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Abstract 

Algorithmic Targeting of Social Welfare Programs: Machine Learning for Prediction Model 
Design and Causal Effects Estimation 

By Miaomiao Zhang 

Governments and aid organizations in developing countries implement algorithmic rules to 

identify and provide necessary aid for households in underprivileged conditions. Given 

demographic and background characteristics from administrative data, traditional econometric 

methods along with regularized linear regressions have been used for targeting social welfare 

programs. Non-parametric machine learning techniques, however, are less common in these 

contexts. In this paper, I compare non-parametric forests to parametric linear regression 

techniques in both prediction and causal treatment effects estimation problem settings. The 

standard metric of prediction accuracy suggests that random forests perform slightly better 

than regularized linear regressions, validated across multiple subsets of data; the estimated 

average treatment effects using both modeling techniques are positive, with only causal forests 

showing statistically significant results. There is no evidence of significant heterogeneity in 

individual treatment effects. 
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I. Introduction 

The concept of nonparametric analysis, estimation, and inference has a long and storied 

existence in the annals of economic measurement. From distribution-free methods and order 

statistics to kernel estimators for regression, nonparametric methods with less restrictive 

density and distributional assumptions have provided ways to complement traditional 

parametric econometric tools. An emerging literature looks at the intersection of machine 

learning (ML) and traditional econometric tools to develop more systematic and data-driven 

approaches to facilitate algorithmic policy design and evaluation. Mckenzie (2018) writes that 

ML can be used for development interventions and impact assessment in measuring outcomes 

and targeting treatments, measuring heterogeneity, and addressing confounders. Andini et al. 

(2015) present two examples regarding policy targeting and illustrate the benefits of using ML 

techniques when compared to the standard practice of employing coarse policy assignment 

rules based on a few arbitrarily chosen characteristics.  

Athey (2018) and Mullainathan & Spiess (2017) provide an overview of the impact of 

machine learning on economics and summarize different roles that standard econometrics and 

ML play in causal inference and prediction problems. In particular, when the goal is semi-

parametric estimation or when there are a large number of factors that need to be controlled 

for, adopting ML techniques is advantageous. Furthermore,  ML techniques’ ability to choose 

flexible functional forms is well suited for tasks like prediction. In fact, ML methods are 

designed to maximize out-of-sample accuracy by uncovering complex model structures that 

were not specified in advance. The tradition in economic literature has been to identify 
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causality using one specific model and focus on the parameter estimation for determining 

treatment effects, whereas ML aims to fit complex and very flexible functional forms to the 

data without simply overfitting using a wide selection of ML algorithms.  

Despite the clear distinction between estimation and prediction problems in economics, in 

causal inference, there is also a growing interest in using ML algorithms to estimate the average 

treatment effect (ATE). For example, targeted maximum likelihood estimators of the ATE (van 

der Laan & Rose, 2011) often utilize an ensemble learner called SuperLearner (van der Laan et 

al., 2007), which combines different ML algorithms such as the Lasso, K-nearest matching, 

generalized additive models, generalized linear models, random forests, and multivariate 

adaptive regression splines, to flexibly estimate the propensity score model and the outcome 

model in order to estimate the ATE. Also, Künzel, et al. (2019) proposed an ensemble learning 

method to estimate the conditional average treatment effect (CATE), the ATE among individuals 

with a given covariate vector. Causal Forests are another popular ML method for estimating the 

CATE and can account for heterogeneity within each clustered group (Athey & Wager, 2019). 

Although prediction is often a large part of a resource allocation problem, determining which 

units benefit the most from treatment is an inferential question, and answering it requires 

different types of data and assumptions.  

With the goal of further improving model prediction accuracy in the targeting of large-scale 

social welfare programs, this paper intends to compare parametric and nonparametric 

approaches in the following two ways. First, I investigate whether non-parametric ML 

techniques trained on subsets of data that exclude noise from the two extrema of the modeled 

outcome capture more precise signals from the sample; second, I integrate ML with the 
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traditional econometric methodology to estimate causal heterogeneous treatment effects. The 

standard metric of prediction accuracy suggests that forests-based approach yields better 

performance and more reliable estimates for average treatment effects. Although there is no 

evidence suggesting heterogeneous subsidies effects across the entire population group, this 

study provides a new algorithmic approach for estimating the causal impact of subsidies on 

households’ living conditions. It also poses a possibility of developing a new algorithmic 

targeting model for social welfare programs based on treatment effects.  

The structure of the study is as follows: in Section II, I provide the context for the status quo 

social welfare programs targeting model with a brief summary of approaches undertaken to 

address the data scarcity and prediction inaccuracy issues. In Section III, I discuss the 

methodologies commonly used in econometrics and ML and the reasons why the latter should 

be taken as a preferable approach for solving prediction problems. In Section IV, I describe the 

survey dataset and the parametric and nonparametric model design for this study. Section V 

compares each of the models’ performance for prediction and treatment effects estimation: 

nonparametric models show better outcomes in both contexts. Section VI discusses what has 

been learned and not learned from the results, the limitation of this study, and possible 

improvements. Section VII concludes the major contributions of this study as well as machine 

learning’s potential to address prediction and causal problems in a broader context. 

