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Abstract

Learning new physics from biology and data

By Ahmed Roman

In an attempt to understand various phenomena in living systems and
properties of data, we found new physical phenomena that were pre-
viously unstudied. In an effort to better understand interface prop-
agation in Dictyostelium discoideum, we deduced a new interface
growth rule that may describe a broad class of biological interfaces.
Simulations and analysis of the new growth rule gave rise to a new
universality class of interface growth with three dynamic exponents
instead of the usual two. By studying thermal learning in C. ele-
gans, we constructed a new model of associative learning that incor-
porates classical and operant conditioning, and generalization. Our
new model gives rise to a mechanism that explains learning phenom-
ena such as extinction and spontaneous recovery, which previous
learning models could not explain. Finally, we attempt to under-
stand the underlying process of Bayesian entropy estimation. We
show that Bayesian entropy estimators depend on a few emergent
data statistics that rely on states that are sampled once or more.
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1

Chapter 1 Introduction

Modeling of biological experiments typically relies on existing physical processes that

are well understood, where the modeler attempts to recast the biological experiment in a

mathematical language that best reveals this underlying known physical process. On rare

occasions, new physics arises in the process of modeling because the biological phenom-

ena are either a consequence of previously unstudied physical phenomena or inspire new

physical phenomena. In flock dynamics, for example, two different modeling paradigms

(the aligning of spins paradigm and the attractive/repulsive particle interactions through a

potential paradigm) were integrated to explain how individuals in flocks maintain the co-

herence of the flock. This led to the discovery of new physics of propagation through new

propagation laws and correlation exponents [15]. Much like this flocking example, we are

interested in situations where previously unobserved physics phenomena manifest them-

selves in living systems. In this thesis, we construct a new rule for interface1 growth that

is inspired by the behavior of Dictyostelium discoideum cells and the signalling process

between them. We also construct a new dynamical system of learning that manifests itself

in how the roundworm C. elegans decides to move up and down a temperature gradient

given its thermal history and feeding state. Finally, we study how features of data samples

influence the entropy estimate of the distribution generating the data, and provide a reli-

able estimate of entropy in terms of those features. In each of these examples, we discover

new physics. In the interface growth model, we found a new universality class of interface

growth that has three instead of two dynamic exponents. In animal learning, we uncover

a mechanism that explains salient features of learning that previous learning models failed

to explain. In entropy estimation, we surprisingly found that a handful of data features

determine the entropy estimates obtained from Bayesian estimators.

1An interface is the boundary between two distinguishable media.



2

1.1 Interfaces in nature

Interfaces are common in our everyday experience. Examples range from the bound-

ary of the spilled coffee stain as it conquers a segment of the tablecloth to the fire burn-

ing a piece of paper or snow growing vertically on the side of the glass windows. It

might be surprising that the morphology of these interfaces changes drastically depend-

ing on the scale at which we observe them. When we look at the moon, we see that

its surface appears smooth. However, close-up observations show that the moon’s sur-

face is abounding with craters and hills. Collisions with space debris increase the craters

of the moon over time, rendering the surface morphology dynamical. How can we de-

scribe the time-dependent morphology of an interface that seems to be smooth to the

eye on large observation length scales but rough on short observation length scales? It

turns out that the morphology of many of the interfaces that we observe in nature are self-

affine, which means that if the interface/surface is described via a function I , then it satis-

fies I(x1, · · · , xn, t) ∼
(∏n+1

i=1 b
−αi
i

)
I(α1x1, · · · , αnxn, αn+1t), where ∼ is the asymptotic

symbol and αi is real and positive for all i [9]. This means that if we make different

scale changes in directions parallel and perpendicular to the interface, then the morphology

stays the same. This is contrasted with fractal interfaces, which appear the same on every

observation scale. Through these different scale changes in different directions, we can

show that the morphology of the interface at certain lengths and time scales is similar 2

to the morphology at other lengths and time scales. To organize these interfaces, symme-

try principles codified in group theory are used to classify properties of rough interfaces

[9]. Self-affine interfaces that satisfy the same symmetries will share the same long time

and length scale statistical properties. The set of interfaces, whose microscopic details are

different, but whose macroscopic statistical properties are the same are grouped in what is

called a universality class [3, 9, 37, 55, 86].
2Similar means that the morphology of the interface at certain times and lengths is related via a similarity

transformation to the morphology at other times [9].
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1.1.1 Ballistic deposition

Over the years, many models of interface growth have been developed. Examples in-

clude random deposition, ballistic deposition, the Eden model, solid on solid models, and

many more [9]. Each of these models stresses certain features of the growth process that

others do not. Here we focus on the ballistic deposition model and attempt to clarify the

salient features of interface growth through this model.

The simplest version of the growth process in the ballistic deposition model occurs on a

lattice of length L, but off-lattice versions have been studied as well. A site i ∈ {1, · · · , L}

is sampled randomly, then a particle is deposited at the chosen site from a height much

larger than the maximum height of the interface. In the simplest version of the model, the

particle falls perpendicular to the interface until it sticks to it. The deposited particles form

an aggregate of a particular geometry.

1.1.2 Roughening

The interface of the aggregate is defined as the set of particles are highest in each

column. After depositingN particles, the time t = N/L is the average number of deposited

layers. A quantitative description of the growth process is obtained by defining the mean

height function of the aggregate

h̄(t) =
1

L

L∑
i=1

h(i, t), (1.1)

where h(i, t) is the height of the ith column at time t. In ballistic deposition, a particle

arriving at site i sticks to the interface according to the rule

h(i, t) = max{h(i− 1, t), h(i, t) + 1, h(i+ 1, t)} (1.2)

with the initial condition h(i, 0) = 0 for all 1 ≤ i ≤ L. An important quantity in studies of

interface growth is the width of the interface w(L, t) which characterizes the roughness of

the interface. The width is defined as the root mean squared fluctuation in the height of the
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interface

w(L, t) =

(
1

L

L∑
i=1

[h(i, t)− h̄(t)]2

)1/2

. (1.3)

Since the initial condition is a flat interface, the width initially is zero. As particles are

deposited, the interface roughens. A typical width vs. time plot has three different regimes:

a Poisson regime, a growth regime, and a saturation regime [9]. For t < 1, the Poisson

regime dominates and w(t) ∼ t1/2. For 1 < t ≪ t×, the interface is in the growth regime

where the width scales as w ∼ tβ. The exponent β is called the growth exponent and it

summarizes the time dependence of the interface roughening. Due to the finite size of the

lattice, the power law growth does not continue indefinitely and for times t≫ t×, the width

saturates to a value wsat ∼ Lα. The exponent α is called the roughness exponent, and it

summarizes the roughness of the saturated interface. The cross-over time t× occurs when

t× ∼ Lz where z is the dynamic exponent.

1.1.3 Dynamic scaling

The exponents, α, β and z are not independent. The asymptotic relation tβ× ∼ Lα

is used to calculate the cross-over time t×. This yields t× ∼ Lα/β and z = α/β. If

we had multiple simulations of the ballistic deposition model for various lattice sizes, we

would obtain multiple width vs. time curves w(t, L1), · · · , w(t, Lk), which would saturate

at different times t×,1, · · · , t×,k and different saturation widths wsat(L1), · · · , wsat(Lk). If

we scale each width by its saturation value, w(t,Lj)

wsat(Lj)
, then the new width vs. time curve will

saturate at w(t,Lj)

wsat(Lj)
= 1. Plotting each curve w(t,Lj)

wsat(Lj)
against t/t×,j , all curves will saturate

at the same characteristic time t/t×,j = 1. These two observations suggest that w(t,L)
wsat(L)

is a

function of t/t× only, i.e.

w(L, t)

wsat(L)
∼ f

(
t

t×

)
, (1.4)

where f(·) is a scaling function. Replacing wsat and t× by their asymptotic values Lα and

Lz, we obtain the Family-Vicek scaling relation
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t100 102 104 106

100

101

Figure 1.1: width vs. time curve shows three regimes: a Poisson growth regime, a growth
regime, and a saturation regime that scale as t1/2, tβ , and Lα respectively. The cross-over
time scales as Lz.

w(L, t) ∼ Lαf

(
t

Lz

)
. (1.5)

1.1.4 Interface growth with memory

Historically, studies of interfaces were confined to systems where there was no feed-

back between the constituents that compose the interface and the latter’s morphology [9]. In

Chapter 2, we abstract out the rules for a new model of interface growth from the behavior

of a classic biological model of collective signaling, collective motility, and development:

Dictyostelium discoideum. Dictyostelium cells secrete the chemical cyclic AMP and use

it as a signal. In this system, a spreading wave of cyclic AMP activates a cell, but only if

the temporal derivative of the cyclic AMP concentration is positive and large [127]. This
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induces feedback between the interface (the boundary separating cells that secreted AMP

from those that did not), and the interface’s constituents (the front of the cells that secreted

AMP). By simulating these interface growth rules and studying the ensuing interface dy-

namics, we discovered a new universality class of interface growth. Given that there are

few universality classes of interface growth for non-living systems, this new universality

class represents a new physics discovery that is entirely inspired by biology.

1.2 Animal learning

A fundamental question in behavioral neuroscience is how animals make decisions and

select actions in response to punishment and reward. This question has been experimentally

studied in behavioral psychology via classical and operant conditioning paradigms. There

is significant evidence about the associations that influence various aspects of learned be-

havior. Animals use associations between unconditioned stimuli US (e.g., food or tail

pinch) and conditioned stimuli CS (e.g., light, tone) to predict when to expect a reward or a

punishment [32, 60, 84, 90, 126]. Despite plentiful evidence of learning based on associa-

tions, models of conditioning that quantitatively account for intricacies of behavior remain

rare [36, 87, 88, 139].

Early models of animal learning explain overshadowing 3, blocking4 and conditioned

inhibition5 by assuming that learning occurs when unexpected events occur [97]. The dif-

ference between what is expected and what occurs, the error, is proportional to the rate

of change of the association strength between the conditioned and unconditioned stimuli.

The sign of the error is what increases the association strength if the error is positive (what

3Overshadowing is when two or more stimuli are present, and one stimulus produces a stronger response
than the other because it is more relevant or salient.

4The blocking effect occurs when the attempt to pair a second conditioned stimulus CS2 to an uncon-
ditioned stimulus US is blocked due to a preexisting association between the US and another conditioned
stimulus CS1. For example, we pair light (CS1) and food (US). This causes the animal to salivate upon the
presentation of light. We then attempt to pair light (CS1) and tone (CS2) to food (US). The combination
induces salivation. When we present the tone alone after that (CS2), it does not induce salivation. So tone is
blocked by the pairing between light and food.

5In conditioned inhibition, a conditioned stimulus predicts the absence of the unconditioned stimulus.
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Figure 1.2: Associative strength V vs trial number t. The curve shows a diminishing error
effect where the error is large early in training and smaller later in training.

occurs exceeds expectations), and diminishes it if the error is negative (what occurs fails

expectations). The animal then chooses an action (or makes a decision) based on the asso-

ciation strength.

1.2.1 The Rescorla-Wagner model

Rescorla and Wagner [97] assumed that the magnitude of the error, or surprise (a proxy

for the effectiveness of a US), depends on the difference between the US presented and

what the learner expects. They further assumed that there was a relationship between the

conditioned stimuli that precede the US and the expectation of the US. This means that a

strong (weak) response to conditioned stimuli indicates a high (low) expectation of the US.

Using λ to represent the US presented on a given trial and V to represent the expected

value of the stimuli preceding the presentation of the US, the magnitude of the surprise

is the difference λ − V between what occurs and what is expected. At the beginning of
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the conditioning experiment, the surprise λ − V will be large. As more CS-US pairs are

presented, the surprise diminishes and V converges to λ. This is summarized through

∆V = α(λ− V ), (1.6)

where α is the learning parameter which is related to the salience of the US and CS pair.

1.2.2 Rescorla-Wagner and the blocking effect

Imagine the following experimental paradigm: In phase one, we repeatedly present the

(CS, US) pair (A,US) until a strong conditioned response to A occurs. In phase two, we

repeatedly present the CSs A + B with the US. Finally, we present the CS B alone in test

trials to see if it elicits a conditioned response. Interesting, little response occurs to the

presentation of B during the testing phase, despite repeated pairing with the US. This is

called the blocking effect and it is a non-trivial prediction of the Rescorla-Wagner model.

