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Abstract

Reducing Operator Complexity in Algebraic Multigrid
with Machine Learning Approaches

By Kai Chang

Large-scale sparse linear systems arisen from discretizing partial differential equa-
tions (PDEs) appear ubiquitously in science and engineering. Algebraic multigrid
methods (AMG) are among the most efficient algorithms for numerically solving such
systems. However, AMG often suffers from the problem of increasing density (i.e.,
increased number of non-zero entries in the linear operator) as a parallel solver, which
induces an excessively high computational cost for tasks, such as data communica-
tions, other than the actual computations. How to alleviate this issue to improve the
efficiency and scalability of AMG remains challenging and crucial.

In this thesis, we try to tackle this problem by leveraging modern data-driven
methods. We propose a multilevel deep learning method to sparsify all the discretized
coarse-grid operators in the hierarchy of multigrid methods when solving parametric
PDEs, i.e. PDEs dependent on some parameters. The method succeeds in reducing
the number of non-zero entries in all the discretized operators by at least 44%. Strictly
following the multigrid convergence theory, the method does not trade sparsity with
the convergence behaviour of multigrid methods. Another key feature of the method
is its capability of generalizing to not only problems of larger sizes, but also PDEs with
different parameters from those in the training set. This allows the trained sparsifiers
to be used in various settings aside from the training instances, thereby enhancing
the practical utility of the algorithm. We provide extensive numerical experiments
on challenging anisotropic rotated Laplacian problems and linear elasticity problems
to illustrate its superior performance.
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Chapter 1

Introduction

We consider the problem of solving a linear system of the form

Aβu = f , (1.1)

where Aβ ∈ RN×N is a symmetric positive definite (SPD) linear operator obtained

by discretizing certain parameteric partial differential equations (PDEs) dependent

on some parameters β ∈ Rp, u ∈ RN is the solution, and f ∈ RN is some forcing

term.

Over the past several decades, a tremendous amount of computational mathe-

matical research has been devoted to the development of fast algorithms for solving

(SPD) linear systems due to their ubiquitous appearances in various areas of science

and engineering. There are two major types of linear solvers: direct solvers and

iterative solvers; and they are intrinsically different from each other.

Direct solvers are based on Gaussian eliminations and matrix LU decompositions.

They typically take advantage of the structure of a matrix, such as its sparsity or

bandedness, to identify an efficient way of doing the LU decomposition. After the LU

factors are obtained, solving the system will be rather easy as the complexity is only

O(N2). Direct methods are accurate when they are able to finish within a reasonable
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amount of time, since they attempt to find the true solution. In contrast, iterative

methods are based on the idea of finding some reasonably good approximations to

the true solution in some vector space. They thus are often not as accurate as direct

solvers, but are “accurate enough” for practical usage.

Nowadays, although state-of-the-art (SOTA) direct solvers can achieve quite re-

markable performance for certain problems, iterative methods have become more and

more favorable over direct methods, and there are many good reasons behind this.

We list two major ones here. First, direct solvers can be extremely slow when they

are applied to hard problems such as 3-dimensional problems and even 2-dimensional

problems with many degrees of freedom per point. The memory and computational

requirements of those problems make them unlikely to be handled by direct solvers.

Second, many of the most efficient iterative methods depend only on matrix-vector

products and are thus easier to implement efficiently. Such a feature makes iterative

solvers more user-friendly in practice than direct solvers.

Among all those iterative methods, Algebraic Multigrid (AMG) is one of the most

efficient and scalable algorithms for solving (1.1). For systems that arise from dis-

cretizations of elliptic-type PDEs, classical AMG methods can often show the optimal

linear computational complexities. Nevertheless, improving the efficiency of AMG is

still actively being researched and remains challenging by and large. The overall

efficiency of AMG relies on the several key operators of AMG and the interplay be-

tween them. There has been a line of works to design better AMG elements by

leveraging data-driven methods. [20, 16, 13] deal with learning better prolongation

(a.k.a. interpolation) operators. [30] takes advantage of techniques in deep reinforce-

ment learning to better tackle the problem of optimally partitioning the fine level

nodes during coarsening. Both [14] and [18] focus on the problem of learning bet-

ter smoothers (relaxation matrices). In [14], smoothers are directly parameterized

by multi-layer CNNs while [18] focuses on learning to assign better weights to the
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weighted-Jacobi-type smoothers.

In this work, we tackle the problem of increasing complexities of coarse-grid opera-

tors, computed as Galerkin products, along the levels of AMG hierarchies. This issue

has adverse effects of the overall performance of AMG as it can increase the compu-

tational cost of applying the operators in deeper levels, can impair the effectiveness

and robustness of other AMG components such as coarsening algorithms and interpo-

lating algorithms, and can make the communications more expensive in distributed

computing environments, to name a few. Traditional “Non-Galerkin” approaches to

reduce the operator complexity employs sparsification of the Galerkin product by,

for instance, removing weakly connected nodes, minimizing spectral in-equivalence of

stencils, and sparsifying smooth aggregations, [10, 32, 3].

We take on a different perspective by using deep learning methods to find sparsified

operators on each level. Our contributions are summarized as follows:

• we developed a multi-level algorithm based on the deep learning methods to

sparsify all the coarse-grid operators in the multigrid hierarchy;

• our method succeeds in reducing the operator density while maintaining the

convergence behavior of the employed multigrid method ;

• our models, once trained, work for a class of parametric PDEs with the param-

eters following certain probability distributions;

• the sparsifier on each level can be trained in parallel once the training data is

prepared;

• and the averaged number of non-zero entries per row in the coarse-grid operators

can be chosen by the user, despite having to be greater than a certain amount.

The rest of the thesis is organized as follows. In Chapter 2, we provide necessary

backgrounds on discretizations of PDEs and their stencil representations. In Chapter
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3, some relevant iterative methods for solving linear systems are reviewed. Followed by

introducing the problem of increasing operator density (and therefore complexity) in

Chapter 4, which is the primary motivation for our work, we elaborate on our proposed

machine-learning-based coarse-grid-operator sparsification method in Chapter 5. We

present the numerical experiments and results in Chapter 6, discuss the limitation

of our method and possible future works in Chapter 7, and conclude the work in

Chapter 8.



5

Chapter 2

Preliminaries

In this chapter, we provide some preliminary backgrounds on numerical PDEs and

deep neural networks. In particular, we discuss a multi-headed neural network in-

spired by the attention mechanism in Section 2.3, which will be used later in our

algorithm. For a more comprehensive introduction to numerical PDEs and deep

learning, see [24, 25, 31] and [11, 23] respectively.

2.1 Discretizations of PDEs and Stencil Represen-

tations

The solution of a PDE, more often than not, cannot be expressed with an analytical

formula. Therefore, it is necessary to approximate the solutions numerically on a

computing device. In order to do so, the first step is to transform the equation into

something that a computer can understand. Mathematically, this process is known

as discretization, which is to artificially place some points in the domain on which the

equation of interest is defined. After discretization, the equation is transformed into

a linear system, which is understandable by a computer. The approximate solution

can then be obtained from there. In this chapter, we discuss briefly the process of
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discretization.

We use a classical example to introduce some necessary background on discretiza-

tions of PDEs. Consider a 2-dimensional Poisson’s Equation

−∆u = f

defined on the unit box D := [0, 1] × [0, 1] ∈ R2 and subject to certain boundary

conditions. A classical approach to discretize the equation is through the second-

order finite difference scheme with equal spatial step on the x− and y−axis, which

reads

−∆u(xi, yj) ≈
−ui+1,j − ui,j+1 + 4ui,j − ui−1,j − ui,j−1

h2
(2.1)

where 

h = 1
N

xi = ih, 0 ≤ i ≤ N

yj = jh, 0 ≤ j ≤ N

ui,j = u(xi, yj), ∀i, j

.

The points {(xi, yj)}Ni,j=0 are known as the discretization points. Note that it is not

hard to verify through Taylor’s expansion that

ui,j =
−ui+1,j − ui,j+1 + 4ui,j − ui−1,j − ui,j−1

h2
+O(h2),

and that is why the method is second-order — the truncation error decreases quadrat-

ically with the fineness of the discretization points.

