bitwidth arithmetic SIMD vector instruc-

tion for Neural Network workload. We use the same set of benchmark network ONNX

format as inputs to the NEMO quantization tool and execute the binaries generated

by DORY on GVSoC. We keep Mr. Wolf’s hardware configuration the same as re-

ported in the paper for iso-power comparison. We also simulated standalone network

kernels such as Matmul and Relu provided by XPulpNN to cross-validate the end-to-

end performance number obtained using the NEMO/DORY framework.

The experimental results of this analysis is provided in table 5.2.

Table 5.2: Comparison of layer-by-layer and end-tot-end execution of Deep RL algorithms
in inference mode on FPGA compared to XPulpNN in terms of speed up.

Workload Sum of layer-by-layer re-
sults on FPGA

Projected end-to-end re-
sults on FPGA

PPO 2.95x 3.54x
SAC 4.45x 4.61x
DDPG 4.75x 4.87x

5.8.4 In-vivo experiments

To demonstrate the capabilities of the Neuroweaver platform in integration with in-

vivo experimental setups, we ran real-time in-vivo experiments using Neuropixels

multi-channel probes to control an LED light based on the theta-band power of the

LFP signals recorded from the hippocampus in rats (Figure 5.8. The Neuropixels

probes collected LFP signals with a sampling frequency of 30KHz, bit depth of 16 and

bit volt of 0.195µV. The recoreded LFP signals was filtered to remove low frequency

LFP data and high frequency spiking data, and the LFP signal was subsequently

down sampled into 2.5KHz. Data from Neuropixel probes was streamed into Open

Ephys software on the recording PC, which recorded all data and streamed selected

LFP channels to our platform.

A workflow in Neuroweaver platform was created for the real-time closed-loop

124

system. The workflow consisted of a pacemaker component that creates dummy

input to all data collecting components to drive their execution. Data collecting

components included 2x Open Ephys interface components that received data from

each probe sent by separate ZeroMQ plugin in Open Ephys, and a camera component

that communicated with FILR Flea 3 camera with Spinnaker SDK provided by FILR.

The Open Ephys interface components stored the collected data in a buffer and

pushed a data packet of 4,096 samples downstream every 256 samples (both numbers

are adjustable parameters). They also recorded and logged the timestamp when

the Open Ephys ZeroMQ plugin encoded the last packet of data, marking when data

became available. The camera interface component received every frame taken by the

camera and its timestamp. The frames were stored into a MJPG video file encoded

with OpenCV on disk, and also displayed a real-time monitor window on screen. The

timestamps of each frame were also logged.

Data processing for this experiment consists of a simple FFT component that

picked the data of one channel (data from all received channels are sent to the process-

ing component), performed FFT, and calculated the power within the theta frequency

band (5− 9Hz). This power was logged, pushed into a separate component that dis-

played a real-time plot on screen, and sent to the stimulation algorithm downstream.

Here the stimulation algorithm was simple threshold-based control.

The stimulus presentation in this experiment was an on-screen display of an in-

dicator light turning green or red. The latency overhead by Neuroweaver in in-vivo

experiments was measured to be 38.26±7.69ms during a 20 minutes recording session.

5.9 Discussion

We presented an open-source platform, dubbed Neuroweaver, for end-to-end design-

ing, prototyping and deploying translatable intelligent closed-loop neuromodulation

125

Figure 5.8: In-vivo experiments. (a) Schematic of the experimental design where the LFP
signals are being recorded from hippocampus in rats, DSP techniques was used to preprocess
the recorded LFP signals and calculate the theta-band power. A simple threshold-based
controller based on the theta-band power is used to turn an LED on/off. The LED is used
as a surrogate of stimuli to close the loop.

systems. The main purpose of Neuroweaver is to bridge the translational gap between

designing and deploying clinically useful iCLON systems from multiple perspectives.

First, it provides a simulation environment using computational model(s) of the neural

systems for designing, testing, and prototyping closed-loop neuromodulation systems

before deploying in clinical or in in-vivo experimental settings. Second, it provides

libraries of algorithms from multiple domains including RL, signal processing and

machine learning to enable modular design of closed-loop pipelines. Finally, Neu-

roweaver enables cross-domain multi-acceleration to enable developing implantable

iCLON systems.

In this study, I demonstrated the utility of Neuroweaver in experimental design of

iCLON systems using a computational model of the brain under electrical stimulation.

The Performance of different RL-based iCLON strategies (including model-based,

model-free, on-policy, and off-policy approaches) have been evaluated in a synchrony

suppression control task. The utility of employing the RL algorithms in iCLON

systems considering two metrics including speed of convergence as in Fig. 5.5 and the

quality of learning task as shown in Fig. 5.6. This model represented an example of

126

physiological models that can be used for designing iCLON systems. The Neuroweaver

platform is capable of incorporating different computational models as surrogates of

the target physiological system. These models may include mechanistic biophysical

models or data-driven models that are built from the experimental data. Although

we showed the utility of Neuroweaver in experimental design using the simulation

framework, adding compatibility to multiple well-developed libraries of computational

models is a promising future direction.

Neuroweaver provides a framework to explore algorithm-hardware co-design for

a broader community including neuroscientists, clinicians, and engineers to explore

research in building such brain implantable devices. FPGA acceleration has been

implemented for multiple RL-based iCLON systems as described in section 5.8.3. The

flexible cross-domain multi-target acceleration capabilities of Neuroweaver enables the

users to explore the design of novel iCLON systems. Although, hardware acceleration

on FPGA has been demonstrated for multiple algorithms, these capabilities need to

be expanded for a wider range of algorithms to provide more flexibility to non-expert

users.

In this study a prototype closed-loop experiment was implemented using CDI,

compiled, and executed the simulation using Neuroweaver workflow to interface with

an in-vivo experimental setup. The results showed that Neuroweaver workflow does

not add a significant computing overhead to the execution of the closed-loop pipelines.

This is an important factor especially for the real-time implementation of iCLON

algorithms.

5.10 Conclusion

This research presented Neuroweaver, an open-source translational platform for em-

bedding AI in iCLONs system. The platform is aimed to bridge the translational

127

gap between research studies and clinical practice. Neuroweaver not only provides

a simulation environment for modular designing and prototyping closed-loop neuro-

modulation pipelines, but also minimizes the complexities of translating the algorithm

to implementation through a Python-embedded CDI which compiles algorithms to

one or more software frameworks or target architectures. The utility of Neuroweaver

in designing and prototyping iCLON systems was demonstrated by designing multi-

ple RL-based iCLON strategies. Moreover, the results showed that implementation

and execution of the closed-loop simulations using Neuroweaver workflow does not

add execution overhead which is critical for real-time implementation of iCLON in-

terfaces. Integrating hardware acceleration on FPGA showed an improved execution

time compared to other platforms. This hardware acceleration is aimed to be per-

formed with minimal complexity of translating the algorithms to implementation for

the end-users to enable exploration of embedded implantable iCLON systems for a

broader community.

128

Chapter 6

Conclusion and future direction

Despite the challenges faced in developing and implementing the iCLON systems,

the potential benefits of utilizing them to treat neurological disorders make this field

of research and development highly promising. These systems hold the potential to

provide more targeted, flexible, and effective treatment options, reduce the burden of

medication side effects, and improve the overall quality of life for patients. This thesis

significantly contributed to the development of intelligent precision neuromodulation

therapies that has the potential to revolutionize the standard of care.

6.1 Contributions to the field

This research significantly advances the field of closed-loop neuromodulation and

contributed to the development of iCLON systems that autonomously learns and

adapts to the intricate and varying nature of the target nervous system. The key

contributions of this thesis are described below.

This thesis contributed to the development of multiple simulation environments.

These environments, essential for designing iCLON systems, provide a safe and con-

trolled setting for testing and prototyping these systems in silico before integrating

in experimental setups. They enable rapid design iterations, facilitating the tran-

129

sition from concept to clinical application. This approach addresses the challenges

of interacting with the complex and sensitive nervous system, ensuring safety and

efficacy.