At the end of phase one, the association strength VA between A the US reaches its max-

imum value of λ. In phase two, there are two cues (A and B) whose combined association

with the US is VA+B. Applying the Rescola-Wagner model to the stimulus B, we obtain

∆VB = α(λ− VA+B). In the beginning of phase two, VB = 0. Thus, the combined associ-

ation VA+B = VA + VB = λ+ 0 = λ. As a result, ∆VB = α(λ− VA+B) = α(λ− λ) = 0.

This means that the Rescorla-Wagner model predicts that stimulus B does not acquire an

association with the US. In other words, stimulus A has blocked stimulus B from forming

an association with the US.

1.2.3 Rescorla-Wagner and associative strength loss despite pairings
with the US

Imagine that in phase one of an experiment we separately pair stimuli A and B with

the US (one food pellet) until each stimulus is perfectly predictive of the US (a single food

pellet). At the end of phase one, VA = λ and VB = λ. In phase two, the compound stimulus

A+B is presented together for the first time and is followed by the US (a single food pellet).
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Figure 1.3: Associative strength V vs trial number t for conditioned inhibition experiments.
VA and VB denote the associative strength for the reinforcing trials and non-reinforcing
trials respectively. The combined strength V = VA + VB shows non-monotonic behavior.

Naively, we expect that the association strength VA and VB to remain unchanged since the

US did not change. But the Rescorla-Wagner model predicts a decrease in both VA and VB.

In the beginning of phase two, V = VA + VB = 2λ which implies

∆V = α(λ− V ) = α(λ− 2λ) = −λ. (1.7)

This means there is an over-expectation of the US (2 food pellets instead of the one pre-

sented). This negative error reduces the association strength V and its constituents VA and

VB.

1.2.4 Rescorla-Wagner and conditioned inhibition

In a conditioned inhibition experiment, we randomly alternate between two different

types of trials: reinforcing and non-reinforcing. In the reinforcing trials, we pair the rein-

forcing CS A (tone) with the US (a food pellet). In the non-reinforcing trials, we present

both the reinforcing and non-reinforcing stimuliA+B (tone and light) but in the absence of

the US (so no food is presented). After many repetitions of both trial types, the associative
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strength VA = λ and the combined stimulus V = VA + VB = 0. This is because stimulus

A perfectly predicts the US while the combined stimulus predicts no US. The Rescorla-

Wanger model predicts that VB = −λ. This means that while positive associative strength

VA predicts presence of the US, negative associative strength VB is the model’s explanation

of how stimulus B predicts the absence of the US.

Interestingly, if the learning parameter is different between the two trial types (rein-

forcing trials having a larger learning rate6 than that of the non-reinforcing trials), then

V = VA + VB will initially increase and subsequently decrease to zero after many trials.

This occurs because the rate at which VA approaches λ is larger than the rate at which

VB approaches −λ. Under the difference in time scales assumption, this non-monotonic

behavior of V becomes a prediction of the Rescorla-Wagner model.

1.2.5 Problems with the Rescorla-Wagner model

While models such as the Rescorla-Wagner model explain some features of associative

learning, such models of conditioning are not of sufficient complexity to serve as quan-

titative models of real life animal behavior [84]. They fail to account for certain quali-

tative features of conditioning, including (i) extinction of an association that is no longer

presented (not merely unlearning) and its subsequent spontaneous recovery [31, 33, 84],

(ii) existence of many reinforcement cues (some potentially associated with non-reward-

driven actions), whose collective output influences the behavior [29, 84], (iii) asymmetric

responses to reward vs. punishment [31] and to conditioned association vs. conditioned

inhibition [84], (iv) generalization among similar, but different cues [84], and so on. The

weakness of models is a consequence of the rarity of informative experiments: measuring

behavior with high spatial and temporal resolution for a long time is difficult; behavior it-

self often modifies the conditioning contingency; behavior is often measured as a discrete

and noisy signal, and hence is not a reliable readout of a CS-US association; and biology

of different reinforcement pathways is often unclear.

6Or equivalently a smaller time scale as we show in section 3.6.1
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1.2.6 A new learning model

In Chapter 3, we abstract out a model of animal learning that includes classical-condi-

tioning, operant-conditioning, generalization, and extinction from long term, high spatio-

temporal resolution thermal learning experiments of the model system C. elegans. By

analyzing the data, we show that the structure of thermal learning in the brain of the round-

worm C. elegans must depend on at least four dynamics processes. We learn the parameters

of the model by fitting the themotactic index of wild type worms. We then predict the four

hour long thermotactic trajectory of a certain mutant without any fitting parameters. We

also predict that the phenotypic effect of various genetic perturbations will modify the star-

vation avoidance behavior. We finally predict that there is a circuit in the brain of the worm

that computes a weighted average of the temperatures for which the worm is either hungry

or cannot access food (it is not clear how to distinguish these two states from each other).

We discovered that worms simultaneously associate a single CS (temperature) with mul-

tiple reinforcement cues (absence of food and the presence of a preferred temperature) to

make a decision. This is likely a generic feature of learning in real animals that is discov-

ered from biology. By failing to include this important feature, previous models of learning

in behavioral psychology failed to describe certain aspects of associative learning. Our

new model of learning, therefore, represents a new physics discovery that is the product of

detailed analysis of the biology of learning in a real animal.

1.3 Entropy Estimation

Estimating mutual information between two random variables has become a common

task in various scientific disciplines. Estimating the entropy of probability distributions

of various data sets is a first step towards calculating mutual information in modern data

analysis. A common problem is that the number of independent samples obtained in ex-

periments is limited, so that many states are under-sampled and naı̈ve entropy estimators

are inaccurate. This occurs because there are often many states whose probability is less
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than the inverse sample size, which means that these states are unlikely to be sampled.

This means that, in order to obtain proper estimates of entropy, we must make assumptions

on the tail(s) of the underlying distribution (where many states are unlikely to be sampled),

then choose the tail hypothesis that is most likely given the samples. Previous studies found

that the statistics of states that occur in data sets multiple times (coincidences) provide use-

ful corrections to entropy estimates in the extremely under-sampled regime by selecting the

most likely tail hypothesis from those allowed by the prior [5, 6, 81, 82]. These previously

obtained corrections are largely numerical in nature and so provide little insight to which

features of the dataset cause them. Before we delve in the process of how this problem is

solved, we will first attempt to understand why coincidences are useful through a simpler

problem.

1.3.1 The birthday problem

Suppose we are at a party of K people. What should K be so that the chance of getting

two people with the same birthday is one half? For simplicity, we will assume that a year is

365 days (so we remove February 29th) and that the probability of being born on any day

of the year is 1/365 7. The probability of no birthday match among the K party goers is8

Prob[no match|K person party] =
k=K−1∏
k=0

365− k

365
≈ e−(

K
2 )/365. (1.8)

As a sanity check, we see that ifK = 1, then probability of no match is one. From Eq. (1.8)

we determine that at K = 23, the probability of one or more matches is about 50.7%. In

fact, the probability of at least one match is

Prob[at least one match|K person party] ≈ 1− e−(
K
2 )/365 ≈


50.7% for K = 23

97% for K = 50

99.97% for K = 75.
(1.9)

7This turns out not be quite a correct assumption. There are seasonal effects that vary from country to
country. It is more likely, for example, that babies are born about nine months after a holiday.

8we obtain this probability by observing that the first person has 365 possible birthdays, while the second
person has only 364 once the first person’s birthday is fixed etc.
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These probabilities seem surprising. They say that already with only K = 23 people, the

chance of at least two people having the same birthday is 50.7%. The surprise comes from

the faulty intuition that there are 365 days a year and so for the probability of a match to

be near a half we need about 365/2 people. The reason this intuition is faulty is that the

quantity that matters here is the number of coincidences or the number of possible pairs

that could have the same birthday. The number of pairs is
(
K
2

)
is roughly speaking the

important quantity here and this appears in the expected number of pairs X with the same

birthday

⟨X⟩ = K(K − 1)

2 · 365
. (1.10)

The expected number of pairs with the same birthday at K = 28 is ⟨X⟩ ≈ 1 pair!.

1.3.2 Inferring the number of states from coincidences

Generalizing Eq. (1.10) to a year with d days, we see that the expected number of pairs

with the same birthday is

⟨X⟩ = K(K − 1)

2 · d
. (1.11)

From this we see that the expected number of coincidences X is related to the number of

days d via the formula

d =
K(K − 1)

2 · ⟨X⟩
. (1.12)

This formula means that if we have access to the number of coincidences in sample party

of size K, then we can estimate the number of days in year. Of course nothing about this

analysis is particular to the birthday problem. In fact we can apply this argument to a

sample of size K of a system with d equiprobable states. A coincidence is when a state is

visited more than once in the sample. The entropy of this system then becomes

S ≈ log

(
K(K − 1)

2 · ⟨X⟩

)
. (1.13)
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1.3.3 Problems with inference

From knowledge of the variance of the coincidences X , we can estimate the error in S.

This estimate, however, suffers from a serious deficit. By looking at Eq. (1.11), we note that

we do not typically have access to ⟨X⟩, but instead we have access to a realization of the

random number of pairs X in the a specific sample of size K. Therefore, for any inference

to occur X must at least be one. This happens on average whenever K(K − 1) ≥ 2d or

K ≳
√
2d. (1.14)

That is we need the sample size to be at least of the order of square root of the number

of states in order for us to expect at least one coincidence. Of course, this becomes more

difficult as the number of states approaches infinity, which is the typical case. Also our

estimate now will suffer from the problems associated with using X instead of ⟨X⟩ in

Eq. (1.13). A similar argument to the one made here was first utilized by Ma to estimate

entropy for random systems [69]. Ma generalized this argument for special cases where

groups of states are not equally probable. Ultimately, we have to make assumptions on

the underlying probability distribution over the states. Nemenman and colleagues [81, 82]

made further progress on entropy estimation by making assumptions on the probabilities of

the states from which the samples are obtained. Finally, Archer and colleagues [5] further

relaxed the assumptions made by Nemenman and colleagues [81, 82]. Details of these

works are out of the scope of this introduction and are available in Chapter 4.

1.3.4 What is new here?

In Chapter 4, we study the common and well established Pitman-Yor Mixture entropy

estimator, which attempts to estimate the entropy of undersampled multinomial observa-

tions. This estimator makes an assumption that the tail of the observed distribution is either

exponential, power law, or a mixture of the two. This Bayesian estimator is re-analyzed,

and its entropy estimate is rewritten in terms of the coincidence vector K, whose ith ele-

ment is the number of states sampled i or more times. Surprisingly, we found that the tail



15

hypotheses assumed by Bayesian estimators are equivalent to making assumptions about a

few data statistics: the number of coincidences among the samples, and the dispersion of

the coincidences.

These analytical coincidence-based estimates provide a method for understanding which

coincidences influence the entropy estimates most, by allowing us to study synthetic data

samples generated from known distributions. These emergent quantities that determine the

entropy estimate represent a physics discovery that is inspired by data analysis.

1.4 Conclusion

Finally, in Chapter 5 we conclude with a discussion on further developments that nat-

urally arise from the problems addressed in this thesis. We outline possible theoretical

examination of animal learning through a theoretical lens in ways that may not have been

as clear before. We also discuss how coupling of learning with other dynamical systems

such as ecology may prove useful in understanding animals in more realistic environmental

conditions. We also comment on using the entropy estimates found in Chapter 4 to obtain

estimates of the mutual information between two random variables in the under-sampled

regime.
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Chapter 2 Ballistic deposition with memory: a
new universality class of surface growth with a
new scaling law

2.1 Summary

1 Motivated by recent experimental studies in microbiology, we suggest a modification

of the classic ballistic deposition model of surface growth, where memory of a deposition

at a site induces more depositions at that site or its neighbors. By studying the statistics of

surfaces in this model, we obtain three independent critical exponents: the growth exponent

β = 5/4, the roughening exponent α = 2, and the new (size) exponent γ = 1/2. The model

requires a modification to the Family-Vicsek scaling, resulting in the dynamical exponent

z = α+γ
β

= 2. This modified scaling collapses the surface width vs. time curves for various

lattice sizes. This is a previously unobserved universality class of surface growth that could

describe surface properties of a wide range of natural systems.