We plug (2.1) back into the original equation and can then obtain

−ui+1,j − ui,j+1 + 4ui,j − ui−1,j − ui,j−1

h2
= fi,j
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where fi,j = f(xi, yj). If we list up the equations for all i and j, we may write it out

neatly as a linear system

Au = f (2.2)

where

A =
1

h2
·



4 −1 0 −1 0 . . . 0

−1 4 −1 0 −1
. . .

...

0 −1 4 0 0
. . . 0

−1 0 0 4 −1
. . . −1

0 −1 0 −1 4
. . . 0

...
. . . . . . . . . . . . . . . 0

0 . . . 0 −1 0 0 4



∈ R(N+1)2×(N+1)2 ,

u = [uT0 ,u
T
1 , ...,u

T
N−1,u

T
N ]T ∈ R(N+1)2 ,

ui = [ui,0, ui,1, ..., ui,N−1, ui,N ]T ∈ R(N+1), 0 ≤ i ≤ n,

f = [fT0 ,f
T
1 , ...,f

T
N−1,f

T
N ]T ∈ R(N+1)2 ,

and

fi = [fi,0, fi,1, ..., fi,N−1, fi,N ]T ∈ R(N+1), 0 ≤ i ≤ n.

There is a neater representation for the matrix A, known as the stencil repre-

sentation. It is typically used to represent a family of matrices out of a specific

discretization scheme regardless of the number of discretization points, or the mesh

size. The idea of using such a representation is as follows. In the discretization

scheme (2.1), no matter how i or j changes, the coefficients in front of the solution

at the discretization points, i.e. ui+1,j, ui,j+1, ui,j, ui−1,j, and, ui,j−1 remain the same.

Therefore, what really matters here are the coefficients instead of the number of
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discretization points. We thus use the matrix

A =


−1

−1 4 −1

−1


to represent the family of matrices defined by the same discretization scheme (2.1)

regardless of the mesh size. This notation allows us to represent a family of matrices

which will come in handy later in the thesis.

2.2 Deep Neural Networks

From a mathematical point of view, a deep neural network is simply a composition

of some non-linear and affine functions. Consider a data matrix X ∈ Rd0×n where

each column of X represents a data point. X is what will be inputted into a neural

network. To demonstrate the whole architecture, we start with the first layer, which

consists of an affine transformation

H [1] ←W [1]X + b[1]1T

followed by a non-linear activation function σ : R→ R applied point-wisely on H [1],

Z [1] ← σ
(
H [1]

)
,

where W [1] ∈ Rd1×d0 is the weight matrix in layer 1, b[l] ∈ Rd1×1 is the bias vector in

layer 1, 1 ∈ Rn×1 is an all-one vector, and Z [1] ∈ Rd1×n denotes the output of the first
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layer. The rest is essentially a recursion of the first layer: in the lth layer, we have

H [l] ←W [l]Z [l−1] + b[l]1T ,

Z [l] ← σ
(
H [l]

)

where W [l] ∈ Rdl×dl−1 is the weight matrix in the lth layer, b ∈ Rdl×1 is the bias

vector in the lth layer, Z [l] ∈ Rdl×n denotes the output of the lth layer, 1 ≤ l ≤ L,

and Z [0] := X.

Some typical choices of the activation function σ are

• the sigmoid function σ(x) =
1

1 + e−x
,

• the rectified linear unit function ReLU(x) = max{0, x},

• and the hyperbolic tangent function tanh(x) =
2

1 + e−2x
− 1.

Another function that is often used in classification tasks is the softmax function.

Consider an input vector

x := [x1, x2, . . . , xd]
T ∈ Rd.

The softmax function applied on the vector is defined as

softmax(x) := [y1, y2, . . . , yd]
T

where

yj :=
eyj∑d
i=1 e

yi
.
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2.3 A Multi-Headed Neural Network

Later in our algorithmic development, we will use a so-called multi-headed neural

network as our network architecture. We name it as such because it is inspired by the

multi-headed attention mechanism proposed in [34]. It is an empirical observation

that such a network works much better than the vanilla neural networks for our task.

The network is described as follows.

In the lth layer, we first copy the input Z [l−1] for r times, and stack them up as a

new matrix:

Z [l−1] ←



Z [l−1]

Z [l−1]

...

Z [l−1]


∈ Rr·dl−1×n.

We then apply the affine transformation

H [l] ←W [l]Z [l−1] + B[l],

while this time the weight matrix W [l] is defined as

W [l] :=



W [l,1] 0 0 0

0 W [l,2] 0 0

0 0
. . . 0

0 0 0 W [l,r]


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where W [l,j] ∈ Rdl×dl−1 for 1 ≤ j ≤ r, and

B[l] :=



b[l,1]1T

b[l,2]1T

...

b[l,r]1T


where b[l,j] ∈ Rdl×1 for 1 ≤ j ≤ r and 1 ∈ Rn×1 is an all-one vector. Followed by this,

we do

Z [l] ← σ
(
H [l]

)
and

Z [l] ← R[l]Z [l]

where R[l] ∈ Rdl×r·dl maps everything back to the normal dimension. We will refer to

a network with layers like this as a multi-headed neural network.
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Chapter 3

Iterative Methods for Solving

Linear Systems

In this chapter, we review some of the iterative methods relevant to this work. We

first talk about relaxation methods, also known as stationary iterative methods, since

they form a crucial component of the multigrid methods. After that, we briefly review

the Generalized Minimal Residual (GMRES) method, which is one of the most well-

known “general-purpose” iterative methods developed so far. We include GMRES

here because it is often used as a top-level accelerator in multigrid methods, and it

is used in our numerical experiments later. Last but not least, we give a detailed

introduction on multigrid methods, our main focus in this work.

We remark that our discussions of the algorithms are by no means complete. We

refer the audience to [27, 33, 12, 19] for a more comprehensive introduction of iterative

methods and to [8, 29, 36, 9] for multigrid methods.
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3.1 Relaxation Methods

3.1.1 The Basic Form

Recall that our goal is to solve a linear system of the form

Aβu = f (3.1)

where Aβ := [aij] ∈ Rn×n is an SPD matrix, β ∈ Rp is some parameter, and u,f ∈ Rn

are column vectors. Note that we keep the β here entirely for the consistency of

notations. Here we think about (3.1) as a linear system, and the parameter does not

matter to the algorithms introduced in this whole chapter.

A relaxation method approximates u by taking iterations of the form

uk+1 = (I −M−1Aβ)uk + M−1f (3.2)

where M is a so-called relaxation matrix. If we let G = I−M−1Aβ, we may rewrite

(3.2) into

uk+1 = Guk + M−1f (3.3)

where G is the iteration matrix associated with (3.2).

3.1.2 Examples of Relaxation Methods

Suppose Aβ is splitted into three matrices: Aβ = D −L−U where
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D =



a11 0 . . . 0

0 a22
. . .

...

...
. . . . . . 0

0 . . . 0 ann


, −L =



0 0 . . . 0

a21 0
. . .

...

...
. . . . . . 0

an1 . . . an,n−1 0


, and −U =



0 a12 . . . a1n

0 0
. . .

...

...
. . . . . . an−1,n

0 . . . 0 0


.

When M = D in (3.2), the method is called the Jacobi method; when M = ωD

where 0 ≤ ω ≤ 1, it is the weighted Jacobi method; when M = D − L, it becomes

the forward Gauss-Seidel method; the backward Gauss-Seidel method corresponds to

the case where M = D − U ; and when M = 1
ω
D − L where 0 ≤ ω ≤ 1, we are

looking at the Successive Over Relaxation method.