II. Context 

Social welfare programs provide a viable use-case for testing and evaluating algorithmic 

targeting policies. The particular context that I use falls under the recent refugee crisis caused 
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by the Syrian Civil War, which has caused one of the largest episodes of forced displacement 

since World War II and some of the densest refugee-hosting situations in modern history 

(Krishnan et al., 2019). Syria’s immediate neighbors host the bulk of Syrian refugees, where in 

many cases local non-governmental organizations, multilateral international organizations, 

government policymakers aim to provide targeted aid to refugees, but face persistent 

challenges in identifying households in greatest need of financial assistance (Coady et al., 2004). 

The most prominent reasons for such challenges are: first, databases maintained by 

humanitarian agencies for internal programming purposes are not collected for the purpose of 

program targeting per se; second, many impoverished refugees work in the informal sector and 

records of income in these areas are generally poorly kept, if available at all; and third, the 

displaced have a high degree of mobility and they are often unwilling to speak to surveyors 

(Krishnan et al., 2019).  

Due to these constraints, an econometric Proxy Means Test (PMT) method has become a 

very popular approach used to determine what subsets of the population are in the greatest 

need for financial aid. The PMT is, in the most technical sense, a multiple regression formula 

that is employed practically to produce a prediction (“score”) that is an estimate of a given 

household’s level of wealth, based a variety of features or “proxies” (Altındag et al., 2019). 

According to an International Labor Organization assessment of PMT methodology in Kidd, 

Gelders, & Bailey-Athias (2017, p.2), these “proxies” are usually based on demographics (such 

as age, gender, and number of people in the household); human capital (such as level of 

education of the household head); type of housing (such as the type of roof, walls, floor, and 
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toilet); durable goods (such as whether a household has a radio, refrigerator or television); and 

productive assets (such as whether a household owns animals or land). 

Quite often, however, these models incorporate high built-in design errors and struggle 

with overfitting when applied in practice. For example, Alatas et al. (2012) found that the PMT 

model used to facilitate the Program Keluarga Harapan (PKH) conditional cash transfer scheme 

in Indonesia resulted in 93 percent of the poorest 5 percent of households being excluded. 

Another study of the Oportunidades (formerly Progresa) program in Mexico found that a PMT 

selection process meant to target the poorest 20 percent of the population had inclusion or 

false-positive errors of 36% and exclusion or false-negative errors of 70% (Veras et al, 2007). As 

seen in Figure 1, these error levels tend to increase with more specific coverage levels or to the 

extent that they aim to target smaller, poorer, subsets of the general population (Kidd & Wylde, 

2011). These shortcomings have led to pushback against the PMT model by academics and the 

development community at large, as critics claim that such inaccurate dispersal of funds is 

essentially arbitrary and thus could lead to negative stigmatization of aid recipients within their 

communities as well as mistrust of aid organizations in the future (Kidd et al., 2017). 
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Figure 1: PMT Performance 

 
The informational scarcity that has necessitated the use of the PMT model in the first place 

is not going to be alleviated soon. Recent research has sought to viable alternative confronting 

the criticisms of traditional PMT methodology. McBride and Nichols (2018) and Kshirsagar et al. 

(2017) show that approaches that prioritize out-of-sample accuracy perform substantially 

better in accurately identifying the poor population compared to a standard PMT approach 

relying only on in-sample fitting; most relevant to my study, Altindag et al. (2019) conducted a 

study that combined nationally representative expenditure survey data and routinely collected 

administrative data in Lebanon to predict refugee households’ expenditure using regularized 

linear regression. The prediction performance of the targeting model has proven to be “at least 

as accurate using only basic demographic information from administrative records compared to 

the traditional ‘scorecard’ PMT that requires a household survey of the entire population”.  

However, most historical targeting literature focuses on improving the prediction model 

accuracy — whether the subsidies have been allocated properly to households that are poor 
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now. Emerging literature looks at the effect of targeted benefits (Griffith et al., 2018; Hoynes et 

al., 2016; Cunha, 2014). This paper poses a new direction for social welfare targeting programs 

– whether we can target the people who would benefit the most after the treatment.  

III. Methodology 

III.1 Proxy Means Tests, OLS, and Regularized Linear Regressions 

The econometric approach to PMTs typically uses consumption or expenditure data from a 

representative household survey as a proxy for poverty and derives a model, typically using 

forward stepwise regression, that assigns weights to factors used to predict poverty in the 

broader eligible population. The predictors in a standard PMT model comprise a set of 

household assets and demographics; OLS is used in the regression model to choose the 

measures that predict consumption. These features are usually easily verifiable and thus 

becomes the key step in targeting the eligible population (Brown et al., 2018). However, OLS is 

known as the best linear unbiased estimator under Gauss-Markov assumptions but standard 

empirical techniques like this are not optimized for prediction problems. It struggles with 

overfitting because the model is built on existing administrative-recorded, in-sample data, and 

fails to perform well out-of-sample.  