Introduction of control tasks to facilitate the development and clinical translation

of iCLON systems is another contribution of this research. The thesis introduces

specific control tasks that replicate real-world clinical scenarios. These tasks include

designing systems for minimizing tremor severity in PD and ET patients, regulating

HR and MAP in cardiovascular system with selective VNS, and suppressing neural

synchrony in PD.

Furthermore, this research contributed to the advancement in control policies for

designing novel and more effective iCLON systems. Moving beyond trial-and-error

and traditional control approaches, this research leverages AI and RL to develop data-

driven control strategies. These strategies enable iCLON systems to autonomously

learn and optimize neuromodulation controls, offering a more effective, adaptive, and

patient-specific approach to treatment.

Implementation of novel data-driven control strategies in the context of multiple

neuromodulation applications is another key contribution of this research. I success-

fully applied these innovative control strategies in various neuromodulation appli-

cations, including automated DBS programming framework with safety constraints

for tremor suppression, cardiovascular system regulation with selective VNS, and

synchrony suppression with DBS in PD. This demonstrates the generalizability and

effectiveness of the developed systems across different neuromodulation applications.

Another contribution is the development of an end-to-end translational research

platform for the design and implementation of iCLON systems which has been a

collaborative effort. This platform incorporates an algorithm-hardware co-design ap-

proach, facilitating the development of brain-implantable devices that can learn and

adapt control policies autonomously. It addresses the computational challenges of AI

130

and reinforcement learning, offering a scalable and customizable architecture suitable

for a broad range of research and clinical applications.

In general, this thesis lays the groundwork for a new era in treating treatment-

resistant neurological disorders, offering more targeted, effective, and personalized

treatment options. The integration of advanced simulation environments, practical

control tasks, AI-driven control policies, and an end-to-end translational research and

development platform illustrates the potential of iCLON systems to revolutionize the

patient care and open new frontiers in neuromodulation technologies.

6.2 Future work

The development of automated intelligent closed-loop neuromodulation systems is an

exciting and rapidly evolving field, with numerous future directions for research and

development.

Interpretability is becoming an increasingly important aspect of AI and machine

learning systems, especially in the medical domain, where decisions made by these

systems can have a significant impact on patient health outcomes. In the context of

closed-loop neuromodulation systems, interpretability is important in ensuring that

clinicians and patients can understand how the system is making decisions and have

confidence in the system’s ability to optimize treatment outcomes. Moreover, de-

veloping intelligent closed-loop neuromodulation systems that are more interpretable

will also improve the regulatory approval process, as it will be easier to assess the

system’s safety and efficacy. Integration of interpretable machine learning and re-

inforcement learning models into the design of iCLON system is a promising future

direction.

Neuromodulation therapies modulates the desired neural activity by delivering

electrical or magnetic stimuli to the targeted regions. Due to the intricate and dy-

131

namic nature of the nervous system, the underlying causes of the disease may induce

multiple symptoms that we are interested to treat simultaneously. In addition, ap-

plying the intervention to targeted regions might induce adverse side effects. Defining

the algorithmic design of iCLON systems as a multi-task learning (MTL) problem

enables the system to simultaneously perform multiple related tasks. Multi-task learn-

ing is a machine learning technique that involves training a single model to perform

multiple related tasks simultaneously which helps with improved accuracy, better

generalization, and increased efficiency. By sharing information between tasks, MTL

can learn representations that are more robust and transferable across tasks, leading

to improved accuracy and generalization. Additionally, by training a single model

to perform multiple tasks, MTL can be more computationally and sample efficient

than training separate models for each task, particularly when the tasks share similar

features or require similar computations.

Although developing simulation environments help with testing and prototyping

iCLON systems and algorithm selection in silico before testing in clinical experimen-

tal setups, there is still a translational gap in simulating potential challenges in real

experimental setups. Future developments in this area help with minimizing the

translational gaps by simulating real-world scenarios including simulating the noise

of observation and action spaces, simulating the effect of artifacts, variations across

different subjects, and disease subtypes. Incorporating data-driven dynamical mod-

eling approaches may also better reproduce the real-world experimental setups and

helps with reducing the translational gaps.

132

Bibliography

[1] Elliot S Krames, P Hunter Peckham, Ali Rezai, and Farag Aboelsaad. What is

neuromodulation? In Neuromodulation, pages 3–8. Elsevier, 2009.

[2] Yuemei Hou, Qina Zhou, and Sunny S Po. Neuromodulation for cardiac ar-

rhythmia. Heart Rhythm, 13(2):584–592, 2016.

[3] Philippe Ryvlin, Sylvain Rheims, Lawrence J Hirsch, Arseny Sokolov, and Lara

Jehi. Neuromodulation in epilepsy: state-of-the-art approved therapies. The

Lancet Neurology, 20(12):1038–1047, 2021.

[4] Patric Blomstedt and Marwan I Hariz. Deep brain stimulation for movement

disorders before dbs for movement disorders. Parkinsonism & Related Disorders,

16(7):429–433, 2010.

[5] Helena Knotkova, Clement Hamani, Eellan Sivanesan, Maŕıa Francisca Elgueta

Le Beuffe, Jee Youn Moon, Steven P Cohen, and Marc A Huntoon. Neuromod-

ulation for chronic pain. The Lancet, 397(10289):2111–2124, 2021.

[6] Yasin Temel, Sarah A Hescham, Ali Jahanshahi, Marcus LF Janssen, Sonny KH

Tan, Jacobus J van Overbeeke, Linda Ackermans, Mayke Oosterloo, Annelien

Duits, Albert FG Leentjens, et al. Neuromodulation in psychiatric disorders.

International review of neurobiology, 107:283–314, 2012.

[7] Karen Hunka, Oksana Suchowersky, Susan Wood, Lorelei Derwent, and

133

Zelma HT Kiss. Nursing time to program and assess deep brain stimulators

in movement disorder patients. Journal of Neuroscience Nursing, 37(4):204–

210, 2005.

[8] Meng-Chen Lo and Alik S Widge. Closed-loop neuromodulation systems: next-

generation treatments for psychiatric illness. International review of psychiatry,

29(2):191–204, 2017.

[9] Iñaki Iturrate, Michael Pereira, and José del R Millán. Closed-loop electrical

neurostimulation: challenges and opportunities. Current Opinion in Biomedical

Engineering, 8:28–37, 2018.

[10] Matthew D Johnson, Hubert H Lim, Theoden I Netoff, Allison T Connolly,

Nessa Johnson, Abhrajeet Roy, Abbey Holt, Kelvin O Lim, James R Carey,

Jerrold L Vitek, et al. Neuromodulation for brain disorders: challenges and

opportunities. IEEE Transactions on Biomedical Engineering, 60(3):610–624,

2013.

[11] Pedram Afshar, Ankit Khambhati, Scott Stanslaski, David Carlson, Randy

Jensen, Dave Linde, Siddharth Dani, Maciej Lazarewicz, Peng Cong, Jon Gif-

takis, et al. A translational platform for prototyping closed-loop neuromodula-

tion systems. Frontiers in neural circuits, 6:117, 2013.

[12] Derrick Soh, Timo R Ten Brinke, Andres M Lozano, and Alfonso Fasano. Ther-

apeutic window of deep brain stimulation using cathodic monopolar, bipolar,

semi-bipolar, and anodic stimulation. Neuromodulation: Technology at the Neu-

ral Interface, 22(4):451–455, 2019.

[13] Breanna Sheldon, Michael D Staudt, Lucian Williams, Tessa A Harland, and

Julie G Pilitsis. Spinal cord stimulation programming: a crash course. Neuro-

surgical review, 44:709–720, 2021.

134

[14] Andrew Haddock, Kyle T Mitchell, Andrew Miller, Jill L Ostrem, Howard J

Chizeck, and Svjetlana Miocinovic. Automated deep brain stimulation pro-

gramming for tremor. IEEE Transactions on Neural Systems and Rehabilitation

Engineering, 26(8):1618–1625, 2018.