2.2 Introduction

Interface growth, and its ensuing roughening, is a paradigmatic nonequilibrium statis-

tical physics process, with applications to many domains of physics [9]. Analytical, com-

putational, and experimental studies have shown that the statistics of interface roughness

in such processes usually is characterized by one of well-known universality classes: Pois-

son, Edwards-Wilkinson (EW), and Kardar-Parisi-Zhang (KPZ) [37, 55], as well as their

extensions to quenched disorder, correlated noise, and so on [3, 86]. In the first, interface

heights at every point are uncorrelated. In the second, peaks in the interface are smoothed

through diffusion. Finally, in the third, nearby sites in the interface help each other grow,

1This chapter presents the paper [103] with the same title as this chapter. The work was done in collabo-
ration with Ruomin Zhu and Ilya Nemenman.
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resulting in a nonlinear amplification of fluctuations. Competition between the smoothing

and the nonlinearity leads to the interface roughness that increases with time and eventually

saturates at a system-size dependent value.

More concretely, we denote the height of a 1-d interface at point x at time t by h(x, t).

Then the standard deviation of the interface height defines the interface roughness

w(L, t) = ⟨(h(x, t)− ⟨h(x, t)⟩L)2⟩1/2L , (2.1)

and the average here is over a domain of size L. Such growth processes are generally

characterized by three critical exponents: β, the growth exponent, which measures how the

roughness grows with time; α, the roughness exponent, which parameterizes the depen-

dence of the roughness of the saturated interface on the system size, and z, the dynamical

exponent, which relates the time at which the width of the interface stops growing to the

system size. The three exponents are related by the celebrated Family-Vicsek dynamical

scaling [38]

w(L, t) ∼ Lαf(t/Lz), with (2.2)

f(u) ∝
{
uβ u≪ 1
1 u≫ 1

, (2.3)

which results in z = α/β.

What unites all of these cases is that there is no memory or inertia in the interface

growth – deposition is Markovian in time. This is a reasonable assumption when the in-

terface is built by or from stateless agents. However, when the agents are more complex,

such as when they are living cells with a multitude of internal states, such memory-less

assumption should be questioned. For example, in cyclic AMP signaling in Dictyostelium

discoideum, which is a classic biological model of collective signaling, collective motility,

and development, a spreading wave of cyclic AMP activates a cell, but only if the temporal

derivative of the cyclic AMP concentration is positive and large [127], cf. Fig. 2.1a. In

another example, an action potential propagates in a bacterial film only if a concentration

of a previously secreted extracellular potassium has not yet decayed through diffusion [72,
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Figure 2.1: (a) Three successive snapshots of the activation front (dashed lines) of Dic-
tyostelium cells. An inactive cell (white) activates (turns to red) in response to cAMP
(concentration shown by the color, from blue to yellow). However, to activate, it must
sense a large positive temporal change of cAMP, which exists transiently only in the pink
oval-shaped region. As cAMP diffuses, only cells that are next to recently active cells can
be activated. (b) A ballistic deposition with memory (BDM) model of the process. A par-
ticle A is deposited (activated) at time step N into the middle column. The propensity for
deposition (shown by color) in the column and its neighbors becomes one at the next time
step, while the propensity of all other sites decreases.

93]. All such processes possess memory: the interface at a certain point can grow, but only

if it grew here recently. Theory of such interface growth processes with memory is not

yet established. In particular, we do not know the relevant critical exponents, how many

different universality classes there are, and whether the Family-Viscek scaling is satisfied

in such settings.

Here we develop a model of Ballistic Deposition with Memory (BDM), one of likely

many possible extensions of the traditional memoryless surface growth processes, which

is inspired by the microbiological systems mentioned above. We derive the critical expo-

nents, and verify them numerically. We show that the process falls into a new universality

class with a new scaling law and a new scaling relation. The KPZ universality class is an

unstable fixed point in the BDM dynamics. Finally, we discuss the effect of varying mem-
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Figure 2.2: Examples of the BDM interfaces. In the top row, the deposition height vs.
space coordinate is shown for each deposition as a black dot. Different columns are for
different values of r. The blue curves show the surface height as a function of the spatial
coordinate for different number of depositions, from N = 2000 (light blue), to N = 10000
(dark blue). The bottom row shows the propensity, encoded by color, as a function of space
and time.

ory duration, and show that the standard KPZ interfaces are achieved in a particular limit

of the memory parameters.

2.3 Model formulation

We consider the deposition of particles on a one-dimensional substrate of length L.

Each site i has a propensity value 0 ≤ πi(N) ≤ 1, which determines the probability that

the site will receive a particle deposition at step N . Initially, all sites are equally likely to

receive a deposition; i.e., πi(0) = 1 for all i. However, unlike in the ballistic deposition

model, if a site j receives a deposition, then the propensity at that site and its nearest

neighbors is set to one, while the propensity of all other sites is reduced by a factor r, thus

reducing the probability of receiving a deposition if no deposition has happened for a long

time:

πi(N + 1) =

{
1 j − 1 ≤ i ≤ j + 1

rπi(N) otherwise.
(2.4)
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Figure 2.3: (Left) The saturation width of the BDM interface as a function of the system
length L. The scaling Lα, where α is the roughening exponent, obtained from simulation,
is shown. (Middle) The scaling of w/tβ in the growth regime as function of the system
size is Lγ; t(N) is defined as in Eq. (2.11). The fitted scaling with the size exponent
γ = 0.54 ≈ 0.5 is also plotted. (Right) The growth exponent β as a function of the system
size L. The black dash-dotted line at β = 5/4 is the theoretical prediction, in agreement
with simulations once finite size effects become negligible. The value r = 0.5 is used for
all subplots.

Overall, the probability to receive the deposition at site i at the N th deposition event is

P [i, N ] =
πi(N)∑L
i=1 πi(N)

. (2.5)

At step N , the height of the interface at site i is h(i, N), with h(i, 0) = 0. After a site

i is randomly selected for the deposition according to Eq. (2.5), its height increases from

h(i, N) to

h(i, N + 1) = max{h(i− 1, N), h(i, N) + 1, h(i+ 1, N)}, (2.6)

allowing for overhangs, as in the traditional Ballistic Deposition, cf. Fig. 2.1a. We model

the process with periodic boundary conditions, h(L + 1, N) = h(1, N). The dynamics of

the surface and the propensity are shown in Fig. 2.2 for various values of r. For low values

of r, a single propensity finger moves randomly, causing the deposition sites to follow a

random walk, and overhangs form every time the random walk reverts. In the intermediate r

regime, multiple propensity fingers move randomly, merge and split. These fingers deposit

particles that form shapes, reminiscent of the Diffusion Limited Aggregation [131], though

whether the similarity is more than qualitative is unclear. For values of r ≈ 1, many

deposition fingers merge into a deposition front, whose fluctuation is KPZ-like (as we will
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discuss later), but with chasms that have a much lower height, and whose frequency gets

lower as r → 1.

2.4 A random walker

We start with the fast propensity decay limit, defined as r ≪ 1/L (see Appendix for

details). Here the probability that any site j receives a deposition at step N + 1 given that

a non-neighboring site i received a deposition at step N is

∑
j ̸∈{i−1,i,i+1}

1≤j≤L

P [j,N + 1|i, N ] =
∑

j ̸∈{i−1,i,i+1}
1≤j≤L

πj(N)∑L
k=1 πk(N)

<
Lr

3
≪ 1

3
, (2.7)

where we used the bounds

L∑
k=1

πi(N) >
∑

k∈{i−1,i,i+1}

πk(N) = 3 (2.8)

and ∑
j ̸∈{i−1,i,i+1}

1≤j≤L

πj(N) < (L− 3)r < Lr (2.9)

to bound the denominator and numerator, respectively. Therefore, the location xN of the

deposition after N steps is well approximated by a 1-d random walker.

2.5 Determining the unit of time

Classical models of interface growth, such as ballistic deposition or KPZ, usually define

time in the units of the mean number of deposited layers, t ∼ N/L. However, when the

measure of where particles can be deposited concentrates, different relations between N ,

L, and t emerge [35, 73]. Similarly, in our case, the usual definition would imply that, for

small r, in one time unit, one deposits L particles on
√
L sites. The flux per unit time at

those
√
L sites would then be ∼

√
L, which is infinite in the thermodynamic limit, L→ ∞.

Here we show that, to avoid this pathology, t ∝ N is the only acceptable choice.
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We begin by defining the space-averaged propensity π(N) = 1
L

∑L
i=1 πi(N), which can

be decomposed into two different contributions. At step N − 1, L− 3 sites do not receive a

deposition and are not neighbors of the deposition site. The total propensity of those sites

at step N is (L − 3)rπ(N − 1). The total propensity of the site that receives a deposition

and its two neighbors is three. Thus we obtain the recursion relation for π(N)

π(N) =
1

L
[(L− 3)rπ(N − 1) + 3]. (2.10)

The solution of Eq. (2.10) (see Appendix) has a characteristic time scale ofN1/e =
1

ln L
(L−3)r

≈
1

ln 1
r

depositions, approaching a steady state space-averaged propensity π∗ = 3(L − (L −

3)r)−1. In the limit N ≫ N1/e, there are O(Lπ∗) sites whose probability of receiving a

deposition is O(1/Lπ∗) (see Appendix), while all other sites have probability zero of re-

ceiving a deposition. This implies that the effective lattice length is Lπ∗ and motivates a

definition of time as

t = η
N

Lπ∗
= η

(
1

3
− L− 3

3L
r

)
N (2.11)

for any constant η. In all figures and equations, we define time as in Eq. (2.11) with η = 1.

2.6 Dynamical exponents

After N depositions, the deposited particles span O(
√
N) lattice sites and the random

walker has performed O(N) reversals, with each reversal increasing the height by 1. Thus

the average height of the interface is ⟨h(N)⟩ ∼ c1 · 0 · L−
√
N

L
+ c2 · N ·

√
N
L

∼ N3/2

L
=

λ
3/2
r,L t

3/2/L while the mean squared height is ⟨h(N)2⟩ ∼ c3 · 02 · L−
√
N

L
+ c4 · N2 ·

√
N
L

∼
N5/2

L
= λ

5/2
r,L t

5/2/L for λr,L = 1/(Lπ∗) and some constants c1, · · · , c4. The resulting mean

width of the interface becomes

w(L, t) ∼
(
λ
5/2
r,L

t5/2

L
− δλ

3/4
r,L

t3/4

L2

)1/2

(2.12)

for some constant δ.

In the regime where
√
N ≪ L (i.e., the random walker has yet to span the system), the

width of the interface grows with time (the growth regime), and its value is dominated by
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the first term in Eq. (2.12):

w(L, t) ∼ λ
5/4
r,L t

5/4/
√
L ∝ tβL−γ. (2.13)

This determines the size exponent γ = 1/2 and growth exponent β = 5/4, which are in

excellent agreement with simulation values, cf. Fig. 2.3, despite finite size effects, and even

with r outside the regime r ≪ 1/L.

In the regime where
√
N ≳ O(L), the random walker has spanned the lattice, and the

surface roughness saturates at

wsat ∼ N5/4/
√
L ∼ (L2)5/4/

√
L = L2, (2.14)

This determines the roughness exponent α = 2, which agrees with the simulations, Fig. 2.3.

2.7 Dynamical scaling relation and the scaling law

Since the growth and saturation regimes cross at some time tc, it follows from Eqs. (2.13)

and (2.14) that λ−β
r,LL

−γtβc ∼ Lα. The relation tc ∼ λr,LL
α+γ
β = λr,LL

z determines the scal-

ing law z = α+γ
β

= 2 in our model. Note that λr,L has a weak dependence on L such that

for L≫ 1 it is essentially independent of L. The scaling relation becomes

w(L, t) ∼ Lαf(t/L
α+γ
β ) (2.15)

with f defined as in the Family-Vicsek scaling[38]. Indeed, plotting w/Lα against t/L
α+γ
β ,

as in Fig. 2.4, collapses the width vs. time curves plotted for various lattice lengths L in the

inset of Fig. 2.4. From this, we conclude that there are three independent exponents α, β

and γ that fix the dynamic exponent z.