While the main goal of targeting is to accurately predict welfare in a population for which 

the data on the outcome of interest is not available, assessment of in-sample prediction 

performance does not seem to be meaningful. In fact, the goal of both OLS and ML methods is 

to find some function that accurately expresses 𝑦 as a function of 𝑥 (or, technically speaking, to 

minimize the sum of squared residuals). The difference is that the assessment of ML models 
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relies on new out-of-sample observations of 𝑥, not the observations used to fit the model. 

More specifically, the within-sample error is of less concern in prediction context, since we care 

more about the model’s performance out-sample. For example, consider the mean squared 

error at a point 𝑥. 𝑀𝑆𝐸(𝑥) can be decomposed as: 

. 
Because the f varies from sample to sample, it produces variance (the first term) and this must 

be traded off against bias (the second term). By ensuring zero bias, OLS allows no trade-off. 

Such overfitting the prediction sample yields poor out-of-sample performance, and prediction 

tools that are designed to minimize out-of-sample error can potentially increase targeting 

accuracy.  

Beyond traditional linear or logistic regression, penalized regression methods such as 

LASSO linear regressions have proven to be useful (Altındag et al., 2019). First, since simpler 

models tend to work better for out-of-sample forecasts, there are various ways to penalize 

models for excessive complexity called “regularization”.  Second, by dividing the data into 

training, testing, and validation sets for the purpose of estimating, choosing, and evaluating a 

model, we can have more accurate and reliable model outputs. Third, if we have an explicit 

numeric measure of model complexity, we can view it as a parameter that can be “tuned” 

empirically to produce the best out of sample predictions. Usually, we pick 𝑘 =  5, 10,or 𝑛 −

1to perform “k-fold cross-validation” for choosing the most appropriate tuning parameter upon 

examining some associated loss function. Even if there is no tuning parameter, we use cross-
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validation to report goodness-of-fit measures since it measures out-of-sample performance, 

which is generally more meaningful than in-sample performance (Varian, 2014). 

In particular, picking the best LASSO regularized linear regression function involves two 

steps. The first step is, conditional on a class of linear functions (over some fixed set of possible 

variables), to pick the best in-sample quadratic loss function as in OLS. The second step is to 

choose the optimal regularizer (which is the sum of absolute values of coefficients) using cross-

validation. This effectively results in a linear regression in which only a small number of 

predictors from all possible variables are chosen to have nonzero values: the absolute-value 

regularizer encourages a coefficient vector where many are exactly zero (Mullainathan & 

Spiess, 2017). 

III.2 Non-parametric Model – Trees Algorithm 

Decision trees utilize the two insights of regularization and empirical choice of the 

regularization penalty as a non-parametric approach. Techniques built on decision trees allow 

for sparser datasets to predict an outcome of interest and more flexible functional forms to 

include higher-order interaction terms. Within the prediction-based machine learning 

literature, regression trees differ from most other methods in that they produce a partition of 

the population according to covariates, whereby all units in a partition receive the same 

prediction (Hastie et al., 2009).   

Most economists are familiar with decision trees that describe a sequence of decisions 

that results in some outcome. A tree classifier has the same general form, but the decision at 

the end of the process is a choice about how to classify the observation. The goal is to construct 



10 
 
(or “grow”) a decision tree that leads to good out-of-sample predictions. Trees tend to work 

well for problems where there are important nonlinearities and interactions. The most common 

solution to this problem is to “prune” the tree by imposing a cost for complexity, such as the 

number of terminal nodes. The cost of complexity is, therefore, the tuning parameter chosen to 

provide the best out-of-sample predictions, which is typically measured using the k-fold cross-

validation procedure mentioned earlier (Varian, 2014). 

Bagging, random forests and boosting all work similarly by growing many trees on the 

training data and then combining the predictions of the resulting ensemble of trees. One crucial 

advantage of nonparametric tree algorithms is that extraneous predictors do not affect too 

much of their performance and there are no assumptions that the response has a linear (or 

even smooth) relationship with the predictors. However, although random forests and boosting 

are among the “state-of-the-art” methods for observing the actual outcomes in a cross-

validation sample, the fundamental problem of causal inference is not addressed: no valid 

confidence intervals can be directly computed and we cannot make inference based on variable 

selection about the data-generating process without further assumptions such as a true sparse 

model and the absence of the relationship between irrelevant and relevant covariates 

(Mullainathan & Spiess, 2017). 

