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Abstract

Precision Neuromodulation Therapies Using Artificial Intelligence
By Parisa Sarikhani

Implantable neuromodulation devices, such as deep brain stimulation (DBS) and
vagus nerve stimulation (VNS) have revolutionized neuroscience research and clini-
cal care thanks to their ability to directly intervene in pathological circuits. These
implantable devices provide a powerful paradigm for treating neurological disorders,
restoring and enhancing neural functions, and understanding the causal links between
neural and behavioral processes. Yet, despite their growing adoption in clinical care,
challenges persist, impeding their seamless integration into standard of care. Recent
advancements in next-generation implantable devices offer considerable customization
in stimulation parameters, paving the way for delivering precision neuromodulation
therapies. Moreover, given the variations in electrode placement, local anatomy,
and the diversity in symptom type and severity, it is imperative to design adaptive,
patient-specific treatments. Proper programming of implantable devices is a critical
step for optimizing patients’ therapeutic outcomes and avoiding inducing adverse side
effects. Despite the efforts in developing standard clinical guidelines for programming
neuromodulation devices, these approaches are very time-consuming and may lead to
sub-optimal therapy for patients. Additionally, these approaches do not take into ac-
count the complex and dynamic nature of the nervous system, which can change over
time and require ongoing adjustment of stimulation parameters. Therefore, there is a
growing need to develop automated intelligent closed-loop neuromodulation systems
(iCLON) to facilitate the programming of implantable devices.

Despite these challenges, the potential benefits of these systems for treating neu-
rological disorders make this a promising area of research and development. Design-
ing automated closed-loop neuromodulation systems is a complex task and requires
multifaceted considerations. This research is an effort toward facilitating the de-
sign and development of automated iCLON systems by developing a translational
design paradigm. This dissertation contributed to the development of multiple simu-
lation environments, pivotal in the design of novel and effective iCLON systems. The
simulation platforms offer a safe and controlled environment for rigorous testing and
refinement before clinical implementation. This research also introduces multiple con-
trol tasks, replicating the actual experimental and clinical applications and ensuring
reproducibility and easier translation from simulation to clinical practice. Moreover,
a control policy is at the core of iCLON systems which automatically learns and ad-
justs the stimulation parameters. In this research, I developed data-driven control
strategies using optimization and reinforcement learning techniques that are able to
learn and optimize neuromodulation control strategies autonomously, via closed-loop
interaction with the nervous system. Notably, I developed and clinically evaluated
a fully automated DBS programming framework for treatment of tremor in patients
with Parkinson’s disease and essential tremor that was shown to be efficient and safe
while providing outcomes comparable to that achieved by expert clinicians. Finally,



this research presents a collaborative effort towards developing an end-to-end trans-
lational platform for the design and implementation of iCLON systems. Utilizing
an algorithm-hardware co-design approach, the platform facilitates the exploration
of brain-implantable devices capable of autonomously learning and adapting control
policies. This platform aims to enable research and development of brain-implantable
iCLON systems for a wide community of neuroscientists, clinicians, and engineers.
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Chapter 1

Introduction

1.1 Motivation

Neuromodulation, as defined by the International Neuromodulation Society (INS),
is a field of science, medicine, and bioengineering that encompasses implantable and
non-implantable technologies, electrical or chemical, for the purpose of improving the
quality of life and functioning of humans [1]. Neuromodulation is a rapidly expand-
ing field of medicine that involves a wide range of specialties and affects hundreds
of thousands of patients worldwide who suffer from various disorders. There have
been significant advancements in the scientific understanding of neuromodulation,
its mechanisms, clinical applications, and technological development [1]. Neuromod-
ulation is being used to manage a wide range of conditions including disorders of
cardiac pacing [2], epilepsy [3], movement disorders [4], chronic pain [5], psychiatric
and neurobehavioral disorders [6], and many more conditions, especially in medication
refractory patients.

The use of neuromodulation devices has become a standard and widely accepted
treatment for many neurological disorders. However, to achieve the therapeutic ben-

efit, stimulation often requires time-consuming programming by an expert [7]. Most



of the current clinical approaches are based on trial-and-error evaluation of thera-
peutic response, which is very time-consuming and may lead to sub-optimal efficacy
of the stimulation treatment [8], [9]. Hence, there is a growing need to create in-
telligent closed-loop neuromodulation (iCLON) strategies that autonomously learns
the optimal stimulation settings and adapts to the complex underlying dynamics of
the nervous systems. The development of iCLON systems simplifies the initial pro-
gramming of the implanted pulse generator (IPG) [10], facilitating the programming
of neuromodulation devices, while also enhancing long-term therapy for patients by
automatically adjusting therapy to continuously optimize patient outcomes [11].
Designing iCLON systems is a complex and multidisciplinary task that requires
expertise from various backgrounds including neuroscience, engineering, signal pro-
cessing, etc. Moreover, the complexities of the interactions between the nervous sys-
tem and the neuromodulation systems, with large parameter spaces, pose challenges
for designing and effective clinical deployment of neuromodulation technologies [12].
Despite the challenges, the potential benefits of these systems for treating neurologi-
cal and psychiatric disorders make this a promising area of research and development.
The focus of this research is to contribute to the advancement of automated iCLON
systems by developing a translational design paradigm that facilitate the design, im-

plementation, and clinical translation of these potentially life saving treatments.

1.2 Challenges and requirements of designing in-
telligent closed-loop neuromodulation Systems

One critical aspect of designing closed-loop neuromodulation systems is ensuring mod-
ularity. The intricate nature of the nervous system motivates partitioning the design
of iCLON systems into multiple components [11]. By using a modular design, the

system becomes flexible and scalable, allowing for straightforward modifications and



customization, which is especially important for closed-loop neuromodulation systems
that need to adapt to individual patient responses and changing treatment needs [9].
In addition, the modular design facilitates collaboration among experts with different
expertise, allowing for the reproducibility of previous works, and ensuring that the
system can integrate new technologies and advancements in the field [11].

Another challenge is the limitations of the current standard of care in the pro-
gramming of neuromodulation devices. Typically, standard clinical approaches in
the programming of neuromodulation devices involve a trial-and-error evaluation of
therapeutic response (clinical benefit and unwanted side effects) at numerous stimu-
lation settings [7], [13]. This is often performed over several sessions, which can be
inconvenient and costly for patients and clinicians and can be a challenge for patients
who live far away from specialty care [14]. Developing automated iCLON systems
eliminates the need to frequently access to specialized centers and unlocks access to
a wider range of patients. Such frameworks could be beneficial for remote program-
ming for patients with limited access to the clinic. In addition, the standard clinical
approaches are often limited to a small subset of stimulation parameters, which may
not allow for optimal customization to individual patient needs [15]. Current clinical
approaches may not take into account the complex and dynamic nature of the nervous
system, which can change over time and require ongoing adjustment of stimulation
parameters. As a result, there is a growing interest in the development of automated
iCLON systems, which can provide real-time feedback and automatic adjustment of
stimulation parameters based on individual patient needs and changing physiological
conditions.

Moreover, automation of iCLON systems is an essential feature that plays a sig-
nificant role in various aspects of the system. First, it can help to reduce the burden
on clinicians by automating routine tasks such as parameter adjustment and data

logging allowing clinicians to focus on other tasks [14]. In addition, the evaluation of



the behavioral or neurophysiological response of patients to modifications in therapy
can be challenging given the subjective nature of visual observation. Automated dis-
covery of the target objective functions reduces the burden and helps to objectively
validate the subjects’ response to therapy [8, 11]. Another aspect of automation is
automating the treatment plan (control policy) which automatically adjusts stimula-
tion parameters based on patients’ state and reduces the delay between stimulation
updates compared to human intervention [11].

Another challenge in developing effective iCLON systems is to take the complex
and dynamic nature of the nervous system into account. Adaptability enables de-
signing adaptable systems in a patient-specific way based on each patient’s unique
needs and responses [16, 11]. Moreover, it enables the adjustment of stimulation pa-
rameters in real time based on individual patient needs and changing physiological
conditions. This can help to optimize treatment outcomes and improve patient sat-
isfaction. Furthermore, adaptability can also enhance patient safety by minimizing
the risk of overstimulation or unintended side effects.

Most of the current standard approaches of treatment planning (control policy)
are based on trial-and-error open-loop testing and evaluation of the subject’s response
to therapy. However, this method is very time-consuming, requires extensive training
and specialized skills, and tests a limited subset of the parameter space leading to
sub-optimal responses to therapy. Previous studies have made efforts to automate
treatment planning using classical control strategies [17, 18, 19, 20, 21| which have
several limitations. Although classical control approaches like proportional integral
(PI) controllers or model predictive control (MPC) has shown to be effective in many
studies, they have some disadvantages which make them impractical for many real-
world physiological applications. Some disadvantages of PI controllers are including
limited controllability which makes them less effective in transient responses, tun-

ing complexity, high sensitivity to model parameters, and sub-optimal performance



in non-linear systems [22], [23]. While MPC has been shown to address some of the
challenges of classical control algorithms, it still requires tuning of various parameters,
such as the prediction horizon and control weights, to achieve optimal performance
which can be challenging. In addition, MPC requires having access to an accurate
model of the system, and errors or inaccuracies in the model can affect the controller’s
performance [24]. Recent advances in artificial intelligence (AI) enable the design of
automated iCLON systems, that are able to learn and optimize neuromodulation con-
trol strategies autonomously, via closed-loop interaction with the nervous system with
minimal assumptions and requirements and may be used to address the algorithmic
challenges.

Finally, although recent advances in Al enable the design of iCLON systems that
are able to learn and optimize neuromodulation control strategies autonomously, there
are many challenges in designing iCLON systems and translating them in clinical set-
tings including software implementation, hardware integration, experimental valida-
tion, and clinical deployment in implantable devices. These complexities may make
designing iCLON systems out of reach for the broader biomedical research community
and may render designing systems that are not translatable into clinical settings. The
computational complexity of these classes of algorithms cannot be met with general-
purpose embedded systems and there is a need for specialized, yet programmable,

hardware.

1.3 Significance and contributions

Despite the challenges faced in developing and implementing the iCLON systems,
the potential benefits of utilizing them to treat neurological and psychiatric disorders
make this field of research and development highly promising. These systems hold the

potential to provide more targeted and effective treatment options, reduce the burden



of medication side effects, and improve the overall quality of life for patients. The
focus of this thesis is to develop a translational design paradigm that considers the
aforementioned requirements into account and facilitates quick design, prototyping,
and clinical translation of iCLON systems.

This thesis contributed to the development of multiple simulation environments,
pivotal in the design of novel and effective iCLON systems. The intricate and com-
plex nature of nervous systems, coupled with practical limitations and safety con-
cerns in interacting with them, presents significant challenges in designing successful
iCLON systems. To address this challenge and accelerate the development of new
and more effective iCLON systems, I developed and integrated multiple simulation
environments to accelerate the development of new and more effective iCLON sys-
tems. The simulation environments can provide a safe and controlled environment for
testing and prototyping such systems, and allow researchers to refine system param-
eters before clinical implementation. Furthermore, simulation environments enable
the reproducibility of results, facilitating the comparison of different systems and
methodologies. They also allow for the rapid prototyping of iCLON systems, en-
abling researchers to design, test, and optimize new systems quickly.

In addition to the simulation environments which are surrogates of the actual ner-
vous system, this thesis also introduces multiple control tasks replicating the actual
experimental and clinical applications for better reproducibility of the simulations and
easier translation into clinical practice. These tasks include designing a minimization
task to minimize tremor severity while avoiding adverse side effects for Parkinson’s
disease (PD) and essential tremor (ET) patients, a set-point tracking task for regu-
lating the heart rate (HR) and mean arterial pressure (MAP) for the treatment of
various cardiovascular diseases that include heart failure, arrhythmia, and hyperten-
sion, and a synchrony suppression task designed to suppress synchrony in a mean-field

model of the neural population which is known to be an underlying cause of many



adverse symptoms in PD patients.

Moreover, a control policy is at the core of iCLON systems which automatically
learns and adjusts the stimulation parameters in order to achieve the goals of a
desired neuromodulation control or optimization task. Most of the current stan-
dard approaches of treatment planning (control policy) are based on trial-and-error
open-loop testing and evaluation of the subject’s response to therapy. There have
been previous efforts to automate treatment planning using classical control strate-
gies which have multiple limitations as discussed in the previous section. Recent
advances in Al enable the design of automated iCLON systems, that are able to
learn and optimize neuromodulation control strategies autonomously, via closed-loop
interaction with the nervous system. One major contribution of this research is de-
veloping data-driven control strategies using optimization and reinforcement learning
techniques that are able to learn and optimize neuromodulation control strategies
autonomously, via closed-loop interaction with the nervous system. The developed
iCLON systems using novel data-driven control strategies has been designed and
evaluated in the context of multiple neuromodulation applications including an au-
tomated DBS programming framework for tremor, an automated closed-loop system
for regulation cardiovascular system with selective VNS, and an automated iCLON
system for synchrony suppression with adaptive DBS.

Additionally, this research presents a collaborative effort towards developing an
end-to-end translational platform, called Neuroweaver, for the design and imple-
mentation of iCLON systems. Utilizing an algorithm-hardware co-design approach,
the platform facilitates the exploration of brain-implantable devices capable of au-
tonomously learning and adapting control policies. Al and RL can lay a pathway since
they have proven to be effective in dynamic environments. However, the computa-
tional complexity of these classes of algorithms cannot be met with general-purpose

embedded systems and there is a need for specialized, yet programmable, hardware.



As such, a fixed architecture is incapable of accommodating design space explorations,
matching specific algorithmic needs, and /or operational constraints. Thus, this thesis
presents a template architecture that is a highly parametric design, capable of being
scaled down or scaled up before fabrication to match the requirements and enable
algorithm-hardware design exploration. After explorations and analyses, the frame-
work can generate a concrete design that can be deployed on Field Programmable
Gate Arrays (FPGAs) for prototyping/use in-vivo experimentation. This design is
also ready to be fabricated as a stand-alone programmable custom chip that can
be implanted. This platform aims to enable research and development of brain-
implantable iCLON systems for a wide community of neuroscientists, clinicians, and
engineers. Some lines of work in the development of Neuroweaver (as described in
sections 5.4, 5.5 and the results associated with them) are implemented by our col-
laborator, but are provided here to describe the comprehensive view of the research
platform. The dissertation contributed to the design of the platform and the devel-
opment of novel data-driven and interactive RL-based control strategies. In addition
to the success of the various RL-based iCLON control strategies in performing the
synchrony suppression task, these approaches are being used to explore the algorithm-
hardware co-design approach which enables the the design and development of novel
brain-implantable neuromodulation devices.

In summary, this research contributed to the advancement of automated interac-
tive iCLON systems from design and simulation to implementation. Novel interactive
data-driven control strategies that allow the iCLON systems learn and adapt through
interaction with the nervous system were designed. Data-driven and mechanistic mod-
els of the nervous systems under external stimuli were utilized for developing in-silico
simulation environments for prototyping and evaluating the performance of these
data-driven approaches. Additionally, software development efforts enabled clinical

implementation of my data-driven and patient-specific DBS programming approach



for further clinical evaluation of the system. Finally, the algorithm-hardware co-
design approach enabled the research and development of brain-implantable iCLON

devices using the proposed interactive Al-based strategies.

1.4 Thesis outline

This thesis comprises six chapters, besides the introduction and the conclusion, all
of the other chapters have been published or are under review in key journals and
conferences in the field (see section 1.5).

Chapter 2 presents the background of this thesis. This chapter provides an
overview of closed-loop neuromodulation systems, with a focus on control policy algo-
rithm development. This chapter provides insight on the recent trends in developing
closed-loop neuromodulation systems and emphasizes on the need for developing re-
search platforms that enable the research and development of intelligent closed-loop
neuromodulation systems.

Chapter 3 presents the design, implementation, and clinical validation of an auto-
mated DBS programming framework with safety constraints for tremor suppression in
patients with Parkinson’s disease and essential tremor. (Safe) Bayesian optimization
which is a sample-efficient global optimization method was used as the core of this
DBS programming framework to adaptively learn each patient’s response to DBS and
suggest the next best settings to be evaluated. This study demonstrated that fully
automated DBS programming framework for treatment of tremor is efficient and safe
while providing outcomes comparable to that achieved by expert clinicians.

Chapter 4 provides a novel interactive Al framework using RL which provides an
automated data-driven approach for closed-loop regulation of cardiovascular system
with selective VNS. The proposed VNS control policies was used to regulate HR and

MAP in computational models of rat cardiovascular system with minimal assumptions
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and without the need for prior knowledge about the underlying physiological dynamics
of the system. The results from this study demonstrated the capabilities of the closed-
loop RL-based approaches to learn optimal VNS control policies and to adapt to
variations in the target set points and the underlying dynamics of the cardiovascular
system. The findings of this study highlighted the trade-off between sample-efficiency
and generalizability, providing insights for proper algorithm selection. In addition,
transfer learning was utilized to improve the sample efficiency of Deep RL algorithms
allowing the development of more efficient and personalized closed-loop VNS systems.

Chapter 5 presents an open-source end-to-end platform, called Neuroweaver, for
design and development of translatable embedded AI algorithms that enable intelli-
gent closed-loop neuromodulation devices autonomously to learn and adapt control
policies from interacting with the nervous system. Neuroweaver is an Al algorithm-
hardware co-design platform that provides an integrated environment for modular
designing and prototyping intelligent closed-loop neuromodulation control systems
and deploying Al pipelines in hardware through a Python-embedded cross domain
interface. Neuroweaver aims to build an end-to-end translational platform from de-
sign to implementation of iCLON systems to enable research and development of
iCLON systems for a broader community of neuroscientists, clinicians, engineers, and

developers.
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Chapter 2

A review on closed-loop
neuromodulation systems, with a

focus on control policy algorithms

2.1 Introduction

Neuromodulation stands at the intersection of science, medicine, and biomedical en-
gineering which encompasses implantable and non-implantable technologies for the
purpose of improving the quality of life and functioning of humans [1]. This is a
rapidly expanding field of medicine that involves a wide range of specialties and
affects hundreds of thousands of patients worldwide who suffer from various neu-
rological conditions including disorders of cardiac pacing [2], epilepsy[3], movement
disorders [4], chronic pain[5], psychiatric and neurobehavioral disorders[6], and many
more. The recent remarkable advancements in neurotechnology, underscore its poten-
tial for significant societal impact, necessitating tailored efforts to address its evolving
scientific, technical, and social needs.

Despite the widespread acceptance of neuromodulation devices, achieving ther-
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apeutic efficacy heavily relies on time-consuming trial-and-error stimulation adjust-
ments by experts [7]. The open-loop trial-and-error process enables constant stimu-
lation regardless of patients’ symptoms and neurophysiological state. This arduous
process poses a significant challenge in their effective clinical deployment, limiting
the efficacy and accessibility of the therapy. The current approaches often lead to
sub-optimal stimulation settings [8, 9] due to the variations in individual recovery tra-
jectories, subjective symptom evaluation methods, and lack of a systematic approach
for stimulation adjustment with large parameter spaces. In addition, constant open-
loop stimulation may lead to over-stimulation and decrease in the device’s battery
lifespan [25, 26].

An alternative form of stimulation, known as closed-loop or adaptive stimula-
tion, has emerged to address the challenges of open-loop stimulation. Closed-loop
neuromodulation provides the benefit of continuously monitoring patients’ neuro-
physiological and/or behavioral activities. It allows for the on-demand adjustment of
stimulation parameters in response to alterations in the patients’ pathological states
and symptoms. Although conventional open-loop neuromodulation is a standard
treatment, many studies have demonstrated that closed-loop approaches are more
effective and efficient. Previous studies has reported improved therapeutic efficacy
of closed-loop DBS compared to standard open-loop approaches [25, 27]. A review
study [28] stated that adjusting stimulation parameters in closed-loop DBS could re-
duce adverse side effects induced by DBS in Parkinson’s disease. Additionally, recent
studies reported a reduction in the stimulation time by integrating closed-loop neu-
romodulation strategies, leading to less energy consumption of the neuromodulation
devices [25, 29]. The increased efficiency and reduced energy consumption leads to a
higher battery lifespan and fewer replacement surgeries.

Despite the numerous advantages of closed-loop neuromodulation strategies, there

are no commercially available closed-loop neuromodulation device that allows for de-
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signing flexible and adaptive stimulation strategies. Since the FDA approval of com-
mercial DBS devices in 1997 for tremor treatment [30], they have been authorized for
treating other neurological disorders like Parkinson’s Disease [31], dystonia [32], and
obsessive-compulsive disorder [33]. The NeuroPace’s RNS system is a commercial
closed-loop DBS system which has been approved by FDA for treating drug-resistant
epilepsy [34]. The RNS system works by activating stimulation once a seizure-related
predefined pattern is detected in patients’ ECoG signal to disrupt the detected pat-
terns in brain signals and avoid seizures. Furthermore, Medtronic’s Activa PC + S is
an implantable sensing-stimulating DBS device designed for investigational purposes.
The Activa PC + S does not use the recorded LFP as a feedback signal to close the
loop, however, the user is able to compile a program to close the loop with limited
flexibility [26].

Designing and clinical implementation of closed-loop neuromodulation systems is
a challenging and multidisciplinary task that requires expertise from various back-
grounds including neuroscience, engineering, software, and hardware development.
The limited understanding of the dynamics of the nervous system with different time
scales in response to stimuli further complicates their effective clinical deployment.
Despite the challenges, the potential benefits of these systems for treating neurolog-
ical disorders make this a promising area of research and development. Developing
closed-loop neuromodulation systems holds the potential to revolutionize the stan-
dard of care in treatment-resistant neurological disorders. Hence, there is a growing
need to develop intelligent closed-loop neuromodulation (iICLON) systems that are
able to learn and optimize the neuromodulation control strategies autonomously, via
closed-loop interaction with the nervous system.

An iCLON system is composed of multiple essential component including the
signal acquisition, biomarker detection, optimization or control algorithm, stimulation

policy, and the hardware components to enable stimulation delivery (Figure 2.1b)
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while software platforms enables seamless communication of these components [35,
36]. Although all of these components are crucial in designing a successful iCLON
system, the optimization and control algorithm is at the core of iCLON systems which
automatically learns and adjusts the stimulation parameters. In this narrative review,
I introduced the common closed-loop control strategies that has been used in the
literature. For the purpose of this review, the applications of deep brain stimulation
(DBS) and vagus nerve stimulation (VNS) are included. Based on the findings of
several recent studies of closed-loop DBS and VNS, I highlighted the recent trends in
developing novel iCLON systems and the need for developing research platforms to

facilitate designing novel and more effective approaches.

2.2 Introduction to closed-loop neuromodulation
control

Closed-loop control systems are designed to achieve and maintain a specified outcome
by autonomously adjusting their input parameters based on real-time feedback [37].
This self-regulating framework operates on the principle of a dynamic feedback loop
where the system’s output is continuously monitored and fed back into the system to
adjust the input, ensuring the output remains within the desired range. The input is
the variable that the system can manipulate directly, while the output is the response
that needs to be controlled, which could be either a single variable or a combination
of variables depending on the complexity of the system. In essence, closed-loop con-
trol systems are capable of adapting to disturbances and maintaining their function
without external intervention as opposed to open-loop systems which operate without
feedback and are thus unable to self-correct in the face of perturbations (Figure 2.2).