Let us denote the residual of the kth iterate as rk; that is,

rk := f −Aβuk. (3.4)

We denote the true solution to (3.1) as u∗; i.e. Aβu∗ = f . When applying a

relaxation method, the approximation error in the k + 1th iterate is defined as

ek+1 := u∗ − uk+1

= u∗ −Guk −M−1f

= u∗ −
(
I −M−1Aβ

)
uk −M−1f

= u∗ − uk + M−1Aβuk −M−1f

= ek −M−1
(
f −Aβuk

)
= ek −M−1rk

= (I −M−1Aβ)ek = Gek. (3.5)

Equation (3.5) provides a simple convergence criteria for relaxation methods: a re-
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laxation method is guaranteed to converge when the spectral radius of the iteration

matrix G is less than 1. That is, when

ρ(G) < 1.

Also note that we employed the fact that

rk = Aβek (3.6)

for all k when deriving (3.5).

3.2 Krylov Subspace Methods and the General-

ized Minimal Residual (GMRES) Method

The Generalized Minimal Residual method (GMRES) [26] belongs to a larger class of

algorithms called the Krylov subspace algorithms. In this section, we give a high-level

introduction to why Krylov subspace methods work and the idea behind GMRES.

Let us first define what a Krylov subspace is.

Definition. A Krylov subspace, denoted by Km(A,f) where m is an integer, A ∈

Rn×n is a square matrix, and f is a starting vector, has the form

Km (A,f) = span{f ,Af , . . . ,Am−1f}.

In the mth iteration of a Krylov subspace algorithm, an approximate solution um

to the linear system

Au = f

is searched in the spaceKm (A,f), given that the initial guess u0 = 0. To demonstrate



16

why this could be (and actually is) a good idea, we consider the case when A is non-

singular. Then the obvious closed form solution to the system is

u∗ = A−1f .

Now, by the Cayley-Hamilton Theorem [28], the charateristic polynomial of A,

cA(λ) = det(A− λI) :=
n∑
j=0

ajλ
j

has the property of

cA(A) = 0.

Note that since A is non-singular,

cA(0) = det(A) = a0 ̸= 0.

We thus have
n∑
j=1

ajA
j = −a0I

where a0 ̸= 0, which implies that

A

n−1∑
j=0

−aj
a0

Aj

 = I.

Therefor, A−1 can be expressed as p(A) where p(x) is a polynomial with a degree

of at most n − 1. This justifies that searching a solution in the Krylov subspace is

reasonable.

GMRES is one of the most robust Krylov subspace method for solving a general

linear system [33]. It is optimal in the sense that in the mth iteration, it searches for
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a vector y that minimizes the 2-norm of the residual

∥f −AVmy∥2

where the columns of Vm form an orthonormal basis for Km(A,f).

3.3 The Multigrid V-Cycle

Multigrid methods rely on solving a series of problems to approximate the solution

of (3.1). There are different ways to formulate multigrid methods, and each of them

could be useful in various scenarios. Here, we limit our discussion to the multigrid

V-cycle, which is arguably the most natural and popular kind of multigrid methods

in the literature. For other kinds, such as the W-cycle and full cycle, we refer the

readers to [8]. Note that we will consider Galerkin-product-based multigrid methods

only.

There are several concepts that we need to formalize to more rigorously introduce

multigrid methods. The first is the concept of “level”. We let Ωl denote the space of

vectors of dimension Nl. On the lth level of the V-cycle scheme, we are given a linear

system

A
(l)
g,βe

(l) = r(l) (3.7)

where A
(l)
g,β is an operator mapping from Ωl to Ωl. In its matrix form, A

(l)
g,β is of size

Nl×Nl, and we remark that Nl decreases as l increases. Note that (3.1) is the linear

system on the first level and that we assume the Lth level to be the last level.

The second is the concept of smoothing and smoothness. Let us first define what

a smoothing step means in multigrid methods. Applying a smoothing step to a

linear system is to apply a relaxation method (introduced in Section 3.1) for several

iterations to approximate the solution of the linear system. The matrix M in (3.9)
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is therefore also known as a smoother. Recall that we have derived in (3.5) that

applying a relaxation method to a linear system is equivalent to applying a linear

evolution on the error component by the formula

e(k+1) = Ge(k), (3.8)

in which G is defined upon the smoother M . As such, in the multigrid context,

smooth vectors are defined as those vectors that are not easily damped away through

the formula (3.8). For a more detailed account of that, we refer the readers to [8].

With the concepts of smoothing and smoothness defined, let us introduce the

algorithm. On each level in the multigrid hierarchy before the Lth level is reached, a

pre-smoothing step is firstly applied by computing

e(l) ← (I −M−1A
(l)
g,β)e(l) + M−1r(l) (3.9)

for ν times to eliminate the error components of high frequencies. M is a pre-

determined smoothing operator which we assume to take on the same form consis-

tently throughout the multigrid hierarchy. Let

P (l) : Ωl+1 → Ωl

denote the prolongation operator on the lth level and

R(l) : Ωl → Ωl+1

denote the restriction operator on the lth level. The system is then projected to the
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=

Figure 3.1: Galerkin product illustration.

next level by computing


A

(l+1)
g,β ← R(l)A

(l)
g,βP

(l)

r(l+1) ← R(l)
(
r(l) −A(l)e(l)

)
, ∀ l ∈ {1, 2, . . . , L− 1}.

The formula

A
(l+1)
g,β ← R(l)A

(l)
g,βP

(l)

is what we have been mentioning as the Galerkin product. We remark that R(l) is

typically chosen as P (l). An matrix illustration of it is provided in Figure 3.1. From

the figure, it is not hard to realize that the size of the linear operator gets smaller

after the Galerkin product is applied.

After the projection step, a coarse-grid correction step is then applied by doing

e(l) ← P (l)e(l+1)

and a post-smoothing step of the same form as (3.9) is then followed. Lastly, when

the algorithm gets to the Lth level, we simply solve (3.7) with a direct solver, which

will not be too computationally expensive. This is because NL is already pretty small,

and direct solvers are able to solve small systems efficiently and accurately.

The algorithmic details are summarized in Algorithm 1.
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Algorithm 1: The Multigrid V-Cycle Scheme [21]

Input: l, L, Aβ, f , {P (k)}L−1
k=1 , {R(k)}L−1

k=1 , M , ν
Output: u(l) such that Aβu ≈ f
1: Initialize u(l) = 0
2: Do u(l) ← (I −M−1Aβ)u(l) + M−1f for ν steps
3: Compute r = f −Aβu

(l)

4: Compute A
(l+1)
g,β = R(l)AβP

(l), r(l+1) = R(l)r
5: if l + 1 is L then
6: Solve for e(l+1) in A

(l+1)
g,β e(l+1) = r(l+1)

7: else
8: Get e(l+1) by doing V-Cycle with inputs l + 1, L, A

(l+1)
g,β , r(l+1), {P (k)},

{R(k)}, M , ν
9: end if
10: Prolongate and correct: u(l) ← u(l) + P (l)e(l+1)

11: Do u(l) ← (I −M−1Aβ)u(l) + M−1f for ν steps
12: return u(l)
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Chapter 4

The Issue of Increasing Operator

Density in Multigrid

Recall that in Galerkin-product-based AMG, a key step is to project a finer-level

linear system onto a coarser level by computing the Galerkin product (3.3). When

doing so, the size of the system typically decreases by at least a half. However, it has

been observed that although the size gets smaller, the linear operator tends to lose

sparsity. This gets more severe as the level goes deeper. To demonstrate this, let us

consider the 3-dimensional Poisson’s equation

−∆u = f (4.1)

discretized with the seven-point finite difference method on a 100×100×100 grid [3].