IV. Data and Model Design 

IV.1 Survey Data 

In the context of forced displacement, the selection of a representative sample of hosts and 

the displaced poses a major challenge to drawing credible inferences about Syrian refugees and 
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the host communities’ socio-economic outcomes. I used the results from the Syrian Refugee 

and Host Community Surveys (SRHCS), which were implemented over 2015-2016 in Lebanon, 

Jordan and the Kurdistan region of Iraq by the World Bank Group. For the prediction model 

design and subsidies impact estimation, only the Syrian refugees’ data in the Lebanon host 

community are used to avoid potential host-community-specific characteristics. However, given 

the lack of an updated sample frame and cartographic division of the country into small 

geographic areas, and with Circonscription Foncières (CF) being the finest level of 

disaggregation available, the surveyors depended on UNHCR data on registered Syrian refugees 

and combined the estimates of Lebanese population at the CF level (Krishnan et al., 2019). The 

survey dataset accrued as a result nonetheless provides comprehensive households’ 

information and reveals comparable findings on the lives and livelihoods of Syrian refugees and 

host communities.  

The questionnaire includes detailed questions on demographics, employment, access to 

public services, health, migration, and perceptions. More specifically, it contains a total of 642 

questions, which are broken into 23 sections, including A. Roster, B. Dwellings, C. Services, D. 

Assets, E. Sources of income, F. Types of assistance, G. Income shocks, H. Prices, I. Food 

security, J. Health access, K. School access, L. Movements, M.-P. Employment, Q.-T. Retro 

Employment, U. Norms and Relations, V. Conflicts, and W. Assessment. The Lebanon group 

contains 12, 523 members in 2, 865 unique households. Since all aids targeting has been done 

on the household level, the first step I took was to aggregate the individual-level responses into 

household-level features. For both the income prediction and subsidies effects estimation, the 
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methodologies and the reasoning for engineering the outcome and other related variables are 

introduced in Section IV.2.  

Table 1 presents descriptive statistics of the representative samples in Lebanon based on 

the SRHCS survey design and sampling document. Panel A summarizes the statistics of major 

household characteristics in the survey samples. The average household size is around 4 with 

the average dependency ratio1 of 0.68. On average, more than half of the households’ income 

is from wages and only 7% come from humanitarian assistance. Approximately half of the 

households rent their dwellings. Panel B shows that Syrian refugee households in Lebanon are 

on average headed by male adults (22 to 47 years). In terms of educational attainment, few 

(less than 25% of) refugees have completed secondary schooling or more. The situation is 

better when we restrict our attention to labor market respondents from 20 to 60 years old 

(Panel C). A large share of refugees does not participate in the labor force and work. Finally, and 

consistent with the reliance on household income on wages, the large majority of forcibly 

displaced work for wages if employed. 

 

1 The dependency ratio is a measure showing the ratio of the number of dependents aged zero to 14 and over the 
age of 65 to the total population aged 15 to 64. 
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 2

 
  Note: The summary statistics are based on office calculation.3 

 

IV.2 Variables 

(i) Income 

According to the survey mandates, households can choose not to disclose their income 

information and the surveyors mark “98” on the record. I first excluded those households from 

the dataset and 2,169 households remained. Dividing the aggregate household income by the 

 
2 Infinity values are excluded from the calculation. 

3 Missing values are excluded from the calculation. 
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household size to generate income per capita as the second step is conventional. As shown in 

Figure 2a, the distribution of income per capita is highly skewed to the right. After a log 

transformation of the variable, the distribution looks more normal, as shown in Figure 2b. This 

variable serves as the outcome of interest for the prediction models. 

 

                     Figure 2a. (binwidth = 50)                             Figure 2b. (binwidth = 0.1) 
         Source: SRHCS, Lebanon 2015-2016, Section E. Sources of Income 
 

(ii) Administrative Variables 

A large degree of a model’s predictive power is attributed to the management of data and 

the methodology employed to formulate the outcomes (Mullainathan & Spiess, 2017). Since 

the survey contains mostly multiple choices or closed questions with many not applicable to 

some respondents, a sparse data set with a considerable number of features being categorical 

or dummy is given. However, as the main focus of this paper is not about selecting and 

encoding the most optimal variables, I circumvent such concern by only extracting information 

which governments and aid organizations are typically able to obtain from administrative 
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surveys. From all the survey questions asked for households in Lebanon, I divided them into six 

categories: demographics, education, occupation, years of arrival, protection measures, and 

assistance received and constructed the candidate variables list in Table 2. This feature set 

served as the independent variables for income prediction modeling and the confounding 

variables for treatment effects estimation, except for the category “Assistance Received” being 

the treatment dummy (constructed as 1 if any type of the four types of assistance was received 

and 0 otherwise). Table 3 presents the summary statistics of all the variables used in the study.  

 
          Note: There are three types of variables we use: integer, continuous, and indicator. Integer variables  
          take positive integer values only. Continuous variables can (but do not necessarily) take any value on  
          the closed interval indicator. Indicator variables capture whether the household exhibits the character-         
         ristic indicated. 
 