In neuroscience, closed-loop neuromodulation systems are aimed at regulating the

nervous system. Closed-loop neuromodulation systems, such as DBS and VNS, are
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aimed to adjust therapeutic interventions in real-time, responding to neural signals
that signify changes in the patient’s condition. Here, the input takes the form of
electrical or optogenetic stimuli delivered to the target neural system, and the output
is the neurophysiological or behavioral response that represent the neural activity.
These iCLON systems not only deliver therapeutic stimulation but also must be
equipped with either internal sensors that monitor electrophysiological biomarkers or
external sensors to monitor behavioral biomarkers indicative of the current state of
the nervous system, thereby forming a feedback loop (Figure 2.1b).

A general design of iCLON systems consists of hardware modules to enable in-
teractions with the nervous system and algorithmic modules to enable intelligent
automation of the interactions to modulate and maintain the desired neural activity
(Figure 2.1b). The hardware modules consist of a sensing component called signal
acquisition in Figure 2.1b to measure the neurophysiological and/or behavioral re-
sponses of the nervous system to therapy and another component called stimulation
delivery in Figure 2.1b to apply stimulation or proper interventions when needed to
optimize therapeutic outcomes. The algorithmic component of the system needs to
be modular enough for easier modifications while replicating the clinical workflow for
better translatability of the system into clinical practice. In clinical practice, there is
typically a separation between patient assessment and treatment planning. Translat-
ing the clinical practice into an automated iCLON system motivates the partitioning
of the algorithmic component into a biomarker or objective identification module and
a control policy module. The biomarker or objective identification estimates the sub-
jects’ state or symptoms in response to therapy and replicates the clinical assessment,
while the control policy module replicates the treatment plan. A high-level overview

of the modular design of iCLON systems is depicted in Figure 2.1.
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Figure 2.1: Comparison of (a) an open-loop versus (b) a closed-loop Neuromodulation
programming system.
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2.3 Control strategies

2.3.1 Open-loop control

Open-loop also known as feed-forward control strategies operate on the principle of
generating commands for a system under control (plant) with the expectation of
achieving a specific output without the incorporation of feedback to modulate a com-
mand [38]. As illustrated in Figure 2.2, this control scheme relies on having access
to a perfectly defined model of the system’s behavior, assuming that the system will
respond predictably to the commands given. However, without the ability to mea-
sure the actual output or the error of the system, the open-loop controller lacks the
ability to adjust its commands in response to real-world variables such as noise or
measurement discrepancies. This assumption of a flawless system model is a signifi-
cant limitation of open-loop control, as it does not account for the unpredictable and
often complex variations that can occur in practical scenarios, making it less adaptive

and reliable when precision and adaptability are crucial.
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2.3.2 Closed-loop control

Closed-loop control strategies, also known as feedback control, introduce a critical
component into the system: sensors. These sensors are intrinsic to the system’s
ability to self-regulate, as they continuously monitor the system’s output in response
to the commands issued by the controller. If there is any deviation from the expected
output the sensors provide an error signal that quantifies the discrepancy. This error
signal is then utilized by the feedback controller to adjust subsequent commands, fine-
tuning the system’s behavior. This dynamic process of monitoring and adjustment
is mathematically sophisticated, with various algorithms available to optimize the
controller’s response [37, 39]. Through this continual loop of action, measurement,
and correction, closed-loop control systems achieve greater accuracy and stability,
adapting in real-time to ensure the desired outcome is maintained. A block diagram

of a closed-loop control strategy is depicted in Figure 2.2.
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Figure 2.2: Open-loop and closed-loop control strategies. The open-loop control strategy is
demonstrated with solid lines.
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2.3.3 Adaptive control

Adaptive control [40] strategies integrate with both open-loop and closed-loop sys-
tems, using sensor data to tailor the controller’s actions to real-time environmental
changes or shifts within the underlying dynamics of the system. This approach al-
lows for a flexible control strategy that compensates for the lack of complete system
knowledge and is especially advantageous when dealing with non-stationary systems.
Although not always optimal, adaptive controllers excel by tuning parameters to

maintain stability and convergence with evolving system’s characteristics (Figure 2.3).

2.3.4 Model-based control

Model-based control strategies hinge on the utilization of an accurate mathematical
representation of the system to predict its behavior and formulate control commands
accordingly [41]. This comprehensive model encapsulates the dynamics of the system,
including its responses to various inputs and disturbances. By incorporating this

knowledge, the control algorithm can anticipate the system’s reactions to different
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control actions and adjust the inputs to achieve the desired outcome. The strength
of model-based approaches lies in their predictive power, which enables foresight and
planning in the control process. However, this also implies that inaccuracies in the
model predictions can lead to sub-optimal control performance. When the model
precisely reflects the system’s actual dynamics, model-based control can achieve high
levels of efficiency and accuracy, making it ideal for systems where the underlying

processes are well-understood and can be reliably captured.

2.3.5 Model-free control

Model-free control strategies represent a paradigm shift in control systems, designed
to operate effectively without a comprehensive mathematical model of the system
they regulate. These strategies rely on real-time data and adaptive algorithms to
make appropriate control decisions, learning directly from interactions with the sys-
tem. This approach is particularly useful in complex or highly uncertain environments
where developing an accurate system model is challenging or impractical. By employ-
ing techniques such as reinforcement learning [42], neural networks [43], or fuzzy logic
[44], model-free controllers can deduce the optimal control actions through continuous
trial and error and pattern recognition, thus improving their performance over time.
This methodology not only bypasses the need for exact model of the underlying dy-
namics of the system but also enhances flexibility, enabling control systems to adapt

to the changes.

2.4 Classical control algorithms in iCLON systems

Control policies can be implemented by one or multiple control strategies as described
in section 2.3. In this section, the common control algorithms used to design closed-

loop DBS or VNS systems are provided.
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Figure 2.4: Model-based vs. model-free control strategies. The model-free approach is
demonstrated with solid lines.

2.4.1 On-Off and threshold-based controller

The on-off control is activated when a measured variable or a target biomarker
is passed a predefined threshold. This simple control scheme has been in many
closed-loop neuromodulation studies and is capable of preventing brain from over-
stimulation. Authors in [29] employed an on-off control scheme which was was uti-
lized to modulate electrical stimulation with the objectives of suppressing locomotion
and inducing freezing when hippocampal theta oscillations, measured from local field
potential (LFP) signals, exceeded a specified threshold. Numerous studies designed
an on-off closed-loop control system based on beta band frequency for synchrony sup-
pression in PD [45, 46, 47]. Authors in [25, 48, 49] designed a threshold-based on-off
controller based on beta frequency amplitude using subject-specific threshold values.
Other studies have designed phase-responsive closed-loop DBS for tremor suppression

(50, 51].
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2.4.2 Proportional-integral-derivative control

The Proportional Integral-Derivative (PID) controller [52] is a very common approach
in designing closed-loop systems which has been widely explored in the context of
closed-loop neuromodulation systems. The PID controller operates through three
key components: the proportional element, which adjusts the control action in di-
rect proportion to the error signal; the integral element, which targets the reduction
of steady-state errors by implementing low-frequency compensation through an in-
tegrator; and the derivative element, which enhances transient response by offering
high-frequency compensation via a differentiator. This three-tiered approach equips
the PID controller with a comprehensive mechanism to offer a simple yet efficient
solution to many applications [52].

Authors in [53] presented a PID controller for synchrony suppression of neural
activity. Proportional (P) and proportional-integral (PI) closed-loop controllers for
amplitude and frequency modulation were investigated in [54] for regulating network
beta-band activity whilst accounting for clinical considerations. A P controller based
on beta power has been used in [55] to reduce motor symptoms of PD in parkinsonian
rats. An adaptive P controller is presented in [56] in which the gain of a feedback
controller is continuously adjusted to sustain suppression of pathological beta-band
oscillatory activity at a desired level. A multivariable control architecture based on
PID control is presented in [57] to selectively target suppression of either tremor or
subthalamic nucleus beta band oscillations. In addition, model-based algorithms that
operate based on PID feedback has been studied in [58, 59]. T introduced a data-driven
approach to automated tuning of PI controller to modulate the dominant frequency
of neural activity in a computational model [60]. I used Bayesian optimization for

the automated parameter tuning of a PI neuromodulation controller.
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2.4.3 Delayed-feedback controller

The idea of the delayed-feedback control (DFC) algorithm is to apply a feedback signal
that is proportional to the difference between the current state and a delayed state
of the system [61]. This delay element is crucial as it enables the control mechanism
to effectively adjust for deviations from desired behavior. The DFC algorithm has
been used fro the suppression of pathological oscillations in a neural mass model [62].
To restore the desynchronized dynamics in networks of oscillatory neurons, multiple
model-based closed-loop stimulation methods have been developed including single-
site linear [63, 64], multi-site linear [65, 66] DFC algorithm. In addition, non-linear
DFC has been studied in other studies to restore desynchronized dynamics of neural
activity [67, 68, 69, 70], where the LFP signal was used as a feedback to adjust the

stimulation amplitude using linear or nonlinear DFC.

2.4.4 Fuzzy logic controller

A Fuzzy Logic Controllers (FLCs) are adaptive and versatile control system intro-
duced in [71, 72| that has garnered popularity due to its their adaptability and high
performance. Unlike traditional control systems, FLCs utilize linguistic or qualita-
tive information for its control algorithm,allowing them to manage multivariable and
inconsistent processes, where the exact measurement of input and its effect is diffi-
cult. FLCs rely on fuzzy sets and fuzzy reasoning and their design involves creating
“if ... then ...” rules based on historical data and expert knowledge. This flexible
framework enables FLCs to make effective decisions in complex real-world scenarios
where traditional binary logic does not work.

FLCs have been utilized in the literature to design closed-loop DBS for seizure
suppression [73]. This study has utilized adaptive fuzzy terminal sliding mode con-
trol (AFTSMC) for eliminating the oscillatory spiking behavior in childhood absence

epilepsy in a computational model consisting of cortical, thalamic relay, and reticular
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nuclei neurons. Authors in [74] used a robust multi-input multi-output AFTSMC
approach to control of membrane potential of thalamic neuron populations through
continuous adaptive DBS current applied to the thalamus. A previous study [75]
presented a multi-disease closed-loop DBS device that can detect the disease using
a classifier and adaptively deliver electrical stimulation pulses based on the disease
state. Both the classifier and controller are designed using the fuzzy algorithm [75].
A combined control strategy using intelligent single input interval type-2 fuzzy logic
(iSIT2-FL) and non-integer sliding mode control (SMC) was presented in [76] to con-

trol Parkinson’s tremor and reduce the value of stimulation intensity efficiently.

2.4.5 Model predictive control

Model Predictive Control (MPC) is a control methodology characterized by its optimization-
driven approach [41]. In MPC, the control strategy aims to minimize a cost function
for a constrained dynamical system over a finite, receding horizon. At each discrete
time step, the MPC controller acquires or estimates the current state of the system
and employs this information to compute a sequence of control actions that optimally
minimize the cost over the prediction horizon. This computation involves solving a
constrained optimization problem utilizing an internal model of the plant and the
current system state as inputs. However, unlike traditional control methods, MPC
only implements the first control action from the calculated sequence while disregard-
ing the subsequent ones. This process then iterates at each time step, allowing MPC
to adaptively and optimally control dynamic systems in real-time.

MPC has been widely explored in designing iCLON systems. MPC has been
shown to be effective in minimizing patient symptoms and device power consumption
based on identifying patient-specific models of symptom response to DBS [77]. These
patient-specific models was used to formulate a model predictive control strategy for

closed-loop DBS.
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A recent study developed a closed-loop brain-computer interface system of predic-
tive neuromodulation for treating major depressive disorder (MDD) [78]. This study
used a biophysically plausible ventral anterior cingulate cortex (vACC)-dorsolateral
prefrontal cortex (dIPFC) neural mass model of MDD to simulate nonlinear and
multiband neural dynamics in response to DBS [78] and integrated a MPC strategy
that takes the estimated MDD brain state as the feedback signal and optimally ad-
justs DBS parameters. Nonlinear MPC (NMPC) is an extension of linear MPC which
was used in [79] to design a closed-loop stimulation strategy in a delayed neural fields
model of parkinsonian STN-GPe network. Authors in [80] used a NMPC strategy
for for adaptive adjustments of deep brain stimulation parameters in basal ganglia-
thalamic network. Other studies investigated the use of NMPC in the context of

closed-loop VNS for regulating heart rate and blood pressure [81, 82].

2.5 Recent trends in developing novel closed-loop
neuromodulation systems

The majority of the literature employed classical control theory approaches as de-
scribed in the previous section. Although the classical control approaches has proven
to be effective in many studies, they have multiple limitations that can hinder their
efficacy in many complex and dynamic systems including the nervous system. These
limitations include difficulties in handling nonlinearities, uncertainties and noise of
measurement, and time-varying dynamics, as well as the need for accurate mathe-
matical models of the system, which are often challenging or impossible to obtain for
the complex neural dynamics. Data-driven optimization and control approaches, on
the other hand, are suitable for situations where classical control methods struggle
by learning directly from data, allowing for adaptive control strategies that do not

rely on precise models of the underlying dynamics of the target nervous system under
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neuromodulation interventions.

Some data-driven optimization strategies like Bayesian optimization [83] eliminate
the need of having access to underlying equations of the system to develop automated
closed-loop neuromodulation systems. Bayesian optimization is a non-parametric
global optimization approach that is suitable for optimizing black-box objective func-
tions that are unknown or expensive to evaluate. Bayesian optimization does not
require prior knowledge regarding patients’ response to neuromodulation therapy
and tries to find the optimal setting in a purely data-driven manner and through
interactions with the nervous system. Bayesian optimization has been successfully
adopted for developing closed-loop neuromodulation applications in the context of
optimizing the experimental design with closed-loop real-time functional magnetic
resonance imaging (fMRI) [84], optimizing electrical stimulation for seizure control
[85], searching through a large transcranial alternating current stimulation (tACS)
parameter space based on relative judgment [86], and for predicting optimal DBS
parameters using fMRI data for PD patients [87]. The authors in [88] introduced a
semi-automated approach to optimize DBS parameters in PD patients for minimizing
rigidity and provided preliminary evidence on the utility of using Bayesian optimiza-
tion in determining optimal DBS parameters. In addition, Bayesian preference learn-
ing was used in [89] for identifying personalized optimal stimulation patterns based
on the participant’s expressed preference for stimulation settings. The authors in [90]
introduced a Bayesian adaptive dual control in a computational model of Parkinson’s
disease to reduce the beta power. In chapter 3, I designed, implemented and clinically
evaluated an automated deep brain stimulation programming for tremor suppression
in patients with Parkinson’s disease and essential tremor [60]. These data-driven
optimization strategies have been successfully implemented in various applications
of closed-loop neuromodulation systems. However, they share a common underlying

assumption regarding the objective function’s stationary, implying that its behavior
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remains relatively constant within the region of interest. This assumption is essential
for the acquisition function to effectively estimate regions of high uncertainty and is
not applicable to dynamic systems like the cardiovascular system.

Alternatively, machine learning and deep learning techniques can capture com-
plex system behaviors, adapt to changing conditions, and handle nonlinearity and
uncertainty effectively. Integration of ML approaches has been widely explored in the
literature to detect biomarkers of the disease state. However, they have been mainly
used in conjunction with a simple classical control strategies to design iCLON sys-
tems. A recent study [91] used a logistic regression used a logistic-regression model
to detect freezing of gait and used the model predictions as a control signal. This
study combined this ML-based biomarker detection approach combined with a simple
decision-table controller [91]. A similar combined approach is used in [92] to design a
binary classifiers for extracting patient-specific features from cortical signals and de-
termining when volitional, tremor-evoking movement is occurring to alter stimulation
voltage in real time. The control strategy is a simple condition-based controller [92].
A neural network-based design of an on-off adaptive control for Deep Brain Stimula-
tion in movement disorders is presented in [93]. To eliminate the need of having an
accurate model of the neural dynamics, a recent study [81] employed a data-driven
modeling approach using long short-term memory (LSTM) neural networks. Au-
thors in [81]demonstrated the utility of an LSTM model by generating synthetic data
from the computational cardiac model introduced in [94] and developed an MPC
controller to regulate heart rate (HR) and mean arterial pressure (MAP). However,
this approach still requires access to a substantial amount of experimental data to
sufficiently cover the stimulation parameters space annd accurately model the effect
of VNS parameters on HR and MAP, which is not practical due to the limitations in
experimental data collection.

RL, in particular, provides a framework for learning optimal control policies
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through interactions with the nervous system, making it well-suited for cases where
classical control approaches are not efficient or lack predefined control laws. These
data-driven approaches have the potential to enhance control strategies, making them
more versatile and robust across a wide range of neuromodulation applications. De-
spite the recent success of RL in many applications, its utility in the context of
closed-loop neuromodulation has not been extensively explored. A previous study
presented a simulation environment, called the ContinuousFlappyBird, to resemble
the dynamic environment in PD patients for early development of adaptive DBS
systems using RL approaches [95]. Authors in [96] presented a closed-loop DBS tech-
nique for rehabilitation in PD patients in which a RL algorithm is used to adaptively
tune the parameters of a PID controller. In chapter 4, I presented a novel interactive
Al framework using RL which provides an automated data-driven approach to design
closed-loop VNS control policies with minimal assumptions and without the need for
prior knowledge about the underlying physiological dynamics of the cardiovascular

system.

2.6 The need for developing research platforms to

enable research and development of implantable

iCLON systems

Designing intelligent closed-loop neuromodulation (iCLON) control strategies involves
creating a modular design capable of seamlessly integrating with in-vivo experimental
setups and computational approaches from multiple domains. Most of the current im-
plantable neuromodulation devices offer limited computational capabilities and does
not support designing adaptive stimulation policies to account for the underlying com-

plex and varying dynamics of the nervous system. recent advances in AI may enable
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designing intelligent neuromodulation systems, that are able to learn and optimize
neuromodulation control strategies autonomously, via closed-loop interaction with
the nervous system. However, the computational complexity of these class of algo-
rithms cannot be met with general-purpose embedded systems and there is a need for
specialized, yet programmable, hardware. In chapter 5, I introduced an open-source
platform, dubbed Neuroweaver, for end-to-end designing, prototyping and deploying
iCLON algorithms without the complexities of translating Al algorithms to imple-

mentation.
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Chapter 3

Automated deep brain stimulation
programming with safety
constraints for tremor suppression

in patients with Parkinson’s

disease and essential tremor!

3.1 Introduction

Deep brain stimulation (DBS) surgery has become a standard treatment for neu-
rological disorders such as Parkinson’s disease (PD) and essential tremor (ET), to
ameliorate tremor when medications are insufficient. DBS significantly improves both
symptoms and quality of life, however to achieve therapeutic benefit, stimulation often
requires time consuming programming by an expert [7]. DBS devices enable consid-

erable customization of stimulation parameters including contact configuration (cath-

1@© IOP Publishing. Reproduced with permission. All rights reserved.
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ode and anode selections), current amplitude, pulse width and frequency allowing for
customization of stimulation to account for variations in electrode placement, differ-
ences in local anatomy, symptom type, and severity [97]. Typically, a programming
session involves a trial-and-error evaluation of therapeutic response (clinical benefit
and unwanted side effects) at numerous stimulation settings. This is often performed
over several sessions, which can be a challenge for patients who live far away from
specialty care. In addition, evaluation of clinical response can be challenging given
the subjective nature of visual observation to determine if tremor and other motor
symptoms are responding to stimulation. Therefore, designing objective markers of
therapeutic response to DBS is needed. Recently DBS device innovations (8-contact
electrodes, current fractionation, widened pulse width range and anodic stimulation)
have significantly expanded the parameter space making programming even more
complex [12]. These limitations suggest a need for an automated and patient-specific
DBS programming framework that facilitates DBS programming without requiring
an expert clinician.

We previously presented an automated DBS programming framework using an
exhaustive grid search-based sampling strategy that mimics heuristic clinical DBS
programming [14]. Although this automated framework was effective in programming
DBS devices, sampling similar settings for all patients using a grid-search sampling
method is a suboptimal approach since each patient responds to DBS differently [98].
Moreover, the number of required samples to converge to an optimal DBS setting was
high, and we hypothesize that more advanced sampling and optimization techniques
could improve the process. Two recent studies have assessed the efficacy of a closed-
loop optimization algorithm for DBS programming using external motion sensor-
based motor assessments in patients with PD [99, 100]. The details of the proprietary
algorithm have not been published and the system required presence of a clinician to

manually change the DBS settings based on algorithm recommendations and if side
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effects occur. In addition, the algorithm-based DBS suggestions have only been tested
with monopolar stimulation settings which may be suboptimal for some patients.

In this study, we combined the knowledge from clinical decision-making strategies
with Bayesian optimization, to develop an automated real-time DBS programming
framework that enables sample-efficient and patient-specific DBS programming to
simultaneously ameliorate tremor and avoid side effects. Bayesian optimization has
been successfully adopted for developing closed-loop neuromodulation applications in
the context of optimizing the experimental design with closed-loop real-time func-
tional magnetic resonance imaging (fMRI) [84], optimizing electrical stimulation for
seizure control [85], searching through a large transcranial alternating current stim-
ulation (tACS) parameter space based on relative judgment [86], and for predicting
optimal DBS parameters using fMRI data for PD patients [87]. The authors in [88] in-
troduced a semi-automated approach to optimize DBS parameters in PD patients for
minimizing rigidity and provided preliminary evidence on the utility of using Bayesian
optimization in determining optimal DBS parameters. In addition, Bayesian prefer-
ence learning was used in [89] for identifying personalized optimal stimulation pat-
terns based on the participant’s expressed preference for stimulation settings. The
authors in [90] introduced a Bayesian adaptive dual control in a computational model
of Parkinson’s disease to reduce the beta power.

In addition, several recent studies explored DBS programming in closed-loop
paradigm using tremor measurements. The authors in [101] investigated the use of
isostable amplitude using computational models of ET patients to optimize DBS. An-
other study modelled the dynamics of patient tremor and their phase response curve
to investigate the effect of phase-locked DBS in tremor suppression and proposed a
closed-loop phase tracking stimulation regimens [21]. Several studies explored the
utility of surface electromyography (EMG) and acceleration in tremor prediction and

the design of a simple on-off DBS controller in closed-loop [102, 103, 104, 105, 106].
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The authors in [107] used electrocorticography for sensing movement intention along-
side with worn accelerometers and EMG sensors to deliver responsive closed-loop
stimulation to treat tremor in a closed-loop fashion.

To the best of our knowledge Bayesian optimization with safety constraints has
not been tested in the context of clinical DBS programming for tremor suppression.
We hypothesized that implementation of a Bayesian optimization [83] algorithm for
DBS programming for tremor suppression would have high efficiency (fewer samples
than the grid search) and that safe programming (avoidance of uncomfortable side
effects) can be achieved in an automated system using safe Bayesian optimization
algorithm. We further provided clinical assessment of the closed-loop DBS program-

ming framework in a cohort of 15 PD and ET patients [108, 109].