[15] Cameron C McIntyre, Ashutosh Chaturvedi, Reuben R Shamir, and Scott F

Lempka. Engineering the next generation of clinical deep brain stimulation

technology. Brain stimulation, 8(1):21–26, 2015.

[16] Nicole C Swann, Coralie De Hemptinne, Margaret C Thompson, Svjetlana Mio-

cinovic, Andrew M Miller, Jill L Ostrem, Howard J Chizeck, Philip A Starr,

et al. Adaptive deep brain stimulation for parkinson’s disease using motor

cortex sensing. Journal of neural engineering, 15(4):046006, 2018.

[17] Y. Yao and M. V. Kothare. Model predictive control of selective vagal nerve

stimulation for regulating cardiovascular system. American Control Conference

(ACC) (IEEE), pages 563–568, 2020.

[18] Hector M Romero Ugalde, David Ojeda, Virginie Le Rolle, David Andreu,

David Guiraud, Jean-L Bonnet, Christine Henry, Nicole Karam, Albert Hagege,

Philippe Mabo, et al. Model-based design and experimental validation of con-

trol modules for neuromodulation devices. IEEE Transactions on Biomedical

Engineering, 63(7):1551–1558, 2015.

[19] Youhua Zhang, Kent A Mowrey, Shaowei Zhuang, Don W Wallick, Zoran B

Popovic, and Todor N Mazgalev. Optimal ventricular rate slowing during atrial

fibrillation by feedback av nodal-selective vagal stimulation. American Journal

of Physiology-Heart and Circulatory Physiology, 282(3):H1102–H1110, 2002.

[20] Elliot Greenwald, Ernest So, Qihong Wang, Mohsen Mollazadeh, Christoph

Maier, Ralph Etienne-Cummings, Gert Cauwenberghs, and Nitish Thakor. A

135

bidirectional neural interface ic with chopper stabilized bioadc array and charge

balanced stimulator. IEEE transactions on biomedical circuits and systems, 10

(5):990–1002, 2016.

[21] Benoit Duchet, Gihan Weerasinghe, Hayriye Cagnan, Peter Brown, Christian

Bick, and Rafal Bogacz. Phase-dependence of response curves to deep brain

stimulation and their relationship: from essential tremor patient data to a

wilson–cowan model. The Journal of Mathematical Neuroscience, 10:1–39, 2020.

[22] M Maheedhar and T Deepa. A behavioral study of different controllers and

algorithms in real-time applications. IETE Journal of Research, pages 1–25,

2022.

[23] Stephen Bassi Joseph, Emmanuel Gbenga Dada, Afeez Abidemi, David Ope-

oluwa Oyewola, and Ban Mohammed Khammas. Metaheuristic algorithms for

pid controller parameters tuning: Review, approaches and open problems. He-

liyon, 2022.

[24] KS Holkar and Laxman M Waghmare. An overview of model predictive control.

International Journal of control and automation, 3(4):47–63, 2010.

[25] Simon Little, Alex Pogosyan, Spencer Neal, Baltazar Zavala, Ludvic Zrinzo,

Marwan Hariz, Thomas Foltynie, Patricia Limousin, Keyoumars Ashkan, James

FitzGerald, et al. Adaptive deep brain stimulation in advanced parkinson dis-

ease. Annals of neurology, 74(3):449–457, 2013.

[26] Mahboubeh Parastarfeizabadi and Abbas Z Kouzani. Advances in closed-loop

deep brain stimulation devices. Journal of neuroengineering and rehabilitation,

14(1):1–20, 2017.

[27] Boris Rosin, Maya Slovik, Rea Mitelman, Michal Rivlin-Etzion, Suzanne N

Haber, Zvi Israel, Eilon Vaadia, and Hagai Bergman. Closed-loop deep brain

136

stimulation is superior in ameliorating parkinsonism. Neuron, 72(2):370–384,

2011.

[28] Clement Hamani, Erich Richter, Jason M Schwalb, and Andres M Lozano.

Bilateral subthalamic nucleus stimulation for parkinson’s disease: a systematic

review of the clinical literature. Neurosurgery, 62:SHC–863, 2008.

[29] Hemmings Wu, Hartwin Ghekiere, Dorien Beeckmans, Tim Tambuyzer, Kris

van Kuyck, Jean-Marie Aerts, and Bart Nuttin. Conceptualization and val-

idation of an open-source closed-loop deep brain stimulation system in rat.

Scientific Reports, 5(1):9921, 2015.

[30] FDA. Medtronic activa® tremor control system p960009. https://www.acce

ssdata.fda.gov/cdrh_docs/pdf/p960009.pdf, 1997.

[31] FDA. Medtronic activa® parkinson’s control system p960009/s7. https://ww

w.accessdata.fda.gov/cdrh_docs/pdf/p960009s007b.pdf, 2002.

[32] FDA. Medtronic activa® dystonia therapy - h020007. https://www.accessda

ta.fda.gov/cdrh_docs/pdf2/H020007A.pdf, 2003.

[33] FDA. Fda approves humanitarian device exemption for deep brain stimulator

for severe obsessive-compulsive disorder. https://wayback.archive-it.org/

7993/20170113195459/http://www.fda.gov/NewsEvents/Newsroom/PressA

nnouncements/2009/ucm149529.htm, 2009.

[34] FDA. Rns® system - p100026. https://www.accessdata.fda.gov/cdrh_do

cs/pdf10/P100026A.pdf, 2013.

[35] Pradeeban Kathiravelu, Parisa Sarikhani, Ping Gu, and Babak Mahmoudi.

Software-defined workflows for distributed interoperable closed-loop neuromod-

ulation control systems. IEEE Access, 9:131733–131745, 2021.

https://www.accessdata.fda.gov/cdrh_docs/pdf/p960009.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf/p960009.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf/p960009s007b.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf/p960009s007b.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf2/H020007A.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf2/H020007A.pdf
https://wayback.archive-it.org/7993/20170113195459/http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/2009/ucm149529.htm
https://wayback.archive-it.org/7993/20170113195459/http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/2009/ucm149529.htm
https://wayback.archive-it.org/7993/20170113195459/http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/2009/ucm149529.htm
 https://www.accessdata.fda.gov/cdrh_docs/pdf10/P100026A.pdf
 https://www.accessdata.fda.gov/cdrh_docs/pdf10/P100026A.pdf

137

[36] Pradeeban Kathiravelu, Mark Arnold, Jake Fleischer, Yuyu Yao, Shubham

Awasthi, Aviral Kumar Goel, Andrew Branen, Parisa Sarikhani, Gautam Ku-

mar, Mayuresh V Kothare, et al. Control-core: a framework for simulation

and design of closed-loop peripheral neuromodulation control systems. IEEE

Access, 10:36268–36285, 2022.

[37] Gene F Franklin, J David Powell, Abbas Emami-Naeini, and J David Powell.

Feedback control of dynamic systems, volume 4. Prentice hall Upper Saddle

River, 2002.

[38] James C Houk. Control strategies in physiological systems. The FASEB journal,

2(2):97–107, 1988.

[39] Stavros Zanos. Closed-loop neuromodulation in physiological and translational

research. Cold Spring Harbor perspectives in medicine, 9(11), 2019.

[40] Karl J Åström and Björn Wittenmark. Adaptive control. Courier Corporation,

2013.

[41] Carlos E Garcia, David M Prett, and Manfred Morari. Model predictive control:

Theory and practice—a survey. Automatica, 25(3):335–348, 1989.

[42] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-

tion. MIT press, 2018.

[43] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT

press, 2016.

[44] Timothy J Ross. Fuzzy logic with engineering applications. John Wiley & Sons,

2009.

[45] Konstantinos P Michmizos, Polytimi Frangou, Pantelis Stathis, Damianos

Sakas, and Konstantina S Nikita. Beta-band frequency peaks inside the subtha-

138

lamic nucleus as a biomarker for motor improvement after deep brain stimula-

tion in parkinson’s disease. IEEE Journal of Biomedical and Health Informatics,

19(1):174–180, 2014.