(iii) Treatment Effect of Interest 

In the C. Services section of SRHCS, four questions asked respondents to evaluate the 

overall access to essential house services – water, sewerage, solid waste disposal, and 
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electricity— as compared to five years ago before they were allocated subsidies. I assigned a 

score of “-1”, “0”, “1” to their answers of “Better Today”, “Same”, and “Worse Today”, 

respectively. Moreover, in the H. Prices section, the survey respondents were asked to compare 

the prices of food, shoes, clothes, and rents today to those of five years ago. In a similar sense, I 

assigned a score of “-1”, “0”, “1”, to their answers of “Less affordable”, “About the same”, and 

“More affordable”, respectively. In the end, I aggregated them together and constructed a new 

variable, denoted “Y” in Table 3, as the proxy for households’ perception about their current 

living conditions compared to the past. This variable served as the treatment outcome of 

interest upon which I evaluated the effectiveness of subsidies received on households’ well-

being. It is worth noting that the income variable here has been adjusted to be pre-subsidies 

income to avoid the issue of having “bad controls”; covariates that are directly affected by 

receiving subsidies should be excluded from regressions. 
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   Note: Summary statistics based on SRHCS data. 

 

IV.3 Model Design 

(i) Prediction 
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For training and validation purposes, the data were split into five folds – four folds were 

used for training and the remaining one for testing. All the models were built on the training set 

with cross-validation for parameter tuning; the testing set was used to assess the models’ 

predictive performance. Then I repeated the steps above using a different fold for testing and 

training on the other four remaining folds. Within each iteration, the testing fold was held out 

first to prevent overestimating model accuracy. In the end, I obtained the average root mean 

squared error (rMSE) across the five testing folds and compared the prediction accuracy to that 

of a PMT approach. Parametric LASSO regularized linear regressions and non-parametric 

random forests were used for the algorithmic targeting model design. Figure 3 provides an 

illustration of the five-fold cross-validation procedure. 

 
Figure 3: Five-fold cross-validation 

Furthermore, an innovative step I took here is that I built models on partial training sets by 

leaving out the top and bottom percentiles step by step – 0.5%, 1%, and 3%. The hypothesis is 

that, by training models based on subsets of data in absence of noises from “outliers” on the 
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two extrema, we would be able to capture more precise signals for income prediction and thus 

obtain more accurate prediction results. With different partition points for selecting the 

training sets, I experimented with the two ML algorithms – one parametric and the other non-

parametric – to perform feature selection and assessed their prediction accuracy. Specifically, 

within each training group (100%, 99%, 98%, 97% of the full training set), I obtained the average 

rMSE of the training and testing sets for LASSO regularized linear regression and random forests 

across the five iterations. The results are reported in Section V.1. 

(ii) Treatment Effects Estimation 

As shown in Table 2, the survey data also contain information about whether or not 

households have received any type of assistance in the past. To estimate the ex post benefits 

received by targeted households – whether or not receiving subsidies has positively impacted 

refugees’ well-being, we need to compare the status quo to the counterfactual scenario if they 

had not been allocated the assistance. The histograms of pre-subsidies income and the 

assigned scores which indicate households’ ratings of their current living conditions compared 

to the past are shown in Figure 4. In general, households feel less satisfied with their current 

living conditions than before with the majority of scores less than 0, as suggested in Figure 4b. 

This means that the majority of survey respondents consider their access to house services to 

be worse and the daily necessities to be less affordable. Indeed, households that received 

subsidies (indexed by one and color-coded in orange) are on average under worse economic 

and living conditions: the average for the untreated group is -3.16 whereas the average for the 

treated group is -4.46. A Welch Two Sample t-test in Table 4 shows that the difference in means 
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of Y between the households who received subsidies and those who did not is statistically 

significant at all conventional levels of significance. 

 

Figure 4a: Histogram of household income       Figure 4b: Histogram of household living conditions  
 

 
 

Because subsidies were not allocated randomly in the first place, the households in the two 

groups here cannot be valid counterfactuals for us to estimate average treatment effects 

directly. A key insight here is that the allocation of subsidies for households was based on the 

administrative variables listed in Table 2, which, in another word, suggests that treatment could 

be as good as random conditionally on this set of features. Therefore, after systematically 

controlling for factors not possibly affected by receiving subsidies, we can potentially establish 

unconfounded-ness where estimating heterogeneous treatment effects using regression 



21 
 
approaches and random forests is possible. In this study, I used the propensity score to reduce 

the bias in the estimation of treatment effects. Briefly, a propensity score is a study unit’s 

conditional probability of receiving treatment given observed pre-treatment covariates 

(Rosenbaum & Rubin, 1983). Each unit in the dataset has a propensity score ranging from 0 to 

1. Matching typically follows after obtaining the propensity scores: treated and control units 

with similar propensity scores are matched in pairs. The underlying notion is that if the 

balancing hypothesis is satisfied, for a given propensity score, exposure to treatment is random 

and therefore households who received subsidies and who did not should be on average 

observationally identical. To examine the pre-treatment covariates, a pairwise correlation plot 

for the dataset used to estimate treatment effects is shown in Figure 5.  