3.2 Patient selection criteria and clinical experi-
ment procedure

Patients with ET or tremor-dominant PD were recruited from a large academic move-
ment disorders clinic. Patients had been implanted with Medtronic Activa neurostim-
ulator systems for at least six months and had DBS settings optimized during stan-
dard clinical programming visits prior to study enrollment. The Emory University
Institutional Review Board (IRB) approved the study and all patients signed written
informed consent.

At the beginning of each experimental session, DBS was turned off, and clinical
setting stimulation effects washed out for 10 minutes. Patients were asked to hold
their tremor or PD medications for at least 12 hours prior to testing to avoid medica-
tion fluctuations during optimization. DBS optimization was performed in one lead
for each patient, contralateral to the arm with more severe tremor. The non-tested

lead was kept off during optimization unless rest tremor was too bothersome to sit
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comfortably. DBS implantable pulse generator (IPG) was reprogrammed to create
4 groups (4 contact configurations with amplitude control) that the optimization al-
gorithm could explore (at the beginning of the experiment, the four groups are set
as monopolar contact configuration, where the IPG case is set as an anode and each
of the four contacts are set as a cathode, and if ‘advanced’ stimulation was needed
based on algorithm’s decision scheme, we set the four groups as bipolar or multipolar
contact configurations). Stimulation pulse width and frequency were not changed
during optimization and were the same as the patient’s clinical setting. For phase
I experiments, clinician determined maximum allowable amplitude for each stimula-
tion group that could be safely sampled by the automated optimization algorithm
(to prevent the automated system from inducing severe side effects). In phase II
experiments, the maximum allowable amplitude was set to 5V for all groups, and the
safe Bayesian optimization algorithm was utilized to avoid inducing severe side effects
(additional safety feature allowed rapid stimulation shut off if necessary).

During optimization, two standard clinical motor tasks were performed at each
stimulation setting to assess tremor, depending on each patient’s tremor profile (rest,
arms extended, arms flexed, or finger-nose motion). A commercial smartwatch (LG-
W100) worn on patient’s wrist was used to determine a tremor score using a previously
validated classifier [14] and this score was used as input into the optimization algo-
rithm (Figure 3.1). A clinician blinded to the stimulation setting also scored the
tremor during optimization using Fahn-Tolosa-Marin rating scale (FTM) [110] to fur-
ther assess previously validated tremor classifier [4]. At each stimulation setting, the
patient reported stimulation-induced side effects (typically tingling or muscle con-
tractions in the face, arm or leg) and rated them on a scale from 0-3 (none, transient
or mild, moderate, severe). At the end of the optimization session, DBS IPG was
set to the best ‘automated setting’ and a clinical tremor exam and objective watch

tremor measurement were performed after a 5-minute wash-in (examiner and patient
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Figure 3.1: Overview of the automated DBS optimization framework for tremor program-
ming. After performing the initial baseline tremor evaluation tests without stimulation, at
each iteration, the software automatically sets the next DBS setting to be tested followed
by 10 seconds wash-in period, followed by tremor evaluation tests each for 10 seconds. The
recorded IMU data and side-effect reports are used to update the surrogate GPR model and
optimizer suggests the next best sample to be tested. Before evaluating the next suggested
DBS setting, the stopping criteria module determines whether the optimum has been found
or advanced stimulation is needed.

were aware of the stimulation condition). Clinical tremor exam for both PD and
ET patients was a subset of FTM scale and included rest, postural, and action arm
and leg tremor contralateral to DBS lead, handwriting (if dominant hand tested) and
spiral and line drawings. DBS IPG was then set to patient’s ‘clinical setting’ and
after another 5-minute wash-in period, tremor was reassessed by exam and watch
(for the first two patients, tremor assessment at clinical setting was done at the be-
ginning of the visit, but protocol was changed for subsequent subjects to facilitate

direct comparison between automated and clinical settings).
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3.3 Automated DBS programming framework: soft-
ware design

We performed these automated DBS programming experiments using a custom soft-
ware application developed for a Windows PC (Figure 3.2). This application collected
patient-reported side effect data and inertial measurement unit (IMU) data from the
smartwatch. Side effects were entered through a user interface and constituted a total
of 13 common acute side effects of DBS therapy and included reports of magnitude
(“0: none,”, “1: mild”, “2: moderate”, “3: severe”), type (“paraesthesia”, “muscle
spasm”, “speech”, “vision”, “dizziness”, “dyskinesia”), and body location (“head”,
“arm”, “leg”, “torso”). IMU data, constituting 3 dimensions each of accelerometer
and gyroscope data for a total of 6 channels, was streamed to the study PC via Blue-
tooth at 100Hz for processing and feature extraction. All data was logged on receipt
in CSV format, as were DBS stimulation parameters.

The software application made use of a previously developed C# application
programming interface (API) [111, 112, 113] for interfacing with the Nexus-D, a
Medtronic research communication bridge that allows an application to update IPG
stimulation parameters. IMU data collection and interfacing with the DBS device
through the Nexus-D was conducted through this application. Time-series IMU data
review and side effect inputs were conducted using an application written in Python
to take advantage of superior data processing and capacity to deploy advanced ma-
chine learning and optimization techniques. Lab streaming layer, a publicly available
library for cross-platform port handling and communication of time-series data in
research applications, formed the interface between these applications.

Using this combination of side effect data and tremor severity estimate, a quanti-
tative therapeutic value was derived for each DBS setting using Python. The details

of this derivation are described in more detail in the following sections. Updated
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Figure 3.2: A detailed schematic demonstrating the software design of the automated DBS
programming system. The software application receives IMU data over a Bluetooth connec-
tion from the smartwatch, as well as side effects reported by the patient through a graphical
user interface and send the information to the Python section of the application. The cal-
culation of the objective measure (surrogate function) and choice of the next DBS setting
(acquisition function) are handled within the Python section. The C# software application
receives the stimulation settings from the Python application and sends stimulation com-
mands to the Nexus-D, which communicates with patient’s implanted Activa IPG.

settings were forwarded to the C+# application. Both the therapeutic value of the
preceding DBS settings and the recommended next settings were recorded at this
point. Following a brief final review and safety check, these settings were then com-

municated via USB connection to the Nexus-D. The C# application was also capable

of manual override in case of emergency.
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3.4 GPR modelling of the effect of DBS settings
using a quantified objective measure

Gaussian process regression [114] is a nonparametric, Bayesian regression approach,
which is well-suited for small datasets and provides the measurement uncertainty
for the predictions. In this study, the patient-specific GPR models used the Matern
kernel function [83] and were trained using the cumulatively collected samples D =
{(zs, )]t = 1,...,n} from each patient, where x; were stimulation parameters, i.e.,
stimulation amplitude and stimulation contact configuration and y; represented the
corresponding combined objective measure as defined in equation (4). A GP is a
nonparametric model that is fully characterized by its mean and covariance function

as following

f(z) ~GP(m(z), K(x, :1:/)) (3.1)

where we can define the mean function as m(x) = E[f(x)] and the covariance function
as K(z,2") = E[(f(z) —m(z))(f(z") —m(z"))]. Here, we used Matern kernel function
as in

Kyrarerns(z, x/) = Ufc%p(—\/gr(l + \/§7~)) +oul, (3.2)

where 72 = (x — 2" )TA(z — ') and A is the diagonal matrix of squared length scales.
The output variance O']%, the length-scales, and the noise variance o2 are hyperparam-
eters of the covariance function. By incorporating the knowledge from the training
data (prior distribution in equation 3.1), we can make predictions at any new test
point (z,, fi), where f. = f(z.). The predictive conditional distribution of f, given

the training data and test input is calculated as in

f*|X7an* NN( ;,COU(f*)), (33)
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where f. = ELfX,y, X.] = K(Xo, X)[K(X, X) + 021]"Yy, cov(f.) = K(X., X.) -
K(X., X)[K(X,X)+ c2I|7'K(X, X,), and 2 denotes the noise variance.

This GPR modelling technique is used as a surrogate model for Bayesian opti-
mization described in the following section. We employed the GPflow library [115] for
implementing GPR models. We defined a combined quantitative measure of clinical
efficacy consisting of a quantitative objective tremor score, measured by the smart-
watch IMU and patient-reported side-effects, with the goal of maximizing tremor
improvement and minimizing side-effects. The quantification measure of DBS setting
value, Jpps,, is calculated based on the results of the tremor assessment tests while

the patient’s IPG was active in a particular DBS setting DBS; as in

JDBSZ' = Jtremon + JSE‘ (34)

Each DBS setting DBS; is evaluated based on the tremor score improvement,
Jiremor;, Which is a baseline subtracted tremor severity score as in equation 3.5, and
Jsg which is the patient-reported side effect severity scores defined as in equation 3.6.

A predictive model of clinical tremor assessment from IMU data was trained and
validated in a previous study [14], where features from accelerometer and gyroscope
data were used to train an ordinal multinomial logistic regression classifier based on
the neurologist’s provided tremor ratings [14]. To directly compare the performance
of our Bayesian automated DBS optimization framework with the state-of-the-art
automated DBS programming framework introduced in [14], which uses a grid-based
search approach, we used the same classifier [14] in order to avoid introducing new
parameters to the system. The output of this classifier was used to calculate the
tremor score improvement, Jiemor;, as in equation 3.5.

The term (tremorpps,) in equation 3.5 is the average watch tremor severity score

(predicted from the classifier) over the selected tasks while the patient’s IPG was
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active with the ith DBS setting DBS;. The term tremor is the average watch tremor
severity scores (predicted from the classifier) over all selected tasks with inactive IPG
that reflects patients’ baseline tremor score obtained at the beginning of optimization

session.

Jtremor; = tremorpps, — tremory (3.5)

The magnitude of the overall baseline subtracted tremor score (Jyemor, ) sShows the
level of change in the average tremor score comparing to the baseline and a negative
sign reflects tremor improvement compared to the baseline. The lower the Ji.cmor,.
the more clinical benefit the DBS; setting provides.

In addition, each DBS setting DB.S; is penalized by the patient-reported side
effect severity scores. We defined the term Jgg in equation 3.4 as follows based on

patients’ reports.

0 if no SE
1 if mild SE

Jsg = (3.6)
4 if moderate SE

inf(5 in practice) if severe SE
3

Watch tremor severity scores are on a scale of 0 to 4, so the Jiemor, term could
get any value in the [—4, 4] interval depending on the baseline score and the tremor
score in the DB.S; setting. Specifically, Jiemor, = 0 means no tremor improvement,
Jiremor; < 0 reflects a tremor score improvements compared to baseline, and Jyemor, >
0 corresponds to cases where the watch tremor score is worse than the watch tremor
score at baseline. If the patient experiences some level of side effect, we penalize
Jiremor; Dy adding a positive value to it. If the side effect is mild, we penalize it by

1, meaning that a DBS setting with a score of 1 for tremor improvement with mild
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Figure 3.3: GPR model mean surface of the combined objective measure (including baseline-
subtracted watch tremor score and side effect score) varies across patients. (a) Mean surfaces
for two patients with grid-search sampling strategy from a prior study [4]. The sampling
resolution is 1V amplitude increments. (b) Mean surfaces for two patients from the current
study with sampling using Bayesian optimization that evaluates more samples in areas
with greater chance of tremor improvement and with a finer resolution (0.2V amplitude
increments). The surfaces are color-coded with the value of the combined objective measure
where blue shows negative objective values reflecting tremor improvement compared to
baseline either without or with mild side effect and red shows positive values reflecting that
DBS settings are not effective or side effects are pronounced. The black circles represent
sampled DBS settings during the automated DBS optimization. The red dashed lines show
the clinician-defined safe exploration boundaries of the parameter space.

side effect will have a total score 0 which is similar to a setting with no improvement
and no side effects. If the side effect is moderate, we penalized it by 4 because any
amount of tremor improvement with moderate SE will be considered as untenable for
clinical use (resulting in a non-negative Jppgg, score). If the SE is severe, we penalize
it even more to prevent the optimizer from testing that area again.

The quantified objective measure in equation 3.4 was calculated for each DBS
setting tested on the patients and the cumulatively collected samples were used to
train a GPR model that models patients’ response to DBS. The mean surfaces of
GPR models of the combined objective measure defined in equation 3.4 capture both
the effect of baseline-subtracted watch tremor score and the side effect severity scores
simultaneously and justifies the use of the combined objective measure for Bayesian
optimization to ameliorate tremor while avoiding side effects (Figure 3.3). Further-
more, the mean surface of the GPR model varies across patients (Figure 3.3). Specif-
ically, the general shape of the surface, the location of the optima, and the maximum

tolerable boundaries vary between individuals reflecting their unique response to stim-
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ulation profile. These variations are partly due to disease type and tremor severity,
DBS lead position (which varies even for patients with the same target nucleus),
and individual anatomy. This subject variability necessitates designing a patient-
specific DBS optimization framework with an adaptive sampling strategy, while still
remaining sample-efficient. Due to variability in patients’ responses, a grid search-
based approach with 1V amplitude increments for each contact configuration that
was utilized in a previous similar study [14] was hypothesized to be inefficient (Fig-
ure 3.3.a). The Bayesian optimization which we have utilized in this study evaluates
more samples in areas with greater chance of tremor improvement and searches for
the optimal point with a finer resolution of 0.2V increments in amplitude for each

contact configuration (Figure 3.3.b).

3.5 DBS programming algorithms

3.5.1 Bayesian optimization

We formulated the automated DBS programming as a global optimization problem
over the stimulation parameter space, D, as in:

min f(x), (3.7)

zeD

where f(x) was the objective measure that represented the desired clinical out-
come, and D is the two-dimensional space of the DBS parameters including stimula-
tion amplitudes and contact configurations. One of the main challenges in solving this
problem was that the functional relationship between the DBS parameter space and
clinical outcome was not known. Bayesian optimization is a non-parametric global
optimization approach that is suitable for optimizing black-box objective functions

that are unknown or expensive to evaluate.
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The objective function f(z) ,which represents a mapping between the DBS param-
eters and the clinical outcome, is unknown and does not have a closed form. Although
f(zx) is unknown at every x € D, we can observe its measurements at sampled DBS
settings (the objective measure as described in equation (3.4) is a measurement of
f(z) at the suggested DBS settings DB.S; by the optimizer). Bayesian optimization
proceeds by maintaining a probabilistic belief over f(x) by building a GPR surrogate
model as described in section 3.4 using the cumulatively collected data from each
patient. The GPR model prescribe a prior belief over the possible objective functions
given the cumulatively collected data. In a previous study we characterized the func-
tional relationship between the clinical outcome and DBS parameters using the GPR
modeling approach [98].

The Bayesian optimization algorithm is based on a sequential decision-making
process to search for the optimal stimulation parameters in two steps. First, it builds
a surrogate probabilistic model of the latent objective function f(x) based on the
available data at each iteration and sequentially retrain the model as more data is
observed. Second, it proposes the next DBS setting to be evaluated by optimizing
a surrogate-dependent acquisition function. The acquisition function assesses the
utility and the informativeness of the candidate points for the next evaluation of
the objective measure (f(x)) by leveraging the uncertainty in the posterior to guide
exploration [83].

During the burn-in phase of Bayesian optimization, the objective function was
evaluated at predefined stimulation settings in a randomized order (at 40% and 80%
of maximum amplitude for each contact configuration). Then, a GPR prior based
on these initial evaluations of the burn-in phase was employed. Thereafter, a new
stimulation setting was sequentially selected by optimizing the acquisition function to
be evaluated at next iteration. At each iteration, we augmented the dataset, updated

the surrogate GPR prior, and optimized the updated surrogate-dependent acquisition
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function to suggest the next samples to be tested in the patient until convergence.
Our stopping criteria is explained in section 2.6. For the first round of experiments,
with amplitude limits determined by a clinician, we used the expected improvement
(EI) acquisition function [116] which automatically balanced exploration versus ex-
ploitation. The EI acquisition function calculates the expectation of improvement
over the current best observation with respect to the predictive distribution of the

surrogate model and is defined as in:

El(x) = Elmaz(fmin —m(x),0)] = (fmin —m(2))®(2) + o(2)d(2) (3.8)

,where ¢(.) and ®(.) are the standard normal density and distribution functions,

(frnin_m(x))

respectively. In equation (3.8), z = e

), m(z) is the predictive mean and
o(x) is the predictive standard deviation of a point x € D and f;, is the optimum
observed value. We implemented the EI acquisition function using the GPflowOpt
library [117].

The global optimization problem defined in equation (3.7) is straightforward to
solve using Bayesian optimization algorithm if the parameter space is fully defined.
To show the feasibility of Bayesian optimization as the core of the automated DBS
optimization framework during the first phase of the experiments, the maximum
amplitude for each contact configuration is defined at the beginning of the experiment
by the expert neurologist and will stay fixed during the experiment as shown in red
dashed boundaries in Figure 3.4. The minimum exploration boundary of stimulation
amplitude in the parameter space is set to 0.5V (that is the dashed horizontal red
line at 0.5V in Figure 3.4); meaning that the optimizer will not explore the effect of
DBS settings with amplitudes smaller than 0.5V .With more samples being collected

at each iteration, the underlying GPR model gets updated. At each iteration, the

updated GPR model is used to build the acquisition function and get the next DBS
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Figure 3.4: Example of patient-specific adaptive sampling of Bayesian optimization (patient
02). Each panel shows the mean surface of the GPR model that updates after each iteration.
The value of the combined objective measure is color-coded. The dashed dark red lines
demonstrate the clinician-defined maximum tolerable exploration boundaries. The black
circles show the previously collected samples and the green square show the sample being
tested at each iteration. The black circle outside the red dashed lines at (0,0) demonstrates
the baseline, where the patient’s IPG was inactive. The sample suggestions are automated
by the DBS optimization framework. Samples are more densely distributed around the more
promising regions of the parameter space (more tremor improvement with fewer side effects).
This adaptive behavior of the DBS optimization framework makes it patient-specific; that is
the samples are adaptively suggested based on the patient’s response at previous iterations.

setting suggestions to be evaluated at the next iteration. DBS settings are adaptively
sampled during the DBS optimization session based on patient’s response in a patient-
specific manner (Figure 3.4).

Since the objective function f(x) is unknown, our Bayesian optimization algorithm
does not assume convexity. As a result, if multiple optima are found, the setting with

the lowest amplitude was selected as the optimum automated setting to ensure lower

power is used when possible.

3.5.2 Safe Bayesian optimization

The DBS optimization problem is safety-critical, as there is a safety constraint for

each DBS setting. The safety constraints are defined by the side effects that patients
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may experience for each DBS setting. In the second phase of the experiments, instead
of using the clinician-defined safe exploration boundaries, we modified the problem
statement as a global optimization problem with safety constraint as in:

min f(z); such that g;(z) <3 for i=1,2,3,4, (3.9)

zeD

where g;(z) is the magnitude of patient-reported side effect for each DBS setting z
and ¢ is the contact configuration number. Since the safety boundaries for each con-
tact configuration are different, a separate GP model was trained for each contact
configuration based on the patient-reported side-effects. To solve the above con-
straint optimization problem, we used safe Bayesian optimization [118, 119] which
is an extension of regular Bayesian optimization. We used the GPflow [115] and
GPflowOpt [117] libraries for our implementation of the algorithm.

Safe Bayesian optimization combines a GP model of the safety constraints with
discretization of the parameter space to define a set of DBS parameters S,,, called the
safe set, with a high probability to satisfy the safety constraints [118]. The safe set
was defined by the upper bound of the safety GP models (g;(x)) and contained the
points where the GP upper bound was smaller than the safety threshold. Our param-
eter space for the DBS programming was discrete, with four contact configurations
and stimulation amplitudes with 0.2V increments. The safe Bayesian optimization
algorithm defined two sets of parameters within the safe set called potential mini-
mizers and expanders. The set M, C S, contains potential minimizers that is the
parameters that could potentially obtain the minimum within the current safe set.
The minimizers set (M,,) was defined by the mean and confidence interval of the
GPR model of the objective measure, f(x), and contained the subset of safe param-
eters in which the lower confidence bound of the GPR model was lower than the

upper confidence bound at the best measurement at each iteration. The expander
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set G, C S, is considered to be the points that if tested, their measurements would
lead to values in the lower confidence bound and hence potentially expand the safe
set [119]. In this paper, we directly used the confidence bounds of the GPR models
to define the aforementioned sets, which is mainly used in practice with limited prior
knowledge of the underlying objective and safety models (considers the Lipschitz con-
stant to be infinity). This modified version has been shown to be more aggressive
in expanding the safe set [119]. Hence, to further ensure safety, we considered the
maximum allowable amplitude expansions based on the maximum severity of the
patient-reported side effects for each contact configuration. The safe set would only
expand by the minimum of the safe set suggested by the safe Bayesian optimization
algorithm and the maximum allowable constant defined as follows. In general, the
lesser the reported side effect, the more the parameter space could expand. In other
words, the expanded space gets closer to the safety boundaries as the patient begins
to experience mild side effects by increasing the stimulation amplitude. Hence, the
expansion should be done with more caution. Another consideration in selection of
the constant was that patients were more likely to experience more severe side ef-
fects during the monopolar stimulation settings than advanced stimulation settings.
Therefore, the constant during the monopolar stimulation was selected to be smaller.
If the patient experienced no side effects for a particular contact configuration, then
the constant was set to 1V for monopolar stimulation and 1.5V for the advanced
stimulation settings, respectively; these amplitudes represent the maximum allowed
jump in the stimulation amplitude for each contact configuration. If the maximum
side effect severity level was mild, then the constant was set to 0.5V for monopo-
lar stimulation and 0V for advanced stimulation settings (zero because we aimed for
no side effects at optimal stimulation setting during advanced stimulation; during
monopolar stimulation mild side effects were tolerated during optimization as results

were informative for selection of advanced stimulation configurations). If the patient
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experienced moderate or severe side effects either during the monopolar or advanced
stimulation, the constant was 0V and the expansion of the stimulation amplitude was
stopped for the corresponding contact configuration.

Safe Bayesian optimization starts with evaluating a set of initial parameters that
is known to be safe, which defines the initial safe parameter space. Here, we started
with testing 1V for each of the four contact configurations as the initial safe set of
parameters (S,,). The initial evaluations were used to train GP models on the safety
constraints which were used to safely expand the parameter space at each iteration.
After the safe expansion of the parameter space, the next DBS settings to be tested
were suggested by optimizing the surrogate-dependent acquisition function at each
iteration. As mentioned above, we used GPR modeling technique to model the con-
straint /safety functions. A common assumption in training GPR models is that a GP
prior is zero-mean. However, this assumption did not apply to the DBS programming
problem since the side effect severity report was a monotonically increasing function
of stimulation amplitude. Hence, we fitted a second-degree polynomial function of
the collected samples and used that as the prior mean of the safety GP models. In
addition, in phase II of the experiments, we changed the acquisition function to min-
value entropy search [120] as it was more sample efficient and had a more exploratory
behavior that is required given the nature of Safe Bayesian optimization algorithm
with gradual expansion of the parameter space.

A visual representation of the sampling behavior and safe exploration boundary
expansion of the automated framework is presented for some sample iterations in
Figure 3.5 for patient 14. Each figure shows the mean surface of the GPR model that
gets updated as we collect more data at each iteration. Note that the safe boundaries
shown in dashed red line are updated after evaluating the suggested DBS setting at
each iteration.