As a newly arriving particle sticks to the surface following Eq. (2.6), its height is either

the same or larger than that of its neighbors. This introduces correlations between neigh-

boring sites. The ensuing height fluctuations spread laterally since particles deposited at

nearby sites must have an equal or larger height. This correlation length ξ|| can only grow

up to the substrate length, i.e., ξ|| ∼ L for t ≫ tc. Replacing L by ξ|| in tc ∼ λr,LL
z, we
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Figure 2.4: Interface width w as a function of time for r = 0.5 and systems of different
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find that ξ|| ∼ λ
−1/z
r,L t

1/z
c for t≫ tc. Since ξ|| ∼ N1/2 for t≪ tc, we see that ξ|| ∼ λ

−1/z
r,L t1/z

holds for t≪ tc as well.

2.8 Varying the memory time scale

As r increases, so does the total size of the randomly moving propensity fingers Lπ∗ =

λ−1
r,L. Increasing r also decreases linearly the time to saturation tc, cf. Fig. 2.5. In the limit

of r = 1, the KPZ exponents as seen in Fig. 2.5 and the standard definition of time t = N/L

are recovered. For most of the r ∈ [0, 1] domain, the surface fluctuations are in the new

universality class and are not in the KPZ class, cf. Fig. 2.5. At early times, the Poisson
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Figure 2.5: Interface width w as a function of time for system size L = 103 and different
propensity decay constants r. The growth exponent changes from the KPZ value of β =
1/3 to BDM value β = 5/4 as the propensity decay rate r deviates from r = 1. For r = 1
and for very small time, the width exhibits the Poisson scaling with β = 1/2.

regime dominates the growth with a characteristic scale t1/2 followed by the KPZ growth

with a scale t1/3 (effectively, r ∼ 1) within a moving finger of finite width, and eventual

transition to fluctuations with a scale of t5/4 (effectively, r < 1). For finite L, this transition

occurs at r∗(L) < 1. However, in the thermodynamics limit L → ∞, the transition value

r∗(L) → 1 because the random depositions would cover only a finite part of the lattice.

This implies that the KPZ class is an unstable point of the dynamics that occurs only at

r = 1 if L is infinite.
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2.9 Discussion

We numerically and analytically studied a model of surface growth with memory. In-

troduction of memory breaks the temporal locality of the deposition process, so that de-

position at the current time is dependent on the history of prior deposition events. This

leads to emergence of a new size exponent γ, which captures the random walk nature of

the deposition process at long times, and to changes in the values of the growth exponent

(β = 5/4) and the roughening exponent (α = 2). These exponent result in a new scaling

law z = α+γ
β

= 2, which generalized the classical scaling law z = α/β. In other words,

BDM is a surface growth process that does not belong to the KPZ universality class.

In the standard KPZ and EW universality classes, there is no correlation in the deposi-

tion process, so that the position of the next deposition is independent from the positions

of all past depositions. By including the propensity, we introduce such correlations. The

ensuing universality class differs from the KPZ and the EW classes, and from their various

well-known modifications [28, 61, 74, 94, 117, 124, 132]. This is because our novel class

changes the dimensionality of the dynamics by introducing additional dynamical variables

π in addition to h.

While our model was inspired by biological systems, it remains to be seen if the dis-

covered universality class is relevant to them. In order to verify this, it might be easier to

introduce and study a similar memory-enabled extension of the Eden growth model [34,

38]. Further, it is then necessary to explore empirically large spatiotemporal scales that are

beyond the typical scales probed in current experiments to test our predicted exponents.

We hope that such experiments will provide exciting new insights in interface growth phe-

nomena.
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2.10 Appendix

2.10.1 Solving the propensity recursion relation

Multiplying the recursion relation

π(n+ 1) =
1

L
[(L− 3)rπ(n) + 3]

by the summing factor
(
L−3
L
r
)−n−1 and summing from n = 0 to n = N − 1, we obtain the

telescoping sum

N−1∑
n=0

[(
L− 3

L
r

)−n−1

π(n+ 1)−
(
L− 3

L
r

)−n

π(n)

]
=

3

L

N−1∑
n=0

(
L− 3

L
r

)−n−1

(
L− 3

L
r

)−N

π(N)− π(0) =
3

L

N−1∑
n=0

(
L− 3

L
r

)−n−1

(2.16)

or equivalently,

π(N) =

(
L− 3

L
r

)N
(
π(1) +

3

L

N−1∑
n=0

(
L− 3

L
r

)−n
)
.

This evaluates to

π(N) = π(0)

(
L− 3

L
r

)N

+
3

L

N−1∑
n=0

(
L− 3

L
r

)N−n−1

. (2.17)

Notice that the last sum can be rewritten as

3

L

N−1∑
n=0

(
L− 3

L
r

)N−n−1

=
3

L

N−1∑
n=0

(
L− 3

L
r

)n

. (2.18)

Rewriting the solution of the recursion relation in the exponential form yields

π(N) =

(
L

(L− 3)r
− 3

L− (L− 3)r

)
e−N ln( L

(L−3)r ) +
3

L− (L− 3)r
. (2.19)

From the first term, we obtain the propensity decay time scale

N1/e =
1

ln
(

L
(L−3)r

) ≈ 1

ln
(
1
r

) , for L≫ 1. (2.20)

Thus π(N) exponentially decays to

π∗ =
3

L− (L− 3)r
(2.21)
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on the time scale O(N1/e). In the limit r → 1 and L ≫ 1, the time scale N1/e → ∞. That

is, the propensity remains at the fixed value of π ≈ 1 and no decay occurs, consistent with

the regular Ballistic Deposition process.

2.10.2 Computing deposition probabilities

From Eq. (2.5), we deduce that if site j receives a deposition at step N , then the proba-

bility that site i will receive a deposition is

P [i, N + 1] =
πi(N + 1)∑L
i=1 πi(N + 1)

=
πi(N + 1)

Lπ(N + 1)
(2.22)

≈
{ 1

(L−3)rπ(N)+3
, for j − 1 ≤ i ≤ j + 1

rπ(N)
(L−3)rπ(N)+3

, otherwise.
(2.23)

However, for N ≫ 1
ln(1/r)

, the propensity π(N) ≈ π∗ = 3
L−(L−3)r

and the probability of a

deposition at site i becomes

P [i, N + 1] ≈
{

1
3
− L−3

3L
r, for j − 1 ≤ i ≤ j + 1

r
L
, otherwise. (2.24)

As a check, we see that the probability that any site receives a deposition is one

L∑
i=1

P [i, N + 1] = (L− 3)
r

L
+ 3

(
1

3
− L− 3

3L
r

)
= 1.

Furthermore, using Eq. (2.24), we see that

∑
j ̸∈{i−1,i,i+1}

1≤j≤L

P [j,N + 1|i, N ] =
L− 3

L
r ≈ r ≪ 1 (2.25)

for r ≪ 1. Therefore, the position xN of the deposition at step N follows an unbiased

random walk in this regime.

2.10.3 Expanding the random walk regime

The steady state propensity π∗ in practice is not spread out over the entire lattice. In-

stead Lπ∗ = 3(1− L−3
L
r)−1 sites have propensity almost one, and the rest of the lattice has

zero propensity. This motivates the definition of time as t = η N
Lπ∗

shown in Eq. (2.11) in
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the main text. In the limit Lπ∗ ≪ L, the propensity process is made of multiple fingers of

cumulative size Lπ∗, which all are performing random walks. These fingers dynamically

merge and split as particles are deposited randomly. This has the effect that, outside these

fingers, the probability of a deposition is zero and hence our dynamical exponents will hold

in the significantly larger regime Lπ∗ ≪ L or, equivalently, 3
1−r

≪ L.

2.10.4 Extracting exponents from data

To estimate the growth exponent β, we compute the mean width ⟨w(N)⟩ = 1
n

∑n
i=1wi(N)

of n realizations of width {w1(N), · · · , wn(N)} obtained from n realizations of the height

{h1(N), · · · , hn(N)} according to Eq. (2.1). To ensure that the estimated value of the

growth exponent remains in the growth regime and is unaffected by cross-over effects, we

limit the range of time used in the estimation toN ∈ [3·102, 3·104]. According to Eqs. 2.13

and 2.14, the mean width in the growth regime is ⟨w(N)⟩ ∼ L−γNβ . Therefore, linear re-

gression obtains the slopes β and γ of the plane lnw(N) = β lnN − γ lnL + k when

regressed against lnN and lnL respectively. The slopes obtain values of β ≈ 1.25± 0.03

and γ ≈ 0.54± 0.09.

To determine the size of the fluctuations around the estimated value of β for a fixed

substrate length L, we use the covariance matrix Σβ,∆ of the parameters β and ∆ =

−γ lnL + k. The covariance matrix is Σβ,∆ ≈ R−1(R−1)T |e⃗res|2
df

where R is the trian-

gular factor from a QR decomposition of the Vandermonde matrix of ln(N), e⃗res is the

vector of residuals between the data and the fitting line, and df = 2 is the number of de-

grees of freedom. The quantity (Σβ,∆)
1/2
β,β provides the standard deviation on β. A similar

procedure is followed when we regress on −γ lnL+k against lnL to find γ and its standard

deviation.

To determine the roughening exponent α, we note that ⟨w(t)⟩ ∼ Lα in the saturated

regime. To avoid a bias in the estimate of α due to the transition from growth to saturation,

we limit the time range used in the estimate to N ∈ IL = [2L2, 10L2] for lattice length L.
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For a fixed lattice length L, the width in the saturation regime fluctuates over the interval IL.

In this regime, the mean width is obtained from the relation ⟨wsat⟩IL = 1
|IL|
∑

N∈IL⟨w(N)⟩,

where |IL| is the length of the interval IL used for the estimate ofwsat of the lattice of length

L. Using linear regression, the value of the slope of the line ln⟨wsat⟩ = α lnL + λ gives

α ≈ 2.0± 0.18 as seen in Fig. 2.3, in agreement with analytical results.
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Chapter 3 C. elegans thermotaxis reveals gen-
eral mechanisms of extinction and recovery in an-
imal learning

3.1 Author contributions:

This chapter presents the paper [102], whose authors are Ahmed Roman, Konstantine

Palanski, Ilya Nemenman, and William S Ryu. William S Ryu, and Ilya Nemenman con-

ceived and designed the project. Konstantine Palanski performed all of the experiments;

Ahmed Roman and Konstantine Palanski performed the data analysis; Ahmed Roman and

Ilya Nemenman developed and fitted the model. Ahmed Roman, Ilya Nemenman, and

William S Ryu wrote the manuscript. William S Ryu and Ilya Nemenman supervised the

study.

3.2 Summary

C. elegans is capable of learning and remembering behaviourally relevant cues such as

smells, tastes and temperature [7]. This is an example of associative learning, a process

where behaviour is modified by making associations between various stimuli [90]. Since

the mathematical theory of conditioning [84, 97] does not account for some of its salient

aspects, such as spontaneous recovery of extinguished associations, accurate modelling of

behaviour of real animals during conditioning has turned out difficult. Here we do this in

the context of the dynamics of the thermal preference of C. elegans. We quantify C. el-

egans thermotaxis in response to various conditioning temperatures, starvation durations,

and genetic perturbations using a high-resolution microfluidic droplet assay. We model this

data comprehensively, within a new, biologically interpretable, multi-modal framework.

We discover that the strength of the thermal preference is composed of two independent,
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genetically separable, contributions and requires a model with at least four dynamical vari-

ables. One pathway positively associates the experienced temperature independently of

food and the other negatively associates to the temperature when food is absent. The multi-

dimensional structure of the association strength provides an explanation for a number of

longstanding questions in animal learning [31, 33, 84, 90], including spontaneous recovery,

asymmetric response to appetitive vs. aversive cues, latent inhibition, and generalization

among similar cues.

3.3 Introduction

Animals modify their behaviour through learning. Conditioning or associative learning,

that is, making associations between various stimuli is one of the best studied such process

[32, 60, 84, 90, 126]. Nonetheless models of conditioning, quantitatively accounting for

intricacies of behaviour are rare [36, 87, 88, 139].