[46] Emma J Quinn, Zack Blumenfeld, Anca Velisar, Mandy Miller Koop, Lauren A

Shreve, Megan H Trager, Bruce C Hill, Camilla Kilbane, Jaimie M Henderson,

and Helen Brontë-Stewart. Beta oscillations in freely moving parkinson’s sub-

jects are attenuated during deep brain stimulation. Movement Disorders, 30

(13):1750–1758, 2015.

[47] Clare M Davidson, Annraoi M de Paor, Hayriye Cagnan, and Madeleine M Low-

ery. Analysis of oscillatory neural activity in series network models of parkin-

son’s disease during deep brain stimulation. IEEE Transactions on Biomedical

Engineering, 63(1):86–96, 2015.

[48] Simon Little, Alek Pogosyan, Spencer Neal, Ludvic Zrinzo, Marwan Hariz,

Thomas Foltynie, Patricia Limousin, and Peter Brown. Controlling parkinson’s

disease with adaptive deep brain stimulation. JoVE (Journal of Visualized

Experiments), (89):e51403, 2014.

[49] Simon Little, Martijn Beudel, Ludvic Zrinzo, Thomas Foltynie, Patricia

Limousin, Marwan Hariz, Spencer Neal, Binith Cheeran, Hayriye Cagnan,

James Gratwicke, et al. Bilateral adaptive deep brain stimulation is effective in

parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 87(7):

717–721, 2016.

[50] Anders Christian Meidahl, Gerd Tinkhauser, Damian Marc Herz, Hayriye

Cagnan, Jean Debarros, and Peter Brown. Adaptive deep brain stimulation

for movement disorders: the long road to clinical therapy. Movement disorders,

32(6):810–819, 2017.

139

[51] Hayriye Cagnan, David Pedrosa, Simon Little, Alek Pogosyan, Binith Cheeran,

Tipu Aziz, Alexander Green, James Fitzgerald, Thomas Foltynie, Patricia

Limousin, et al. Stimulating at the right time: phase-specific deep brain stim-

ulation. Brain, 140(1):132–145, 2017.

[52] Kiam Heong Ang, Gregory Chong, and Yun Li. Pid control system analysis,

design, and technology. IEEE transactions on control systems technology, 13

(4):559–576, 2005.

[53] K Pyragas, OV Popovych, and PA Tass. Controlling synchrony in oscillatory

networks with a separate stimulation-registration setup. Europhysics Letters,

80(4):40002, 2007.

[54] John E Fleming, Eleanor Dunn, and Madeleine M Lowery. Simulation of closed-

loop deep brain stimulation control schemes for suppression of pathological beta

oscillations in parkinson’s disease. Frontiers in neuroscience, 14:166, 2020.

[55] Judith Evers, Jakub Or lowski, Hanne Jahns, and Madeleine M Lowery. On-

off and proportional closed-loop adaptive deep brain stimulation reduces motor

symptoms in freely moving hemiparkinsonian rats. Neuromodulation: Technol-

ogy at the Neural Interface, 2023.

[56] John E Fleming, Jakub Or lowski, Madeleine M Lowery, and Antoine Chaillet.

Self-tuning deep brain stimulation controller for suppression of beta oscillations:

analytical derivation and numerical validation. Frontiers in neuroscience, 14:

639, 2020.

[57] John E Fleming, Sageanne Senneff, and Madeleine M Lowery. Multivariable

closed-loop control of deep brain stimulation for parkinson’s disease. Journal

of Neural Engineering, 20(5):056029, 2023.

140

[58] Eleanor M Dunn and Madeleine M Lowery. Simulation of pid control schemes

for closed-loop deep brain stimulation. In 2013 6th International IEEE/EMBS

Conference on Neural Engineering (NER), pages 1182–1185. IEEE, 2013.

[59] P Gorzelic, SJ Schiff, and Alok Sinha. Model-based rational feedback controller

design for closed-loop deep brain stimulation of parkinson’s disease. Journal of

neural engineering, 10(2):026016, 2013.

[60] Parisa Sarikhani, Hao-Lun Hsu, and Babak Mahmoudi. Automated tuning

of closed-loop neuromodulation control systems using bayesian optimization.

In 2022 44th Annual International Conference of the IEEE Engineering in

Medicine & Biology Society (EMBC), pages 1734–1737. IEEE, 2022.

[61] Kestutis Pyragas. Continuous control of chaos by self-controlling feedback.

Physics letters A, 170(6):421–428, 1992.

[62] Chen Liu, Changsong Zhou, Jiang Wang, Chris Fietkiewicz, and Kenneth A

Loparo. Delayed feedback-based suppression of pathological oscillations in a

neural mass model. IEEE Transactions on Cybernetics, 51(10):5046–5056, 2019.

[63] Michael G Rosenblum and Arkady S Pikovsky. Controlling synchronization in

an ensemble of globally coupled oscillators. Physical Review Letters, 92(11):

114102, 2004.

[64] Michael Rosenblum and Arkady Pikovsky. Delayed feedback control of collective

synchrony: An approach to suppression of pathological brain rhythms. Physical

review E, 70(4):041904, 2004.

[65] Christian Hauptmann, O Popovych, and Peter A Tass. Effectively desynchroniz-

ing deep brain stimulation based on a coordinated delayed feedback stimulation

via several sites: a computational study. Biological cybernetics, 93(6):463–470,

2005.

141

[66] Christian Hauptmann, O Popovych, and Peter A Tass. Delayed feedback control

of synchronization in locally coupled neuronal networks. Neurocomputing, 65:

759–767, 2005.

[67] Oleksandr V Popovych, Christian Hauptmann, and Peter A Tass. Effective

desynchronization by nonlinear delayed feedback. Physical review letters, 94

(16):164102, 2005.

[68] Oleksandr V Popovych, Christian Hauptmann, and Peter A Tass. Control of

neuronal synchrony by nonlinear delayed feedback. Biological cybernetics, 95

(1):69–85, 2006.

[69] István Z Kiss, Craig G Rusin, Hiroshi Kori, and John L Hudson. Engineer-

ing complex dynamical structures: Sequential patterns and desynchronization.

Science, 316(5833):1886–1889, 2007.

[70] Oleksandr V Popovych and Peter A Tass. Synchronization control of interacting

oscillatory ensembles by mixed nonlinear delayed feedback. Physical Review E,

82(2):026204, 2010.

[71] Lotfi A Zadeh. Fuzzy sets. Information and control, 8(3):338–353, 1965.

[72] Chuen-Chien Lee. Fuzzy logic in control systems: fuzzy logic controller. i. IEEE

Transactions on systems, man, and cybernetics, 20(2):404–418, 1990.

[73] Ehsan Rouhani, Ehsan Jafari, and Amir Akhavan. Suppression of seizure in

childhood absence epilepsy using robust control of deep brain stimulation: a

simulation study. Scientific Reports, 13(1):461, 2023.

[74] Ehsan Rouhani and Yaser Fathi. Robust multi-input multi-output adaptive

fuzzy terminal sliding mode control of deep brain stimulation in parkinson’s

disease: A simulation study. Scientific Reports, 11(1):21169, 2021.

142

[75] Mahboubeh Parastarfeizabadi, Roy V Sillitoe, and Abbas Z Kouzani. Multi-

disease deep brain stimulation. IEEE Access, 8:216933–216947, 2020.

[76] Meysam Gheisarnejad, Behnam Faraji, Zahra Esfahani, and Mohammad-

Hassan Khooban. A close loop multi-area brain stimulation control for parkin-

son’s patients rehabilitation. IEEE Sensors Journal, 20(4):2205–2213, 2019.