The matrix sparsity patterns in the hierarchy of the V-cycle are presented in Figure

4.1. From the figure, it is clear that the bandwidths of the matrices increase as the

level goes deeper. Table 4.1 shows that as the problem size decreases, the average

number of non-zeros increases substantially. The diminishing sparsity patterns in

coarse grid operators induce a growth in the cost of data communications in parallel

solvers. Consequently, a much longer period of time has to be spent on solving the
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Figure 4.1: The sparsity patterns of A
(1)
g , A

(4)
g , and A

(5)
g in Algorithm 1 when using

it to solve the 3-dimensional Poisson’s equation

residual equations on coarser-levels. Figure 4.2 shows the total costs partitioned

into the local computation cost and the communication cost in multigrid hierarchies

for solving (4.1). We see from the figure that the decreasing problem size causes a

reduction in the cost of the actual computing as the level goes deeper. While this is

expected, starting from the first coarse level (level 2), the total computational cost is

dominated by data communications.

level matrix size non-zero entries non-zero entries per row
1 1,000,000 6,940,000 7
2 500,000 9,320,600 19
3 83,338 2,775,206 34
4 10,401 517,309 50
5 738 30,272 42

Table 4.1: The sparsity data for the coarse-level operators when using classical multi-
grid V-cycle to solve 3-D Poisson’s equation.
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Figure 4.2: Communication cost and computation cost in different levels when using
multigrid to solve 3-D Poisson’s Equation [4]
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Chapter 5

Sparsification of Coarse-Grid

Operators via Machine Learning

In this chapter, we detail the design of our algorithm.

5.1 Spectral Equivalence and Multigrid Conver-

gence

Our algorithmic design relies on the notion of spectral equivalence, which is defined

upon two sequences of matrices with increasing sizes.

Definition (Spectrally Equivalent Sequences of Matrices [1, 5]). Let {Aj} and {Bj}

be two sequences of (positive definite) matrices with increasing size Nj, where Aj and

Bj ∈ RNj×Nj . If the eigenvalues of B−1
j Aj, λ(B−1

j Aj), satisfy

0 < α < λ(B−1
j Aj) ≤ β <∞

for all j and α and β are mesh independent (i.e., independent on Nj), then the

sequences {Aj} and {Bj} are said to be spectrally equivalent sequences of matrices.
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Intuitively, this definition formalizes the similarity between the spectrum of two

sequences of matrices. This provides a natural way of defining spectrally equivalent

stencils. Recall that a stencil can represent a matrix of any size, as long as the

pattern remains the same. Therefore, for two stencils to be spectrally equivalent, it

is reasonable to require the spectrum of any two matrices generated by the respective

stencils to be similar, as long as the sizes of the two matrices are the same. This is

summarized in the following definition.

Definition (Spectrally Equivalent Stencils [5]). Suppose the sequences of matrices

{Aj} and {Bj} are constructed with stencils A and B respectively, and the size of Aj

is the same as that of Bj for all j. We say A and B are spectrally equivalent if {Aj}

and {Bj} are spectrally equivalent in the sense of Definition 5.1.

With the definition, several questions could be of immediate interest: 1) does there

exist spectrally equivalent stencils? 2) for a fixed stencil, does there exist a stencil

spectrally equivalent to that particular one? 3) if the answer to the last question

is positive, how to find such a stencil computationally? and 4) is it possible for

the spectrally equivalent stencil to have fewer non-zero entries so that the multigrid

method can be benefited?

We first answer question 1) by considering a special class of stencils, namely the

circulant stencils (which will be defined shortly). In fact, it has been shown that there

exists a closed-form 5-point stencil that is spectrally equivalent to a 9-point circulant

stencil [5]. We summarize this in the next theorem.

Theorem 5.1.1 (Spectrally Equivalent Circulant Stencils). Suppose a 9-point circu-

lant stencil of the form 
c b c

a −2(a+ b)− 4c a

c b c

 (5.1)



26

has generating symbol as a unique single zero at the origin. It is spectrally equivalent

to the following 5-point stencil


b+ 2c

a+ 2c −2(a+ b)− 8c a+ 2c

b+ 2c

 . (5.2)

Proof. See [5].

Theorem 5.1.1 proves to us that it is indeed possible for spectrally equivalent

stencils to exist. Not only that, it is even possible to write out a closed-form stencil

that is much sparser than the original one. But is this always the case? To the best of

our knowledge, the answer is no. In fact, a theoretically justifiable way of determining

whether a spectrally equivalent stencil exists for any target stencil or finding such a

stencil if it actually exists has not been developed yet.

However, what can be done is to develop a heuristic so that the multigrid con-

vergence is not affected by a lot. This is sufficient for our goal, because in the end,

what we are trying to do is to apply the multigrid method to solve linear systems,

and we would like to improve a part of the method, namely to sparsify the coarse-grid

operators, without sacrificing other parts, namely the convergence. In particular, the

heuristic will be developed for the two-level multigrid V-cycle, or the two-grid scheme

(TG). Such an effort suffices because a V-cycle is a recursive version of TG.

Let us introduce some notations first. We use A, Ag, and Ac to denote the

operator in the original problem, the coarse-grid operator defined by the Galerkin

product, and the sparsified coarse-grid operator in TG respectively. Following the

notations used in [10], we let

Eg = (I −M−1A)ν(I − PA−1
g RA)(I −M−1A)ν



27

be the error propagating operator of TG using Ag as the coarse-grid operator. Simi-

larly, let

Ec = (I −M−1A)ν(I − PA−1
c RA)(I −M−1A)ν .

be the error propagating operator when using Ac as the coarse-grid operator.

The next theorem provides a bound on the spectral radius of Ec, which determines

the convergence of multigrid methods.

Theorem 5.1.2 (Bounding Condition Numbers and Spectral Radius [10]). Let Bg

and Bc be defined by the equations Eg = I −B−1
g A and Ec = I −B−1

c A. Define

ϕ := ∥I −AcA
−1
g ∥2 = ∥I −A−1

g Ac∥2. (5.3)

Assume Ac and Ag are both SPD, if ϕ < 1, then:

κ(B−1
c A) ≤ (

1 + ϕ

1− ϕ
)κ(B−1

g A),

and

ρ(Ec) ≤ max(λmax(B
−1
g A) · 1

1− ϕ
− 1, 1− λmin(B−1

g A) · 1

1 + ϕ
), (5.4)

where κ(·) denotes the condition number, λmax(·) denotes the largest eigenvalue, and

λmin(·) denotes the smallest eigenvalue.

By bounding the spectral radius of Ec with ϕ, we can establish a criterion for the

convergence of TG with Ec. This is demonstrated in the next corollary.

Corollary 5.1.3. Following Theorem 5.1.2, if ϕ < 1−λmax(B
−1
g A)/2, TG with Ac

converges.

Proof. Note that

ϕ < 1− λmax(B
−1
g A)/2
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implies that

λmax(B
−1
g A) · 1

1− ϕ
− 1 < 1.

Since Bg and A are SPD [10], it follows that

1− λmin(B−1
g A) · 1

1 + ϕ
< 1.

Further, the convergence of TG with Ag ensures

ρ(Eg) = max
(
λmax(B

−1
g A)− 1, 1− λmin(B−1

g A)
)
< 1

which gives λmin(B−1
g A) > 0 and λmax(B

−1
g A) < 2. This combined with (5.4) com-

pletes the proof.

5.2 The Algorithmic Pipeline

Recall that we consider a class of problems of the form

Aβu = f

where β ∈ B ⊂ Rp, and B is associated with some probability distribution pβ. For

some fixed β ∈ B, the procedure of our algorithm reads as follows. On the lth level,

given the coarse grid stencil A(l)
g,β, the construction of the sparse stencil A(l)

c,β involves

two steps:

1. select the locations of non-zero entries in A(l)
c,β, the full procedure of which will

be discussed shortly;

2. compute the values of the non-zero entries with another neural network g
(l)
ψl

where ψl denotes the parameters for the network.
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Figure 5.1: Illustration of learning to sparsify coarse-grid operators.
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We now discuss the procedure of step 1. We let f
(l)
θl

be a neural network with parame-

ters θl. f
(l)
θl

is directly applied to the vectorized input stencil, vec(A(l)
g,β), meaning that

the input stencil is regrouped into a single vector and the neural network operations

are applied on that vector. Followed by this, the softmax function is applied to the

output of f
(l)
θl

. We thus define

P(l)
θl

:= softmax

(
f
(l)
θl

(
vec
(
A(l)
g,β

)))
.