In both phases of the experiments, we considered some modifications of the reg-
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Figure 3.5: Safe Bayesian optimization during phase II of the experiments (patient 14).
Selected iterations during monopolar stimulation. The mean surface of the GPR model and
safe stimulation exploration boundaries (dashed lines) update as more data are collected
at each iteration. The value of the combined objective measure is color-coded. The black
circles represent collected samples and the green square is the current sample being tested
at each iteration. The black circles outside the red dashed lines at (0,0) demonstrates the
baseline, where the patient’s IPG was inactive.

ular (safe) Bayesian optimization algorithm to account for the requirements of the
automated DBS programming in practice. First, we considered a discrete parame-
ter space including four contact configurations and stimulation amplitude with 0.2V,
The optimization of the acquisition function is performed by evaluating the acquisi-
tion function at every setting in the parameter space at each iteration and the next
best sample is selected using the selection of the best strategy. One challenge in
designing Bayesian optimization in discrete parameter spaces is the suggestion of re-
peated samples. In order to avoid suggesting repeated samples, we used a rank and
select strategy; that is if the best sample suggested by optimizing the acquisition

function is already sampled, the next best sample will be suggested.
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Advanced stimulation suggestion script E E

F1gure 3.6: High-level schematic of the decision-making process of the automated DBS
optimization framework. The darker gray area is the schematic of the advanced optimization
suggestion algorithm modelled after the clinical decision-making process.

3.6 Stopping criteria and advanced optimization

Our automated programming framework combined prior knowledge from standard
clinical DBS programming approaches with Bayesian optimization. Clinical DBS
programming is guided by clinical decision-making strategies to maximize stimulation
benefit and minimize side effects [121]. During clinical DBS programming sessions,
the clinician often performs a monopolar screening, where each of the four electrode
contacts are set as cathode and IPG case as anode. Clinicians evaluate the tremor
suppression benefits and side effects by incrementally increasing the amplitude for
each of the four monopolar contact configurations. If a monopolar configuration
leads to a satisfactory tremor suppression without side effects, this setting is chosen
for chronic stimulation. If not, contact configuration may be changed to one of
the advanced optimization settings (bipolar, double-monopolar, and double-bipolar)
based on patients’ responses to monopolar stimulation (Figure 3.6).

Similar to the standard clinical approaches, the proposed automated DBS pro-
gramming framework started with the monopolar screening with four different contact

configurations. The monopolar optimization was terminated either once the stopping
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criteria was satisfied or the predefined budget of maximum 30 iteration was exhausted
(to avoid patient fatigue). The stopping criterion was defined as no objective score
improvement of 0.3 or greater for five consecutive iterations. The threshold of 0.3
was defined by our expert movement disorder neurologist that reflected a clinically
meaningful score improvement.

After completing the monopolar stimulation trials, the advanced stimulation mod-
ule used the data that was collected during the monopolar stimulation to determine
if advanced stimulation was necessary, and which contact configurations should be
utilized (Figure 3.6). If there was at least one DBS setting with sufficient thera-
peutic effect and without any side effect (acceptable monopolar setting), then the
monopolar setting with the lowest average tremor score was selected as the optimized
setting. Otherwise, if there was sufficient therapeutic effect with the presence of side
effects, then bipolar stimulation was suggested. The sufficient therapeutic effect was
dependent on the baseline score. If the average baseline tremor score was less than
1, then sufficient therapeutic effect was defined as 50% improvement in watch tremor
score. Otherwise, having a watch tremor score of less than 1 for all of the tremor
assessment task was considered as having sufficient therapeutic effect. In cases where
there was no setting with sufficient therapeutic effect and no side effect for amplitudes
less than 4V, then double-monopolar stimulation was suggested. If there was no set-
ting with sufficient therapeutic effect and side effects at less than 4V were present,
double-bipolar stimulation was suggested. If no acceptable monopolar setting was
identified, the advanced stimulation suggestion script (darker gray area in Figure 3.6)
provided four advanced contact configurations based on clinical heuristics. Since the
number of possible advanced stimulation settings is high and due to the limitations
of the Medtronic research communication bridge, we could only test four contact con-
figurations at each round of automated DBS programming. We used the advanced

stimulation suggestion script to use the clinical heuristics and narrow down the num-
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ber of advanced settings to 4 best settings to be tested (as depicted in the blue box
in Figure 3.6). Testing new settings continued until either the stopping criteria was

satisfied, or the maximum number of iterations was reached.

3.7 Results

We recruited 15 patients (9 with tremor-dominant PD and 6 with ET) with the
average age of 709 years (range 57— 85) to undergo the automated DBS optimization.
All ET patients and one PD patient had leads implanted in ventral intermediate
nucleus of thalamus (VIM), while the remaining PD patients had leads implanted in
subthalamic nucleus (STN). The average time since DBS lead implantation was 5219
months (range 30 — 105 months). We evaluated the performance of the automated
DBS optimization framework in two phases. In the first phase, the software used
the clinician-defined maximum tolerable amplitudes for each contact configuration to
define the safe boundaries of the parameter space. The main goal of the first phase
of the experiments was to evaluate the performance of the automated framework in
finding the optimized settings using Bayesian optimization algorithm. Data from
10 patients (5 PD and 5 ET) were acquired for the first phase (table 3.1). We
further expanded the work and used safe Bayesian optimization to gradually expand
the parameter space and automatically discover a safe and tolerable parameter thus
avoiding severe side effects as reported by the patient. Seven patients (5 PD and 2
ET; 2 from phase 1) underwent the automated DBS optimization in the second phase

of experiments (table 3.2).

3.7.1 Quantifying tremor response to stimulation

The automated DBS optimization framework automatically quantifies and calculates

the target objective measure that includes tremor scores and side effects (Figure 3.1).
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Table 3.1: Clinical characteristics and automated programming experiment outcome during
the phase I of the Experiments using the clinician-defined maximum safe boundaries of the
parameter space.

Time since Time since | qy o op Tremor Tremor Score*
Patient | Age, | Dx DBS DBS surgery | Slection of | g o ox oy | Clinical DBS | Score® at| Automated | o/ ") o opoq | Number of Tested | oo
clinical setting . Setting Clinical | DBS Setting 5 DBS Settings
D Sex Target (months) Baseline N Setting Prefer-
(months) Setting e
- ; - C+3-, 35V, C13-, 23V, Monopolar = 15,
1 E? rD R STN 34 28 ! 90ps, 130H7 | | 90ps, 130H7 | | Advanced — NA | Same
T~ 23+, 4.6V, C11-, 19V, ;
; 4 5 S6
2 ;1‘ PD L STN 42 12 w 90ps, 160Hz | ° 90ps, 160Hz | * Advanced — NA | Same
) ) ) y - ) C+2-, 35V, G115, 07V, Monopolar = 15,
3 ‘\’i PD R STN 63 17 12 60ps. 16507 | ° 60ps, 1650z | | Advanced — NA | Automated
) : - N 3+, 24V, | . CF1-, 11V, Monopolar = 15, | o
4 iz ET LVIM ) 54 1 2 90ps, 130z | © 90ps, 1300z | | Advanced = NA | Clinical
; - 911+, 2.5V, CF10-, 2.3V, Monopolar = 14,
0 z? BT R VIM o4 1 22 60ps, 100Hz | ! 60ps, 100Hz | © Advanced — NA | Automated
) ) - . ; 3+, 25V, |, 21,35V, | . Monopolar — 15, —
6 z([’ BT L VIM 37 n 9 90ps, 170Hz | ° 90ps, 170Hz | ° Advanced — 14 | S4me
B ) 1-2-0+, 1.6V, 115, 11V, Monopolar = 15, —
7 ‘\I ET LV s ! 18 Gops, 170Hz | © Gops, 1708z | 10 Advanced = No | Clinical
. - . 2-3+, 3.6V, j 2-14, 4V, Monopolar = 15, .
8 oo LVIM - 63 ! 19 90ps, 160Hz | 90ps, 1600z | 4 Advanced = 15 | S8m¢
) 0-1-27, 4V, 0+, 3.7V, Monopolar = 15, .
> 7 5 5 5 “linice
9 E‘I’ PD R STN 70 ° 2 60ps, 140Hz | ° G0ps, 140Hz | | Advanced = 15 Clinical
- o 0.3+, 47V, 21+, 47V, Monopolar — 15,
5 45 24 ’ 5 5 a
10 i" PD R STN 42 1 2 90pis, 130Hz | ° 90ps, 130Hz | ° Advanced = 15 Same

* Clinician administered FTM tremor scale subset including rest, postural (extended and flexed),
and action arm tremor contralateral to optimized DBS lead, handwriting (if dominant hand
tested), and drawings (max score 28-32).

Table 3.2: Clinical characteristics and automated programming experiment outcome phase
IT with automated discovery of the safe parameter space using safe Bayesian optimization
algorithm.

Time since Time since Tremor Tremor Tremor Score*
Patient Age, | Dx DBS DBS surgery .Se}ecmm ?f Score* at Clln]ca! DBS Sco.re. at Aummat?d at Automated Number of "I‘ested Patient
clinical setting . Setting Clinical | DBS Setting . DBS Settings
Sex Target (months) Baseline 8 Setting Prefer-
(months) Setting
ence
] . . : 0+1-3+, 5.2V, | 32+, 48V, | . Monopolar = 13,
1 6F7’ ET RVIM 108 2 16 oops, 150M | 4 90ps, 150z | ° Advanced = 13 | Automated
- ) 03+, 47V, |- 23+, 48V, Monopolar = 17, | o
10 i{ Pb RSTN | 45 3 2 90ps, 130Hz | © 90ps, 1308 | O Advanced = 13| S¥m¢
i . 0-1-31, 4.9V, CHO-1-, 22V, Monopolar = 28,
P] 4 p
2 2? rD L 5TN 19 2 2 90ps, 180Hz | © 60ps, 180Hz | © Advanced = 19 Same
. , ) 23+, 3.7V, 21+, 3.8V, Monopolar = 13, .
5 - ; ; ) 9 9 inics
° ‘\f ET LVIM 58 4 6 120ps, 190Hz | ° 120ps, 190Hz | © Advanced — 13 | Clinical
. , } A : 12+, 4.4mA, 31+, 4V, Monopolar = 21,
| . .
13 ‘\’i rD RSIN 49 6 % 90ps, 130Hz | 2 90ps, 130Hz | ° Advanced = 15 | Automated
. ) ; 0-2+, 28V, 0-2+, 3.6V, Monopolar = 15,
y 5 33 2 : ) ate
14 fl‘ PD LVIM) 33 32 90ps, 1308 | M 90ps, 1308y | | Advanced — 14 | Automated
o - C+3, 26V, Ct2-, 1.6V, Monopolar = 17,
15 E? rD L 5TN 63 3 15 60ps, 150H7 | 1 G0ps, 150Hz | ° Advanced — NA | Same

* Clinician administered FTM tremor scale subset including rest, postural (extended and flexed),
and action arm tremor contralateral to optimized DBS lead, handwriting (if dominant hand
tested), and drawings (max score 28-32).
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Figure 3.7: Additional validation of tremor score classifier [14]. Blue dots represent the
average watch tremor scores plotted against the average clinician tremor score for selected
tremor assessment tasks (rest, arms extended, arms flexed, finger-to-nose motion). Each
dot represents one DBS setting that was tested during the experiments. The black solid
line and the grey shaded area show the mean and standard deviation of the watch tremor
scores. The red solid line is the line y = x and the r-squared value of the fit to the y = =
line is 0.69.

We confirmed that the tremor classifier [14] performed well in this cohort of patients
and its estimated tremor scores matched well with clinician scores (r? = 0.69; Fig-
ure 3.7). The clinician tremor score includes only tremor assessment tasks during
the automated programming sessions and was used to further validate watch tremor
classifier. The clinician administered FTM tremor scale is a more comprehensive
examination consisting of a subset of FTM scale items used to evaluate tremor sever-

ity before and after automated programming session. Only the automated classifier

tremor scores were used as the input into the optimization algorithm.

3.7.2 Comparison of the clinical settings and the automated
settings

There was a statistically significant improvement in tremor scores from baseline (no
stimulation) to the best automated setting, using both the objective watch scores

and blinded clinician scores during both phases of the experiment (Figure 3.8) (the
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clinician tremor score is the score for selected tremor assessment tasks during the
experiment where the clinician was blinded to the DBS settings). The patients also
underwent a comprehensive tremor assessment exam at baseline (no stimulation), best
automated setting, and their chronic clinical settings (tables 3.1 & 3.2 and Figure 3.9).
We demonstrate that best automated setting and clinical setting significantly reduce
the tremor to the same extent (in other words, residual tremor at automated setting
was comparable to tremor at clinical setting) (Figure 3.9).

In phase I experiments with the clinician-defined safe and tolerable exploration
boundaries, two patients preferred the automated setting, five had no preference,
and three preferred their clinical settings. In phase II experiments with automated
discovery of the safe exploration boundaries, three patients preferred the automated

setting, three had no preference, and one preferred the clinical setting.

3.7.3 Speed of convergence of the automated DBS program-
ming system

We hypothesized that our Bayesian DBS programming framework would improve
sample efficiency compared to the grid search-based method in terms of the number
of stimulation settings had to be tested to arrive at the optimal solution (not in terms
of the required time). The grid-search approach closely resembled clinical monopolar
mapping (testing all contacts and amplitudes, 0—5V, in 1V increments). We could not
compare the current algorithm directly against clinical monopolar mapping in terms
of time since these patients had already been clinically optimized. In order to provide
a fair comparison between the two approaches, we only considered the number of
required samples during the monopolar programming. Grid search algorithm tested
in a prior study (in a different cohort of patients) required 25.2+4.8 samples on
average [14], while Bayesian automated programming in this study used 15.14+0.7
(phase I), and 17.7+4.9 samples (phase II).
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Figure 3.8: Clinical efficacy of automated DBS programming. Comparison of the pa-
tients’ tremor severity scores at baseline stimulation off condition and the optimal au-
tomated setting measured by the watch (left column) and the optimal automated set-
ting scored by a blinded clinician (right column). Top row refers to phase I (clinician-
defined safe amplitudes), and bottom row to phase II (safe Bayesian optimization algo-
rithm) experiments. The asterisk shows the conditions with statistically significant differ-
ence (xp < 0.05,% % p < 0.01, % % *p < 0.001). The tremor score is the sum of two tremor
assessment tasks utilized during the automated DBS optimization session (max 8).
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Figure 3.9: Clinical efficacy of automated DBS programming compared to clinical setting.
Comparison of the patients’ tremor severity scores at baseline (no stimulation), the best
automated setting, and previously established best clinical setting during phase I (a) and
phase IT (b) based on the clinician scores during the comprehensive clinical exam. The com-
prehensive exam included the following items from FTM tremor scale: rest, arms extended,
arms flexed, and finger-to-nose motion arm tremor contralateral to DBS lead, handwriting
(if dominant hand tested), two spiral drawings, and line drawing. Both the patient and
clinician were aware of the stimulation condition. The asterisk shows the conditions with
statistically significant difference (xp < 0.05,* % p < 0.01, % * xp < 0.001).
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3.8 Discussion

In this pilot study, we describe and evaluate an automated and patient-specific DBS
programming framework for tremor treatment in 15 patients with PD or ET. A fully
automated system with the Nexus-D communication bridge was developed that auto-
matically activates the patients’ IPG with the optimizer recommended DBS settings.
We showed that DBS programming framework using Bayesian optimization was able
to find DBS settings that were comparable in efficacy to clinical settings (previously
determined by expert clinician programmers). Bayesian optimization was more effi-
cient than previously tested grid-search method. We also describe how to use safe
Bayesian optimization to automatically find safe stimulation boundaries. Finally, by
incorporating the information from monopolar stimulation and clinical heuristics, we
were able to add advanced DBS contact configurations (bipolar, double monopolar)
that some patients require for optimal therapy into the automated DBS programming
workflow and perform further optimization using four advanced DBS contact configu-
rations. These developments may reduce the need for an expert clinician programmer
to be present at the DBS programming session to perform DBS device control, symp-
tom and side effect assessment, DBS programming decision making, and defining the
safe and tolerable amplitudes for each contact configuration.

A physician can manually explore any number of settings; they are limited by
the time available for a clinical visit and the patient’s ability to actively participate.
The purpose of the algorithm was to test only the settings most likely to yield the
optimal solution. Because of the type of DBS device that the patients were implanted,
the algorithm was limited to amplitude changes in 4 contact configurations during
each optimization, so we tested 4 configurations during monopolar stimulation, and
additional 4 during advanced stimulation if monopolar did not yield the optimal
setting. Future DBS devices may provide more flexible interfaces for automated

stimulation adjustments allowing wider parameter exploration.
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Bayesian optimization has unique properties that make it a suitable choice to
be employed at the core of an automated DBS optimization framework. Bayesian
optimization is a sample-efficient and global optimization algorithm that is suitable
for cases where the objective function is unknown or expensive to evaluate (the pa-
tients’ response to DBS settings are unknown prior to testing and evaluating patients’
responses to DBS settings is expensive from optimization standpoint as prolonged ses-
sions are fatiguing which may compromise the accuracy with which tremor is assessed
during testing). We confirmed our hypothesis that Bayesian optimization was more
sample-efficient than the state-of-the-art grid-search sampling strategy introduced
in [14] which closely resembled clinical monopolar mapping and directly compared
the results in terms of the number of required samples to be tested to arrive at the
optimal solution. Other recent studies investigated the utility of developing an ob-
jective measure for the automated selection of DBS parameters [122] and introduced
a computer-guided DBS programming framework that is designed based on the clin-
ical DBS programming strategies for the monopolar survey [123] using a grid-search
approach resembling the standard clinical approaches. Their sampling strategy was a
grid-search approach with 0.5V and 0.3V amplitude increments, respectively, leading
to an even larger number of required samples to be tested compared to the grid-search
approach with 1V increment introduced in [14]. Two recent clinical papers compared
their proprietary algorithms with the standard of care (SoC) DBS programming in
terms of the number of steps (stimulation settings) required to be tested to arrive at
an optimal solution [99, 100]. The SoC was designed to be similar to the grid-search
based approach. However, we could not conduct a direct and fair comparison with
approaches used in [99, 100] since their parameter space was different (8 monopolar
contact configurations and stimulation current (mA)). Due to very different work-
flows in SoC and the proposed closed-loop algorithm, the authors did not perform

significance testing between the two programming modalities for time consumption.
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Here, I could not compare the current algorithm directly against clinical monopolar
mapping in terms of time since these patients had already been clinically optimized.
Another recent work [124] used Bayesian optimization to develop a semi-automated
approach for optimizing DBS parameters and provided preliminary data that shows
the efficacy of Bayesian optimization in DBS programming. Here, we presented and
evaluated the utility of Bayesian optimization in a fully automated DBS programming
framework for tremor in a cohort of 15 PD and ET patients.

I further showed that employing safe Bayesian optimization algorithm enables un-
supervised determination of safe stimulation parameters. Safe Bayesian optimization
is less sample efficient in nature than the regular Bayesian optimization as it grad-
ually expands the parameter space. To improve the sample efficiency, 1 used ideas
from [119] to balance the tradeoff between exploring, expanding, and optimizing in
addition to using a more efficient acquisition function (min-value entropy search). I
showed that although safe Bayesian optimization in phase II experiments required
more samples to converge than the regular Bayesian optimization in phase I, it is still
more sample-efficient than the grid-search approach.

Incorporating clinical heuristic into the optimization pipeline allowed us to effi-
ciently explore advanced contact configurations (bipolar, double monopolar). The
number of possible contact configurations beyond simple monopolar is very large and
I could only test a relatively small number given that patients fatigue after prolonged
and repetitive testing. As a result, I used information obtained from monopolar
stimulation to determine which contact configurations should be tested during ad-
vanced stimulation using clinical guidelines programmed into the programming plat-
form rather than allowing the optimizer to make this decision. Integrating other
algorithms that are more efficient for high-dimensional parameter spaces or other
methods such as image-guided programming [124] to more efficiently reduce the di-

mensionality of the parameter space before performing the DBS optimization is a
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promising approach for future applications.

Our DBS programming framework relied on automated tremor detection using a
wrist-worn sensor which has challenges [125], but we demonstrate that some of the
issues can be overcome through GPR modeling. Tremor assessment tasks need to
be synchronized with IMU recordings during the assigned tasks so patients need to
be instructed to start and stop at appropriate times. Furthermore, artifact and vol-
untary movements unrelated to assigned tasks are often included in raw IMU data
which affects the prediction of watch tremor scores, while an expert clinician pro-
grammer could detect those unrelated movements and ignore them while making
judgment about the tremor severity scores. In this study, we monitored the patients
and gave instructions to minimize the unrelated movements (including repeating a
task if performed incorrectly), however variability in task performance (e.g. speed
of movement) particularly during kinetic tremor assessment led to score predictions
that were at times inconsistent with clinical scoring. Another challenge with auto-
mated tremor detection is that tremor severity can change depending on patient’s
internal state; for example, there can be less tremor when relaxed, and more tremor
when nervous or talking, regardless of DBS settings. For example, tremor intensity
during the optimization session varied significantly in patients 03 and 09 regardless of
applied stimulation. A clinician can easily incorporate this information into clinical
decision-making however an external sensor is agnostic to patient’s internal state. To
compensate for imperfections with tremor scoring, we employed the GPR model as
the surrogate model of Bayesian optimization which is robust to noise of observations.
Our results confirmed that the automated DBS programming method could identify
effective DBS settings even in the presence of the measurement and prediction (i.e.
classifier) noise. GPR model takes the uncertainty of observations into account and
the model can be trained in a patient-specific manner which makes it suitable for the

DBS optimization application.
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The GPR modeling could be integrated in clinical decision-making process as a
visualization technique that provides insight into the patient’s response to DBS even
without utilizing the fully automated platform. This would be particularly useful
when addressing symptoms other than tremor which are even harder to quantify using
sensors (e.g. bradykinesia or rigidity in PD). This visualization technique could pro-
vide insight into the spatial information (location of the active contacts) for clinicians
that may not be straightforward to capture using the traditional clinical programming
approaches. There have been attempts to improve visualization of DBS programming
outcomes for clinicians especially with more complex segmented electrodes (e.g. [126]).
We propose that GPR models could be used to not only track clinical responses but
also provide suggestions for the clinicians for further DBS parameter exploration.

The success of the optimization algorithm will also depend on the choice of tremor
assessment tests which are performed at each stimulation setting. In this study, we
used two out of four available tremor tests (rest, postural extended, postural flexed,
and kinetic) that were integrated into the automated programming software system,
based on patient’s clinical presentation. Although the limited set of tremor assessment
tests was sufficient to evaluate DBS response in majority of patients, some patients
may require other types of tests including spiral and line drawing or handwriting tests
to effectively find an optimal DBS setting. For example, Patients 04 and 07 had worse
tremor control on automated setting than on clinical setting, likely because they had
more tremor on handwriting and spiral drawing tasks, which were not tested during
automated programming session.

The automated system relied on patient reports of side effect severity as part of
the combined objective measure for Bayesian optimization. Although this approach
has been effective in avoiding parameters that lead to side effects in our study, this
is a potential limitation since some patients find it difficult to give a score to the side

effects that they experience. Developing automated side effect detection techniques
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could be possible for certain types of side effects (e.g. muscle contractions measured
by electromyography or stimulation outside DBS target volume estimated by compu-
tational DBS activation models [124]), and could further streamline implementation
of automated programming.