[77] Andrew Haddock, Anca Velisar, Jeffrey Herron, Helen Bronte-Stewart, and

Howard J Chizeck. Model predictive control of deep brain stimulation for

parkinsonian tremor. In 2017 8th International IEEE/EMBS Conference on

Neural Engineering (NER), pages 358–362. IEEE, 2017.

[78] Hao Fang and Yuxiao Yang. Predictive neuromodulation of cingulo-frontal

neural dynamics in major depressive disorder using a brain-computer interface

system: A simulation study. Frontiers in Computational Neuroscience, 17:

1119685, 2023.

[79] Georgios Is Detorakis, Antoine Chaillet, Stéphane Palfi, and Suhan Senova.

Closed-loop stimulation of a delayed neural fields model of parkinsonian stn-

gpe network: a theoretical and computational study. Frontiers in neuroscience,

9:237, 2015.

[80] Fei Su, Jiang Wang, Shuangxia Niu, Huiyan Li, Bin Deng, Chen Liu, and

Xile Wei. Nonlinear predictive control for adaptive adjustments of deep brain

stimulation parameters in basal ganglia–thalamic network. Neural Networks,

98:283–295, 2018.

[81] Andrew Branen, Yuyu Yao, Mayuresh V Kothare, Babak Mahmoudi, and Gau-

tam Kumar. Data driven control of vagus nerve stimulation for the cardiovas-

cular system: An in silico computational study. Frontiers in Physiology, 13:

798157, 2022.

143

[82] Yuyu Yao and Mayuresh V Kothare. Nonlinear closed-loop predictive control

of heart rate and blood pressure using vagus nerve stimulation: An in silico

study. IEEE Transactions on Biomedical Engineering, 2023.

[83] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando

De Freitas. Taking the human out of the loop: A review of bayesian opti-

mization. Proceedings of the IEEE, 104(1):148–175, 2015.

[84] Romy Lorenz, Ricardo Pio Monti, Inês R Violante, Christoforos Anagnostopou-

los, Aldo A Faisal, Giovanni Montana, and Robert Leech. The automatic neu-

roscientist: A framework for optimizing experimental design with closed-loop

real-time fmri. NeuroImage, 129:320–334, 2016.

[85] Bethany J Stieve, Thomas J Richner, Chris Krook-Magnuson, Theoden I Netoff,

and Esther Krook-Magnuson. Optimization of closed-loop electrical stimulation

enables robust cerebellar-directed seizure control. Brain, 146(1):91–108, 2023.

[86] Romy Lorenz, Laura E Simmons, Ricardo P Monti, Joy L Arthur, Severin

Limal, Ilkka Laakso, Robert Leech, and Ines R Violante. Efficiently searching

through large tacs parameter spaces using closed-loop bayesian optimization.

Brain stimulation, 12(6):1484–1489, 2019.

[87] Alexandre Boutet, Radhika Madhavan, Gavin JB Elias, Suresh E Joel, Robert

Gramer, Manish Ranjan, Vijayashankar Paramanandam, David Xu, Jurgen

Germann, Aaron Loh, et al. Predicting optimal deep brain stimulation param-

eters for parkinson’s disease using functional mri and machine learning. Nature

communications, 12(1):3043, 2021.

[88] Kenneth H Louie, Matthew N Petrucci, Logan L Grado, Chiahao Lu, Paul J

Tuite, Andrew G Lamperski, Colum D MacKinnon, Scott E Cooper, and Theo-

den I Netoff. Semi-automated approaches to optimize deep brain stimulation

144

parameters in parkinson’s disease. Journal of NeuroEngineering and Rehabili-

tation, 18(1):83, 2021.

[89] Zixi Zhao, Aliya Ahmadi, Caleb Hoover, Logan Grado, Nicholas Peterson, Xin-

ran Wang, David Freeman, Thomas Murray, Andrew Lamperski, David Darrow,

et al. Optimization of spinal cord stimulation using bayesian preference learning

and its validation. IEEE Transactions on Neural Systems and Rehabilitation

Engineering, 29:1987–1997, 2021.

[90] Logan L Grado, Matthew D Johnson, and Theoden I Netoff. Bayesian adaptive

dual control of deep brain stimulation in a computational model of parkinson’s

disease. PLoS computational biology, 14(12):e1006606, 2018.

[91] Johanna J O’Day, Yasmine M Kehnemouyi, Matthew N Petrucci, Ross W An-

derson, Jeffrey A Herron, and Helen M Bronte-Stewart. Demonstration of

kinematic-based closed-loop deep brain stimulation for mitigating freezing of

gait in people with parkinson’s disease. In 2020 42nd Annual International

Conference of the IEEE Engineering in Medicine & Biology Society (EMBC),

pages 3612–3616. IEEE, 2020.

[92] Brady Houston, Margaret Thompson, Andrew Ko, and Howard Chizeck. A

machine-learning approach to volitional control of a closed-loop deep brain stim-

ulation system. Journal of neural engineering, 16(1):016004, 2019.

[93] Pitamber Shukla, Ishita Basu, Daniel Graupe, Daniela Tuninetti, and Kon-

stantin V Slavin. A neural network-based design of an on-off adaptive control

for deep brain stimulation in movement disorders. In 2012 annual international

conference of the IEEE engineering in medicine and biology society, pages 4140–

4143. IEEE, 2012.

[94] Yuyu Yao and Mayuresh V Kothare. Model predictive control of selective va-

145

gal nerve stimulation for regulating cardiovascular system. In 2020 American

Control Conference (ACC), pages 563–568. IEEE, 2020.

[95] Sebastián Castaño-Candamil, Mara Vaihinger, and Michael Tangermann. A

simulated environment for early development stages of reinforcement learning

algorithms for closed-loop deep brain stimulation. In 2019 41st Annual Inter-

national Conference of the IEEE Engineering in Medicine and Biology Society

(EMBC), pages 2900–2904. IEEE, 2019.

[96] Behnam Faraji, Korosh Rouhollahi, Akram Nezhadi, and Zahra Jamalpoor.

A novel closed-loop deep brain stimulation technique for parkinson’s patients

rehabilitation utilizing machine learning. IEEE Sensors Journal, 23(3):2914–

2921, 2022.

[97] Marina Picillo, Andres M Lozano, Nancy Kou, Renato Puppi Munhoz, and

Alfonso Fasano. Programming deep brain stimulation for tremor and dystonia:

the toronto western hospital algorithms. Brain stimulation, 9(3):438–452, 2016.

[98] Parisa Sarikhani, Svjetlana Miocinovic, and Babak Mahmoudi. Towards au-

tomated patient-specific optimization of deep brain stimulation for movement

disorders. In 2019 41st Annual International Conference of the IEEE Engineer-

ing in Medicine and Biology Society (EMBC), pages 6159–6162. IEEE, 2019.

[99] Gregor R Wenzel, Jan Roediger, Christof Brücke, Ana Lúısa de A Marcelino,

Eileen Gülke, Monika Pötter-Nerger, Heleen Scholtes, Kenny Wynants, León M

Juárez Paz, and Andrea A Kühn. Clover-dbs: Algorithm-guided deep brain

stimulation-programming based on external sensor feedback evaluated in a

prospective, randomized, crossover, double-blind, two-center study. Journal

of Parkinson’s Disease, 11(4):1887–1899, 2021.

[100] Fuyuko Sasaki, Genko Oyama, Satoko Sekimoto, Maierdanjiang Nuermaimaiti,

146

Hirokazu Iwamuro, Yasushi Shimo, Atsushi Umemura, and Nobutaka Hattori.

Closed-loop programming using external responses for deep brain stimulation

in parkinson’s disease. Parkinsonism & Related Disorders, 84:47–51, 2021.

[101] Benoit Duchet, Gihan Weerasinghe, Christian Bick, and Rafal Bogacz. Opti-

mizing deep brain stimulation based on isostable amplitude in essential tremor

patient models. Journal of neural engineering, 18(4):046023, 2021.