Here, due to the softmax function, each entry of P(l)
θl

can be interpreted as the

probability of that entry being non-zero in the final sparsified stencil A(l)
c,β. We select

the largest k entries in P(l)
θl

and let I(l)θl be the set of the indices of those entries. That

is,

I(l)θl :=

{
index

∣∣∣P(l)
θl

(index) is among the largest k entries in P(l)
θl

}
We then build a mask matrix M(l)

θl
with the same shape as that of P(l)

θl
, and M(l)

θl
is

defined as

M(l)
θl

(index) =


1, if index ∈ I(l)θl

0, otherwise

,

which determines the position of the non-zero entries in the final sparsified stencil.

Now, the neural network g
(l)
ψl

is also applied directly to the input dense stencil.

We use

V(l)
ψl

:= g
(l)
ψl

(
vec
(
A(l)
g,β

))
to denote the output of g

(l)
ψl

, which determines the values of the non-zero entries in

the final sparsified stencil. Finally, we obtain the sparsified stencil by computing the

Hadamard (or element-wise) product of M(l)
θl

and V(l)
ψl

:

A(l)
c,β =M(l)

θl
⊙ V(l)

ψl
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where ⊙ denotes the Hadamard product. This procedure is summarized in Algorithm

2 and the complete sparsified V-cycle is summarized in Algorithm 3.

We add several remarks. First, note that the integer k which determines the

number of non-zero entries in the final sparsified stencil is a customizable integer.

Therefore, the sparsification rate is customizable. Second, the shape of the mask

matrix M(l)
θl

and the shape of the value matrix V(l)
ψl

are set to be the same through

the implementations of neural networks. Therefore, the Hadamard product is applied

properly. Third, here we assume the neural networks f
(l)
θl

and g
(l)
ψl

have already been

properly trained. How they are trained and why the neural networks shall output a

stencil that does not affect the convergence of the multigrid methods will be discussed

in the next section.

Algorithm 2: Sparsify(Ag, fθ, gψ, k)

1: Compute P = fθ(Ag) and V = gψ(Ag)
2: Set the k largest values in P to 1 and the rest to 0
3: Compute Ac = P ⊙ V
4: return Ac

5.3 Training, Testing, and Generalization

The most important components in Algorithm 3 are the neural networks f
(l)
θl

and g
(l)
ψl

.

In the algorithm, it is assumed that they have been trained well. In this section, we

discuss how they are trained to output a stencil that is sparser than the input stencil

but still maintains the convergence behavior of the multigrid method.

The architecture of the neural networks is selected to be the multi-headed neural

network discussed in Section 2.3, which owes to an empirical observation that such

an architecture works better than the vanilla deep neural networks on our task.

How to choose the loss function is the most crucial and yet trickiest part. If we
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Algorithm 3: Sparsified V-Cycle

Input: l, L, A, f , M , ν, k, {P (l)}L−1
l=1 , {R(l)}L−1

l=1 , {f (l)
θl
}Ll=2, {g

(l)
ψl
}Ll=2

Output: u(l) such that Au(l) ≈ f
1: Initialize u(l) = 0
2: if l > 1 then
3: Get A from A
4: Ac ← Sparsify

(
A, f (l)

θl
, g

(l)
ψl
, k
)

and generate Ac accordingly

5: A← Ac

6: end if
7: Do u(l) ← (I −M−1A)u(l) + M−1f for ν steps
8: Compute r = f −Au(l)

9: Compute A
(l+1)
g = R(l)AP (l), r

(l+1)
g = R(l)r

10: Get A(l+1)
g from A

(l+1)
g

11: A(l+1)
c ← Sparsify

(
A(l+1)
g , f

(l+1)
θl+1

, g
(l+1)
ψl+1

)
12: Generate A

(l+1)
c accordingly

13: if l + 1 is L then
14: Solve for e

(l+1)
g in A

(l+1)
c e

(l+1)
g = r

(l+1)
g

15: else
16: Get e

(l+1)
g by doing V-Cycle with inputs l + 1, L, A

(l+1)
g , r

(l+1)
g , M , ν, k,

{P (l)}L−1
l=1 , {R(l)}L−1

l=1 , {f (l)
θl
}Ll=2, {g

(l)
ψl
}Ll=2

17: end if
18: Prolongate and correct: u(l) ← u(l) + P (l)e

(l+1)
g

19: Do u(l) ← (I −M−1A)u(l) + M−1f for ν steps
20: return u(l)
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follow what has been discussed in Section 5.1, it seems that Corollary 5.1.3 would

imply that the quantity ϕ might be a good choice of loss function for the networks to

give a sparser Ac. However, there is a caveat:

minϕ = ∥I −A−1
g Ac∥2

is equivalent to

min min
v, ∥v∥2=1

∥∥∥∥(I −A−1
g Ac

)
v

∥∥∥∥
2

which simply reads

min
v, ∥v∥2=1

∥∥∥∥(I −A−1
g Ac

)
v

∥∥∥∥
2

by the definition of the spectral norm. This is to say that to minimize ϕ, we have

to minimize the norm of
(
I −A−1

g Ac

)
v for all v with a unit 2-norm. In practice,

such a requirement is much demanding because a deep learning method is not likely

to obtain a satisfying loss value when the amount of data is huge, and in this case,

the data is all the vectors of with a unit 2-norm. Therefore, it is necessary to relax

the loss function to make it easier to optimize.

We first note that by the sub-multiplicativity of the spectral norm, we have

ϕ = ∥I −A−1
g Ac∥2 ≤ ∥A−1

g ∥2 · ∥Ag −Ac∥2,

which despite not resolving our concern, suggests that as long as the difference be-

tween the actions of Ag and Ac on vectors is small enough, it is still possible to

minimize ϕ. We then realize that if we assume the residual r at the current multigrid

step is in the range of the prolongation operator P—that is,

r = Prc



34

for some coarse-grid vector rc—then with the two-grid scheme, replacing Ag with Ac

in the coarse-level linear system to elimiate r gives

rnew = (I − P (Ac)
−1RA)r

= (I − P (Ac)
−1RA)Prc

= P (I − (Ac)
−1Ag)rc

= P (Ac)
−1(Ac −Ag)rc.

This tells us that ideally, if Acrc = Agrc, then the residual after the two-grid method

is 0. Since Ac is sparser than Ag, it is not possible to require Acrc = Agrc to

hold for any vector rc. Nevertheless, recall that in multigrid methods, after applying

relaxation methods on the fine level, the remaining errors are mostly comprised of

algebraically smooth vectors. Hence, researchers have suggested to define Ac so

that it has a similar behaviour to Ag when applied on algebraically smooth vectors

[35, 7]. Such construction of Ac can then yield similar coarse-level corrections as Ag.

Therefore, the entire multigrid process should not be influenced much by replacing

Ag with Ac. We thus should expect similar convergence behavior for the method.

As such, we choose to minimize the difference between the behavior of A
(l)
g,β (the

dense coarse-grid operator on the lth level when using multigrid to solve for (??))

and A
(l)
c,β (the sparser operator parameterized with neural networks) on algebraically

smooth vectors. Define the loss function associated with f
(l)
θl

and g
(l)
ψl

for a single β as

Lβ
(
f
(l)
θl
, g

(l)
ψl
,A(l)

g,β, {v
(j)
β }

sl
j=1

)
=

sl∑
j=1

||A(l)
g,βv

(j)
β −A

(l)
c,βv

(j)
β ||

2
2 (5.5)

where {v(j)
β }

sl
j=1 are algebraically smooth vectors generated using Algorithm 4, sl is

the number of vectors generated, and A(l)
c,β is determined through Algorithm 2. Since

we want the neural networks to work for any β ∼ pβ, the quantity we ideally hope to
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minimize during the training of h
(l)
θl

and g
(l)
ψl

is therefore

Eβ∼pβ

[
Lβ
(
f
(l)
θl
, g

(l)
ψl
,A(l)

g,β, {v
(j)
β }

sl
j=1

)]
. (5.6)

Note that in practice, we do not form A
(l)
g,β and A

(l)
c,β explicitly. Instead, we replace

A
(l)
g,βv

(j)
β by

A(l)
g,β ∗ ṽ

(j)
β

and A
(l)
c,βv

(j)
β by

A(l)
c,β ∗ ṽ

(j)
β

where ∗ denotes the convolution operation and ṽ
(j)
β is v

(i)
β padded with layers of zeros

around it. The number of padding layers depends on the size of the stencil. Such a

reformulation greatly reduces the memory requirement during training.