The objective measure defined in this study is based on aggregation of two terms
including the baseline subtracted tremor score and patient-reported side effect severity
score. This works since the two aggregated terms are in a comparable range. If
another out of range term needs to be added to the objective measure, methods like
adding a multiplier should be used to map the new term to the same range. Moreover,
the work in this study can be extended to multi-objective optimization to incorporate
more advanced objective measures of the clinical outcomes.

Finally, the proposed automated DBS programming framework could be benefi-
cial for remote DBS programming for patients with limited access to the clinic. For
example, a smartwatch could be mailed to the patient prior to a remote program-
ming session or patient’s own phone could provide accelerometer signal to quantify
tremor. The optimization algorithm could be implemented as a standalone system
providing guidance to the remote programmer, or even incorporated into the remote

programming software.

3.9 Conclusion

This study developed and tested automated and patient-specific closed-loop DBS
programming framework based on Bayesian optimization. This approach was more
efficient than grid search method employed in clinical practice, and it yielded com-
parable clinical outcomes for tremor reduction as traditional clinical programming.
Using such system would eliminate the need for an expert clinician programmer to

be present at the DBS programming sessions. This would be particularly valuable for
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patients without easy access to DBS center such as those living in remote geographical
locations or patients receiving care via telemedicine. Automated DBS programming
methodologies will be of increasing importance as next generation DBS systems ex-
pand the number of possible parameters for delivering precise, optimized therapy to

patients.
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Chapter 4

Reinforcement learning for
closed-loop regulation of
cardiovascular system with

selective vagus nerve stimulation

4.1 Introduction

Cardiovascular diseases (CVDs) pose a significant health hazard and financial strain [127].
The primary cause of death attributed to CVDs in the US is coronary heart dis-
ease, followed by stroke, high blood pressure, heart failure, diseases of the arteries,
and other CVDs, as per the annual statistical report by the American Heart Asso-
ciation [128]. The insufficient effectiveness of existing pharmaceutical therapies in
treating cardiovascular diseases has motivated research into alternative therapeutic
options. Vagus nerve stimulation (VNS) has been identified as a potential treatment
for various cardiac conditions, including heart failure, hypertension, atrial fibrillation,

and stroke [129, 130].
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VNS refers to delivering electrical stimulation to the vagus nerve through a pulse
generator and is characterized by various stimulation parameters that include current
amplitude (mA), pulse width (mp), and pulse frequency (Hz). One major challenge
in delivering effective VNS therapy is determining optimal VNS parameters that can
produce the desired physiological response. Currently, the optimal VNS parameters
are determined through an open-loop trial-and-error approach as was used in three
recent clinical papers that studied the effectiveness of VNS in the treatment of heart
failure [131, 132, 133]. Authors in [129, 134] provided a review of available evidence
regarding the effectiveness of VNS for preventing heart failure and emphasized the
lack of systematic approaches for optimizing the VNS parameters. Hence, there is
a need to develop systematic approaches aimed at optimizing VNS parameters to
maximize the therapeutic effects.

Closed-loop VNS strategies offer the advantage of systematically tuning the stim-
ulation parameters. Previous studies used classical control theory approaches to inves-
tigate the utility of developing closed-loop VNS. Authors in [18] utilized a proportional-
integral (PI) controller [135] for real-time regulation of instantaneous heart rate
through closed-loop VNS. There have been other investigations exploring the use
of proportional-integral controller designs for heart-rate regulations [19, 136, 20].
In addition, the utilization of state-space transition models was examined by [137]
for the development of closed-loop VNS systems. While these classical control ap-
proaches have demonstrated their effectiveness in recent studies, they have inher-
ent drawbacks that make them impractical for real-world physiological applications.
For instance, PI controllers have limited controllability making them less effective in
transient responses. Tuning complexity, high sensitivity to model parameters, and
sub-optimal performance in non-linear systems are among other disadvantages of PI
controllers [22, 23]. While model predictive control (MPC) has been shown to address

some of the challenges of classical control algorithms, it still requires extensive tuning
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of parameters such as the prediction horizon and control weights to achieve optimal
performance [138]. Moreover, MPC requires having access to an accurate model of
the system, where inaccuracies in the model predictions can affect the controller’s
performance [138]. In practice, it can be challenging to obtain an accurate model of
a complex system, and uncertainties can lead to sub-optimal control. There is a need
to design novel closed-loop VNS techniques to address these limitations.

Developing and prototyping novel closed-loop VNS strategies requires utilizing
in-silico simulation environments for evaluating the performance of these closed-loop
systems before integrating in in-vivo experimental setups. Computational models of
cardiac system under the effect of VNS play a crucial role in developing simulation
environment to effectively design closed-loop VNS control strategies. However, the
lack of the necessary variables to account for the physiological effect of VNS in most
of the existing computational models makes it challenging to adopt these models for
applications of closed-loop VNS. Previous research predominantly concentrated on the
optimization of VNS parameters for a sole physiological signal (i.e. heart rate (HR))
and for only one VNS stimulation location [136, 20, 19]. A recent study conducted
an in silico study to develop a rat cardiac model subjected to VNS in multiple VNS
locations and implemented a MPC framework for regulating multiple physiological
signals, i.e., HR and mean arterial pressure (MAP) [94].

While developing computational models of the cardiac system under VNS guides
the design of novel closed-loop VNS strategies, the selection of correct underlying dy-
namics, parameter tuning, and difficulty of evaluation of such models caused by the
variability of fiber recruitment in the vagus nerve makes it a challenging task. Further-
more, the computational cost of simulating full-scale in silico physiological models for
real-time closed-loop control systems adds to the challenges. To address the challenges
of developing a computational cardiac model, a recent study [81] employed a data-

driven modeling approach using long short-term memory (LSTM) neural networks.
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Authors in [81]demonstrated the utility of an LSTM model by generating synthetic
data from the computational cardiac model introduced in [94] and developed an MPC
controller to regulate HR and MAP. However, this approach still requires access to a
substantial amount of experimental data across sufficiently covering the stimulation
parameters space to accurately model the effect of VNS parameters on HR and MAP,
which is not practical due to the limitations in experimental data collection.

Some data-driven optimization strategies like Bayesian optimization [83] eliminate
the need of having access to underlying equations of the system to develop automated
closed-loop neuromodulation systems. Authors in [84] adopted Bayesian optimization
in the context of optimal experimental design with closed-loop real-time functional
magnetic resonance imaging (fMRI). Bayesian optimization has been successfully uti-
lized for seizure control [85], optimizing the DBS parameters using fMRI data [87] and
for minimizing rigidity [88] for PD patients. Authors in [98] and [60] used Bayesian
optimization and safe Bayesian optimization to develop an automated DBS program-
ming framework with safety constraints for tremor suppression in PD and essential
tremor patients. Bayesian adaptive dual control was introduced to reduce the beta
power in a computational model of PD [90]. These data-driven optimization strategies
have been successfully implemented in various applications of closed-loop neuromod-
ulation systems. However, they share a common underlying assumption regarding
the objective function’s stationarity, implying that its behavior remains relatively
constant within the region of interest. This assumption is essential for the acquisition
function to effectively estimate regions of high uncertainty and is not applicable to
dynamic systems like the cardiovascular system.

In order to overcome the aforementioned challenges while still achieving effective
closed-loop VNS control, this paper presented a novel interactive Al framework using
RL which provides an automated data-driven approach to design closed-loop VNS

control policies with minimal assumptions and without the need for prior knowledge
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about the underlying physiological dynamics of the cardiovascular system. In ad-
dition, our approach enables continuous learning, where the system can learn from
its experiences and continuously improve its performance which makes it suitable for
developing long-term adaptive and patient-specific therapies.

By integrating the recent advancements in developing biophysics based models of
the rat cardiovascular system under multi-location VNS [42], multiple simulation envi-
ronments were developed with a standard application programming interface (API) to
design, prototype, and evaluate the performance of the proposed data-driven closed-
loop neuromodulation framework. The standard API is called Gymnasium (previ-
ously known as OpenAl Gym) [139] and is developed in Python. The original im-
plementation of the biophysical models was in MATLAB, which proved prohibitively
computationally expensive. To reduce the computational cost, a data-driven sur-
rogate of biophysics based computational models of the rat cardiovascular system
using temporal convolutional neural networks (TCN) [140] in Python. Since we are
modeling time-series data, integrating TCNs are useful as they can capture temporal
dependencies effectively. In addition, TCNs introduce several advantages over the
canonical Recurrent Neural Networks (RNN), such as longer memory retention and
ability to exploit parallelism which makes it more computationally efficient and suit-
able for this applications. This approach aims to reduce computational complexity
and provide a unified programming environment in Python.

In this research, I tested the hypothesis that the proposed closed-loop VNS pro-
gramming framework effectively learns the neuromodulation control task. Multiple
simulation environments of healthy and hypertensive rat cardiovascular system in
rest and exercise states were developed and designed a set point tracking task to
regulate HR and MAP. Two approaches of experimental design were introduced to
perform the set point tracking of HR and MAP in cardiovascular system. First, a

general policy was designed to regulate the cardiovascular system (HR and MAP)
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Figure 4.1: Overview of the architecture of the simulation environments for developing
closed-loop VNS system demonstrating the interactions of the RL agent with the rat cardiac
model using the standard API. The left block represents the reduced-order surrogates of
the physiological cardiac models wrapped with the standard Gymnasium API, where the
inputs of the model (color-coded as dark blue) are stimulation frequency and stimulation
amplitude across three different locations at time t (A;). The outputs of the model (color-
coded as green) are the response of HR and MAP to the VNS parameters. The model
estimates the response of the cardiac system (HR;y1, M AP;+1) to the action A; taken at
time step t given the current state of the system (HR;, M AP;). The right block represents
the reinforcement learning agent, which takes action A; according to its policy at time step
t, and observes the next state Siy1, and Reward Ryy;.

using deep RL algorithms, i.e., soft actor-critic (SAC) [82] and proximal policy op-
timization (PPO) [141]. Additionally, since sample efficiency is critical in the design
of closed-loop neuromodulation systems, I designed a sample-efficient adaptive policy
using a model-based RL algorithm known as probabilistic inference for learning and
control (PILCO) [142], which represents a sample-efficient approach to policy search.
Furthermore, I examined the adaptability of the proposed frameworks to variations
in both the target set-point and the underlying dynamics of the environment. Fi-
nally, transfer learning [143] was employed to improve sample efficiency for deep RL

algorithms.
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Figure 4.2: The pipline used for developing the simulation environments using the Gymna-
sium API to test and prototype RL algorithms for regulating the cardiovascular system. (a)
Used the physiological models of rat cardiac system under multi- location VNS implemented
in MATLAB, (b) generated a simulated data set of the response of the cardiac system by
varying randomly selecetd VNS parameters, (c) trained the reduced-order TCN model to
model the response of HR and MAP to VNS parameters, and (d) used the Gymnasium
standard API wrapper over the trained TCN models for easier compatibility with RL algo-
rithms.

4.2 Simulation environments

Multiple simulation environments were developed for evaluating the performance of
RL algorithms in developing closed-loop VNS systems. The high-level overview of the
proposed closed-loop VNS system is depicted in Figure 4.1. The pipeline of developing
the simulation environments with the standard Gymnasium API is presented in Figure

4.2. Detailed description of each component is provided in the following subsections.

4.2.1 Standard API for rat cardiac model

The simulation environments of the rat cardiac model under multi-location VNS were
developed using a standard API called Gymnasium for testing and prototyping RL
algorithm for regulating the cardiovascular system. Gymnasium (previously known
as OpenATl Gym [139]) is a standard environment for developing and testing learning
agents, especially reinforcement learning agents. Gymnasium API is adopted for
implementing the in-silico rat cardiac model to provide a standard interface for the
users and provide the flexibility of designing their own control task with their learning
agents of choice (Figure 4.2d). The details of the in-silico physiological rat cardiac

model are described in section 4.2.2.
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4.2.2 In-silico rat cardiac model

In this study, a previously published physiological model of the integrated cardiovas-
cular system and baroreflex regulation under multi-location vagal nerve stimulation
was integrated [82]. The model was composed of three different parts including the
cardiovascular system, the baroreflex system, and the VNS device. The cardiovascu-
lar model uses a lumped-parameter approach to predict the blood circulation in five
elastic chambers representing the left heart, the arteries and veins in the upper and
lower body. The right heart and the pulmonary circulation are modelled by capaci-
tance, which is added to the venous capacitance in the upper body. The baroreflex
system functions to regulate the arterial pressure through the baroreceptor, afferent
pathway, efferent pathway and the effectors in cardiovascular system. Each of the
compartments in the baroreflex system was modelled using a firing-rate- based ap-
proach. The VNS device model predicts the response of firing rate of different fibers
to VNS parameters [144]. Three fiber types are engaged during VNS, representing
the baroreceptive fibers, the vagal fibers, and the sympathetic fibers. Each type of
fibers distributes nonhomogeneously in different locations. Activation of each fibre
type in each stimulation location due to stimulation amplitude is modelled by an ac-
tivation function, while the change of fibre activities due to stimulation frequency is
represented by a conduction map. The overall physiological model of the rat cardiac
system models the effect of VNS parameters (stimulation amplitude and frequency)
in three different locations (leading to six total VNS parameters) on two physiological
variables (HR (BPM) and MAP (mmHg)). The short-term effect of VNS parameters
on the output of HR and MAP was calculated through the interactions between the
cardiac systems and the neural regulation system. More details on the physiological
model is provided in [82].

A modification of the described physiological model is used in this study to simu-

late the physiological model in four different conditions adding the effect of hyperten-
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sion and physical exercise (healthy and hypertensive rat cardiac models in rest and
exercise states) by changing the related internal states and parameters [42]. I refer to
the four models as healthy cardiac environment (HC Env), healthy cardiac environ-
ment with the effect of exercise (HCE Env), hypertension cardiac environment (HTC
Env), and hypertension cardiac environment with the effect of exercise (HTCE Env).
Hypertension is related to increased arterial stiffness, vascular remodelling, increased
sympathetic activities and decreased vagal activities. An offset in sympathetic and
vagal activity coupled with modifications on the gain of each effector are used to
represent the hypertensive condition. An acute exercise triggers multiple physiologi-
cal responses, including redistribution of blood flow and modification of sympathetic
and vagal activities by central command. An additional offset caused by exercise on
sympathetic and vagal pathway, as well as the separation of the peripheral resistance
into resting muscle resistance and active muscle resistance are used to represent the
exercise condition. The new steady state during exercise consists of a higher arterial
pressure, heart rate, stoke volume and cardiac output compared with rest state in

both healthy and hypertensive condition.

4.2.3 Reduced order model of the physiological rat cardiac

model using temporal convolutional neural networks

The physiological model of the rat cardiac system described in the previous sec-
tion originally was implemented in MATLAB using the dde23 solver [145] which is
computationally expensive. In addition, since the standard API for RL algorithms
(Gymnasium) as well as most of the common RL algorithm libraries are developed
in Python, data-driven reduced-order models of the physiological models were devel-
oped using temporal convolutional neural networks (TCN)[140] to not only reduce the
computational complexity, but also to provide a unified programming environment in

Python.
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The four physiological models were used to generate a dataset by varying the
VNS parameters (stimulation amplitude and frequency) across the three VNS loca-
tions (leading to a six-dimensional parameter space) and measuring the effect of VNS
parameters on HR and MAP (Figure 4.2.a, 4.2.b). The range of VNS parameters in
generating the synthetic data was 0 — 50H z for stimulation frequency and 0 — 1mA
for stimulation amplitude. The response of HR and MAP to randomly selected VNS
stimulation parameters was collected in 2000 runs. Each run consisted of 30 cardiac
cycles to generate the dataset. The data was divided into training and test sets with
an 80% — 20% split. The training set was then used to train a reduced-order model
using TCN (Figure 4.2.c). A TCN model with an input layer of width 8 and output
layer of width 2, and three hidden layers of width 16 with the dilation factors of 1,
2, 4 was used. The standard API of Gymnasium (the maintained fork of OpenAl’s
Gym library) was used to communicate between RL algorithms and the environments.
The pipeline of developing the simulation prototyping of RL agents for regulating the

cardiovascular function is depicted in Figure 4.2.

4.3 Experimental design

4.3.1 Regulating cardiovascular system using RL through de-

signing a set point tracking Task

Designing neuromodulation control systems depend on multiple factors including the
computational and sample efficiency within the constraints of the problem, having
access to related data sets or the equations of the underlying dynamics of the system,
etc. Here, the underlying dynamics of the environment are assumed to be unknown
and I hypothesized that utilizing RL eliminates this requirement while effectively
learning to perform a set point tracking task for regulating HR and MAP values.

The subsequent subsections outline the simulation design employed to optimize
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the VNS parameters to regulate HR and MAP values during a set point tracking
task. Specifically, two experimental design approaches were considered to elaborate
the advantages and disadvantages of each method and provide guidance on future
experimental design selection. Both experimental design approaches were used to
perform the same set-point tracking task, where the set-point was a two-dimensional
vector of desired HR and MAP values, and the agents were trained to apply proper
stimulation parameters according to their policies with the goal of reaching the desired
set points. The RL algorithm’s reward function was defined to perform the set point

tracking task as described in section 4.4.4.

4.3.2 Designing a general policy using deep RL algorithms

The first experimental design approach was to design a general policy to perform the
set-point tracking task, where the agent learned the general policy during the training
mode and the trained policy was used in the inference mode to perform the set-point
tracking task. The overview of designing a general policy is depicted in Figure 4.3.
The term general is used to denote that the trained policy was designed to perform
the set-point tracking task for all of the potential set-points within the possible range
of HR and MAP values (Table 4.1) rather than learning to follow a single set-point
at a time. Here, PPO and SAC algorithms as described in sections 4.4.1 and 4.4.2
were used to train a general policy. In both algorithms, the policy architecture was a
fully connected feed-forward neural network also known as a multi-layer perceptron
(MLP) [146]. The input of the policy network is extended to account for learning
multiple set points at the same time (general policy) by feeding the desired set points
HRyorger and M AP, q4e; as additional inputs to the policy network besides the current
state of the environments H R, and M AP, as depicted in Figure 4.3. During training,
a randomly selected set point was assigned within the possible range of HR and MAP

values (Table 1) for each of the four models in each episode with an episode length
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Table 4.1: Table 1. Sampling range of HR and MAP values ([minimum, maximum]|) for the
four cardiac environments.

HC Env HCE Env HTC Env HTCE Env
HR (BPM) [234.4, 414.7] | [309.6, 578.6] | [245.8, 428.9] | [290.36, 578.1]
MAP (mmHg) [71.9, 173.6] | [117.4, 158.1] | [86.6, 194.8] [117.3, 178.3]
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Figure 4.3: The overview of designing a general policy. The left panel represent the struc-
ture of the simulation environment with the standard Gymnasium API during the training
mode. The right panel depicts the simulation environment in the inference mode. The pol-
icy network of the RL agents was designed as a simple MLP model, where HR; and M AP,
are the current states of the environment. The input of the policy network was extended
by adding H Riqrgetand M APiqrger (target set-points) to design a general policy. The envi-
ronment is the reduced-order surrogate of the physiological cardiac models wrapped with
the standard Gymnasium API, where the input of the model (color-coded as dark blue)
are stimulation frequency and stimulation amplitude across three different locations at time
t(A¢). The output of the model (color-coded as green) are the response of HR and MAP to
the VNS parameters.

of 500. After training the RL agents, the policy network was used in the inference

mode to perform the control task (right panel in Figure 4.3).

4.3.3 Designing an adaptive policy using PILCO

The second experimental approach aimed to dynamically learn an adaptive policy
through interactive engagement with the environment (see Figure 4.4). In this ap-
proach, PILCO was utilized, as described in section 4.4.3, to train the adaptive policy
on-the-fly. PILCO operates by executing actions based on its policy for N iterations,
gathering state transitions and reward values from the environment, augmenting its
dataset, updating the underlying Gaussian Process (GP) [147] model of the state
transition, and adjusting its policy parameters using the augmented data and repeats

the same process. The key distinction in designing an adaptive policy, as opposed to
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Figure 4.4: The workflow of adaptive policy using PILCO, illustrating the iterative process
where actions are executed according to the recent policy (or randomly selected from the
parameter space for the initial query) for N iterations. PILCO collects state transitions
and reward values from the environment in response to the actions, augments its dataset,
updates the Gaussian Process (GP) model of the state transition, and adjusts the policy
parameters based on the augmented data. This process is repeated to improve the adaptive
policy over time. The environment is the reduced-order surrogate of the physiological
cardiac models wrapped with the standard Gymnasium API, where the input of the model
(color-coded as dark blue) are stimulation frequency and stimulation amplitude across three
different locations at time ¢(A;). The output of the model (color-coded as green) are the
response of HR and MAP to the VNS parameters.

a general policy, lies in its ability to learn and track a specific setpoint during inter-

actions with the environment. In contrast, a general policy in the inference mode can

be used without further training to track multiple setpoints.

4.4 Reinforcement learning agents

A standard RL task can be formulated as a Markov Decision Process (MDP) defined
by a tuple (S, A, R, T, P), where S and A are state and action spaces, R is a reward
function (Ry = f(s¢, a4, S¢41)), T is the set of terminal conditions, and P is the state
transition probability. The goal of reinforcement learning is to find the optimal policy
7% by maximizing the cumulative reward, typically with the discount factor ~. The
overview of the standard RL framework is depicted in Figure 4.1. The closed-loop
flow of the interactions for the environment with the RL agents is as follows. At each
time step, the agent interacts with the environment to learn the policy purely from

interactions and without requiring prior knowledge about the underlying dynamics
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of the environment. The agent observes the current state at time ¢ and then takes
an action with respect to the policy. Next, the environment returns the next state
and reward at time step ¢ + 1 (S;41, Ryy1). This information is used to improve the
policy. In this study, two deep RL algorithms (PPO and SAC) were designed to train
a general policy and PILCO was employed to train an adaptive policy. The details

of these algorithms are provided in the following sections.

4.4.1 Proximal policy optimization algorithm

Policy gradient (PG) algorithms are a type of RL algorithms that rely upon optimiz-
ing parametrized policies with respect to the expected long-term return using gradient
descent. Unlike vanilla PG [148] that keep new and old policies close in the parameter
space, trust region policy optimization (TRPO) [149] algorithm updates policies by
taking the largest step possible to enhance the performance while satisfying a con-
straint expressed in terms of KL-Divergence on how close the new and old policies
are allowed to be. Proximal policy optimization (PPO) combines the advantages of
vanilla PG and TRPO to ensure stability and scalability by employing a surrogate
objective function to update the policy parameters.

In this study, PPO-Clip was used, a variant of PPO that utilizes specialized clip-
ping in the objective function to prevent significant deviations of the new policy from
the old policy. As a result, PPO offers a simpler implementation, while empirically
performs at least as well as TRPO. PPO is applied in an actor-critic framework. The
actor maps the state to action and the critic gives an expectation of the agent’s reward
with its corresponding state. The policy is updated via a stochastic gradient ascent
optimizer to ensure the exploration while the agent will gradually tend to exploit what
it has learned over the course of training. A MLP model with input layer of width 4
(HRy, MAP,, HRy4rget, M AP,4rget), one hidden layer of width 64, and output layer of

width 6(A;) was used to represent the policy network. Stable Baselines library [150]



81

for implementing PPO algorithm was used in this study.