[102] Ishita Basu, Daniel Graupe, Daniela Tuninetti, Pitamber Shukla, Konstantin V

Slavin, Leo Verhagen Metman, and Daniel M Corcos. Pathological tremor

prediction using surface electromyogram and acceleration: potential use in ‘on–

off’demand driven deep brain stimulator design. Journal of neural engineering,

10(3):036019, 2013.

[103] Daniel Graupe, Ishita Basu, Daniela Tuninetti, Prasad Vannemreddy, and Kon-

stantin V Slavin. Adaptively controlling deep brain stimulation in essential

tremor patient via surface electromyography. Neurological research, 32(9):899–

904, 2010.

[104] P Shukla, I Basu, D Graupe, D Tuninetti, KV Slavin, L Verhagen Metman, and

DM Corcos. A decision tree classifier for postural and movement conditions in

essential tremor patients. In 2013 6th International IEEE/EMBS Conference

on Neural Engineering (NER), pages 117–120. IEEE, 2013.

[105] Nivedita Khobragade, Daniel Graupe, and Daniela Tuninetti. Towards fully

automated closed-loop deep brain stimulation in parkinson’s disease patients:

A lamstar-based tremor predictor. In 2015 37th annual international conference

of the IEEE engineering in medicine and biology society (EMBC), pages 2616–

2619. IEEE, 2015.

[106] Takamitsu Yamamoto, Yoichi Katayama, Junichi Ushiba, Hiroko Yoshino,

147

Toshiki Obuchi, Kazutaka Kobayashi, Hideki Oshima, and Chikashi Fukaya.

On-demand control system for deep brain stimulation for treatment of intention

tremor. Neuromodulation: Technology at the Neural Interface, 16(3):230–235,

2013.

[107] Jeffrey A Herron, Margaret C Thompson, Timothy Brown, Howard J Chizeck,

Jeffrey G Ojemann, and Andrew L Ko. Chronic electrocorticography for sens-

ing movement intention and closed-loop deep brain stimulation with wearable

sensors in an essential tremor patient. Journal of neurosurgery, 127(3):580–587,

2016.

[108] Parisa Sarikhani, Benjamin Ferleger, Kyle Mitchell, Jill Ostrem, Jeffrey Herron,

Babak Mahmoudi, and Svjetlana Miocinovic. Automated deep brain stimula-

tion programming with safety constraints for tremor suppression in patients

with parkinson’s disease and essential tremor. Journal of neural engineering,

19(4):046042, 2022.

[109] Parisa Sarikhani, Benjamin Ferleger, Jeffrey Herron, Babak Mahmoudi, and Sv-

jetlana Miocinovic. Automated deep brain stimulation programing with safety

constraints for tremor suppression. Brain Stimulation: Basic, Translational,

and Clinical Research in Neuromodulation, 14(6):1699–1700, 2021.

[110] Stanley Fahn, Eduardo Tolosa, Concepćıon Maŕın, et al. Clinical rating scale

for tremor. Parkinson’s disease and movement disorders, 2:271–280, 1993.

[111] Jeffrey Herron and Howard Jay Chizeck. Prototype closed-loop deep brain

stimulation systems inspired by norbert wiener. In 2014 IEEE Conference on

Norbert Wiener in the 21st Century (21CW), pages 1–6. IEEE, 2014.

[112] Jeffrey Herron, Tim Denison, and Howard Jay Chizeck. Closed-loop dbs with

148

movement intention. In 2015 7th international IEEE/EMBS conference on

neural engineering (NER), pages 844–847. IEEE, 2015.

[113] Jeffrey Andrew Herron. Closed-loop deep brain stimulation: bidirectional neu-

roprosthetics for tremor and BCI. PhD thesis, 2016.

[114] Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer

school on machine learning, pages 63–71. Springer, 2003.

[115] Alexander G. de G. Matthews, Mark van der Wilk, Tom Nickson, Keisuke

Fujii, Alexis Boukouvalas, Pablo León-Villagrá, Zoubin Ghahramani, and James

Hensman. Gpflow: A gaussian process library using tensorflow. Journal of

Machine Learning Research, 18(40):1–6, 2017. URL http://jmlr.org/paper

s/v18/16-537.html.

[116] Nicolas Knudde, Joachim van der Herten, Tom Dhaene, and Ivo Couckuyt.

Gpflowopt: A bayesian optimization library using tensorflow. arXiv preprint

arXiv:1711.03845, 2017.

[117] Rikky RPR Duivenvoorden, Felix Berkenkamp, Nicolas Carion, Andreas

Krause, and Angela P Schoellig. Constrained bayesian optimization with par-

ticle swarms for safe adaptive controller tuning. IFAC-PapersOnLine, 50(1):

11800–11807, 2017.

[118] Yanan Sui, Alkis Gotovos, Joel Burdick, and Andreas Krause. Safe exploration

for optimization with gaussian processes. In International conference on ma-

chine learning, pages 997–1005. PMLR, 2015.

[119] Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient bayesian

optimization. In International Conference on Machine Learning, pages 3627–

3635. PMLR, 2017.

http://jmlr.org/papers/v18/16-537.html
http://jmlr.org/papers/v18/16-537.html

149

[120] Jens Volkmann, Elena Moro, and Rajesh Pahwa. Basic algorithms for the pro-

gramming of deep brain stimulation in parkinson’s disease. Movement disorders:

official journal of the Movement Disorder Society, 21(S14):S284–S289, 2006.

[121] Christopher L Pulliam, Dustin A Heldman, Tseganesh H Orcutt, Thomas O

Mera, Joseph P Giuffrida, and Jerrold L Vitek. Motion sensor strategies for au-

tomated optimization of deep brain stimulation in parkinson’s disease. Parkin-

sonism & related disorders, 21(4):378–382, 2015.

[122] Dustin A Heldman, Christopher L Pulliam, Enrique Urrea Mendoza, Maureen

Gartner, Joseph P Giuffrida, Erwin B Montgomery Jr, Alberto J Espay, and

Fredy J Revilla. Computer-guided deep brain stimulation programming for

parkinson’s disease. Neuromodulation: Technology at the Neural Interface, 19

(2):127–132, 2016.

[123] Angela M Noecker, Anneke M Frankemolle-Gilbert, Bryan Howell, Mikkel V

Petersen, Sinem Balta Beylergil, Aasef G Shaikh, and Cameron C McIntyre.

Stimvision v2: Examples and applications in subthalamic deep brain stim-

ulation for parkinson’s disease. Neuromodulation: Technology at the Neural

Interface, 24(2):248–258, 2021.

[124] Hyoseon Jeon, Woongwoo Lee, Hyeyoung Park, Hong Ji Lee, Sang Kyong Kim,

Han Byul Kim, Beomseok Jeon, and Kwang Suk Park. Automatic classification

of tremor severity in parkinson’s disease using a wearable device. Sensors, 17

(9):2067, 2017.

[125] P Rebelo, AL Green, TZ Aziz, A Kent, D Schafer, L Venkatesan, and

B Cheeran. Thalamic directional deep brain stimulation for tremor: spend

less, get more. Brain stimulation, 11(3):600–606, 2018.

[126] Philipp Mahlknecht, Harith Akram, Dejan Georgiev, Elina Tripoliti, Joseph

150

Candelario, Andre Zacharia, Ludvic Zrinzo, Jonathan Hyam, Marwan Hariz,

Thomas Foltynie, et al. Pyramidal tract activation due to subthalamic deep

brain stimulation in parkinson’s disease. Movement Disorders, 32(8):1174–1182,

2017.

[127] Una Buckley, Kalyanam Shivkumar, and Jeffrey L Ardell. Autonomic regulation

therapy in heart failure. Current heart failure reports, 12:284–293, 2015.

[128] Dariush Mozaffarian. Heart disease and stroke statistics—2016 update. Circu-

lation, 133:1, 2016.

[129] Matteo Maria Ottaviani, Fabio Vallone, Silvestro Micera, and Fabio A Recchia.

Closed-loop vagus nerve stimulation for the treatment of cardiovascular diseases:

state of the art and future directions. Frontiers in Cardiovascular Medicine, 9:

866957, 2022.