The training procedure reads as follows. We first sample β from B according

to the probability distribution pβ to get our parameter set {βi}Nt
i=1 where Nt is the

number of training samples. A set of stencils {Aβi}Nt
i=1 for the level-1 system is then

constructed. To get a consistent stencil representation for the coarse-grid operators,

we need to make some assumptions on the prolongation operators {P (k)}L−1
k=1 and

the restriction operators {R(k)}L−1
k=1 . From our experience, choosing them as the full-

coarsening operators allows stencil representations for all the coarse-level systems.

The stencils on the coarse levels {A(l)
c,βi
}Nt
i=1 for 2 ≤ l ≤ L are then constructed after

projection accordingly. The practical loss function thus reads

L
(
h
(l)
θl
, g

(l)
ψl
, {A(l)

g,β}
Nt
i=1

)
:=

1

Nt

Nt∑
i=1

Lβi
(
h
(l)
θl
, g

(l)
ψl
,A(l)

g,βi
, {v(j)

βi
}slj=1

)

where Lβi is defined in (5.5). The complete training procedure is summarized in Algo-

rithm 5. We remark that the training of the neural networks is entirely independent

of each other on each level. Therefore, they can be trained in parallel once the dataset
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is prepared.

The testing set is constructed in a similar way except that we enforce the param-

eters to be different from those for the training set. That is, we construct {βj}Nv
j=1

in such a way that each βj has not been seen by the models during training. Here

Nv denotes the size of our testing set. This tests the capability of our models of

generalizing to unseen parameters.

Other than the generalization to unseen parameters, we would also like our models

to generalize to problems of larger sizes. The reason of that lies in the construction

of the algebraically smooth vectors during training. Recall that such a construction

involves solving a generalized eigenvalue problem, as shown in Algorithm 4. Solving

such a problem is highly computationally expensive, especially when the size gets

large. Therefore, we do not want to solve a generalized eigenvalue problem with a

size one million by one million even before we start solving a linear system of the same

size. We thus hope to construct our training data by solving a small-size problem

and use the trained model to sparsify coarse-level operators of much larger sizes.

Algorithm 4: Generating Algebraically Smooth Basis

Input: Interpolation operator P , coarse-level stencil Ag, number of algebraically
smooth vectors: s, size of the eigenvalue problem: n

Output: Algebraically smooth basis vi, i = 1, . . . , k
1: Compute T = P⊤P
2: Compute generalized eigen pairs Agvi = λiTvi.
3: return vi, i = 1, . . . , k with k smallest λi, i = 1, . . . , k
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Algorithm 5: Learning to Sparsify

Input: Interpolation operator P , restriction operator R, dense coarse-grid stencils
Ajg (j = 1, . . . ,m), number of basis vectors: k, sparsification ratio ρ

Output: Two neural networks (NNs) fθ and gψ
1: Generate algebraically smooth vji , i = 1, . . . , k for each Ajg
2: Initialize NNs fθ and gψ
3: {Ajc}j=1,...,m = Sparsify({Ajg}j=1,...,m, fθ, gψ, ρ)
4: Minimize the loss function:

L
(
θ, ψ,Ajg,Ajc,v

j
i

)
=

m∑
j=1

k∑
i=1

||Aj
gv

j
i −Aj

cv
j
i ||22

5: Update the weights of fθ and gψ
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Chapter 6

Numerical Experiments

We report numerical experiments with our proposed sparsification method in this

chapter. We use PyTorch 1.9.0 [22] for all the deep learning models appeared in the

code. We use PyAMG 4.2.3 [2] as our framework. All programs were executed on an

Intel Core i7-6700 CPU.

6.1 The Evaluation Metrics

Before going into the actual results, we explain the metrics we use for evaluating the

performance of our algorithm.

Recall that Theorem 5.1.2 provides us with a quantity ϕ defined in (5.3) to

evaluate the convergence behaviour of multigrid methods associated with different

stencils. However, ϕ can only depend on the stencil itself. In other words, it cannot

be affected drastically if the sizes of Ag and Ac were changed. This subtlety introduces

a big practical issue: we simply cannot test for all different matrix sizes. We hence

need new metrics. Instead of computing ϕ, we record the number of iterations for

the multigrid method to converge to a predetermined tolerance with each stencil. We

generate sufficient amount of random test cases and take down the average iterations

required for them to converge. This is better than computing ϕ for different meshes
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because even if we compute a very large amount of ϕ and they are all consistent with

Theorem 5.1.2, we still cannot draw the conclusion that ϕ is mesh independent. But

for the metric presented here, if it does not vary much between different stencils, it

is reasonable to claim that our method works for the class of testing problems being

considered with very high probability by the Law of Large Numbers. To examine

whether or not the sparsified stencil is spectrally equivalent to the original stencil, we

provide the spectrum plot of the associated matrices of several matrix sizes.

6.2 Circulant Stencils

We first test our method on problems defined by circulant stencils as Theorem 5.1.1

provides theoretical guidance for verifying our result. This allows for direct evaluation

of our learned sparser stencil by comparing it with the sparser stencil provided by the

theorem. The experiment is set up as follows.

We first randomly generate three numbers

a = 2.720, b = 1.417, c = 0.000114

to construct a stencil

A =


c a c

b −2 · (a+ b+ 2c) b

c a c



=


0.000114 2.720 0.000114

1.417 −8.275 1.417

0.000114 2.720 0.000114

 (6.1)

for the linear system on the first level. We select the prolongation operator so that it
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has a stencil presentation of the form

P =
1

4


1 2 1

2 4 2

1 2 1

 .

Such a circulant stencil will ensure the stencil of the coarse-level operator is also

circulant. In fact, after projection, the coarse-level stencil is

A(2)
g =


0.129 0.096 0.129

0.422 −1.551 0.422

0.129 0.096 0.129

 .

According to Theorem 5.1.1, the optimal 5-point stencil spectrally equivalent to A(2)
g

here is

A(2)
optimal =


0 0.354 0

0.680 −2.069 0.680

0 0.354 0

 .
We train the model on the instance defined above and set the size of the linear system

as 31× 31. The stencil learned by our algorithm reads

A(2)
c =


0 0.348 0

0.666 −2.024 0.663

0 0.347 0


which looks pretty similar to A(2)

optimal. To check the convergence behavior of multigrid

on problems with larger mesh sizes (than 31×31) with different coarse-level operators,

we run the two-level multigrid V-cycle on the linear system defined by (6.1) with the

coarse-level operator being A(2)
g , A(2)

optimal, and A(2)
c respectively. The relative-error
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tolerance is set to be 10−6 and the right-hand-side vector is generated randomly. We

record the result in Table 6.1.

mesh-size 63 95 127 191 255 383 511

A(2)
g 11 10 10 10 10 10 10

A(2)
optimal 11 10 10 10 10 10 10

A(2)
c 11 10 10 10 10 10 10

Table 6.1: The number of iterations for the two-level multigrid to converge to a
relative-error tolerance of 10−6 using A(2)

g , A(2)
optimal, and A(2)

c as the coarse-level oper-
ator respectively. Each column corresponds to a different mesh size. For instance, 63
means the size of the linear system being tested for is 632 × 632.

We see from the table that it takes exactly the same amount of work for the 2-level

V-cycle to converge for different operators.

6.3 The 2-D Rotated Laplacian Problem

Consider the 2D anisotropic rotated Laplacian problem

−∇ · (Tθ,ξ∇u(x, y)) = f(x, y), (6.2)

where the 2× 2 vector field Tθ,ξ parameterized by θ and ξ is defined as

Tθ,ξ =

 cos2 θ + ξ sin2 θ cos θ sin θ(1− ξ)

cos θ sin θ(1− ξ) sin2 θ + ξ cos2 θ


Here, θ is the angle of the anisotropy and ξ is the conductivity.