4.4.2 Soft actor-critic algorithm

SAC [151, 143] is a RL algorithm widely employed in continuous action spaces for
various control tasks. Soft actor-critic (SAC) is from the family of off-policy RL
algorithms that optimizes a stochastic policy. As the name suggests, SAC is also
an actor-critic algorithm. A central feature of SAC is entropy regularization to en-
courage effective exploration during learning. The policy is trained to maximize a
trade-off between expected return and entropy, a measure of randomness in the pol-
icy, which has a close connection to the exploration-exploitation trade-off. Increasing
entropy results in more exploration, which can accelerate learning. It can also prevent
the policy from prematurely converging to a bad local optimum, resulting in stable
training. Moreover, SAC leverages neural networks to represent both the policy and
the value functions, enabling it to handle high-dimensional observation spaces effec-
tively. A MLP model with input layer of width 4 (H Ry, M AP;, H Riorget, M APrrget),
one hidden layer of width 64, and output layer of width 6(A;) was used to repre-
sent the policy network. The same architecture of the policy network for both PPO
and SAC algorithms was used. The Stable Baselines library [150] was integrated for

implementing SAC algorithm.

4.4.3 Probabilistic inference for learning and control

PILCO is a model-based data-efficient approach to policy search [145], which offers
improved sample-efficiency compared to model-free RL algorithms. Model-based RL
algorithms rely on accurate models of the underlying dynamics of the system, which
can result in reduced performance in the presence of model bias. Model bias is par-
ticularly an issue in cases where there is limited prior knowledge available. PILCO

mitigates the need for prior access to the underlying dynamics of the environment
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by learning the model from observed data. Furthermore, PILCO utilizes GP, a non-
parametric probabilistic model [147], to effectively address the issue of model bias
by accounting for model uncertainty. The main advantage of PILCO is that it re-
markably improves the sample efficiency in continuous state-action spaces which sets
the pathway for the integration of PILCO in the implementation and deployment of
closed-loop VNS systems in clinical settings and experimental setups.

Consider the following dynamics system

Ty = f(xt—l,ut—l), (4-1)

where f is the unknown state transition function with continuous state, x, and action,
u domains. The goal of PILCO is to find a deterministic policy that maximizes the
expected return or minimizes the expected cost, ¢(x;) of following the policy = for T’

time steps as in:

Te(0) = Sizo B [c(@2)], w0 ~ N(po, Xo)- (4.2)

PILCO assumes that « is a function parametrized by © and that the cost func-
tion ¢(z) encodes some information about a target state Ziqger. 1 used the squared
exponential cost function as in equation 4.4. The GP model uncertainty is used for
planning and policy evaluation steps. PILCO evaluates the policy using the deter-
ministic approximate inference method which enables policy improvement through
analytic policy gradients. Analytic policy gradient is more efficient than estimating
policy gradients with sampling and enables using standard non-convex optimization
methods like LBFGS to find the optimal policy parameters. Here, the learned state-

feedback controller is the nonlinear radial basis function network as follows:

7(5.0) = Swdi(e), (o) = epl—3 — ) A @ - ), (43)
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where the parameters of the RBF network controller were optimized using LBFGS
optimization. The implementation in this GitHub repository was integrated for im-

plementing PILCO.

4.4.4 Reward Function

The exponential reward function was used in training all RL algorithms, where x; was
the two-dimensional state of the environment at time ¢t(HR;, M AP;) and %i4yger Was

the two-dimensional target set-point of HR and MAP values (H Ryarget, M APiarget)-

||xt - xtarget| |2)
ol

c(xy) =1 — exp( (4.4)

4.5 Results

4.5.1 Performance of TCN model

The four different rat cardiac models (i.e. the healthy and hypertensive models in rest
and exercise states) were used to generate synthetic data for training a computation-
ally more efficient TCN model as a surrogate of the mechanistic model implemented
in MATLAB. I evaluated the performance of the TCN models in predicting HR and
MAP values as a function of stimulation parameters in three different locations. The
normalized mean squared error (NMSE) of the predictions from the TCN models was
calculated and reported in Table 4.2. In addition, the computational efficiencies (how
many times the predictions from the TCN model in the inference mode were faster
than the same predictions from the biophysics model implemented in MATLAB) of
the four reduced order TCN models are reported in Table 4.2. Additionally, a sample
comparison of the HR and MAP values using the MATLAB implementation versus

the predictions from the reduced order TCN model is depicted in Figure 4.5.


https://github.com/nrontsis/PILCO
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Figure 4.5: Comparison of the HR and MAP values predicted from the original biophysical
model implement in MATLAB versus the predictions from the reduced-order TCN model.
The blue solid lines represent the HR and MAP values generated from the HC biophysics
model implemented in MATLAB. The red dashed line represents the corresponding valued
generated with reduced-order TCN model.

Table 4.2: Performance of TCN models; normalized mean squared error (NMSE) of TCN
models, and their computational efficiency compared to the MATLAB implementations.

HC Env | HCE Env | HTC Env | HTCE Env
NMSE (on test set) 0.001142 | 0.001686 | 0.002336 | 0.002029
Computational efficiency (x| 11.65 8.77 10.90 8.74
times faster than Matlab)

4.5.2 Training performance of RL agents

Multiple experiments were conducted to evaluate and compare the performance of RL
algorithms described in section 4.4 in performing the set-point tracking task for regu-
lating HR and MAP values (Figure 4.6). The normalized reward values of model-free
deep RL algorithms (PPO and SAC) were demonstrated in Figure 4.6a, 4.6b. The
total reward values per episode were normalized by the episode length of 500 and
passed through an moving average function with window length of 50 to provide a
better representation of the agents’ performances over time in four different environ-
ments (HC, HCE, HTC, and HTCE). As demonstrated in Figure 4.6, PPO converges
faster compared to SAC. The reward values of PILCO during the set-point tracking
task for 100 iterations were depicted in Figure 4.6¢ for the four rat cardiac models. As

shown in Figure 4.6, the convergence speed of PILCO is much faster than Deep RL



85

algorithms making it more suitable for experiments with a limited budget in terms

of the number of interactions with the nervous system of interest.
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Figure 4.6: Reward values of RL agents during the set-point tracking task in four cardiac
environments; (a) Normalized training reward values per episode for SAC during the train-
ing mode, (b) Normalized training reward values per episode for PPO during the training
mode, (¢) Reward values of PILCO during the experiment. The normalized reward for
deep RL algorithms (a, b) represent the mean + standard deviation of the reward calcu-
lated through a moving average with window length of 50 to provide a better representation
of the agents’ performances over time.

4.5.3 Performance of Deep RL agents in set-point tracking

task in four cardiac models

The performance of Deep RL algorithms in inference mode for set-point tracking task
across four cardiac environment using PPO and SAC algorithms is depicted in Figures
4.7a and Figure 4.7b, respectively. Their associated actions (stimulation parameters)
taken during the inference mode were demonstrated in Figure 4.8a, 4.8b. The set-
points in Figure 4.7 are set to be 40% and 80% of the maximum range of HR and
MAP for each of the four environments. As shown in the figures, the trained general

policy in PPO and SAC algorithms learned to track the target set points.

4.5.4 Performance of PILCO in set-point tracking task in

four cardiac models

The performance of set-point tracking for the PILCO algorithm is depicted in Figure

4.9a.The associated actions (i.e. stimulation parameters) taken across the three VNS



86

— Set-point — Set-point
HC Env HCE Env HTC Env HTCE Env HC Env HCE Env HTC Env HTCE Env
400 550 425 550 400 550 425 550
& 340—' I 460 L 360 | | 460 l & 3401 I 475 h‘ 360 1 | 4601 |§
280 — 3754+——4 300—F—" 3755—— 280 ——— 400+— 300 —=* 375 L-——
160 155 190 170 160 155 180 170
o o
< 1204 1404 1554 155 < 1204 140 1501 155
= =
80— 1251———— 120+ 140 80— 1304+——— 120——— 140F/——
0 100 200 0 100200 0 100 200 0 100 200 0 100 200 0 100200 0 100 200 0 100 200
Iteration Iteration Iteration Iteration Iteration Iteration Iteration Iteration
(a) PPO (b) SAC

Figure 4.7: The performance of Deep RL algorithms in inference mode for set-point track-
ing task across four cardiac environments using (a) PPO and (b) SAC algorithms for 200
iterations. The red solid lines represent the desired set points and the blue lines represent
the states of the four cardiac models (HR and MAP). The target set points were changed
after 100 iterations, where iterations are equal to the cardiac cycle.
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Figure 4.8: The stimulation parameters used during the inference mode for the set-point
tracking task across the four cardiac environments (a) using PPO and (b) SAC algorithms
for 200 iterations. The stimulation parameters were amplitude and frequency across three
VNS locations. The target set points were changed after 100 iterations, where iterations
are equal to the cardiac cycle.

stimulation locations are demonstrated in Figure 4.9b. As shown in these figures,
PILCO started by taking N=10 random samples and gradually learned a GP model
of the underlying dynamics as well as a RBF network policy to track the target set-

point. As shown in Figure 4.6¢ and Figure 4.9a PILCO learns to track the target set

point in less than 100 iterations.

4.5.5 Adaptability of PILCO to variations in target set point

Unlike model-free deep RL algorithms (i.e. PPO and SAC) that were designed to
train a general policy that has the ability to track a wide range of set points, PILCO

is designed to track a single set point at a time. We designed an experiment to change
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Figure 4.9: The performance of PILCO in set-point tracking task across four cardiac envi-
ronments using PILCO (a) and its corresponding stimulation parameters (amplitude and
frequency) across three stimulation locations (b). In the left figure (a), the red lines repre-
sent the desired set points and the blue lines represent the states of the four cardiac models

(HR and MAP).

the target set-point after the first 100 iterations to test the performance of PILCO
in learning a new randomly selected set-point in the HC environment. The reward
values for PILCO in adapting to a new target set point for the HC environment was
provided in Figure 4.10a. As shown in Figure 4.10a-c, PILCO learned to track the

new set point in around 40 iterations.

4.5.6 Adaptability of PILCO to variations in the underlying

dynamics of the environment

Another experiment was designed to validate the ability of PILCO in performing the
set-point tracking task when the underlying dynamics of the system changes over time.
After 100 iterations, we changed the environment from HC to HTC environment.
The reward values for PILCO in adapting to a target set point in a new cardiac
environment (HTC) after 100 iterations was provided in Figure 4.10d. As shown in
Figure 4.10d-e, PILCO learned to track the new set point in the new environment in

around 20 iterations.
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Figure 4.10: Adaptability of PILCO during the set point tracking task to variations in
the target set point (a-c) and to variations in the underlying dynamics of the environment
(d-f). (a, d) Reward value; (b,e) the state trajectory, and (c,f) stimulation parameters for
200 iterations, where the changes where applied after 100 iterations.

4.5.7 Adaptability of deep RL agents to variations in the
underlying dynamics of the environment using transfer

learning

An experiment was conducted to assess if PPO and SAC can adapt to changes in
the underlying dynamics of the environment. To achieve this, transfer learning (TL)
was employed, and the pre-trained policy in the HC model was used as the initial
policy instead of starting with a random policy. TL was adopted to fine-tune the
model to perform the set-point tracking task in the HTC environment. As depicted
in Figure 4.11a, TL considerably improves the speed of convergence for both RL
agents (PPO and SAC) and quickly adapts to the new dynamics of the environment.
SAC and PPO converge in less than 10 episodes with TL as opposed to more than
200 and 100 episodes without TL, respectively. The result of performing the set-point
tracking task with the fine-tuned policy using TL from the HC environment to HTC

environment is depicted in Figure 4.11b.
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Figure 4.11: Adaptability of PPO and SAC algorithms to the variations in the underlying
dynamics of the environment using transfer learning; (a) comparison of the reward values
of PPO and SAC with random initialization (RI) and with transfer learning (TL), (b)
performance of PPO and SAC in set point tracking task with the trained policy using TL
approach.

4.6 Discussion

In this study, I described and evaluated an interactive Al framework using RL for au-
tomated data-driven design of closed-loop VNS control systems. I implemented this
framework to regulate HR and MAP in computational models of rat cardiovascular
system under multi-locations VNS. I provided multiple simulation environments using
biophysics-based computational models of rat cardiovascular system in four different
conditions including healthy and hypertensive rat in rest and exercise states (HC,
HTC, HCE, and HTCE models). The simulation environments were built through
the standard Gymnasium API (previously known as OpenAl gym) to facilitate test-
ing and prototyping of the interactive RL-based closed-loop neuromodulation systems.
Furthermore, the utility of the framework in designing adaptive closed-loop neuro-
modulation systems through a set-point tracking task was demonstrated. In addition,
two experimental design approaches (i.e., general policy and adaptive policy) feasible
for the integration of RL algorithms were introduced which could be utilized based
on the limitations and requirements of the application of interest. I compared the
performance of the framework using multiple model-free and model-based RL algo-

rithms in terms of sample efficiency and quality of performing the set-point tracking
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task as well as their ability to adapt to the new target set pints and to the variations
in the underlying dynamics of the environment.

Multiple simulation environments were provided for testing and prototyping RL
agents and designed a set-point tracking task to modulate the desired HR and MAP
values. TCN was used to build a reduced order model of the original MATLAB
implementation in Python with the standard OpenAl Gym environment and our
results confirmed the improved computational time (Table 4.2) while providing a
coherent programming environment in Python.

A control policy is at the core of an automated closed-loop neuromodulation sys-
tem which automatically adjusts the stimulation parameters to achieve the goals of a
desired neuromodulation task. Current approaches to adjusting VNS parameters are
based on open-loop trial-and-error method and a systematic approach of tuning VNS
parameters is needed [98, 99, 84]. Recent studies investigated the utility of MPC in
regulating HR and MAP values through VNS[81, 83], however, they required hav-
ing access to an accurate model of the underlying dynamics which is not practical
for many applications. Our results support the hypothesis that our interactive Al
framework can generate effective VNS control policies in a data-driven fashion with
minimal assumptions and without the requirement of having access to the exact un-
derlying dynamics of the nervous system. Our framework enables continuous learning
from the experience which makes it suitable for developing long-term patient-specific
therapies. Scalability to continuous state and action spaces, actively exploring to
improve the performance and the ability to learn in real-time from data are among
the other advantages of the RL-based control strategies.

The automated and adaptive VNS programming framework was evaluated using
multiple model-free and model-based RL algorithms. The comparison of PPO, SAC,
and PILCO algorithms provides insights into the performance of different classes of

RL approaches and guides the algorithm selection for the design of closed-loop VNS
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neuromodulation system. Model-free deep RL algorithms have shown to be less sam-
ple efficient than PILCO at the expense of learning a general policy (Figure 4.6). PPO,
known for its stability and sample efficiency, demonstrated promising results in main-
taining control over the set-point tracking task across different cardiac environments
and over the range of potential target set points. SAC, with its emphasis on exploring
the action space, exhibited competitive performance with a smoother behaviour in
the action space (Figure 4.8). On the other hand, PILCO, an uncertainty-driven and
model-based algorithm, showed robustness in handling the inherent variability in the
neuromodulation system (underlying dynamics of the environment or the target set
point) while requiring a considerably smaller number of samples to learn the set point
tracking task.

In addition, two experimental design approaches were considered. First, I inte-
grated Deep RL algorithms to train a general policy capable of tracking a range of
set points in the inference mode. Additionally, PILCO was used to train an adaptive
policy on the fly, which is capable of tracking one predefined set of set points while
being able to adapt to the variations in the target set point over time. These findings
highlight the trade-offs between sample efficiency, generalizability, and adaptability
in the context of closed-loop VNS neuromodulation, offering researchers and practi-
tioners valuable insights for selecting the most suitable algorithm for their specific
application requirements. Further research could explore hybrid approaches or algo-
rithm modifications to enhance the performance of these algorithms in closed-loop
neuromodulation systems.

While PILCO demonstrated promising performance in quickly learning the set
point tracking task as well as in adaptability to the target set point and the varia-
tions in the underlying dynamics of the environment, one of the limitations of PILCO
is the use of GP approach and its limited generalizability to higher dimensions. While

GP modelling and PILCO have proven to be very sample-efficient effective in low-
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dimensional control problems, their performance tends to degrade as the dimensional-
ity increases. Therefore, future directions should explore alternative approaches that
can enhance sample efficiency and improve generalizability to higher dimensions.
While Deep RL algorithms are less sample efficient than PILCO, their ability to
learn a general policy is valuable in the context of developing a generalized therapy
with the capability to adapt to the unique needs of individual patients. Therefore,
it is crucial to come up with potential approaches to improve their sample efficiency
which facilitates their integration in clinical and experimental setups. To address
this, I integrated TL as a potential approach to improve sample efficiency of deep
RL algorithms. By incorporating TL, we can leverage pre-existing knowledge from
related tasks or domains to initialize and guide the learning process of the deep RL
algorithms. In this study, I trained a general policy using the healthy rat cardiac
model in rest state (HC Env) and incorporated this prior knowledge by using TL to
improve sample efficiency for the hypertensive cardiac model in rest state (HTC Env).
Our results demonstrated a considerable improvement in sample efficiency of Deep RL
algorithms using TL (Figure 11a). TL offers a promising avenue paving the way for
the development of more efficient and personalized closed-loop VNS systems. Future
research can further explore novel TL techniques tailored specifically for closed-loop

VNS systems to enhance their performance and usability in real-world scenarios.

4.7 Conclusion

In this study, I developed and evaluated an interactive Al framework using RL for au-
tomated data-driven design of closed-loop VNS control systems. Multiple simulation
environments were created to model different cardiac conditions, and RL algorithms,
including PPO, SAC, and PILCO, were employed to autonomously learn the set-point

tracking tasks. Our results confirmed that the proposed interactive closed-loop VNS
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control framework offer a data-driven alternative to classical control methodologies,
allowing for continuous learning and the development of precision neuromodulation
therapies that autonomously learns and adapts to the underlying dynamics of the car-
diovascular system. The integration of transfer learning (TL) was found to improve
the sample efficiency of deep RL algorithms, offering the potential for the development

of more efficient and personalized closed-loop VNS systems.
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Chapter 5

Neuroweaver: a translational
platform for embedding artificial
intelligence in closed-loop

neuromodulation systems

5.1 Introduction

Designing intelligent closed-loop neuromodulation (iCLON) control strategies involves
creating a modular design capable of seamlessly integrating with in-vivo experimental
setups and computational approaches from multiple domains. This integration is cru-
cial to effectively account for the various components of the system, as illustrated in
Figure 5.1. To achieve this, the selection of algorithms may include approaches from
multiple domains including digital signal processing (DSP), control, Al and RL do-
mains. Each of these domains offers unique methodologies and techniques essential for
a comprehensive research and development platform that enables design and imple-

mentation of iCLON systems. The majority of the literature is focused on designing
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iCLON systems using classical control and signal processing approaches. However,
recent advances in Al may enable designing intelligent neuromodulation systems, that
are able to learn and optimize neuromodulation control strategies autonomously, via
closed-loop interaction with the nervous system. RL is a data-driven approach to
design such iCLON control strategies with minimal assumptions and the need for
prior knowledge about the underlying physiological dynamics. These properties al-
low applying data-driven optimization and RL-based control strategies to real-world
applications including iCLON systems. However, there are many challenges in de-
signing Al-enabled iCLON systems and translating them in clinical settings including
algorithmic design, software implementation, hardware integration, experimental vali-
dation, and clinical deployment in implantable devices. These complexities may make
designing iCLON systems out of reach for broader biomedical research community
and may render designing systems that are not translatable into clinical settings.
Understanding the behavior and optimally designing novel and effective control
algorithms requires interactive simulation environments where the brain is in closed-
loop with various candidate neuromodulation control and optimization algorithms.
Due to the ethical, clinical, and experimental limitations of physical interaction with
the nervous system, a promising approach is to employ computational models of neu-
ral systems that enables designing, prototyping, and evaluating control algorithms
before testing in in-vivo experimental setups. Leveraging mechanistic models as a
surrogate of an in-vivo brain is a promising path that enables designing and proto-
typing various closed-loop neuromodulation strategies. The computational models
of brain dynamics can be used to create benchmarks for designing state of the art
closed-loop neuromodulation algorithms in different neuromodulation control tasks.
In this study, I have designed multiple closed-loop neuromodulation system using
advanced data-driven optimization and control strategies and compared them with

respect to challenges of integrating iCLON systems in clinical practice including sam-
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Figure 5.1: Overview of the modular design of an iCLON system supported by Neuroweaver
that enables research and development of implantable iCLON systems. Neuroweaver enables
the modular design of iCLON systems using simulation environments and computational
models of the nervous system for the design and prototyping of iCLON systems. The
modular design also allows for seamless integration with the in-vivo experimental setup
for evaluating the performance of the designed algorithms. In addition, Neuroweaver en-
ables cross-domain acceleration that not only provides the flexibility of adapting to different
algorithmic domains but also improving the performance and efficiency of hardware imple-
mentation in designing specialized implantable iCLON systems.
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ple efficiency and quality of the learned control policies. These features are designed to
emphasize the capabilities of the Neuroweaver platform for designing and prototyping
iCLON systems in-silico before integrating in in-vivo experimental setups.

Software implementation of iCLON algorithms requires programming expertise to
translate an algorithm to semantically equivalent code for hardware implementation,
while also carefully considering synchronization between an interactive prototyping
environment and the algorithm. Further complicating implementation challenges are
the timing, physical, and energy constraints imposed by real-time interaction with the
nervous systems. Clinical implementation of the Al algorithms for iCLON systems
may depend on design considerations such as power consumption, form factor, and
even operational temperature which cannot be achieved by general-purpose proces-
sors and therefore require highly specialized hardware. Furthermore, prototyping and
clinical testing of iCLON algorithms require translating high-level programs to op-
erational code on specialized hardware. Just designing a hardware module typically
takes years for design experts, let alone the end users without relevant technical ex-
pertise. The hardware modules and the associated programming stack need to enable
freedom in developing and adopting ever evolving and novel algorithms. This require-
ment is at odds with the conventional specialized hardware system design practices.
These challenges make translating Al algorithms for iCLON systems currently rather
infeasible.

To address these challenges, this research introduces an open-source platform,
dubbed Neuroweaver [152], for end-to-end designing, prototyping and deploying iCLON
algorithms without the complexities of translating Al algorithms to implementation.
Although there are various general purpose abstractions for accelerators such as
OpenCL [153], CUDA [154], and Weld [155], these frameworks do not incorporate
the algorithmic domain knowledge. The Neuroweaver platform specifically enables

the end-users to prototype iCLON systems in simulation environments through a
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Python-embedded Domain-Specific Language (DSL) framework which compiles al-
gorithms to one or more software frameworks or target architectures, and introduce
open-source, flexible accelerators capable of efficiently executing algorithm kernels.
The framework is capable of taking the high-level algorithms and efficiently schedul-
ing different compute kernels of the algorithms to different targets while also ensuring
valid communication mechanisms for transferring data between frameworks.