 
            Figure 5: Pairwise correlation plot of all variables used in causal forests 
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However, a major limitation of traditional approaches is that propensity score is often 

estimated using parametric models, specifically a logistic regression model where the 

probability of receiving treatment is modeled as a logistic function of the pre-treatment 

covariates. If the propensity score model was to be incorrect, which is often the norm in 

observational data, estimates of the average treatment effect (ATE) might be biased. Figure 6 

compares matched observations that have the same propensity scores but differ in the 

treatment status after implementing standard logistic regression. However, just by visual 

inspection of the six selected covariates, we can already tell that the matching has not done 

well because the treatment and control groups have different means at each value of the 

propensity score. Formally, t-tests results showed that there exist significant differences across 

the two groups for many of the covariates. Proceeding with the matched samples, I used OLS 

with covariates to estimate the ATE. Section V.2 outlines the findings. 



23 
 

 
Figure 6: Mean of selected covariates after matching 

A further step taken here was using a non-parametric random forests ML method. Trees 

algorithm does not require a parametric model for the propensity score estimation in the first 

stage nor for the treatment effects estimation in the second stage. The motivation is that, by 

allowing algorithms to flexibly choose functional forms, it would potentially lessen the risk of 

model misspecification. Specifically, after using random forests to estimate propensity scores, 

under default settings of the grf package4 (Tibshirani et al., 2019) in R (R Core Team, 2017), I 

implemented causal forests to estimate ATE with the forests-based propensity scores and 

assessed heterogeneities among each individual household. The grf implementation of causal 

 

4 A pluggable package for forest-based statistical estimation and inference. GRF currently provides methods for 
non-parametric least-squares regression, quantile regression, and treatment effect estimation (optionally using 
instrumental variables). Reference: https://github.com/grf-labs/grf 
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forests starts by fitting two separate regression forests to estimate 𝑚(𝑥)  =  𝐸 [𝑌 |𝑋 =  𝑥] and 

𝑒(𝑥)  =  𝑃 [𝑊 =  1|𝑋 =  𝑥]. It then makes out-of-bag predictions: predictions outputs are 

averaged across trees whose training data did not include the 𝑖𝑡ℎ 
observation. In the end, 

causal forests are grown using these two first-stage forests and the out-of-bag prediction errors 

(residual from this non-parametric prediction).  

V. Results  

V.1 Prediction 

I built and fine-tuned LASSO regularized linear regression and random forests models using 

the full, 99%, 98%, and 97% of the training data and predicted income per capita outcome for 

the households in Lebanon. Table 5 shows that forward stepwise regression, LASSO regularized 

linear regression, and random forests perform similarly in terms of their predictive results. 

However, contrary to my hypothesis, by leaving out a small set of observations on the two 

extrema of the income distribution, the standard metric of prediction accuracy (rMSE) suggests 

that models trained on subsets of the population perform no better than the commonly used 

forward stepwise regression model trained on the entire population. Random forests, on the 

other hand, perform monotonically better than LASSO in each of the selected datasets, even 

though the difference in testing rMSE is less than 0.1. This is not a huge difference to be 

considered as a significant improvement, given the outcome of interest (log of income per 

capita) ranges from 0 to 8.92. All the results were averaged across separate blind validation 
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tests after model derivation. 

 

One of the advantages of random forests is that it is an ensemble method with each 

individual tree grown by greedy recursive partitioning. The prediction for a particular 

observation is determined by averaging predictions across an ensemble of different trees. The 

trees are randomized using bootstrap aggregation, whereby each tree is grown on a different 

random subset of the training data. Additionally, the random split selection also restricts the 

variables available at each step of the algorithm. Lastly, random forests take care of any non-

linear relationship between feature sets and predicted the outcome of interest. If there are 

interactions between features, we do not have to specify them in advance. Figure 7 provides a 

demonstration of what a decision tree in this prediction model could look like and how features 

can potentially be used for splits at each node. 
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Figure 7: Example of a regression tree with complexity parameter = 0.01 

 

        V.2 Heterogeneous Treatment Effects Estimation 

As a benchmark, I first implemented parametric logit models to estimate propensity scores, 

then performed matching by finding nearest neighbor based on Euclidean distance, and in the 

end paired observations that have similar propensity scores but differ in treatment status. The 

new dataset contains 1, 770 observations, meaning that 885 pairs of treated and control 

observations were matched. Finally, I ran an OLS regression with all covariates to estimate the 

average treatment effects; the result is shown in Table 6. Holding all covariates fixed, receiving 

subsidies leads to a statistically insignificant 0.111 increase in refugee households’ living 

conditions, as measured by the scores assigned to their ratings of house services and living 

conditions. Though most of the administrative variables are not significant, pre-subsidies 

income per capita has a statistically significant positive coefficient estimate. This is not 
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surprising because wealthier households are more likely able to access better house services 

and afford daily goods and supplies, but this does not provide reliable guidance for studying the 

treatment effect of interest. 