In the first set of experiments, we fix ξ and let θ follow a uniform distribution on

a certain interval. We conduct 12 experiments where each ξ ∈ {100, 200, 300, 400}

is paired up with a θ−interval from {({3π
12
, 4π
12

), ({4π
12
, 5π
12

), ({6π
12
, 7π
12

)} and use a 3-level

V-cycle for each of them. The dense coarse-level operators A
(l)
g is obtained by using
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the full-coarsening scheme for 2-dimensional problems: the interpolation operator is

selected so that it has a stencil representation of the form

P =
1

4


1 2 1

2 4 2

1 2 1


and the restriction operator is set to be R = P⊤. We choose to use the Gauss-Seidel

method discussed in Section 3.1 for both pre-smoothing and post-smoothing. The

relative-error tolerance is set as 10−6: the method stops when ∥f−Au∥2
∥f∥2 < 10−6. We

set the non-zero elements in the sparsified stencil to be 5 which is a 44% decrease

compared to the dense stencil with 9 non-zero elements.

For each experiment, during the training phase, the model sees 5 different instances

with the same selected ξ and different θ’s that are evenly distributed on the seleted in-

terval. For instance, if ξ = 100 and the θ−interval is chosen as (3π
12
, 4π
12

), the parameters

for the five instances are
{

(100, 3π
12

), (100, 3.25π
12

), (100, 3.50π
12

), (100, 3.75π
12

), (100, 4π
12

)
}

. The

size of the fine-level matrix associated with the training instances is set to be 31×31.

During the testing phase, 10 different θs are drawn randomly from the selected

interval. The configurations for the V-cycle are kept the same as those in the training

phase. However, the size of the fine-level matrix associate with each testing instance

is set to be 511 × 511 which is about 16 times the size for the training instances.

We record the number of iterations required for the 3-level V-cycle to converge and

compare the average performance. The result is reported in Table 6.2. It is not hard

to see from the table that the convergence behaviour of the method remains almost

the same by replacing the original coarse-level operators with the sparsified operators.
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Table 6.2: The average number of iterations for the 3-level multigrid method to
converge with different coarse-grid operators when solving (6.2) under different sets
of parameters. The mesh size is set to be 511 × 511. The parameters are chosen
so that ξ ∈ {100, 200, 300, 400} is fixed and θ is randomly sampled from a uniform
distribution on each interval listed below. The average is taken over at least 10
different sampled θ’s. Ag denotes the coarse-grid operators obtained from Galerkin
products; and Ac corresponds to coarse-grid operators sparsified by the proposed
algorithm.

ξ = 100, θ (2π
12

,3π
12

) (3π
12

,4π
12

) (6π
12

,7π
12

)

Ag 92.1 102.8 126.9

Ac 89.0 93.0 135.2

ξ = 200, θ (2π
12

,3π
12

) (3π
12

,4π
12

) (6π
12

,7π
12

)

Ag 191.7 196.6 203.1

Ac 174.2 177.8 204.9

ξ = 300, θ (2π
12

,3π
12

) (3π
12

,4π
12

) (6π
12

,7π
12

)

Ag 248.0 269.7 342.3

Ac 246.5 231.4 356.2

ξ = 400, θ (2π
12

,3π
12

) (3π
12

,4π
12

) (6π
12

,7π
12

)

Ag 337.1 351.1 438.2

Ac 326.3 327.7 441.5

In the second set of experiments, we fix θ and assume ξ follows a uniform distri-

bution on a selected interval. We again conduct 12 experiments in total where each

θ ∈ {π
6
, π
4
, π
3
, 5∗π

12
} is paired up with a ξ−interval from {(5, 10), (80, 100), (100, 200)}

and use a 3-level V-cycle for each of them. The configurations (the coarsening scheme,

the relative-error tolerance, the number of non-zero elements in the sparsified stencil,

etc.) remain the same as in the previous set of experiments.

The training and testing process is also similar: for each experiment, we train the

model with 5 different instances evenly distributed on the selected interval and test

it for 10 randomly drawn ξs on the interval. The size of the fine-level linear system
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in the training instance is set to be 31× 31 while the size in each testing instance is

set to be 511× 511. The average performance is presented in Table 6.3.

Table 6.3: The average number of iterations for the 3-level multigrid method to
converge with different coarse-grid operators when solving (6.2) under different sets
of parameters. The mesh size is set to be 511 × 511. The parameters are chosen so
that θ ∈ {π

6
, π
4
, π
3
, 5∗π

12
} is fixed and ξ is randomly sampled from a uniform distribution

on each interval listed below. The average is taken over at least 10 different sampled
θ’s. Ag denotes the coarse-grid operators obtained from Galerkin products; and Ac
corresponds to coarse-grid operators sparsified by the proposed algorithm.

θ = π
6
, ξ (100, 200) (80,100) (5,10)

Ag 90.4 72.1 13.5

Ac 100.2 84.4 13.8

θ = π
4
, ξ (100, 200) (80,100) (5,10)

Ag 172.5 105.2 14.1

Ac 123.1 79.0 15.9

θ = π
3
, ξ (100, 200) (80,100) (5,10)

Ag 99.4 80.9 14.3

Ac 79.1 88.8 15.4

θ = 5∗π
12
, ξ (100, 200) (80,100) (5,10)

Ag 92.5 76.4 16.5

Ac 107.4 88.2 16.6

6.4 The 2-Dimensional Linear Elasticity Problem

Consider the 2-D linear elasticity problem in an isotropic homogeneous medium:

µ∇2u+ (µ+ λ)(
∂2u

∂x2
+

∂2v

∂x∂y
) + fx = 0, (6.3)

µ∇2v + (µ+ λ)(
∂2v

∂x2
+

∂2u

∂x∂y
) + fy = 0, (6.4)
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where u and v are the solution in the direction of x− and y− axis respectively. fx and

fy are forcing terms. µ and λ are Lame coefficients which are determined by Young’s

modulus E and Poisson’s ratio ν:

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
.

Following [15], we use the following 9-point discretization stencils with a mesh size h

in the direction of x−axis and mesh size byh in the direction of y−axis:

Auu =


−λb2y−2µb2y+λ+µ

4(2λb2y+λ+4(b2y+1)µ)

(b2y−1)λ+2(b2y−2)µ

2(2λb2y+λ+4(b2y+1)µ)

−λb2y−2µb2y+λ+µ

4(2λb2y+λ+4(b2y+1)µ)

− 2λb2y+4µb2y+λ+µ

2(2λb2y+λ+4(b2y+1)µ)
1 − 2λb2y+4µb2y+λ+µ

2(2λb2y+λ+4(b2y+1)µ)

−λb2y−2µb2y+λ+µ

4(2λb2y+λ+4(b2y+1)µ)

(b2y−1)λ+2(b2y−2)µ

2(2λb2y+λ+4(b2y+1)µ)

−λb2y−2µb2y+λ+µ

4(2λb2y+λ+4(b2y+1)µ)



Auv =


3by(λ+µ)

8(2λb2y+λ+4(b2y+1)µ)
0 − 3by(λ+µ)

8(2λb2y+λ+4(b2y+1)µ)

0 0 0

− 3by(λ+µ)

8(2λb2y+λ+4(b2y+1)µ)
0 3by(λ+µ)

8(2λb2y+λ+4(b2y+1)µ)


where Auu and Auv are stencils defining the linear system

Ax :=

Auu Auv

A⊤
uv A⊤

uu


u
v

 =

fx
fy

 . (6.5)

The interpolation operator for linear elasticity problem is also defined in block form

as

P :=

Puu Puv

P⊤
uv Puu

 ,
and the restriction operator R is defined as R = P⊤. We use red-black coarsening

scheme for each block. The restriction and interpolation stencils for u− u and v − v
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connections associated with this coarsening scheme are defined by the stencils

1

4


1

1 4 1

1

 and
1

4


1

1 4 1

1

 ,

the restriction and interpolation stencils for u− v connection are given by

1

4


1

−1 0 −1

1

 and
1

4


1

−1 0 −1

1

 ,

and the restriction and interpolation stencils for v − u connection are given by

1

4


−1

1 0 1

−1

 and
1

4


−1

1 0 1

−1

 .