In conditioning, a reward or punishment from an unconditionally appetitive or noxious

stimulus (US, or reinforcement) teaches the animal to associate it with conditioned stimuli

(CS, or cue), which predict the US. Conditioning is usually modeled within the Rescorla-

Wagner (RW) [97] and the reinforcement learning (RL) frameworks [30, 31, 84, 126],

where an error an animal makes in predicting a US from CS cues changes the strength of

the CS-US associations, decreasing future errors. If the conditioning process is slow, so

that many predictive cue-reward pairs happen, and the CSs appear one at a time, then the

RW model becomes (see Section 3.6.1 for a derivation):

τ
dVi
dt

= fi(t)
(
λ0fλ|i(t)− Vi(t)

)
. (3.1)

Here Vi is the association strength between the ith CS and the US in some arbitrary units

set by λ0, the salience of the US. Further, τ is the time scale of learning, and fi and fλ|i,

both in the range of [0, 1], are the frequency of the ith CS and the US conditional on it,

respectively. The frequencies may depend on the animal’s behaviour, which, in turn, is
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controlled by the association strengths {Vi}.

Such conditioning models are simplified and often lack the complexity to serve as quan-

titative models of real life animal behaviour [84]. Even worse, they fail to account for

some qualitative features of conditioning, including (i) extinguishing an association (not

merely unlearning) and subsequent frequent spontaneous recovery [31, 33, 84], (ii) exis-

tence of multiple reinforcement systems (some potentially associated with habitual and not

reward-driven actions), outputs of which integrate into behaviour [29, 84], (iii) asymmetric

responses to appetitive vs. aversive cues [31] and to conditioned association vs. conditioned

inhibition (in the latter, a CS predicts absence of the US) [84], (iv) generalization among

similar, but distinct cues [84], and so on. The weakness of models is often due to the

difficulty in designing informative experiments: measuring behaviour with high precision,

quickly, and for long duration is nontrivial; behaviour itself may modify the conditioning

contingency; behaviour is noisy, often discrete, and hence is not a reliable readout of a

CS-US association; and biology of different reinforcement pathways and mechanisms of

their integration are unclear.

To generate more useful data, and to incorporate them into more accurate models of

an animal’s behaviour during learning, we turn to C. elegans as a quantitative model sys-

tem. The worm—one of the simplest organisms exhibiting conditioning [7]—associates

the presence of food with various environmental signals, such as salts [105], odors [138]

and temperature [45, 78], modifying complex, but measurable behaviours (chemo- and

thermotaxis [2, 12, 45, 128]). It is a particularly good model system for studying associa-

tive learning because of its simple nervous system [130], short life cycle, and our ability

to control the environment and accurately measure its behaviour over long periods of time

(hours). In addition, a number of genes affecting learning in C. elegans have been identified

[50], most notably those in the insulin-like signaling pathway [114].

C. elegans thermotaxis is a well-studied behaviour affected by conditioning: when

placed on a thermal gradient, C. elegans taxes to their cultivation temperature [45, 78,
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104] and, when near this thermal preference, it performs isothermal tracking [45, 78, 104].

A new thermal preference is acquired when worms are placed at a different cultivation tem-

perature 1 [12, 45, 78]. The thermal preference and its temporal dynamics can be measured

by tracking worm behaviour on thermal gradients [21, 23, 96, 104]. The thermal preference

is established asymmetrically between high and low (above or below ∼ 20◦C) temperature

conditions [104, 137]. The preferred temperature may depend on the starvation state of

the worm [45] and on the steepness of the temperature gradient [54, 96]. Further, the dy-

namics of the preference is relatively fast (from tens of minutes to a few hours) [12, 96].

This makes designing experiments to assay the dynamics of associations difficult since the

preferences can change faster than the worms move in gradients to reveal them. As a result,

even some of the most basic questions about C. elegans associative learning remain unclear,

such as the relative importance of food to the establishment of the preference, precluding

accurate mathematical models of the process.

Here we designed a microfluidic assay to monitor the thermotactic preference of indi-

vidual worms, with the precision and the temporal resolution sufficient to track its dynam-

ics. We showed that the simple model, Eq. (3.1), cannot precisely fit such data. Thus we

developed, and then experimentally verified, a more complicated picture of the dynamics

of conditional associations in C. elegans. We identified multiple pathways affecting ther-

motaxis: habituation to the experienced temperature, and avoidance of temperature when

no food was collected. Using worms with mutations in the insulin signaling pathway—

whose behaviour the model predicts with quantitative accuracy—we isolated contributions

of these independent pathways to the behaviour. We argue that the developed model solves

a variety of long-standing conceptual problems in the field of animal associative learn-

ing. We further suggest that such multi-pathway organization of the conditional response

dynamics may be optimal for food search in dynamical environments.

1cultivation temperature here means the temperature at which the worms were raised.
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3.4 Results

3.4.1 Measuring thermal preference

We rear N2 wild type worms at 15◦C and 25◦C, hereafter called cold and warm worms

(cf. Section 3.6.2). Individual worms are then placed in each droplet (4 mm dia.) on a mi-

croscope slide with a six droplet array Fig. 3.1 (cf. Section 3.6.3). The slide is sealed, and

the swimming patterns of each worm are quantified for up to 4 hours. We first acclimatize

the worms for 15 min in the droplet at 20◦, and then turn on the thermal gradient of 1◦C/cm

(from 19.8◦ to 20.2◦ across the droplet width). Since the droplet is small and can be tra-

versed by a worm in seconds, the thermotactic bias in the worm’s position can be measured

in less than a minute, allowing the quantification of its dynamics. Each worm’s position

along the gradient in the droplet is rescaled to take values between -1 (cold edge) and +1

(warm edge), and the thermotactic index, Θ, is determined as the mean position over some

period of time (usually tens of seconds, cf. Section 3.6.4). The average Θ for about 110

worms reared at 15◦C and 25◦C are shown in Fig. 3.1a (blue and red, respectively). The

cold (warm) animals initially show strong preference to the cold (warm) side, Θ ≈ ±0.25,

respectively. For scale, note that the worms move constantly, and if they were to explore

just one side of the droplet uniformly—a very strong bias—the thermotactic index would

be 1/3.

3.4.2 Dynamics of thermal preference

After the thermal gradient is turned on, cold (warm) worms perform thermotaxis to the

cold (warm) side of the droplet, presumably expecting to find food there, cf. Fig. 3.1(C) and

Fig. 3.2. However, the droplet has no food, and the strength of the bias decreases with time,

changing sign in about 3h (2h), Fig. 3.2. The warm worms then return back to zero bias by

3.5h in the droplet, while the cold worms remain warm-biased for the remaining time. This

observation of the zero crossing in the thermal preference is crucial: the simple dynamical

system, Eq. (3.1), cannot oscillate autonomously (cf. Section 3.6.1). Thus the model in
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Figure 3.1: Droplet thermotaxis assay. (A) An array of PTFE constrained droplets (4mm
dia.) with single C. elegans placed in a thermal gradient. (B) Multiple exposures of a single
droplet (150 frames captured at 6 frames per minute) superimposed on each other. The
thermotaxis index (Θ) is the average position of the worm in the droplet along the thermal
gradient. (C) Thermotactic response of N2 with a cryophilic and thermophilic preferences
(blue and red) and N2 control with no gradient (black). The vertical dashed-dotted line
indicates the onset of the temperature gradient in the droplet for the biased worms.

Eq. (3.1) is incomplete. Specifically, to model the observed thermotactic index dynamics,

we need at least two interacting dynamical variables in a model, with two distinct time

scales.

The dynamics in Fig. 3.2 proceed autonomously, with no food in the droplet, eventually

developing avoidance of an initially attractive temperature. A possible explanation is a

faster decay of the association on the initially attractive side than on the opposite side.
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However, the two sides are less than a half a degree apart, precluding large differences in

time scales. We thus explain the avoidance by assuming that at least one of the dynamical

variables describing the thermotactic index is reinforced by the absence of food, encoding

avoidance of (rather than preference to) certain temperatures.
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Figure 3.2: Dynamics of thermal memory for wild type worms. Thermotactic index of
cold (A) and warm (B) worms with different duration of starvation is shown by different
shades of blue (red). The vertical dashed-dotted line indicates the onset of the temperature
gradient. Immediate preference of the colder (warmer) side by the non-starved cold (warm)
reverts to the preference of the warmer (colder) side as the worm spends more time in the
droplet. The initial preference also weakens and reverses to avoidance when the worm is
subjected to long duration of starvation before the droplet assay. Data is shown as dashed
lines, and model fits are depicted with solid lines. All curves with different pre-assay
starvation durations for the same rearing temperature share the same fitting parameters.
For presentation purposes only (but not during fitting), both data and model are filtered
(cf. Section 3.6.4). Error bands on the data are the 16.5 to 83.5 percentiles. Error bands for
the models are obtained using bootstrapping (cf. Section 3.6.13).
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To further understand the nature of the dynamical variables involved in the thermotactic

preferences, we focus on the ins-1(nr2091) strain with a mutation of an insulin-like peptide

[91]. This mutant has a more persistent thermal preference [58] and shows a defective

negative association in odor and salt learning [65, 121], but presents normal starvation

behaviour [58]. We find, cf. Fig. 3.3A, that, while ins-1 worms reared at either 15- or

25◦C initially show the same cryophilic and thermophilic preference as the N2 wild type,

the preference is sustained for the duration of the experiment. This persistence makes it

possible to interpret these data in the context of models similar to Eq. (3.1), but only if

the parts of the thermal memory not affected by the ins-1 mutation do not decay with time

(unlikely for any non-reinforced association) or are reinforced even without food. The

latter option suggests that one of the dynamical variables in model of the thermotactic

index is likely to be habituation to the current temperature, rather than food-temperature

association.

In summary, zero crossing in the N2 data and absence of preference degradation in

the ins-1 mutant collectively suggest that an effective model must include, at least, two

dynamical processes: habituation to the current temperature and avoidance of temperature

when no food has been observed. Crucially, since ins-1 worms exhibit no avoidance with

no effect on the initial positive association, these two signals must be mediated by distinct

biological pathways.

3.4.3 Constructing a model of thermal preference dynamics

To build a mathematical model of the conditioning, we explore the dimensionality of the

behavioural dynamics using tools from dynamical systems theory. First, we consider the

delayed embedding representation of worm trajectories [119], which bounds the number of

dynamical variables by at least 3 (cf. Section 3.6.5). Second, our data sets include worms

that were starved after initial rearing and before being assayed, cf. Fig. 3.2. Crucially, for

some starvation durations, Θ does not approach its saturating values. In this linear regime,
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Figure 3.3: Dynamics of thermal memory for mutants. Thermotactic index of the ins-1
(A), daf -2 (B) and age-1 (C) mutants, reared at 15◦C (blue) and 25◦C (red). Worms are well
fed before assaying the thermotactic response. The vertical dashed-dotted line indicates the
onset of the temperature gradient. Plotting conventions are as in Fig. 3.2.

multiple time scales of oscillations suggest that at least four dynamical variables contribute

to the conditioning dynamics (cf. Section 3.6.5).

In other words, we seek to describe the dynamics of Θ as a combination of habituation

to the current temperature, its avoidance if not reinforced by food, and two additional vari-

ables. To shed light on the latter, we note that the worms are reared and assayed at different

temperatures. Thus, for example, initial preference to the cold side at 19.8◦C is a general-

ization [45] of the rearing at 15◦C. Thus one needs separate dynamical variables—both the

avoidance and the habituation—to model the temperature preferences at the rearing and at
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the assaying temperatures.