 

To overcome the shortcomings of unknown treatment propensities and poor matching 

mechanisms with traditional parametric techniques, I applied causal forests to examine 

treatment effects. The reason for using causal forests is to account for potential 

heterogeneities across households. As described in Section IV.1, the households in the SRHCS 

study were not independently sampled due to various challenges; rather, they were all drawn 
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from segmented CFs and it is reasonable to assume the existence of heterogeneous treatment 

effects. The average subsidies’ effect estimated by causal forests is 0.192 with a standard error 

of 0.036, indicating a statistically significant 0.192 improvement on average when households 

received subsidies. Figure 8 plots the distribution of the estimated CATEs using causal forests. 

Figure 9 illustrates the CATE estimates and the corresponding confidence intervals of all 

observations. 

 
Figure 8: Histogram of out-of-bag CATE estimates from causal forests 

 

 
Figure 9: CATEs and the associated 95% confidence intervals for all observations 
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Non-parametric forests do not produce coefficients estimates, but a measure of variable 

importance that indicates how often a variable was used in a tree split for maximizing 

heterogeneity of the treatment effects is available. In Table 7, pre-subsidies income per capita 

once again stands out as one of the top used features along with other features such as 

household head being female, the fraction of household members having some intermediate 

education, and the fraction of male adults in the household.                                

           

Note: The variable importance measure is a depth-weighted average of the number of splits on maximizing 
the heterogeneities of households’ ratings of their living conditions change upon receipt of subsidies. The 
variables are ordered by importance, with larger values indicating greater importance.  

 

VI. Discussion 

In this study, non-parametric ML models have proved to have more accurate income 

prediction performance and more reliable estimates of subsidies’ causal effects. However, the 

stability in prediction quality does not imply stability in estimated coefficients. More specifically 

for this study, because the features of the households might be highly correlated with each 
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other (e.g. the fraction of household members who have received higher education and the 

fraction of them who have a decent occupation), such variables can become substitutes in 

predicting income and similar predictions can be produced using very different variables. 

Therefore, model selection consistency is not guaranteed. This is the same for causal forests in 

estimating heterogeneous treatment effects: conditional on a tree, the estimated coefficients 

are consistent, but we cannot over-interpret variable importance, nor can it be compared 

across features. For example, the low importance of the variable “fraction of household 

members being unemployed” should not be interpreted as indicating that it is not related to 

heterogeneity. In fact, if it is highly correlated with education, then the trees might just split on 

education but not the other; on other draws of the data, the same procedure could have 

chosen a tree that split on the fraction of household members being unemployed instead. In 

general, a feature would be less likely to be chosen if the tree has previously split on another 

feature highly related to it, but this does not indicate that it is not useful. Moving forward with 

improving prediction model accuracy, recent literature has also mentioned the use of an 

ensemble learning method: we can potentially run several models based on different ML 

algorithms and then average their prediction results with weights chosen by cross-validation 

(Brownlee, 2018).  

Moreover, for the subsidies effects estimation problem using causal forests, we can also 

test if there indeed exist significant heterogeneities among individual households. Even though 

it is true that some households have benefited less or more from receiving the subsidies than 

others, Figure 8 shows that the histogram is roughly concentrated at a point instead of being 

widely spreading out, which suggests that the treatment effects might not differ significantly 
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across households. To test the hypothesis about heterogeneity, I first summarized the output of 

causal forests and created subpopulations based on predicted treatment strength. After 

splitting the data into groups based on four tiles of predicted treatment effects, I computed the 

average treatment effect within each subgroup by taking the average difference between raw 

outcomes for treated and control groups. Lastly, I ran a linear regression of “Y” (assigned living 

conditions improvement score) on the computed average treatment effects interacted with 

“W” (indicator variable for treatment) in each of the four tiles. Linear hypothesis testing result 

is shown in Table 8: there is not enough evidence to reject the null. To better visualize the ATEs 

across four quantiles, Figure 10 plots the confidence intervals for all observations in the four 

tiles – no clear heterogeneities can be inspected. Further investigation could be around testing 

heterogeneities across covariates. Comparing all covariates across n-tiles of treatment effects 

could present a fuller picture of how high-treatment-effect individuals differ from lowe-

treatment-effect individuals. 
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Figure 10: Confidence intervals (95%) for all observations in 4-tiles  

It is worth noting that in contrast with traditional matching and OLS regression results, 

the ATE of receiving subsidies using causal forests is statistically significant. This could be 

attributed to the non-parametric modeling of propensity score and treatment effects 

estimation. Poor matching mechanisms and the non-selective, linear relationship enforced by 

linear regressions failed to work effectively in high-dimensional settings. Even though only an 

average of 0.192 causal improvements of households receiving the subsidies has been shown, 

the impact of allocating aid to designated households is still positive. Given that approximately 

6% of the households rely entirely on theses assistance to survive, this study suggests that 

social welfare programs offer a small but still statistically significant remedy for households in 

extremely vulnerable conditions with the average effect being successfully quantified.  