Note that as stated in [6], multigrid method requires having row sums of one for the

u− u and v − v interpolation weights and row sums of zero for the u− v and v − u

weights in order to converge.

We set Young’s modulus as E = 10−5 vary Poisson’s ratio ν. We choose to use

the Gauss-Seidel method discussed in Section 3.1 for both pre-smoothing and post-

smoothing. The relative-error tolerance is set as 10−6. The sparsification ratio is set

as 0.5. We train the model on 4 different instances with ν ∈ {0.1, 0.2, 0.3, 0.4}. The

size of the fine-level linear system is set as 9×9. We test the model on instances with

randomly drawn ν from each interval in {(0.1, 0.2), (0.2, 0.3), (0.3, 0.4)}. The size of

the linear system associated with each testing instance is set as 65×65. The averaged

performance is presented in Table 6.4. Again we see that the convergence behavior

of the two-grid method is not affected much by replacing with the learned sparsified
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Table 6.4: Averaged numbers of iterations required for the two-grid scheme to con-
verge (in the sense of reaching the relative-error tolerance) when solving (6.5) of size
65 × 65 with random ν on each interval using Ag and Ac as coarse grid operator
stencils.

ν (0.1,0.2) (0.2,0.3) (0.3,0.4)
Ag 10.1 10.2 10.6
Ac 11.0 10.7 11.5

stencil.

We make a quick note that for linear elasticity problems, we have four blocks of

stencils on the coarse grid and two distinct stencils because of symmetry. The two

stencils are combined together before being fed into the neural networks so that the

model can learn a better balance between u − u connection and u − v connection

rather than learning them separately.

We take a specific problem with ν = 0.3 and E = 10−5 as an example. We show

the eigenvalues of A−1
c Ag for different mesh sizes in Figure ??. We can see that the

distribution of spectrum is mesh independent indicating spectral equivalence of Ac

and Ag.

An example of the approximate solutions after the same number of iterations of using

two-grid method with Ag and Ac as coarse grid stencils is presented in Figure ?? for

direct evaluation.

6.5 Comparison with the Sparsified Smooth Ag-

gregation Method

Here we report the comparison between the performance of our method and that of

the method proposed in [32] on the rotated Laplacian problems. The method in [32]

is based on the idea of sparsified smooth aggregation of nodes, which we will refer

to as SpSA. The experiment setup for the testing of our method remains the same.

We input the same set of linear systems to the SpSA solver. To make sure of a fair
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comparison, we enforce the number of non-zero entries per row in the coarse-level

operators after SpSA to be at least as many as that in the operators sparsified by our

algorithm. We set the relative tolerance for both methods as 10−6.

Table 6.5: The average number of iterations for the 3-level multigrid method
accelerated with GMRES on the top level to converge with different coarse-grid
operators when solving (6.2) under different sets of parameters. The mesh size is set
to be 511× 511. The parameters are chosen so that θ ∈ {π

6
, π
4
, π
3
, 5∗π

12
} is fixed and ξ

is randomly sampled from a uniform distribution on each interval listed below. The
average is taken over at least 10 different sampled θ’s. Ag denotes the coarse-grid
operators obtained from Galerkin products; Ac corresponds to coarse-grid operators
sparsified by the proposed algorithm; and SpSA corresponds to the coarse-grid
operator obtained by the sparsified smooth aggregation algorithm proposed in [32].

ξ = 100, θ (2π
12

,3π
12

) (3π
12

,4π
12

) (6π
12

,7π
12

)

Ag 11.3 11.1 11.5

Ac 16.5 16.9 19.9

SpSA 40.4 36.9 11.5

ξ = 200, θ (2π
12

,3π
12

) (3π
12

,4π
12

) (6π
12

,7π
12

)

Ag 15.9 15.3 14.5

Ac 20.5 19.6 29.8

SpSA 50.4 46.7 9.1

ξ = 300, θ (2π
12

,3π
12

) (3π
12

,4π
12

) (6π
12

,7π
12

)

Ag 18.1 21.5 17.9

Ac 25.4 33.1 25.6

SpSA 53.0 52.1 12.3

ξ = 400, θ (2π
12

,3π
12

) (3π
12

,4π
12

) (6π
12

,7π
12

)

Ag 21.1 20.2 19.9

Ac 27.2 30.9 26.2

SpSA 59.7 56.3 12.9
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Table 6.6: The average number of iterations for the 3-level multigrid method
accelerated with GMRES on the top level to converge with different coarse-grid
operators when solving (6.2) under different sets of parameters. The mesh size is set
to be 511 × 511. The parameters are chosen so that ξ ∈ {100, 200, 300, 400} is fixed
and θ is randomly sampled from a uniform distribution on each interval listed below.
The average is taken over at least 10 different sampled θ’s. Ag denotes the coarse-grid
operators obtained from Galerkin products; Ac corresponds to coarse-grid operators
sparsified by the proposed algorithm; and SpSA corresponds to the coarse-grid
operator obtained by the sparsified smooth aggregation algorithm proposed in [32].

θ = π
6
, ξ (100, 200) (80,100) (5,10)

Ag 11.6 10.4 4.4

Ac 19.9 16.4 7.1

SpSA 30.3 27 12.7

θ = π
4
, ξ (100, 200) (80,100) (5,10)

Ag 14.2 11.3 4.6

Ac 18.2 15.5 10.0

SpSA 41.4 34.7 13.5

θ = π
3
, ξ (100, 200) (80,100) (5,10)

Ag 11.2 10.2 4.7

Ac 18.8 16.4 7.1

SpSA 31.7 28.9 13.4

θ = 5∗π
12
, ξ (100, 200) (80,100) (5,10)

Ag 11.2 10.1 4.8

Ac 28.8 19.1 9.1

SpSA 16.5 15.1 9.1
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Chapter 7

Discussion and Future Work

The multigrid method we are considering in this work is fully defined with matrix-

vector products without taking advantage of the underlying geometric information.

Therefore it is a legitimate algebraic multigrid method. However, this does not mean

that our sparsification algorithm is applicable to every kind of AMG methods. Our

biggest limitation is that we are assuming for a constant stencil representation for

both the fine-level matrix and the coarse-level matrix. Strictly speaking, problems

with more complicated meshes would not fit into this framework. Although this does

cover a lot of the territory in both practices and theories, it is not in the most gen-

eralized version. As such, future work can be devoted to generalizing our framework

to unstructured meshes by using graph convolutional neural networks [17]. This will

bring up many difficulties for sure. To name a few, one has to consider how compli-

cated it is to set the meshes of the training and testing instances, how to choose the

dataset, how to define the feature vector attached to each node, etc.
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Chapter 8

Conclusion

In this work we propose a machine learning framework for sparsifying the coarse-grid

operators A
(l)
g in multigrid methods to improve parallel efficiency. The sparsification

process has two major steps: choosing the sparsity pattern and deciding the values.

For each step we utilize one neural network and combine the results from the two

steps to construct A
(l)
c which has much fewer number of non-zero entries than A

(l)
g .

We train the model on small-size problems while testing it on problems of much larger

sizes, and by following multigrid convergence theory during the training process, our

method does not trade algorithmic scalability with the convergence behaviour of the

algorithm.

We conducted numerical experiments on rotated Laplacian problems and linear

elasticity problems. We found that for both of the challenging problems, our frame-

work can sparsify the coarse grid operator by at least 44% while maintaining the

performance of the method. This marks an important step towards fully boosting

the multigrid methods with the help of machine learning models. We also hope our

method can provide new perspectives on how to improve classical solvers with modern

data-driven techniques.
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