Putting all of this together, we model the thermotactic bias Θ(t) as a a nonlinear func-

tion (here we choose tanh) of the sum of the habituation and the avoidance in the droplet,

h(t) and a(t). In turn, these integrate the experienced temperature (independent of and

without food, respectively), and relax to zero (no preference or avoidance) with time if

no additional reinforcement is present. (Note that this is distinct from the RW model,

Eq. (3.1), where the association strength decreases only when a CS is observed, but not re-

inforced.) Similarly, by hr(t) and ar(t), we represent the habituation and the avoidance of

the temperature, at which the worm was reared. The generalization is modeled by letting

the rearing and the in-droplet variables to become similar to each other with time. This

results in a new, four-variable, generalization of the RW model, Eq. (3.1) (see Section 3.6.6

for more details). While many similar models can be written, we found only one that could

quantitatively fit the experimental data:

τh∂th = AhΘ̂(t)− h+ ghhr, (3.2)

τa∂ta = (1− F (t))AaΘ̂(t)− a+ gaar, (3.3)

τh,r∂thr = −hr, (3.4)

τa,r∂tar = −ar, (3.5)

Θ̂(t) = Θ0 tanh(h(t)− a(t) + c). (3.6)

Here τh/a are the time scales of the relaxation of the in-droplet habituation and avoidance,

and τh,r/a,r denote these time scales at the rearing temperature. Ah/a are the strength of

conditioning of the corresponding internal states. F (t) indicates the presence/absence of

food at time t; it is always zero in the droplet by design. Θ̂(t) is the thermotactic index pre-

dicted by the model, which is also the proxy for the warm/cold temperature that the worms

experience. gh/a are the strengths, with which the preferences to the rearing temperature

generalize to the preferences in the droplet. We set the scale of gh/a by rescaling hr and an,

respectively. Then gh/a = +1 (or −1) for the warm (cold) worms. Finally, Θ0 < 1 is the
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maximum thermotactic index that the worm can experience due to the droplet geometry,

and c is the intrinsic thermal bias (see Section 3.6.6 for a more detailed description)

Now we can develop intuition for how this model can account for the thermotactic

dynamics data. For example, the worm reared at 15◦C initially is habituated to cold and

hence starts with hr < 0, which generalizes to h < 0; it is well fed, so that a = ar = 0.

The worm then starts with Θ̂ < 0. However, since the droplet contains no food, avoidance

of the cold accumulates, a < 0. At some point a ≈ h, and Θ̂ ≈ 0. The worm then

experiences both sides of the droplet nearly equally, and no biased reinforcement happens.

However, if now τh < τa, the preference to the cold degrades faster than its avoidance,

and Θ crosses zero and becomes positive. In contrast, if the assay starts following a short

starvation period, then ar ̸= 0, which generalizes to a ̸= 0, and the worm’s preference to

the cold side starts from a smaller value.

3.4.4 Fitting the model to data

The following parameters of the constructed model must be fitted: four time scales,

two reinforcement strengths, and initial conditions at the start of the droplet assay for every

preference at the reared and the assay temperatures. We fit the same parameters globally for

all starvation durations at the same rearing temperature. We expect most parameters to be

different for different rearing temperature and different mutants since worms develop into

substantially different animals under these conditions [42, 135]. However, not all of the

parameter values are possible. For example, we expect that the bias decays for long times,

and that the initial conditions, a(t = 0), depend monotonically on the starvation duration.

We enforce such constraints (cf. Section 3.6.7) into the optimization (cf. Section 3.6.10) to

fit the model to the data.

Empirically, while many parameter values are not determined tightly by the data (i.e.

have small effects on the quality of fit), some combinations of parameters are more strongly

constrained. We use this observation and Bayesian model selection [70] to reduce the
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number of model parameters, and hence to increase the generalization and decrease the

optimization cost (cf. Section 3.6.11). Most notable reductions include the same initial

conditions for avoidance values at similar starvation durations, zero value of the thermo-

tactic bias c, and the same ratio of habituation to avoidance time scales at the rearing and

the assay temperatures (see Section 3.6.11 and Tbls. 3.3, 3.4). Figure 3.2 shows that this

results in a model with excellent quantitative fits, with χ2/f of 1.17 and 1.12 including

all starvation conditions, for the cold and the warm worms, respectively. The fitted model

confidence intervals (cf. Section 3.6.13) fall within the confidence intervals of the data

(cf. Section 3.6.4). Crucially, the model also reproduces salient qualitative features of the

data, including rapid initial saturation, slower crossover, and—for 25◦C—the second rever-

sal to zero bias. Further, the decay and the eventual reversal of the initial Θ as a function

of the starvation duration is also modeled well, Fig. 3.2. While most inferred model pa-

rameters, Tbls. 3.3 and 3.4 are not illustrative, a few parameter combinations are notable.

First, the ratio τh/τa is reliably small, ≈ 0.28 and ≈ 0.41 for the cold and the warm worm,

respectively. That the habituation has faster dynamics than the avoidance is what allows

for overshoots and oscillations within our model, and should guide future experiments.

Second, the bias c is zero for the cold worm and is negative for the warm worm. This

is consistent with the worms avoiding warmer, but not colder temperatures in isothermal

tracking [137], and is an independent confirmation of inferences from our model.

3.4.5 Thermotactic dynamics in mutants

To test the generality of our model, we investigated worms with mutations in the insulin-

like signaling pathway, which is involved in olfactory, chemotactic, and thermotactic avoid-

ance learning [20, 58, 121]. We chose three mutants that affect insulin-like signaling at

different stages (see Section 3.6.2). These show qualitative differences in their thermotac-

tic dynamics compared to the wild-type worm. As discussed earlier, ins-1(nr2091) worms

learn a thermal preference, and this preference persists for the duration of the experiment
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(Fig. 3.3A). daf-2(e1370) have a mutation in an insulin-like receptor which produces a

temperature-sensitive dauer phenotype [41], disrupting the pathway predominantly at warm

temperatures (Fig. 3.3B). Consistent with this, warm daf-2 worms show a persistent ther-

mal preference like ins-1 worms, while cold worms have a reduced avoidance response, but

with a similar timing. age-1(hx546) mutants, with a degraded function of a kinase down-

stream of the insulin-like peptide receptor, have accelerated rates of negative association

in their thermal learning assay [58]. Indeed, these mutants show faster crossover for both

rearing temperatures (Fig. 3.3C).

If our model is biologically realistic, we expect the mutants to have have different pa-

rameters values in its avoidance branch, Eqs. (3.3, 3.5), but not the habituation branch,

Eqs. (3.2, 3.4). Therefore, we fit the mutant data by keeping all but the avoidance pa-

rameters to be the exactly those inferred for the N2 worm (cf. Section 3.4.4). We only

fit the avoidance parameters for each mutant and each rearing temperature (see Section

3.6.8 and Section 3.6.12). Further, we do not fit any parameters for the ins-1 worm, and

simply remove the avoidance branch for this mutant, setting a(t) = ar(t) = 0, consistent

with the avoidance effectively removed by the ins-1 mutation. The agreement between the

model and the data for all mutants in Fig. 3.3 is generally within the error bars (cf. Section

3.6.13). This is better than could have been expected, considering that mutant worms are

very different from the wildtype and implies a biological relevance rather than purely sta-

tistical prowess of the model. The inferred values of the parameters, Tbl. 3.5, are consistent

with the expected effects of the mutations. Crucially, the ratio τa/τh remains large for all

datasets.

To further explore the biological relevance, we fit an alternative model where only the

habituation (rather than the avoidance) parameters are fitted for mutants, contradicting the

known biology. Crucially, this alternative model, Tbl. 3.6, fits the data quantitatively worse

than the primary model, cf. Tbl. 3.7, so that a posteriori odds are about 1016 : 1 in favor

of the primary model. Such agreement between the known biology and the quantitative



44

analysis again signals that the primary model captures the relevant biological mechanisms.

3.5 Discussion

We combined novel experimental tools for comprehensive behavioural assaying, mu-

tants for genetic perturbations, and mathematical modelling to understand the thermal pref-

erence dynamics of C. elegans. We discovered that (i) the dynamics is governed by two

independent pathways: positive association (habituation) to the experienced temperature

independent of food, and negative association (avoidance) of the temperature with no food;

that (ii) the avoidance time scale is slower than the habituation one; that (iii) the dynamics

is quantitatively different in warm and in cold worms; that (iv) the full dynamical descrip-

tion requires at least four dynamical variables; and that (v) these dynamical variables are

likely related to the worm’s ability to generalize across similar temperatures. We quantita-

tively fit all of the available data (different life histories and genetic background) with high

precision, indicating that the model has captured the underlying biological mechanisms.

While many fundamental genetic [42, 77] and neurophysiological [44, 57, 78] factors

underlying C. elegans thermotaxis and thermal preference have been identified, small dif-

ferences in experimental protocols (assay duration, gradient shape, range, and steepness,

rearing protocols, etc.) cause large variation in C. elegans thermotaxis behaviour, which

sometimes produce contradictory results [45, 54, 56, 68, 137]. This makes it difficult to

definitively address open questions, such as the effect of food on the thermotactic response

[21, 67, 137]. Nevertheless, our model’s multiple reinforcement pathways, with the fastest

of them operating on scales of less than half an hour, is consistent with many of these

conflicting observations. Our discoveries support the existence of an active avoidance of

thermal memory when food is absent [45]. They also demonstrate that food is not neces-

sary for the establishment of the temperature preference consistent with other studies [12,

21, 23, 45, 67, 104, 137]. Further, our multidimensional framework can explain the pre-

viously ignored non-monotonic dependence of the temperature preference on the exposure
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duration [12, 96]. Finally, it may account for the limited operating range of thermotaxis

[96] as weaker generalization over larger temperature ranges.

Our model, Eqs. (3.2-3.6), is inspired by the animal learning literature [84, 97], and

may seem foreign in the field of C. elegans thermal memory. We suggest that the afore-

mentioned difficulties in explaining diverse experimental data come from the focus of tra-

ditional models on one dynamical preferred temperature, while our data demonstrate that

there are, at least, two separate conditioning pathways. The traditional “one preference”

model can be augmented to account for this. For example, the animal may be modeled

to have a food-independent preferred temperature and a food-dependent temperature to

avoid, with the joint push-pull of the two establishing the observed thermotactic pattern.

Another possibility is that the animal may have a single set-point temperature, but also

an internal state (or states) describing the strength and the nature (attraction or repulsion)

of the temperature drive. The simplest versions of either of these models would have too

few dynamical variables to explain our data, (cf. Section 3.6.5). To attain the necessary

complexity, we would need to consider multi-scale temperature averaging, or more than

two preference/avoidance temperatures and complicated generalization rules. With little

known biology to build upon, such models would be indistinguishable from our functional,

Rescorla-Wagner style model. Thus the next crucial experiments should move away from

the “single preference” paradigm and focus on characterizing the dimensionality and the

nature of thermal preference states, and the ability to generalize among them. Such exper-

iments will likely benefit from modern interpretable machine learning techniques [25, 26],

which can automate the search for a correct multi-dimensional model.

To explain spontaneous recovery after extinction, Pavlov speculated [90] that condi-

tioned responses are produced by an interplay between excitation and inhibition. Extinc-

tion happens when inhibition overpowers excitation, and recovery when their magnitudes

reverse again. Our findings can be viewed as a mathematical implementation of the idea,

with the habituation channel playing the role of excitation and the avoidance channel the
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role of inhibition. They are also consistent with his suggestion [90] that the strength of

inhibition can be quantified by the time delay between extinction and spontaneous recov-

ery, similar to the time delay between lobes of the same sign in Figs. 3.2, 3.3. Remarkably,

with no further adjustments, separate excitation and inhibition also explain latent inhibition

(CS that is common before appearance of the US establishes avoidance and hence requires

a longer time to then develop a net positive association). They also establish asymmet-

ric responses to appetitive vs. aversive cues and to conditioned association vs. conditioned

inhibition, and (asymmetric) generalization among similar, but not equivalent cues. Cru-

cially, two distinct mechanisms for positive and negative associations are also biologically

plausible in larger animals (activation and excitation generally are mediated by different

neurons and neuropeptides), but infrequently explored across the animal kingdom. In par-

ticular, while dopamine is implicated in associative learning in vertebrates [110], very little

is known about what can mediate negative associations [109]. We thus hope that our dis-

coveries in the worm, and especially identification of the two independent learning mech-

anisms, will spur a search for similar phenomenology and similar mechanisms in larger

animals. Similarly, we hope that these ideas can make their way into improving artificial

intelligence systems built on reinforcement learning [40].

Finally, it is intriguing to speculate about the functional importance of two independent

thermal preference pathways, with the avoidance being reliably slower. When searching for

food, animals start where they expect food to be found based on the conditioned stimuli.