In this research, to make progress toward addressing the translational challenges
of embedding AI algorithms in implantable iCLON devices, a cross-domain frame-
work enabling multi-acceleration is introduced in section 5.4. Thereafter, I introduce
the simulation environment using a computation model of the brain which can be
used in closed-loop with different interactive Al-enabled control policies to perform
a synchrony suppression task. The computational model of neural population un-
der electrical stimulation is described in section 5.6. This thesis also contributed to
the development of a library of RL-based closed-loop control strategies from different
classes as described in section 5.7. These algorithms has been used to design, pro-
totype, and evaluate the performance of iCLON systems in a synchrony suppression
tasks. This research represents a collaborative effort. Some key lines of work (as
described in sections 5.4, 5.5 and the results associated with them in sections 5.8.2,
5.8.3, and 5.8.4) are provided to describe the comprehensive view of the research

direction and has been the contribution of our collaborators.

5.2 Challenges and considerations

1. The need for a familiar programming interface: The need for a famil-
iar programming interface Even for seasoned software engineers, writing pro-
grams for accelerators is non-trivial, requiring careful consideration for low-level

hardware attributes to ensure things like memory allocation, operation schedul-
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ing, and data communication are appropriately defined. Therefore, to achieve
widespread adoption by a broader community, an intuitive, concise, and high-
level interface for creating programs is required which minimizes the burden
of specifying how the program is executed to the compiler. In addition, the
programming interface should use syntax closely resembling the algorithmic no-
tations used in AI, DSP, and Control to further reduce the learning curve for
the users who are designing these algorithms instead of involving them in the
process of hardware design or compilation. Recall that Neuroweaver flexibly
generates the hardware and also compilers the code to that moving parame-
terized target. Neuroweaver defines such an programming interface through
a python-embedded, cross-domain interface (CDI) which captures the shared
mathematical notation in each of the target algorithm domains through it’s
syntax, and relieves the programmer of needing to specify low-level details of
how the program should execute. By embedding the programming interface in
a widely used language for intelligent and scientific computing (i.e., Python)
rather than defining a new, standalone language, the hurdles of installing and
setting up additional software are avoided, removing another possible barrier to

entry for neuroscientists.

. The need to enable research and exploration: In this work, we take a
stance that is different than just offering a chip that is ready to be implanted in
brain. We as a community are not there yet. As such, we firmly advocate and
offer a framework that enables researchers to explore ideas so that the research
community get to a point that can build intelligent brain-implantable devices

for neuromodulation.

. The need for cross-domain accelerations: To enable the use of the Ma-

chine Intelligence algorithms for biological neuromodulation, there is need for a
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computation core that can run not only algorithms from the domain of Al but
also Digital Signal Processing (DSP) and Control. That is, the computational
core either needs to be general-purpose to accommodate the various domains
of algorithm (AI, DSP, Control) or go well beyond the state-of-the-art that
only offers specialized accelerator cores that are Domain-Specific Architectures
(DSA). Clearly, general-purpose cores cannot accommodate the needs of brain-
implantable devices, which require low energy consumption to preserve battery
life. Alternatively, DSAs are capable of meeting such requirements, but are
unable to adapt to algorithms outside of their target domain. Therefore, the re-
maining solution is to create a new design point between the flexible, but energy
inefficient general purpose processors and the rigid but energy efficient DSAs.
Such a solution requires a computation core capable of adapting to AI, DSP,
and Control algorithms, while also achieving orders of magnitude improvements

in performance and efficiency, called cross-domain acceleration.

. The need for algorithm-hardware design space explorations: The ob-
jective of Neuroweaver is not to provide a single architecture for intelligent neu-
romodulation, rather, to provide a complete framework to explore algorithm-
hardware co-design for neuroscientists and clinicians to explore research in build-
ing such brain implantable devices. As such, a fixed architecture is incapable
of accommodating design space explorations, matching of specific algorithmic
needs, and/or operational constraints. Thus, we propose a template architecture
that is a highly parametric design, capable of being scaled down or scaled up
before fabrication to match the requirements and enable algorithm-hardware de-
sign exploration. After explorations and analyses, the Neuroweaver framework
can generate a concrete design that can be deployed on Field Programmable
Gate Arrays (FPGAs) for prototyping/use in-vivo experimentation. This de-

sign is also ready to be fabricated as a stand-alone programmable custom chip
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that can be implanted.

5. The need for compilation to moving targets: As is the case with all com-
putation cores, a compiler is required to translate an abstraction to executable
code. However, by introducing a flexible, parametric architecture, additional
responsibility is placed on the compiler to not only perform translation, but
also identify optimal architecture parameters depending on the input program.
Traditional compilers have achieved a degree of adaptability to different tar-
gets by mapping fine-grained intermediate representations to Instruction Set
Architectures (ISAs) of general purpose processors. In the case of a parametric
architecture, an alternative solution is required because the compiler cannot rely
on pre-defined mappings, as different combinations of architectural parameters
create different possible mappings. Therefore, the compiler implements the de-
sign space exploration by ingesting architecture parameters in addition to the
input program, and identifying the parameters for generating an optimal pro-
gram. Depending on the architecture parameters, the compiler must also adapt
the translation of abstraction to executable to abide by constraints imposed by
the parameters, such as on-chip storage availability, bandwidth, and varying
degrees of parallelism. Compilation for Neuroweaver will have completed when
both a set of architecture parameters has been identified, and a valid executable

has been generated.

5.3 Neuroweaver in a glance

Designing, prototyping, and experimenting with neuromodulation control systems re-
quires implementing closed-loop analytic pipelines using interoperable modules (Fig-
ure 5.1). These systems can be modeled as several interacting modules (Figure 5.1) in

computational environments that are often not limited to a single domain as shown in
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Reinforcement Learning

]
Figure 5.2: A cross-domain closed-loop neuromodulation pipeline. A modular design of

iCLON systems include multiple interoperable modules that often include several analytic
steps from multiple algorithmic domains including DSP, analytics, RL.

Figure 5.2. Closed-loop neuromodulation pipelines include several analytic steps in-
cluding biomarker detection and control policy that employ algorithms from multiple
domains including DSP, analytics, Deep learning, ML, and RL approaches. However,
most of these approaches are computationally expensive, and rely on compute kernels
spanning multiple domains of algorithm as well as multiple compute stacks, making
their integration into the design of iCLON systems an arduous task and implementa-
tion of these pipelines in resource-constrained computational infrastructures such as
implantable devices infeasible. To bridge the transnational gap and enable hardware
implementation of iCLON systems a framework capable of acceleration of a cross-
domain application on different accelerators, called cross-domain multi-acceleration,
is required.

To enable programmers to readily develop cross-domain applications using mul-
tiple accelerators on FPGA, we devised Neuroweaver, a full-stack framework com-
prised of a front-end which with a programming interface in Python for cross-domain
algorithmic specification and a back-end with the capabilities of domain-specific ac-
celerators. By delineating between front-end algorithm and the possible back-end
targets for the hardware implementation of that algorithm, cross-domain end-to-end

closed-loop neuromodulation applications can be compiled to multiple heterogeneous
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accelerators.

To facilitate research and development in implantable iCLON systems, Neuroweaver
offers a programming interface within the most popular [156] programming language,
Python. The high-level users of the platform use this programming interface in
Python to design their novel iCLON systems. The modular simulation environ-
ment empowers users to design, prototype, and rigorously evaluate their candidate
closed-loop neuromodulation algorithms within a simulated environment. It allows
for rigorous testing and refinement of algorithms in a controlled virtual environment,
significantly reducing the risks and costs associated with in-vivo experimentation.
The users have the flexibility of either using the computational models as described
in section 5.6 or simply integrate their own data-driven or mechanistic models related
to their application of interest.

The pipeline design in simulation facilitates the transition from the simulation
to real-world in-vivo experimentation. By prototyping and fine-tuning algorithms
within the simulation environment, researchers gain insights and confidence in their
approaches before proceeding to in-vivo experiments. This not only minimizes po-
tential risks but also accelerates the pace of research and development. In addition,
the platform offers flexible multi-acceleration features for easier hardware design and
implementation which enables and informs the effective design of implantable chips

(Figure 5.3).

5.4 Neuroweaver platform

5.4.1 Cross-domain programming interface in python

To enable research and development in implantable iCLON systems, Neuroweaver
offers a programming interface within the most popular [156] programming language,

Python. Python was selected to minimize the barrier to entry for neuroscience re-
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Figure 5.3: Step-by-step conceptual design strategy enabled by the Neuroweaver platform
that enables research and development of iCLON systems. The modular simulation en-
vironment allows the user to design, prototype, and evaluate their candidate closed-loop
neuromodulation algorithms in simulation. This simulation step allows for efficient trans-
lation into in-vivo experimentation and flexible hardware implementation which eventually
informs the design of brain-implantable chips.

searchers and practitioners instead of forcing them to learn a new language. With the
advent of domain-specific accelerators and architectures; there has been significant
research on domain-specific languages (DSL) [157, 158, 159, 160, 161, 162], some of
which have been also embedded in Python [163, 164]. However, iCLON crosses the
boundary of multiple domains and needs a novel interface that can incorporate mul-
tiple domains in a Cross-Domain Interface (CDI) for seamless programming and ease
of use.

A iCLON application crosses multiple algorithm domains including DSP, Analyt-
ics, and Al in each iteration to accomplish it’s goal, demonstrating the need for a
programming interface flexible enough to express each domain. To implement such
an application, the end user would therefore require intimate knowledge of possibly
one or more DSLs for each of the different algorithm domains, as well as how to com-
pose the DSLs as a single program with data communication across three different
devices. Instead, CDI allows users to write their application as a single program,
thus, eliminating the overhead of stitching together different programs and specifying

communication across multiple devices. Keeping the properties of target domains in
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mind, CDI is designed to reduce the time to code a mathematical expression into a
formula-based textual format, enabled by the reuse of Python language constructs
for modularity and customized Python type annotations. Moreover for code organi-
zation and reduction in implementation time, CDI allows the use of Python function
decorators to capture user-defined functions as reusable components which perform
operations on flows of data.

These Components encapsulate a task comprised of either other component(s) or
mathematical expressions which use syntax similar to the targeted algorithm domains
to facilitate familiarity for experienced programmers. For modularity and reusability,
component(s) have distinct boundaries and arguments which are distinguished by type
modifiers defined as Python type annotations, consisting of input, output, state, and
param; each of which is associated with how the component will use the argument. By
using type annotations in component arguments to explicitly identify data semantics,
CDI binds operations to data being operated on, allowing Neuroweaver to determine
data reuse and dataflow properties of programs.

CDI uniquely targets multiple domains, each of which is eventually compiled and
executed with one of multiple different possible compute cores. As such, CDI offers
a light-weight mechanism to specify the target device for component instantiations.
The device can also be left unspecified, which allows the compiler to select the com-
pilation target based on the available resources, as well as device annotations which
might be included in sub-components in the program. This relieves the programmer
from having to annotate all components within their program. More details on the

programming abstractions for cross-domain multi-acceleration is provided in [165].

5.4.2 Multi-target cross-domain compilation

Providing a high-level programming interface is necessary for enabling usability amongst

neuroscientists, but it also requires a compiler capable of scheduling and generating
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code in the absence of low-level details included in other programming languages. To
facilitate algorithm-hardware design space exploration, the compiler must also have
the capability to adapt it’s workflow to different compilation targets with distinct
characteristics. The Neuroweaver compiler achieves these requirements by including
architecture parameters associated with the compilation target as inputs, in addition
to the high-level program. By using architecture parameters as inputs, compilation
can be repeatedly invoked for different compilation targets with a given program un-
til the optimal set of parameters is found, based on performance estimates. Finally,
once the architecture parameters are selected, the Neuroweaver compiler is capable
of generating code for the selected target.

CDI programs are defined with minimal specification for how the program should
be executed, to allow usability for neuroscientists. However, CDI preserves the
dataflow required for execution in it’s programs by creating a hierarchical dataflow
graph. By using a hierarchical approach, we preserve different levels of operation gran-
ularity, which is required for adapting to different compilation targets with support
for different operations. By combining the graph with input architecture parameters,
the compiler traverses the graph nodes and identifies operations supported by the
architecture parameters and maps them to the equivalent code templates used for

scheduling.

5.5 An example implementation with CNF pro-
gram using the CDI in Python

Neuroweaver provides a simple and lightweight programming interface, called Com-
ponent and Flow (CNF) programming model, which allows application programmers
to specify various components of their program to be targeted for acceleration. Neu-

roweaver is also equipped with a runtime system which creates a component and flow
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graph, schedules the components and handles the data transfers between components.

These characteristics are demonstrated in the following example, which imple-
ments a very simple example consisting of two components connected together with
a defined flow and will be used to delve further into CDI.

Components: A programmer creating a new component for their application
extends the Component baseclass. The programmer optionally defines one or more
of the following four methods with the eproperty decorator: The input_names, the
output_names, the state_names, and the property_names. Each of them return a list
of strings which are the respective queue names. The programmer also extends the
baseclass with the following two methods: The initialize , and the execute methods.

In the following toy example first a simple component called Brain is created (lines
4-15). It has one output queue, called brain_signal. The initialize method can be
used for code to set up the initial state of the component and perform other one time
tasks The execute method contains most of the functionality of the code. The execute
function runs every time an input is available on any of the input queues.

The following example then creates another component called SignalSink (lines 17-
27). This component will receive a brain_signal input. The Component class provides
the following methods which initialize the queues for each of the interfaces with a
shape.

The Component class provides the following methods which initialize the queues for
each of the interfaces with a shape: set_input, set_output,and set_state. The shape
is provided as a tuple, e.g. (100, 1) for a 1-D array with 100 elements. Every element
pushed to the queue needs to be this particular shape. The following code snippet
initilizes Brain and SignalSink components. The output queue brain_signal of brain
instance is set to aceept shape (1,1). The input queue brain_signal of sink instance
is set to accept shape (1,1) as well (lines 36-38).

Graph: The graph class allows the programmer to declare a component and flow
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program. The add_component method is used to add components to the graph. In
the following example, we add brain as a component to a graph called graph. The
add_flow method is used to connect two components with a flow. We specify source
and destination component instance along with their corresponding queue names.
In the following example, we add a flow to a graph called graph by specifying the
source component brain with its output queue name brain_singal and the destination
component with its input queue name brain_signal (lines 40-42).

The following code adds Brain and SignalSink components to a graph called
deep_brain_stimulation. Their queues are initialized. A flow is created between the
two components (lines 30-45).

Runtime: The runtime is initialized with an instance of the component and flow
graph object. The initialize method of the graph class is used to initialize all the
components in the graph. The execute method begins the execution. The runtime will
schedule ready components and do the data transfers according to the flows specified
(lines 47-51).

With the all the pieces from the previous sections, we now have a runnable CNF

program with two components.

from runtime.runtime import Runtime

from gfdfg.graph import Graph

class Brain(Component) :
@property
def output_names (self) -> List[str]:

return ["brain_signal"]

def initialize(self):

print ("brain-v0")

def execute(self, brain_signal):
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44 # Create a flow between the brain component and the sink component

signal = np.array([10])
print (f"{self. _name}: signal {signall}")

brain_signal.push(signal, (1,1))

class SignalSink(Component):
@property
def input_names(self) -> List[str]:

return ["brain_signal"]

def initialize(self):

print(f"initialize does nothing")

def execute(self, brain_signal):
signal = brain_signal.pop ()

print (f"{self. _name}: signal {signall}")

# Create a component and flow (CNF) graph. This is named
DeepBrainStim

deep_brain_stimulation = Graph("DeepBrainStim")
# Initialize the Brain and SignalSink components
brain = Brain ()

sink = SignalSink ()

# Bind the output and input names to Queues

7 brain.set_output ("brain_signal", (1,1))

sink.set_input ("brain_signal", (1,1))

# Add components to the graph
deep_brain_stimulation.add_component (brain)

deep_brain_stimulation.add_component (sink)

109
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5 deep_brain_stimulation.add_flow("brain_signal", brain, "brain_signal

", sink)

7 runtime = Runtime (deep_brain_stimulation)

# Run the initialize functions of all components
runtime.initialize ()
# Begin execution

runtime.execute ()

Listing 5.1: Example of a program using the cross-domain programming interface in Python.

5.6 Simulation environments and control tasks for
designing iCLON systems

Multiple simulation environments has been integrated to enable designing iCLON
systems in simulation. These simulation environments enabled the design and proto-
typing of iCLON systems in-silico before integrating with in-vivo experimental setups.
Details of the simulation environments using computational models of the brain are

provided in the following subsections.

5.6.1 Interactive Al-enabled closed-loop synchrony suppres-

sion in Bonhoeffer—van der Pol model

Pathological synchronous network activities in the brain is hypothesised as a potential
source of many neurological disorders like Parkinson’s disease [166]. The collective
synchronous activity of neural ensembles can lead to symptoms such as tremor. DBS
modulates the desired functionality of the neural systems through locally deliver-
ing stimulation to the targeted brain regions. Here, we consider to use a popula-

tion of N regularly oscillating neurons, i.e. Bonhoeffer—van der Pol also known as
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FitzHugh—Nagumo oscillators, globally coupled via the mean field X which is imple-
mented as an OpenAl gym environment [167]. T employed this computational model
as a simulation framework to design closed-loop neuromodulation systems using dif-
ferent classes of RL algorithms during a synchrony suppression task. The regularly

oscillating neurons in Bonhoeffer—van der Pol model follow the equations below:

3
ﬂt:xk—?’“—yk—i—fk—i—eX—i—A

(5.1)

g =0.1(xx — 0.8y, + 0.7),
where X = % Zivzl 2y is the mean field, A is the action stimuli applied to each
individual neuron k =1, ..., N of the total N neurons. Actions, are considered to be

ideal d-shaped pulses with the amplitude —A,,.., < A; < A4, which gets updated
at each time step t,, = nA and A is the sampling rate of the environment.
The state of the environment at time step ¢ is the value of the mean field model,

i.e. X(t). We used the exponential reward function as in:
R(t) = exp(*(X(t)*<Xsmte>)27ﬁHAtH)_ (5.2)

In equation 5.2, < Xiute >1= ﬁ Zl]\il X (t—1+41) consists of M most recent values of
the mean filed and it is considered to account for the oscillatory activity of the neural
populations. The total energy supplied to an ensemble of neurons is a measure that
we aim to minimize in practical DBS settings and the second term in equation 5.2 is
added in favor of minimizing the total stimulation energy.

This simulation environment, which is a mean field model of neural population
activity with electrical stimulation, was used to design and develop an interactive
Al-enabled iCLON systems for sunchrony suppression. Multiple interactive iCLON
strategies was designed as illustrated in Figure 5.4. The performance of five different

RL-based control strategies (see section 5.7) in performing the synchrony suppression
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task was evaluated in terms of the quality of learning the task and sample efficiency

which are two key factors in designing iCLON algorithms.

Environment Agent Environment A
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Figure 5.4: The modular architecture of the Neuroweaver simulation environment including
the computational model of the neural population under electrical stimulation in closed-loop
with RL-based control strategies to learn a synchrony suppression control task; (a) neural
network-based model-free algorithms and PILCO, (b) Model-based RL with MPC.
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5.7 RL algorithms integrated in the design of iCLON
systems

A standard RL task can be formulated as a Markov Decision Process (MDP) [168]
defined by a tuple (S, A, r, T, P), where S and A are state and action spaces, r = R(7)
is a reward function, 7" is the set of terminal conditions, and P is the state transition
probability. The general goal of reinforcement learning algorithms are to find the
optimal policy 7 maximizing the discounted cumulative expected reward ,J(m), as

follows.

7 = argmax,J (), whereJ(n) = E;:|R(T)] (5.3)

We provide an algorithm library for designing data-driven intelligent control strate-
gies which consists of candidates from multiple classes of RL algorithms. One of the
most important factors in dividing RL algorithms into different categories, is whether

the RL agent has access to or can learn an underlying model of the target environ-
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ment, leading to two broad categories of model-based and model-free algorithms. In
model-based RL, having a model allows the agent to plan ahead by forecasting out-
comes of various choices of action, enabling it to derive a learned policy from these
projections. This results in substantial sample efficiency in model-based RL compared
to model-free RL algorithms. However, having access to a precise model of the target
environment is often not practical. In the absence of a ground-truth model, the agent
has to learn the transition model from experience, which can lead to biases causing
sub-optimal and poor performance in the actual environment. Model-free algorithms,
on the other hand, despite missing out on sample efficiency benefits, are simpler to
implement and tune, making them more popular and extensively explored compared
to model-based approaches.

Model-free RL algorithms are mainly categorized as policy optimization and Q-
learning methods. The policy optimization approaches optimizes policy parameters
0 either with respect to the actual performance objective J(my) or its local approxi-
mations in an on-policy way. However, Q-learning methods are off-policy strategies
that learn an approximator of the optimal action-value function. Policy optimization
methods tend to be more stable and reliable at the cost of being less sample efficient
compared to Q-learning approaches since the off-policy agents utilize the replay buffer
containing the old experiences in contrast to the on-policy agents. Many RL algo-
rithms has been developed which are able to carefully trade-off between the strengths
and weaknesses of either side.

The selection of a control policy in designing intelligent closed-loop neuromod-
ulation systems heavily relies on the dynamics of the underlying nervous system,
existence of prior knowledge about the dynamics of the environment and the effect
of stimulation, dimensionality of the action and state spaces, and more. In addition,
complexities of the interactions between the neuromodulation systems and the ner-

vous system as well as ethical constraints avoids us from testing any novel closed-loop
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strategies in in-vivo experimental setups. Thus, I provided a library of RL algorithms
including model-free, model-based, on-policy, and off-policy RL algorithms for testing
in closed-loop using the the computational model described in section 5.6 for in-silico
prototyping of control strategies. We show the utility and the extensibility of this in-
silico simulation environment in providing insight on the behavior of RL algorithms
in the context of a neuromodulation tasks in terms of speed of convergence and the
quality of learning the optimal control policies which are two important performance
metrics in employing RL algorithms in clinical practice. The high-level explanations
of the RL algorithms are provided in the following sections. The high-level overview
of the modular simulation environment including the computational model in closed-
loop with RL agents is depicted in Figure 5.4.

I deployed three model-free RL algorithms in closed loop with the simulation
environment, including proximal policy optimization (PPO) [169], soft actor-critic
(SAC) [170], and Deep Deterministic Policy Gradient (DDPG) [171] to evaluate the
feasibility of utilizing model-free RL approaches in intelligent closed-loop neuromodu-
lation control systems. The advantage of model-free RL algorithms over more complex
methods is that they do not rely on constructing a sufficiently accurate environment
model and hence, their performance are not affected by model bias. These three algo-

rithms can be divided into two main categories: on-policy (e.g., PPO) and off-policy

(e.g., SAC and DDPG).

5.7.1 Proximal policy optimization

PPO is a policy gradient (PG) method that has shown high quality of performance
in many applications. PG algorithms are a type of RL algorithms that rely upon
optimizing parametrized policies with respect to the expected long-term return using
gradient descent. Unlike vanilla PG [148] that keep new and old policies close in the

parameter space, trust region policy optimization (TRPO) [149] algorithm updates
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policies by taking the largest step possible to enhance the performance while satisfying
a constraint expressed in terms of KL-Divergence on how close the new and old policies
are allowed to be. PPO combines the advantages of vanilla PG and TRPO to ensure
stability and scalability by employing a surrogate objective function to update the
policy parameters.