[130] Michael J Capilupi, Samantha M Kerath, and Lance B Becker. Vagus nerve

stimulation and the cardiovascular system. Cold Spring Harbor perspectives in

medicine, 10(2), 2020.

[131] Rajendra K Premchand, Kamal Sharma, Sanjay Mittal, Rufino Monteiro,

Satyajit Dixit, Imad Libbus, Lorenzo A DiCarlo, Jeffrey L Ardell, Thomas S

Rector, Badri Amurthur, et al. Autonomic regulation therapy via left or right

cervical vagus nerve stimulation in patients with chronic heart failure: results

of the anthem-hf trial. Journal of cardiac failure, 20(11):808–816, 2014.

[132] Faiez Zannad, Gaetano M De Ferrari, Anton E Tuinenburg, David Wright,

Josep Brugada, Christian Butter, Helmut Klein, Craig Stolen, Scott Meyer,

Kenneth M Stein, et al. Chronic vagal stimulation for the treatment of low

ejection fraction heart failure: results of the neural cardiac therapy for heart

151

failure (nectar-hf) randomized controlled trial. European heart journal, 36(7):

425–433, 2015.

[133] Michael R Gold, Dirk J Van Veldhuisen, Paul J Hauptman, Martin Borggrefe,

Spencer H Kubo, Randy A Lieberman, Goran Milasinovic, Brett J Berman,

Sanja Djordjevic, Suresh Neelagaru, et al. Vagus nerve stimulation for the

treatment of heart failure: the inovate-hf trial. Journal of the American College

of Cardiology, 68(2):149–158, 2016.

[134] Zain UA Asad and Stavros Stavrakis. Vagus nerve stimulation for the treatment

of heart failure. Bioelectronics in Medicine, 2(1):43–54, 2019.

[135] James Crowe, GR Chen, R Ferdous, DR Greenwood, MJ Grimble, HP Huang,

JC Jeng, Michael A Johnson, MR Katebi, S Kwong, et al. PID control: new

identification and design methods. Springer, 2005.

[136] Marco Tosato, Ken Yoshida, Egon Toft, Vitas Nekrasas, and Johannes J Struijk.

Closed-loop control of the heart rate by electrical stimulation of the vagus nerve.

Medical and Biological Engineering and Computing, 44:161–169, 2006.

[137] Hector M Romero-Ugalde, Virginie Le Rolle, Jean-Luc Bonnet, Christine Henry,

Alain Bel, Philippe Mabo, Guy Carrault, and Alfredo I Hernández. A novel con-

troller based on state-transition models for closed-loop vagus nerve stimulation:

Application to heart rate regulation. PloS one, 12(10):e0186068, 2017.

[138] Eduardo F Camacho, Carlos Bordons, Eduardo F Camacho, and Carlos Bor-

dons. Model predictive controllers. Springer, 2007.

[139] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-

shelvam, Marc Lanctot, et al. Mastering the game of go with deep neural

networks and tree search. nature, 529(7587):484–489, 2016.

152

[140] Nicolas Heess, Dhruva Tb, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg

Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, SM Eslami, et al. Emergence of

locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286,

2017.

[141] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint

arXiv:1606.01540, 2016.

[142] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of

generic convolutional and recurrent networks for sequence modeling. arXiv

preprint arXiv:1803.01271, 2018.

[143] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon

Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al.

Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,

2018.

[144] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and

Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint

arXiv:1707.06347, 2017.

[145] Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-

efficient approach to policy search. In Proceedings of the 28th International

Conference on machine learning (ICML-11), pages 465–472, 2011.

[146] I Goodfellow, Y Bengio, and A Courville. Deep learning. 2016. ISBN

9780262035613. doi: 10.4258/hir.2016.22.4.351. URL https://books.go

ogle.com/books?hl=en&lr=&id=omivDQAAQBAJ&oi=fnd&pg=PR5&dq=Goodfe

llow+I,+Bengio+Y,+Courville+A.+Deep+learning.+MIT+press%3B+2016+

Nov+10.&ots=MNU5imtzRX&sig=OyZE7RO07rhYN6M-8B6pKsE7hcc.

https://books.google.com/books?hl=en&lr=&id=omivDQAAQBAJ&oi=fnd&pg=PR5&dq=Goodfellow+I,+Bengio+Y,+Courville+A.+Deep+learning.+MIT+press%3B+2016+Nov+10.&ots=MNU5imtzRX&sig=OyZE7RO07rhYN6M-8B6pKsE7hcc
https://books.google.com/books?hl=en&lr=&id=omivDQAAQBAJ&oi=fnd&pg=PR5&dq=Goodfellow+I,+Bengio+Y,+Courville+A.+Deep+learning.+MIT+press%3B+2016+Nov+10.&ots=MNU5imtzRX&sig=OyZE7RO07rhYN6M-8B6pKsE7hcc
https://books.google.com/books?hl=en&lr=&id=omivDQAAQBAJ&oi=fnd&pg=PR5&dq=Goodfellow+I,+Bengio+Y,+Courville+A.+Deep+learning.+MIT+press%3B+2016+Nov+10.&ots=MNU5imtzRX&sig=OyZE7RO07rhYN6M-8B6pKsE7hcc
https://books.google.com/books?hl=en&lr=&id=omivDQAAQBAJ&oi=fnd&pg=PR5&dq=Goodfellow+I,+Bengio+Y,+Courville+A.+Deep+learning.+MIT+press%3B+2016+Nov+10.&ots=MNU5imtzRX&sig=OyZE7RO07rhYN6M-8B6pKsE7hcc

153

[147] Carl Edward Rasmussen. Gaussian processes in machine learning. Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 3176:63–71, 2004. ISSN 16113349. doi:

10.1007/978-3-540-28650-9 4/COVER. URL https://link.springer.com/

chapter/10.1007/978-3-540-28650-9_4.

[148] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Pol-

icy gradient methods for reinforcement learning with function approximation.

Advances in Neural Information Processing Systems, 12, 1999.

[149] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp

Moritz. Trust region policy optimization. Proceedings of the International Con-

ference on Machine Learning, pages 1889–1897.

[150] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kan-

ervisto, Rene Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex

Nichol, Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor, and

Yuhuai Wu. Stable baselines, 2018. URL https://github.com/hill-a/sta

ble-baselines.

[151] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-

critic: Off-policy maximum entropy deep reinforcement learning with a stochas-

tic actor. 35th International Conference on Machine Learning, ICML 2018, 5:

2976–2989, 1 2018. URL https://arxiv.org/abs/1801.01290v2.

[152] Parisa Sarikhani, Hao-Lun Hsu, Ozgur Kara, Joon Kyung Kim, Hadi Es-

maeilzadeh, and Babak Mahmoudi. Neuroweaver: a platform for designing

intelligent closed-loop neuromodulation systems. Brain Stimulation: Basic,

Translational, and Clinical Research in Neuromodulation, 14(6):1661, 2021.

https://link.springer.com/chapter/10.1007/978-3-540-28650-9_4
https://link.springer.com/chapter/10.1007/978-3-540-28650-9_4
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://arxiv.org/abs/1801.01290v2

154

[153] Aaftab Munshi, Benedict Gaster, Timothy G Mattson, and Dan Ginsburg.

OpenCL programming guide. Pearson Education, 2011.

[154] CUDA Nvidia. Compute unified device architecture programming guide. 2007.

[155] Shoumik Palkar, James J Thomas, Anil Shanbhag, Deepak Narayanan, Holger

Pirk, Malte Schwarzkopf, Saman Amarasinghe, Matei Zaharia, and Stanford

InfoLab. Weld: A common runtime for high performance data analytics. In

Conference on Innovative Data Systems Research (CIDR), volume 19, 2017.

[156] Pypl popularity of programming language index. URL https://pypl.githu

b.io/PYPL.html.