However, if the search there is unsuccessful, they turn to searching elsewhere (avoiding the

already searched area) rather than everywhere (including the area just searched). Switching

to elsewhere involves complex statistical strategies, such as Levy flights [10], which the

worm exhibits as well [107]. A system with a single association strength would result

in no preference and thus in searching everywhere as the association decays. In contrast,

a distinct avoidance channel with a long time scale would guide the animal away from

the condition with no food. Thus we expect that the multi-modal and multi-scale thermal
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preference is optimal for fast search in temporally varying environments.

3.6 Methods

3.6.1 Nonlinear dynamics of animal learning

Here our goals are two-fold. First, we would like to show that traditional animal learn-

ing models map into the dynamics similar to Eq. (3.1). Second, we want to show that such

dynamics, with realistic mapping between measurable variables and variables internal to

the animal cannot produce oscillations in our experimental systems (and, in particular, zero

crossings that we see in Fig. 3.2).

We start with the Rescorla-Wagner model of conditional associations [84, 97]:

Vi(t+∆t) = Vi(t) + ηδi(t)

(
λ0δλ(t)−

∑
j

Vj(t)δj(t)

)
, (3.7)

where Vi(t) is the strength of association between the ith Conditioned Stimulus (CS) and

the Unconditioned Stimulus (US), η is the learning rate, λ0 the magnitude or salience of a

single US reward, and ∆t is the duration of one experimental epoch. Further, δi(t) = 1 if

the ith CS is present at time t, and 0 otherwise. Similarly, δλ(t) = {1, 0} depending on if

the US was or was not present at time t. In other words,
∑

j Vj(t)δj(t) is the US prediction

based on the strength of all CSs present at the time. Thus if a CS is present, then Eq. (3.7)

posits that its US association strength is changed in proportion to how well all of the CSs

predict the realized US reward, λ0δλ(t).

We define the frequency of the CS and US presentations, fi = ⟨δi⟩ and fλ = ⟨δλ⟩, as

well as the frequency of US given the ith CS fλ|i = ⟨δiδλ⟩/fi and one CS given another

fj|i = ⟨δiδj⟩/fi. We then introduce a time interval dt, which is small enough so that

the association strength does not change much over its duration, ηλ0fifλ|i dt∆t
≪ 1, and

which nonetheless is large enough so that it contains a lot of CS and US presentations,
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fifλ|i
dt
∆t

≫ 1⟨δi⟩⟨δλ⟩∆t≫ 1. We integrate Eq. (3.7) over this interval to obtain

∑
t′∈(t,t+dt)

(Vi(t
′ +∆t)− Vi(t

′)) = dt
η/∆t

dt/∆t

∑
t′∈(t,t+dt)

(
λ0δλ(t

′)δi(t
′)−

∑
j

Vj(t
′)δi(t

′)δj(t
′)

)
,

(3.8)

dVi(t) = dt
η

∆t
fi

(
λ0fλ|i(t)−

∑
j

Vj(t)fj|i(t)

)
, (3.9)

τ
dVi
dt

= fi(t)

(
λ0fλ|i −

∑
j

Vj(t)fj|i(t)

)
, (3.10)

where τ = ∆t/η is the learning time scale.

Sometimes all CSs are exclusive: for example, while many temperatures can serve as

predictors of food, an animal can only experience one temperature at a time. In this case,

fj|i = 0 for j ̸= i, and fi|i = 1. Then Eq. (3.11) becomes

τ
dVi
dt

= fi(t)
(
λ0fλ|i(t)− Vi(t)

)
. (3.11)

This is Eq. (3.1) in the main text. Note that, for Pavlovian associations, fi(t) is under the

control of an experimenters, while the animal can influence it in the operant conditioning

protocols, so that fi(t) = fi(V (t)). Also note that in traditional analysis of conditioning,

the CS must precede (and hence predict) the US for the association to form. In the context

of our experiments, this temporal contingency structure can be disregarded because the CS

temperature signals are experienced by the worm not episodically, but constitutively.

We now turn to showing that, in the case of our experiments, this version of the Rescorla-

Wagner model cannot produce the experimentally observed crossings of the zero thermal

bias line. First, notice that, because of the finite temperature resolution by the worm

(cf. Section 3.6.6), there are only about two discernible CSs in the droplet: warm (+) and

cold (−). Further, when the worm is not in the warm, it is in the cold, so that f+ = 1− f−.

In its turn, the worm’s position and hence the experienced CS is affected by the strength of

the associations, so that f+ = f+(V+ − V−). In the droplet, there is no US (no food), so
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that fλ|± = 0. Thus in the droplet, the model in Eq. (3.11) becomes:

τ
dV+
dt

= −f+(V+ − V−)V+, (3.12)

τ
dV−
dt

= −(1− f+(V+ − V−))V−. (3.13)

We now note that f+ ≈ 0.5 corresponds to a small thermal bias f+ − f− = 1 − 2f+ ≈ 0.

The small bias is only possible when V+ ≈ V−. In this regime, Eqs. (3.12, 3.13) further

simplify:

τ
dV±
dt

= −0.5V±. (3.14)

These are equations for a simple exponential relaxation V± → 0, and both association

strengths will decay with the same rate 0.5/τ . Thus if the thermal bias is near zero at some

point in time, it must remain so indefinitely, and substantial oscillations are not possible.

One can create a single crossing of the zero thermal bias line using Eq. (3.14) if the

time scales of the dynamics of the two associations are not the same, τ+ ̸= τ−. However,

this is likely insufficient to our experiment for three reasons. First, some of the mutant

worms exhibit more than one zero crossing, cf. Fig. 3.3. Second, the cold and the warm

sides of the droplet are less than a half a degree apart, which is much smaller than the range

of temperatures the worm tolerates. Hence one would expect differences in time scales, if

present, to be similarly relatively small. In this case, the overshoots of the zero line would

be tiny and would take a long time to develop, while in all of our experiments the overshoots

happen on the same time scales of the overall dynamics, cf. Figs. 3.2 and 3.3. Third, the

worm is only reared at one temperature. Thus in the simplest model, we would have either

V+ = 0 or V− = 0 at zero time. Thus a small temperature bias would require not just

V+ = V−, but also V+ = V− = 0. In this case, even two distinct dynamical scales would

not produce zero crossings. Collectively, these arguments suggest that a simple Rescorla-

Wagner style model cannot account for the worm’s thermal preference dynamics, and more

complicated models are needed.



50

3.6.2 Strains and preparation

The mutant strains used in this study were as follows: We obtained strains (N2, ins-

1(nr2091), daf-2(e1370), and age-1(hx546)) from the Caenorhabditis Genetics Center at

the University of Minnesota.

All experiments used young adult animals cultivated at 15◦C and 25◦C on nematode

growth medium (NGM: 50 mM NaCl, 15 g/L agar, 20 g/L peptone, 1 g/L g/L, 1mM choles-

terol, 1mM CaCl2, 1mM KH2PO4 agar plates seeded with Escherichia coli strain OP50

under standard conditions [13]. M9 Buffer (3g KH2PO4, 5 g NaCl, 6 g Na2HPO4, 1 ml 1

M MgSO4, H2O) used for strain washes and assay. Animals were stage-synchronized using

a standard bleach synchronization protocol [115]. We washed synchronized young adult

animals with 1ml of M9 buffer into a 15mL Falcon tube, added an additional 10mL of M9

buffer, and pelleted animals by spinning at 0.4 RCF for 1 minute. We aspirated the super-

natant and repeated the wash. In the case of ‘well-fed’ state experiments, we re-suspended

the animals in 2ml of M9 and poured them onto a 5cm NGM plate. We then picked individ-

uals into 2ml of buffer on a second 5cm NGM plate and transferred them into the µDroplet

assay for observation. In the case of ‘starved state’ experiments, we decanted animals onto

a 10cm NGM plate and allowed them to starve at their rearing temperatures as per protocol

durations. We then washed animals off the plate using 2ml of M9 and decanted them onto

a 5cm NGM plate. We picked individuals into 2ml of buffer on a second 5cm NGM and

the transferred them into the µDroplet assay for observation.

3.6.3 µ droplet assay

Individual worms are picked into a grid of 3µL M9 buffer droplets on glass-printed

4mm diameter hydrophilic spots (Electron Microscopy Sciences Inc. Item #63430-04)

surrounded by a hydrophobic PTFE (Teflon) surface. A coverslip placed on top of a 127

µm-thick silicone gasket bonded to the assay slide with VALAP (1:1:1 Vaseline, Lanolin,

Paraffin).
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The assay is centered and clamped on a temperature controlled aluminium stage. The

stage is preset to either 15◦C or 25◦C depending on rearing temperature. Animals are ac-

climated for 5 minutes before imaging commences. The black-anodized Aluminium stage

measures 165x58x3mm. Waterblocks (Swiftech MCW30) are secured to the ends of the

stage through 40x40x3mm aluminium spacers coated with thermal paste. A 40x40mm

peltier element (MCTE1-19908L-S) is secured under one spacer and waterblock. A wa-

terbath circulator (Fisher Scientific IsoTemp 3016) is used to control the initial stage tem-

perature. The peltier element is used to establish and program the temperature gradient. A

15-25◦C stage temperature translates to a 1◦C/cm assay steepness and thus a temperature

range of 19.8 to 20.2◦C on the gradient-aligned extremes of the droplet confirmed through

direct IR camera observation and COMSOL Multiphysics modelling (data not shown).

Illumination for image capture is provided by two red LED light strips (3W 48-LED

180-Lumen Aluminum alloy light strip) positioned ∼ 9cm above the imaging stage. Raw

monochrome images are captured via a DSLR camera (Nikon D7000) with a fixed macro

lens (Nikon AF Micro Nikkor 60mm f/2.8D) controlled by Nikon’s Camera Control Pro

software. In order to minimize the correlation of the worms’ position through time, capture

rate is 6 frames per minute during long-term observation.

Image capture begins at the 5-minute mark in the absence of a temperature gradient for

100 frames (∼ 16 minutes), after which a 15-25◦C stage gradient is applied and recording

continues to 1440 frames (4 hours). The absence of a gradient for the first 100 frames was

used as a built-in control for each assay trial.

Experiments were performed successively 2-3 times per day. No randomization proce-

dures were undertaken to control for time-of-day effects.

3.6.4 Data processing

We post-processed images and computed behavioural metrics using MATLAB. For this,

we located regions of interest (ROI) around each droplet, subtracted the background, and



52

produced a binary image of the worm. We used the measure of worm area to filter out

potential segmentation artifacts before calculating the center of mass position of the worm

for each frame. The ROI determines the extremes of possible motion and is used to nor-

malize the animal movement along a linear index from -1 (19.8◦C) to +1 (20.2◦C). When

artifacts occur, such as in the identification of two objects in a droplet, we do not record

a position in that frame. If a worm track is less than 95% complete, we discard it from

the data set. A final thermal preference metric, the thermotaxis index, Θ, is calculated by

summing all normalized values of an animal’s movement in a certain time and dividing by

the total number of observations.

Specifically, for each worm type (rearing temperature, mutation), all data are indexed

by three indices: µ stands for the condition (i. e., the starvation duration), n stands for the

nth individual worm in that condition, and t represents the time in hours since the beginning

of assaying in the droplet. Since occasionally a worm is not tracked for some times due

to image processing artifacts, the number Nµ(t) of individual worms tracked at time t in

condition µ is time dependent.

The trajectory on the gradient of the nth individual worm in condition µ at time t is

Θµ,n(t). Therefore, the average thermotactic index at time t is

Θ̄µ(t) =

Nµ(t)∑
n=1

Θµ,n(t)

Nµ(t)
. (3.15)

Similarly, the variance of thermotactic index at time t is

vµ(t) =

Nµ(t)∑
n=1

(Θµ,n(t)− Θ̄µ(t))
2

Nµ(t)− 1
. (3.16)

Then the standard error of the mean for worms in condition a at time t,

sµ(t) =

(
vµ(t)

Nµ(t)

)1/2

, (3.17)

defines the experimental error bars on the thermotactic trajectory for the time and the con-

dition.
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As a measure of the overall noise of the data for worms in condition µ, we use the time

averaged variance of the data trajectories over all worms in the condition µ

v̄µ =
1

T

T∑
t=0

vµ(t), (3.18)

where T = 4 hours is the assay duration in the droplet.