In this study, we employed PPO-Clip, a variant of PPO that utilizes specialized
clipping in the objective function to prevent significant deviations of the new policy
from the old policy. As a result, PPO offers a simpler implementation, while empiri-
cally performs at least as well as TRPO. PPO is applied in an actor-critic framework.
The actor maps the state to action and the critic gives an expectation of the agent’s
reward with its corresponding state. The policy is updated via a stochastic gradient
ascent optimizer to ensure the exploration while the agent will gradually tend to ex-
ploit what it has learned over the course of training. Here, we used stable baseline

library [150] for implementing PPO algorithm.

5.7.2 Soft actor-critic network

SAC [151, 143] is an actor-critic RL algorithm widely employed in continuous action
spaces for various control tasks. SAC is from the family of off-policy RL algorithms
that optimizes a stochastic policy. A central feature of SAC is entropy regularization
to encourage effective exploration during learning. The policy is trained to maximize
a trade-off between expected return and entropy, a measure of randomness in the
policy, which has a close connection to the exploration-exploitation trade-off. In-
creasing entropy results in more exploration, which can accelerate learning. It can
also prevent the policy from prematurely converging to a bad local optimum, resulting
in stable training. Moreover, SAC leverages neural networks to represent both the
policy and the value functions, enabling it to handle high-dimensional observation

spaces effectively. We employed Stable Baselines library [150] for implementing SAC
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algorithm.

5.7.3 Deep deterministic policy gradient

DDPG is a deep variant of the deterministic PG algorithm, which can also be viewed
as an actor-critic algorithm, using a Q-function estimator to enable off-policy learn-
ing, and maximizing this Q-function by an actor. Since DDPG is a deterministic
policy, we add adaptive noises to the parameters of the neural network to encour-
age exploration [172]. We employed Stable Baselines library [150] for implementing
DDPG algorithm.

5.7.4 Model-based reinforcement learning with model pre-

dictive control

To improve sample efficiency which is a critical factor in iCLON systems, we investi-
gate model-based RL algorithms. The first method is a combination of a model-based
RL algorithm with model predictive control (MPC). Fig. 5.4(b) shows the high-level
overview of this method that consists of two components: learning the underlying dy-
namics of the environment, and using a MPC controller to plan and execute actions.
To approximate the state transition model of the simulation environment, we initially
collect random trajectories and add the history of collected samples to the experi-
ence buffer. The estimated dynamical model f is formulated as $;11 = s; + f (8¢, ay),
where s, and a; are the state and action at step t respectively, following the setting
in this work [173]. We used as a neural network to model the dynamics, where the
parameter vector 6 represents the weights of the neural network, aiming to minimize
the mean squared error { =1/D > . o \cp |0 — 6||? between the observed differ-
ence of two consecutive time steps, i.e. 0 = s;11 — s;, and the model predictions, i.e.

5= fg(St, ay). After initialization, MPC selects the next actions to be evaluated with
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the goal is to minimize the cost function to achieve the synchrony suppression task.
The cost function is in the same format as the reward function in equation 5.2 with

the negative sign and the different value of j3.

5.7.5 Probabilistic inference for learning control

Probabilistic inference for learning control (PILCO) [145] is model-based data-efficient
approach to policy search without considering any prior domain knowledge about the
underlying dynamic. Model-based RL approaches often assume that the learned
dynamics model is sufficiently accurate which will lead to low performance in the
presence of model bias. Model bias is particularly an issue in cases where there is
limited prior knowledge or limited data available. PILCO employ Gaussian process
(GP), a non-parametric probabilistic model [114], that takes the model uncertainty
into account to address the model bias issue. The main advantage of PILCO is
that it remarkably improves the sample efficiency in continuous state-action spaces
which sets the pathway of integration of PILCO in closed-loop clinical settings and
experimental setups.

Consider the following dynamical system z; = f(x;-1),u;—1), Where f is the
unknown state transition function with continuous state, z, and action, u, domains.
The goal of PILCO is to find a deterministic policy that maximizes the expected
return or minimizes the expected cost, c(z;) of following the policy 7 over the time
horizon T as in J.(0) = 2/, Ex,[c(21)], 70 ~ N (o, Xo). PILCO assumes that 7 is a
function parametrized by 6 and that the cost function ¢(x) encodes some information

about a target state Z4rget. We used the squared exponential cost function.
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5.8 Results

5.8.1 Synchrony suppression using reinforcement learning al-

gorithms

We have created a suite of simulation environments using a biophysical models of
brain stimulation to design and test intelligent closed-loop neuromodulation systems.
We employed the mechanistic model of the population of N regularly oscillating neu-
rons, i.e. Bonhoeffer—van der Pol model implemented in the format of OpenAl gym
which is a standard environment for designing intelligent agents. Using this setup,
we demonstrated in-silico experiments to design iCLON systems using the state-of-
the-art RL algorithms for suppressing pathological synchrony. We evaluated the per-
formance of five different RL algorithms in the synchrony suppression task in terms
of the quality of learning the task and sample efficiency which are two key factors in
designing iCLON algorithms. We used the stable baseline library for implementation
of the model-free RL algorithms, i.e. PPO, SAC, and DDPG. In our implementa-
tions, we used two hidden layers MLPs with 64 neurons for all three model-free RL
algorithms. Fig. 5.5(a) shows the reward function during the training phase of the
three model-free algorithms. As shown in Fig. 5.5(a), SAC and DDPG which are
off-policy algorithms converge faster compared to PPO which is an on-policy method.
However, PPO achieves a higher reward and a better final performance in learning
the synchrony suppression task at the expense of more interaction with the neural
environment. The quality of performing the task after convergence is shown in Fig.
5.6(a)-(c), where the first 7500 samples are showing the oscillatory behavior of the
neural populations without taking any action, i.e. applying any stimulation pulses.
The middle 7500 samples is showing the neural states by taking actions with the
learned RL policies, and the last 7500 samples show that the population of neurons

start synchronizing again if we stop the intervention.
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We further expanded the library of algorithms by adding two model-based ap-
proaches to improve sample-efficiency. The first approach is model-based RL with
MPC. In our implementations we used a single-layer MLP with 500 neurons for mod-
eling the underlying neural dynamics. Fig. 5.5(b) show the reward value of the MPC
approach. Although model-free methods require at least 1e6 samples to converge,
the model-based RL with MPC has shown improvement in terms of sample efficiency
and converges at around 2.5e4 steps. However, there is still room for improvement
in terms of its final performance in the synchrony suppression task as depicted in
Fig. 5.6(d) and having 2.5e4 interactions with the nervous system might still be
impractical for in-vivo experiments.

The next model-based RL algorithm that we tested is PILCO. As shown in Fig.
5.5(c), after a random initialization phase of length 300 steps, the RL agent quickly
converges and learns the synchrony suppression task as shown in Fig. 5.6(e). Al-
though the best final performance in terms of synchrony suppression and minimizing
the power of actions is achieved by PPO, but that is at the cost of having at least 3e6
interactions with the environment that is not practical for being integrated in iCLON
systems in clinical practice. On the other hand, PILCO shows a noticeable improve-
ment in sample efficiency at a cost of consuming slightly higher action power and
slightly higher level of synchrony which is much more well-suited for clinical practice.
In general, our evaluations support the hypothesis that RL algorithms are capable
of handling the decision-making process in closed-loop neuromodulation control sys-
tems. In addition, we showed the utility of simulation environment in designing and

prototyping iCLON systems in silico before testing in in-vivo experiments.
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Figure 5.5: Learning performance (reward values) of different RL-based iCLON systems
using (a) Deep RL algorithms, (b) model-based RL with MPC, and (¢) PILCO.
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Figure 5.6: Performance of different RL algorithms in the synchrony suppression task during
the inference mode.

5.8.2 CNF implementation of iCLON systems using deep RL
algorithms

The three iCLON system designed to perform the synchrony suppression task using
deep RL algorithms have been implemented using CNF program. A modular design
has been considered to separate the training from inference mode of the RL agents as
depicted in Figure 5.7. The main reason behind separating the training and inference
mode is that the RL policies in inference mode are being implemented on FPGA
(see Figure 5.7, and section 5.8.3). In addition, the runtime latency measurements of

these implementations are added to table 5.1.
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Figure 5.7: Modular implementation of RL-based iCLON systems using Deep RL algo-
rithms. This modular design separates the training from inference modes. The RL policy
in inference mode is targeted to be implemented on FPGA.

Table 5.1: Runtime latency measurement in ms for CNF implementation of the three iCLON
systems for synchrony suppression using deep RL algorithms.

Gym Environment | RL Inference | Rollout Collection | End-to-End latency
PPO 2.67 3.43 9.45 28.4
SAC 2.58 1.18 1.34 5.93
DDPG 2.61 1.24 1.28 6.17

5.8.3 FPGA execution of deep RL agents in inference mode

The Deep RL policies during the inference mode was implemented in SystemVer-
ilog. We used Xilinx Vitis tools to synthesize and implement the design on a Xilinx
U280 FPGA. The FPGA prototype sustains an operating frequency of 100 Mhz. We
compare our hardware implementation with Mr.Wolf, a publicly available, state-of-
the-art fully programmable low-power SoC. Mr Wolf consists of a two-stage RISC-V
low-power processor for system control and a compute cluster of 8 RISC-V cores as an
accelerator for compute-intensive workloads. It is further augmented by the XPulpNN
ISA extension that enables SIMD arithmetic operations on INTS8 data type. Mr Wolf
SoC consumes 153mW at 350MHz with an active Compute Cluster.

Quantization is a fundamental approach to enabling performance, energy/mem-
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ory efficient Neural network inference on low-power architectures. Although there is
extensive research on the effect of quantization on accuracy for DNN, there is far less
research on how quantization affects the accuracy of RL networks. Recent works [174]
demonstrated that post-training quantization has minimal effect on network accuracy
for a wide range of RL networks. Based on the open-sourced evaluation framework
from QuaRL [174], we quantized the benchmark networks using the PyTorch quan-
tization tool and evaluated its effect on network accuracy. Our evaluation confirmed
the conclusion of previous work. Based on this finding, we use these quantized net-
works for compilation and performance evaluation on our FPGA prototype. We use
NEMO, a quantization tool developed by the same research group that developed
Mr. Wolf to o execute the quantized network on Mr. Wolf.

We evaluate the FPGA implementation through iso-power inference latency com-
parison with the baseline. The inference latency is measured in cycle count. To
measure the latency on the FPGA prototype, we first compile the benchmark net-
works” ONNX format into executable binaries using the Neuroweaver compiler. The
compiled binaries and the network parameters are then stored in main memory buffers
shared with FPGA implementation using CDI and PyOpenCL. We launched the in-
ference task through CDI and a performance counter module integrated with the cycle
of execution during inference. Once the inference is done, the performance counter
passes the cycle count statistics back to the host through the CDI.

We obtained the performance number of Mr. Wolf using GVSoC, an open-source
software simulator developed by the same research group that developed Mr. Wolf.
GVSoC targets the full-platform simulation of the Mr. Wolf SoC and has less than
10% simulation error for performance analysis compared to an actual physical im-
plementation. To obtain the best possible performance on Mr.Wolf with GVSoC, we
employ the Neural Network deployment framework native to Mr.Wolf which consists

of NEMO, a network quantization tool, DORY, a neural network deployment tool
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that generates memory-optimized code for neural network workloads, and XPulpNN,
a RISC-V ISA extension that enables low-bitwidth arithmetic SIMD vector instruc-
tion for Neural Network workload. We use the same set of benchmark network ONNX
format as inputs to the NEMO quantization tool and execute the binaries generated
by DORY on GVSoC. We keep Mr. Wolf’s hardware configuration the same as re-
ported in the paper for iso-power comparison. We also simulated standalone network
kernels such as Matmul and Relu provided by XPulpNN to cross-validate the end-to-
end performance number obtained using the NEMO/DORY framework.
The experimental results of this analysis is provided in table 5.2.

Table 5.2: Comparison of layer-by-layer and end-tot-end execution of Deep RL algorithms
in inference mode on FPGA compared to XPulpNN in terms of speed up.

Workload Sum of layer-by-layer re- | Projected end-to-end re-
sults on FPGA sults on FPGA

PPO 2.95x 3.54x

SAC 4.45x 4.61x

DDPG 4.75x 4.87x

5.8.4 In-vivo experiments

To demonstrate the capabilities of the Neuroweaver platform in integration with in-
vivo experimental setups, we ran real-time in-vivo experiments using Neuropixels
multi-channel probes to control an LED light based on the theta-band power of the
LFP signals recorded from the hippocampus in rats (Figure 5.8. The Neuropixels
probes collected LFP signals with a sampling frequency of 30K H z, bit depth of 16 and
bit volt of 0.195uV. The recoreded LFP signals was filtered to remove low frequency
LFP data and high frequency spiking data, and the LFP signal was subsequently
down sampled into 2.5K Hz. Data from Neuropixel probes was streamed into Open
Ephys software on the recording PC, which recorded all data and streamed selected
LFP channels to our platform.

A workflow in Neuroweaver platform was created for the real-time closed-loop
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system. The workflow consisted of a pacemaker component that creates dummy
input to all data collecting components to drive their execution. Data collecting
components included 2x Open Ephys interface components that received data from
each probe sent by separate ZeroMQ plugin in Open Ephys, and a camera component
that communicated with FILR Flea 3 camera with Spinnaker SDK provided by FILR.

The Open Ephys interface components stored the collected data in a buffer and
pushed a data packet of 4,096 samples downstream every 256 samples (both numbers
are adjustable parameters). They also recorded and logged the timestamp when
the Open Ephys ZeroMQ@ plugin encoded the last packet of data, marking when data
became available. The camera interface component received every frame taken by the
camera and its timestamp. The frames were stored into a MJPG video file encoded
with OpenCV on disk, and also displayed a real-time monitor window on screen. The
timestamps of each frame were also logged.

Data processing for this experiment consists of a simple FFT component that
picked the data of one channel (data from all received channels are sent to the process-
ing component), performed FFT, and calculated the power within the theta frequency
band (5 —9Hz). This power was logged, pushed into a separate component that dis-
played a real-time plot on screen, and sent to the stimulation algorithm downstream.
Here the stimulation algorithm was simple threshold-based control.

The stimulus presentation in this experiment was an on-screen display of an in-
dicator light turning green or red. The latency overhead by Neuroweaver in in-vivo

experiments was measured to be 38.261+7.69ms during a 20 minutes recording session.

5.9 Discussion

We presented an open-source platform, dubbed Neuroweaver, for end-to-end design-

ing, prototyping and deploying translatable intelligent closed-loop neuromodulation
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Figure 5.8: In-vivo experiments. (a) Schematic of the experimental design where the LEP
signals are being recorded from hippocampus in rats, DSP techniques was used to preprocess
the recorded LFP signals and calculate the theta-band power. A simple threshold-based
controller based on the theta-band power is used to turn an LED on/off. The LED is used
as a surrogate of stimuli to close the loop.

systems. The main purpose of Neuroweaver is to bridge the translational gap between
designing and deploying clinically useful iCLON systems from multiple perspectives.
First, it provides a simulation environment using computational model(s) of the neural
systems for designing, testing, and prototyping closed-loop neuromodulation systems
before deploying in clinical or in in-vivo experimental settings. Second, it provides
libraries of algorithms from multiple domains including RL, signal processing and
machine learning to enable modular design of closed-loop pipelines. Finally, Neu-
roweaver enables cross-domain multi-acceleration to enable developing implantable
iCLON systems.

In this study, I demonstrated the utility of Neuroweaver in experimental design of
iCLON systems using a computational model of the brain under electrical stimulation.
The Performance of different RL-based iCLON strategies (including model-based,
model-free, on-policy, and off-policy approaches) have been evaluated in a synchrony
suppression control task. The utility of employing the RL algorithms in iCLON
systems considering two metrics including speed of convergence as in Fig. 5.5 and the

quality of learning task as shown in Fig. 5.6. This model represented an example of
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physiological models that can be used for designing iCLON systems. The Neuroweaver
platform is capable of incorporating different computational models as surrogates of
the target physiological system. These models may include mechanistic biophysical
models or data-driven models that are built from the experimental data. Although
we showed the utility of Neuroweaver in experimental design using the simulation
framework, adding compatibility to multiple well-developed libraries of computational
models is a promising future direction.

Neuroweaver provides a framework to explore algorithm-hardware co-design for
a broader community including neuroscientists, clinicians, and engineers to explore
research in building such brain implantable devices. FPGA acceleration has been
implemented for multiple RL-based iCLON systems as described in section 5.8.3. The
flexible cross-domain multi-target acceleration capabilities of Neuroweaver enables the
users to explore the design of novel iCLON systems. Although, hardware acceleration
on FPGA has been demonstrated for multiple algorithms, these capabilities need to
be expanded for a wider range of algorithms to provide more flexibility to non-expert
users.

In this study a prototype closed-loop experiment was implemented using CDI,
compiled, and executed the simulation using Neuroweaver workflow to interface with
an in-vivo experimental setup. The results showed that Neuroweaver workflow does
not add a significant computing overhead to the execution of the closed-loop pipelines.
This is an important factor especially for the real-time implementation of iCLON

algorithms.

5.10 Conclusion

This research presented Neuroweaver, an open-source translational platform for em-

bedding AI in iCLONs system. The platform is aimed to bridge the translational
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gap between research studies and clinical practice. Neuroweaver not only provides
a simulation environment for modular designing and prototyping closed-loop neuro-
modulation pipelines, but also minimizes the complexities of translating the algorithm
to implementation through a Python-embedded CDI which compiles algorithms to
one or more software frameworks or target architectures. The utility of Neuroweaver
in designing and prototyping iCLON systems was demonstrated by designing multi-
ple RL-based iCLON strategies. Moreover, the results showed that implementation
and execution of the closed-loop simulations using Neuroweaver workflow does not
add execution overhead which is critical for real-time implementation of iCLON in-
terfaces. Integrating hardware acceleration on FPGA showed an improved execution
time compared to other platforms. This hardware acceleration is aimed to be per-
formed with minimal complexity of translating the algorithms to implementation for
the end-users to enable exploration of embedded implantable iCLON systems for a

broader community.
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Chapter 6

Conclusion and future direction

Despite the challenges faced in developing and implementing the iCLON systems,
the potential benefits of utilizing them to treat neurological disorders make this field
of research and development highly promising. These systems hold the potential to
provide more targeted, flexible, and effective treatment options, reduce the burden of
medication side effects, and improve the overall quality of life for patients. This thesis
significantly contributed to the development of intelligent precision neuromodulation

therapies that has the potential to revolutionize the standard of care.

6.1 Contributions to the field

This research significantly advances the field of closed-loop neuromodulation and
contributed to the development of iCLON systems that autonomously learns and
adapts to the intricate and varying nature of the target nervous system. The key
contributions of this thesis are described below.

This thesis contributed to the development of multiple simulation environments.
These environments, essential for designing iCLON systems, provide a safe and con-
trolled setting for testing and prototyping these systems in silico before integrating

in experimental setups. They enable rapid design iterations, facilitating the tran-
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sition from concept to clinical application. This approach addresses the challenges
of interacting with the complex and sensitive nervous system, ensuring safety and
efficacy.

Introduction of control tasks to facilitate the development and clinical translation
of iCLON systems is another contribution of this research. The thesis introduces
specific control tasks that replicate real-world clinical scenarios. These tasks include
designing systems for minimizing tremor severity in PD and ET patients, regulating
HR and MAP in cardiovascular system with selective VNS, and suppressing neural
synchrony in PD.

Furthermore, this research contributed to the advancement in control policies for
designing novel and more effective iCLON systems. Moving beyond trial-and-error
and traditional control approaches, this research leverages Al and RL to develop data-
driven control strategies. These strategies enable iCLON systems to autonomously
learn and optimize neuromodulation controls, offering a more effective, adaptive, and
patient-specific approach to treatment.

Implementation of novel data-driven control strategies in the context of multiple
neuromodulation applications is another key contribution of this research. I success-
fully applied these innovative control strategies in various neuromodulation appli-
cations, including automated DBS programming framework with safety constraints
for tremor suppression, cardiovascular system regulation with selective VNS, and
synchrony suppression with DBS in PD. This demonstrates the generalizability and
effectiveness of the developed systems across different neuromodulation applications.

Another contribution is the development of an end-to-end translational research
platform for the design and implementation of iCLON systems which has been a
collaborative effort. This platform incorporates an algorithm-hardware co-design ap-
proach, facilitating the development of brain-implantable devices that can learn and

adapt control policies autonomously. It addresses the computational challenges of Al
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and reinforcement learning, offering a scalable and customizable architecture suitable
for a broad range of research and clinical applications.

In general, this thesis lays the groundwork for a new era in treating treatment-
resistant neurological disorders, offering more targeted, effective, and personalized
treatment options. The integration of advanced simulation environments, practical
control tasks, Al-driven control policies, and an end-to-end translational research and
development platform illustrates the potential of iCLON systems to revolutionize the

patient care and open new frontiers in neuromodulation technologies.

6.2 Future work

The development of automated intelligent closed-loop neuromodulation systems is an
exciting and rapidly evolving field, with numerous future directions for research and
development.

Interpretability is becoming an increasingly important aspect of AI and machine
learning systems, especially in the medical domain, where decisions made by these
systems can have a significant impact on patient health outcomes. In the context of
closed-loop neuromodulation systems, interpretability is important in ensuring that
clinicians and patients can understand how the system is making decisions and have
confidence in the system’s ability to optimize treatment outcomes. Moreover, de-
veloping intelligent closed-loop neuromodulation systems that are more interpretable
will also improve the regulatory approval process, as it will be easier to assess the
system’s safety and efficacy. Integration of interpretable machine learning and re-
inforcement learning models into the design of iCLON system is a promising future
direction.

Neuromodulation therapies modulates the desired neural activity by delivering

electrical or magnetic stimuli to the targeted regions. Due to the intricate and dy-
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namic nature of the nervous system, the underlying causes of the disease may induce
multiple symptoms that we are interested to treat simultaneously. In addition, ap-
plying the intervention to targeted regions might induce adverse side effects. Defining
the algorithmic design of iCLON systems as a multi-task learning (MTL) problem
enables the system to simultaneously perform multiple related tasks. Multi-task learn-
ing is a machine learning technique that involves training a single model to perform
multiple related tasks simultaneously which helps with improved accuracy, better
generalization, and increased efficiency. By sharing information between tasks, MTL
can learn representations that are more robust and transferable across tasks, leading
to improved accuracy and generalization. Additionally, by training a single model
to perform multiple tasks, MTL can be more computationally and sample efficient
than training separate models for each task, particularly when the tasks share similar
features or require similar computations.

Although developing simulation environments help with testing and prototyping
iCLON systems and algorithm selection in silico before testing in clinical experimen-
tal setups, there is still a translational gap in simulating potential challenges in real
experimental setups. Future developments in this area help with minimizing the
translational gaps by simulating real-world scenarios including simulating the noise
of observation and action spaces, simulating the effect of artifacts, variations across
different subjects, and disease subtypes. Incorporating data-driven dynamical mod-
eling approaches may also better reproduce the real-world experimental setups and

helps with reducing the translational gaps.
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