A major limitation of the study is that I assume unconfounded-ness in order to identify 

the causal subsidies effects. It is only with no substantial variation between treatment and 

control group that I can conduct hypothesis tests about the magnitude of differences in 
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treatment effects across subsets of the population using causal forests. To relax this 

assumption, further research work could be dedicated to finding an instrument for treatment 

assignment (Angrist and Pischke, 2008), or conducting a sensitivity analysis for hidden 

confounding (Rosenbaum, 2002). Generalized random forests (Athey et al, 2018) also enable 

treatment effects estimation with instrument variable (IV) applications. However, this does not 

affect the conclusion of this paper that subsides have been effectively improving beneficiaries’ 

living conditions on average. This is because even though bias exists due to unobservable 

confounders like subjective standards upon which they rate their conditions and spending, the 

bias is more likely to be downward. Households receiving the subsidies in the first place are 

under underprivileged situations, so it is likely that they usually have a lower expectation on 

house services and living standards and thus higher ratings on the post-subsidies’ conditions. 

Therefore, negative bias could be expected. The true causal treatment effect would be even 

larger than what has been estimated in this study. 

In addition to applying more off-the-shelf techniques in ML, from an econometric 

standpoint, further improvements can come from data collection mechanisms and other data 

quality considerations. The ideal would always be having a (nearly) randomized controlled trials 

for subsidies allocation. In reality, econometric tools like IVs are typically challenging to find in a 

retrospective way. However, if, say, a social welfare program had clear cut-offs for determining 

the eligibility of receiving the aid based on multiple metrics and the households were not aware 

of these standards, we would be able to implement regression discontinuity designs by only 

looking at observations around the cut-offs. However, sufficient data for model training 

purposes are needed, and if we want to have more reliable estimates of the heterogeneous 
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treatment effects across different subgroups of populations around the cut-offs, we would 

require more intense data collection work. The idea is that if we want to target for households 

who would benefit the most after the subsidies, we would want to find out the counterfactual 

outcomes of them not receiving the aid. We nonetheless never observe the true treatment 

effects. And even with unconfounded-ness assumption satisfied, the results obtained using 

causal forests cannot be generalized further if the variance of each individual CATE is large. In 

general, heterogeneity across different subgroups of population cannot be guaranteed. 

VII. Conclusion 

Overall, the major contributions of this study are threefold. The first one is aligned with 

the continuous efforts for optimizing algorithmic prediction model design: the proposed 

nonparametric forests approach has proven to perform slightly better than parametric 

modeling techniques. The second is the initiative of allocating subsidies based on households’ 

estimated treatment effects. Since the tradition has been targeting based on expenditure or 

income, this study provides new insights for adjusting the objectives of social welfare programs 

and reorienting the targets for future beneficiaries. The third contribution lies in the possibility 

of creating a replicable ML methodology for assessment of program effectiveness, which could 

contribute to the development of scalable targeting systems for social welfare programs in a 

similar context worldwide. 

More broadly, Athey & Imbens (2019) discuss the role of which machine learning 

methods can play in economics and econometrics research and how the integration of these 

disciplines can achieve better performance for problems related to prediction and causal 
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inference. Indeed, the emergence of abundant datasets made the application of machine 

learning in empirical research appealing. Among all, prediction problems present the most ideal 

scenario to employ statistical learning – its protection against overfitting, estimation of valid 

confidence intervals, and insurance of fairness and non-manipulability provides a powerful and 

flexible way of making quality predictions. The prediction results can be carried further as a 

crucial component to better identify causal links, more accurately estimate treatment effects, 

and develop new approaches to cross-validation optimized for causal inference and optimal 

policy design. 

Another advantage of employing machine learning in settings with high-quality granular 

datasets is that we can have models with better prediction performance and more stable 

treatment effects estimation over time, as more data come in and the algorithms self-adjust 

according to predetermined penalty matrices. Moreover, beyond optimizing model design to 

generate more accurate prediction models, future research work with a focus on the 

interpretability of coefficient estimates and robust measures for causal parameters is needed. 

For the social targeting programs specifically, there is also rapidly growing literature using 

machine learning together with images from satellites and street maps to predict poverty, 

safety, and home values. For example, imagery from satellites or Google’s street view can be 

used in combination with survey data to train models that can be used to produce estimates of 

economic outcomes at the level of individual home in developing countries (e.g. Jean et al. 

(2016), Engstrom et al. (2017), Naik et al. (2014)). Results from these findings will potentially 

offer improvement for the current selection process by enabling stakeholders to determine the 
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impact metrics and consider who their intended beneficiaries should be. The goal, eventually, is 

to identify strategies for helping the poor in both the immediate and the longer term. 
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