[157] E. Del Sozzo, R. Baghdadi, S. Amarasinghe, and M. D. Santambrogio. A unified

backend for targeting fpgas from dsls. In 2018 IEEE 29th International Con-

ference on Application-specific Systems, Architectures and Processors (ASAP),

pages 1–8, July 2018. doi: 10.1109/ASAP.2018.8445108.

[158] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan

Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos

Kozyrakis, and Kunle Olukotun. Spatial: A language and compiler for ap-

plication accelerators. In Proceedings of the 39th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI 2018, pages 296–

311, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5698-5. doi: 10.1145/

3192366.3192379. URL http://doi.acm.org/10.1145/3192366.3192379.

[159] Marco Frigerio, Jonas Buchli, and Darwin G. Caldwell. A domain specific lan-

guage for kinematic models and fast implementations of robot dynamics algo-

rithms. In International Workshop on Domain-Specific Languages and Models

for Robotic Systems, 2015.

https://pypl.github.io/PYPL.html
https://pypl.github.io/PYPL.html
http://doi.acm.org/10.1145/3192366.3192379

155

[160] Mirko Bordignon, Kasper Stoy, and Ulrik Pagh Schultz. Generalized program-

ming of modular robots through kinematic configurations. In International

Conference on Intelligent Robots and Systems, 2011.

[161] Jonathan Ragan-Kelley, Andrew Adams, Dillon Sharlet, Connelly Barnes, Syl-

vain Paris, Marc Levoy, Saman Amarasinghe, and Frédo Durand. Halide:

Decoupling algorithms from schedules for high-performance image process-

ing. Commun. ACM, 61(1):106–115, December 2017. ISSN 0001-0782. doi:

10.1145/3150211. URL http://doi.acm.org/10.1145/3150211.

[162] Arvind K. Sujeeth, HyoukJoong Lee, Kevin J. Brown, Hassan Chafi, Michael

Wu, Anand R. Atreya, Kunle Olukotun, Tiark Rompf, and Martin Odersky.

Optiml: An implicitly parallel domain-specific language for machine learning.

In Proceedings of the 28th International Conference on International Conference

on Machine Learning, ICML’11, pages 609–616, USA, 2011. Omnipress. ISBN

978-1-4503-0619-5. URL http://dl.acm.org/citation.cfm?id=3104482.3

104559.

[163] A. Paszke et al. PyTorch: An imperative style, high-performance deep learning

library. NeurIPS, 2019.

[164] M. Abadi et al. TensorFlow: A system for large-scale machine learning. OSDI,

2016.

[165] Joon Kyung Kim, Byung Hoon Ahn, Sean Kinzer, Soroush Ghodrati, Ro-

han Mahapatra, Brahmendra Yatham, Shu-Ting Wang, Dohee Kim, Parisa

Sarikhani, Babak Mahmoudi, et al. Yin-yang: Programming abstractions for

cross-domain multi-acceleration. IEEE micro, 42(5):89–98, 2022.

[166] Constance Hammond, Hagai Bergman, and Peter Brown. Pathological synchro-

http://doi.acm.org/10.1145/3150211
http://dl.acm.org/citation.cfm?id=3104482.3104559
http://dl.acm.org/citation.cfm?id=3104482.3104559

156

nization in parkinson’s disease: networks, models and treatments. Trends in

neurosciences, 30(7):357–364, 2007.

[167] Dmitrii Krylov, Remi Tachet, Romain Laroche, Michael Rosenblum, and

Dmitry V Dylov. Reinforcement learning framework for deep brain stimula-

tion study. arXiv preprint arXiv:2002.10948, 2020.

[168] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learn-

ing, volume 135. MIT press Cambridge, 1998.

[169] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and

Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint

arXiv:1707.06347, 2017.

[170] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Off-policy

maximum entropy deep reinforcement learning with a stochastic actor. In Pro-

ceedings of the 35th International Conference on machine learning (ICML-18),

pages 1861–1870. Citeseer, 2018.

[171] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Yu-

val Tassa Tom Erez, David Silver, and Daan Wierstra. Continuous control with

deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[172] Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor,

Richard Y Chen, Xi Chen, Tamim Asfour, Pieter Abbeel, and Marcin

Andrychowicz. Parameter space noise for exploration. arXiv preprint

arXiv:1706.01905, 2017.

[173] Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. Neu-

ral network dynamics for model-based deep reinforcement learning with model-

free fine-tuning. arXiv preprint arXiv:1708.02596, 2017.

157

[174] Srivatsan Krishnan, Sharad Chitlangia, Maximilian Lam, Zishen Wan, Aleksan-

dra Faust, and Vijay Janapa Reddi. Quantized reinforcement learning (quarl).

arXiv preprint arXiv:1910.01055, 2019.

	Introduction
	Motivation
	Challenges and requirements of designing intelligent closed-loop neuromodulation Systems
	Significance and contributions
	Thesis outline
	List of publications

	 A review on closed-loop neuromodulation systems, with a focus on control policy algorithms
	Introduction
	Introduction to closed-loop neuromodulation control
	Control strategies
	Open-loop control
	Closed-loop control
	Adaptive control
	Model-based control
	Model-free control

	Classical control algorithms in iCLON systems
	On-Off and threshold-based controller
	Proportional-integral-derivative control
	Delayed-feedback controller
	Fuzzy logic controller
	Model predictive control

	Recent trends in developing novel closed-loop neuromodulation systems
	The need for developing research platforms to enable research and development of implantable iCLON systems

	Automated deep brain stimulation programming with safety constraints for tremor suppression in patients with Parkinson’s disease and essential tremor
	Introduction
	Patient selection criteria and clinical experiment procedure
	Automated DBS programming framework: software design
	GPR modelling of the effect of DBS settings using a quantified objective measure
	DBS programming algorithms
	Bayesian optimization
	Safe Bayesian optimization

	Stopping criteria and advanced optimization
	Results
	Quantifying tremor response to stimulation
	Comparison of the clinical settings and the automated settings
	Speed of convergence of the automated DBS programming system

	Discussion
	Conclusion

	Reinforcement learning for closed-loop regulation of cardiovascular system with selective vagus nerve stimulation
	Introduction
	Simulation environments
	Standard API for rat cardiac model
	In-silico rat cardiac model
	Reduced order model of the physiological rat cardiac model using temporal convolutional neural networks

	Experimental design
	Regulating cardiovascular system using RL through designing a set point tracking Task
	Designing a general policy using deep RL algorithms
	Designing an adaptive policy using PILCO

	Reinforcement learning agents
	Proximal policy optimization algorithm
	Soft actor-critic algorithm
	Probabilistic inference for learning and control
	Reward Function

	Results
	Performance of TCN model
	Training performance of RL agents
	Performance of Deep RL agents in set-point tracking task in four cardiac models
	Performance of PILCO in set-point tracking task in four cardiac models
	Adaptability of PILCO to variations in target set point
	Adaptability of PILCO to variations in the underlying dynamics of the environment
	Adaptability of deep RL agents to variations in the underlying dynamics of the environment using transfer learning

	Discussion
	Conclusion

	Neuroweaver: a translational platform for embedding artificial intelligence in closed-loop neuromodulation systems
	Introduction
	Challenges and considerations
	Neuroweaver in a glance
	Neuroweaver platform
	Cross-domain programming interface in python
	Multi-target cross-domain compilation

	An example implementation with CNF program using the CDI in Python
	Simulation environments and control tasks for designing iCLON systems
	Interactive AI-enabled closed-loop synchrony suppression in Bonhoeffer–van der Pol model

	RL algorithms integrated in the design of iCLON systems
	Proximal policy optimization
	Soft actor-critic network
	Deep deterministic policy gradient
	Model-based reinforcement learning with model predictive control
	 Probabilistic inference for learning control

	Results
	Synchrony suppression using reinforcement learning algorithms
	CNF implementation of iCLON systems using deep RL algorithms
	FPGA execution of deep RL agents in inference mode
	In-vivo experiments

	Discussion
	Conclusion

	Conclusion and future direction
	Contributions to the field
	Future work

	Bibliography