Finally, for presentation purposes only (but not for the fitting), to remove rapid fluctua-

tions, in all figures the thermotactic index and its experimental error are filtered through a

causal exponential filter with the time scale of 6 min.

3.6.5 Bounding the dimensionality of the thermal memory dynamics

C. elegans thermal memory is a dynamical system. To model the behaviour, we first

must estimate the number of dynamical variables in this system. Suppose that the dynam-

ics, averaged over all worms, can be fully described by a d-dimensional time dependent

vector x⃗(t) that evolves according to an unknown, but continuous and deterministic dy-

namics. Suppose further that the one-dimensional observable Θ(t), the thermotactic index

indicating the current temperature the worm guides itself to, is a smooth function of x⃗(t),

which may depend on all components of x⃗(t). We estimate the dimensionality of x⃗(t) using

the following arguments.

Thermotactic memory dynamics is multidimensional Suppose that d = 1. Then, x(t)

and Θ(t) are functions of each other, and, for the dynamics to be well defined, the velocity

Θ′(t) should be a single valued function of the position of the worm Θ(t). This is not the

case. For example, at Θ(t) = ∓0.1, the thermotactic index Θ(t) for well-fed wild type

worms at 15, 25◦C in Fig. 3.2 has two different thermotactic velocities Θ′(t) early and late

in the experiment. Even simpler, the thermotactic index crosses a zero multiple times. Thus

d = dim(x⃗(t)) > 1.

Thermotactic memory dynamics has d ≥ 2 To determine if d = 2 would be suffi-

cient to capture the behaviour, we consider the delayed embedding representation of the
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dynamics [119] as a k dimensional vector Θ⃗k(t) = (Θ(t),Θ(t− τ), · · · ,Θ(t− (k − 1)τ).

The Takens theorem [119] allows reconstruction of a d dimensional attractor from such

k = 2d + 1 dimensional embedding. However, if τ is much smaller than the character-

istic time scale of the dynamics, then the d dimensional dynamics can be reconstructed

uniquely from even smaller sequences, Θ⃗k with k = d, provided the trajectories in the Θ⃗k

space do not self-intersect (to see this, notice that, at τ → 0, Θ⃗k maps one-to-one onto

(Θ(t),Θ′(t),Θ′′(t), . . . ,Θ(k−1)(t)). Thus to bound the dimensionality of x⃗, we seek the

minimal k, for which delayed embedding trajectories at small τ show no self-intersections.

The characteristic time scale of the thermal memory dynamics is O(1h) (cf. Fig. 3.2),

and the trajectories show meaningful changes, statistically distinguishable from noise, for

τ > O(1s). This allows for a broad range of τ for our analysis. In what follows, we

choose τ = 6.67min (every 40th data point), but results are qualitatively the same for sim-

ilar values. To quantify the uncertainty in the delayed embedding trajectories due to the

experimental noise, we generate bundles of nt = 20 trajectories that are different by their

starting time, t0 = 15min + τ
2nt
i, i = 0, . . . , nt − 1, and we look for self-intersections of

these trajectory bundles.

Figure 3.4 shows the trajectory bundles with k = 2, 3 for the 25◦C worms starved

for 1 hour. The 2-d embedding shows a clear intersection of the bundles, while the 3-d

embedding does not. Performing the same analysis for all other starvation durations and

both rearing temperatures (15◦C and 25◦C), we observe that k = 3 is always sufficient to

avoid self-intersections of the bundles. Thus we conclude that d ≥ 3.

Linear analysis suggests d ≥ 4 For the well-fed and the 30 minutes starved worms raised

at 25◦C, the observed thermotactic index Θ(t) is always far from the maximum value of the

index, Θ0 ≈ 0.27, observed for 15◦C (cf. Fig 3.2 B). We thus treat these trajectories as far

from saturated, and assume that they can be produced by the dynamics linearized around

Θ = 0. These trajectories have different oscillation periods: about 3h for the well-fed
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Figure 3.4: Delayed embedding analysis of the thermotactic preference dynamics. Av-
erage thermotactic index of the N2 worm reared at 25◦C and starved for half an hour before
assaying the thermotactic response in the droplet is analyzed using the delayed embedding
coordinates. The time within the experiment is indicated by the color bar starting from 15
minutes (dark blue) and ending at 4 hours (dark red). The delay time τ ≈ 6.67 min for
both the two and three dimensional embedding. Bundles of curves contain 20 curves each,
corresponding to different starting offsets. The two dimensional embedding (main plot) has
a self-intersection, indicated by a black circle. This confirms that the underlying dynamics
is, at least, three dimensional. Zooming in on the relevant region in a three dimensional
embedding (inset), we find no self-intersection.

worm and > 4h for the starved ones. For a linear dynamical model, eigenvalues describing

the oscillations come in complex conjugate pairs, each pair sharing the frequency. Thus

two complex conjugate pairs are required to model the two distinct oscillation frequencies.

We thus conclude that d ≥ 4, which is consistent with all of the previous analyses.

3.6.6 Model

The same dynamical system can be represented in many different ways. Our focus

is on finding a description that is interpretable, biologically plausible, and can be probed

through realistic experiments. We aim for a parsimonious description, and hence look for

a model with d = 4 dynamical variables, the smallest number of variables consistent with

the analysis above.

Before we begin the model construction, we first comment on the difficulties that arise

when modeling individual worms. In the experiment, the worm takes about 8 seconds
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to go around the droplet. The time scales on which the worm measurably changes its

bias are at minimum 15 minutes for the average worm. In those fifteen minutes there are

about 100 measurements of the thermal position of the worm in the gradient. The error in

determining the mean position of the worm scales as the inverse square-root of the number

of measurements. Thus the error in the mean position over a 15 minute measurement period

is of order 1/10. Given that the thermotactic index is maximum at 0.27 in our experiments,

an error of 1/10 is about 37%. This is too large an error prevents any effective description

of thermal learning of an individual worm.

The identity of the relevant internal states of the worm that store its thermal prefer-

ence remains unclear [21]. While the only measurable quantity in our experiments is the

thermotactic index, it is not an internal state. In diverse experiments, the worm develops

either a preference to or avoidance of certain temperatures [45], and there has been a lively

debate in the literature [12, 21, 23, 45, 67, 104, 137] regarding whether the avoidance

or the preference is primary, and if either is conditioned on the presence of food or not.

Knowing from the analysis above that the thermal preference dynamics is, in fact, mul-

tidimensional allows us to avoid the controversy, and to try various forms of the internal

states. We explored many such models, and the only model that we found, which was able

to fit the entire corpus of our data quantitatively, has separate dynamical variables repre-

senting which temperature the worm likes, and which temperature it avoids. Crucially, in

this model, the attractive temperatures are not conditioned by food, but describe habitua-

tion: the worm likes the temperature that it has experienced before, which can be viewed

as conditioning on prior survival. In contrast, the avoidance is conditioned by the absence

of food: the worm does not like the temperature where the food has been unavailable pre-

viously. We stress that this is different from most models in the literature, which usually

have only one dynamical variable, representing preference conditioned on the presence of

food [12].

In principle, within the conditioned associations paradigm, one may model the habit-
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uation and the avoidance as functions of the temperature field, so that every temperature

has its own habituation and avoidance values, and the generalization of preferences to

the nearby temperature ensures that these functions are smooth. However, the µ droplet

assay establishes the gradient of only 0.4◦C across the entire droplet. The worms move

stochastically, and their length is comparable to the droplet diameter. Thus geometrically

they cannot stay at the poles of the droplet, where Θ = ±1. Because of this, Θ usually

spans only about a quarter of the possible range, between about ±0.25 . . . ± −0.3. Thus

the worms typically experiences only ∼ 0.1◦C temperature range, which is comparable to

their thermal sensitivity [23, 57, 78]. In other words, the worms cannot reliably distinguish

more than about two temperature values in the droplet: warm and cold. In this situation,

modelling the habituation and the avoidance as functions of the temperature field is un-

necessarily complex, and we model the worm’s internal states with two scalar variables.

First, h (unconditioned positive preference, or habituation) takes positive values when the

worm likes the warm side. Second, a (conditioned negative preference, or avoidance) is

positive when the worm avoids the warm side. We then define the overall temperature pref-

erence as the combination of the habituation and the avoidance, passed through a saturating

nonlinearity, as in Eq. (3.6).

With this, we identify our four dynamical variables with habituation and avoidance at

the rearing temperature and at the assay temperature. The rearing variables change au-

tonomously during the droplet assay, while the assay temperature variables are affected by

the animal’s behaviour. The dynamics is given by Eqs. (3.2-3.6).

Note that the rearing temperature preferences decay autonomously in Eqs. (3.4, 3.5)

since these temperatures are not experienced in the assay. However, during the rearing

time, the dynamics of hr and ar are expected to have the conditioning terms similar to h

and a in Eqs. (3.2, 3.3). Finally, for parsimony, we do not model the generalization from

the droplet to the rearing temperature.

It is useful to explain the dynamics described by Eqs. (3.2-3.6) narratively. A worm’s
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preference of a certain temperature emerges from a combination of an unconditioned ha-

bituation and a conditioned avoidance, the latter driven by the absence of food. Worms

habituate to their rearing temperature. If the period of rearing is followed by starvation

before being placed in the droplet, then additionally the avoidance of the rearing temper-

ature sets in, roughly in proportion to the starvation time. Experiences during rearing are

fully under the control of the experimenters, and thus represent classical or Pavlovian con-

ditioning [90]. In contrast, the habituation and the avoidance of one side of the droplet are

initially determined by generalizing the relevant preferences from the rearing temperature.

However, as the worm begins to explore the droplet, it controls the temperature that it ex-

periences, setting up an operant conditioning protocol, in which it habituates to the side of

the droplet that it visits the most. At the same time, since there is no food in the droplet,

the worm also develops the avoidance of the side it frequents. Crucially, this happens in

the background of the decaying habituation and avoidance to the rearing temperature (and

hence of the generalization effects), which cannot be reinforced while in the droplet and

hence decay as solutions of the first order linear differential equation—exponentially with

time.

3.6.7 Constraints on the model parameters

Here we discuss constraints on the model parameters, which we use in model fitting.

Constraints on initial conditions All worms in the experiment were raised for days,

well-fed at their rearing temperature. In contrast, the typical time scales of the thermal

preference is hours (cf. Fig. 3.2). This implies that the habituation to the rearing temper-

ature is likely saturated for all worms. In other words, for all starvation conditions, hr(0)

is the same, depending only on the rearing temperature and the worm genetic background.

The dynamics of habituation in the droplet in Eq. (3.2) is driven by the generalization for

the entire duration of the rearing, and is likely to be saturated as well, at some value h(0),

the same for all starvation conditions, but also likely different for different rearing temper-
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ature and the genetic background. Further, h(0) is potentially different from Ah (saturation

value in the droplet) since the maximum strength of conditioning may depend on the am-

bient temperature.

In our model, avoidance is a non-decreasing function of the starvation duration s. A

typical starvation duration is a few hours long, so the avoidance states are probably not

saturated. Thus the magnitude of the initial avoidance of the rearing temperature for dif-

ferent s, |as,r(0)|, for worms raised in the same temperature, should be a non-decreasing

function of s, |as1,r(0)|≤ |as2,r(0)| for s1 < s2. Since avoidance is caused by starvation,

the initial avoidance for a well-fed worm is zero, |a0,r(0)|= 0. The initial avoidance in the

droplet emerges from the generalization of the avoidance at the rearing temperature, and

thus should follow the same law: |as1(0)|≤ |as2(0)| for s1 < s2, and a0(0) = 0. Further,

since the definition of the thermotactic index in the droplet sets Θ(0) = 0 at 20◦C, all initial

conditions for worms raised at 15◦C will be non-positive and for those trained at 25◦C will

be non-negative.

In summary, there are two initial conditions (rearing and droplet) for the habituation

for each rearing temperature. There are 4 different starvation durations (and the well-fed

worm) for the 15◦C worm, which corresponds to 8 ordered initial conditions for rearing

and droplet avoidance, and 3 different starvation durations (in addition to the well-fed) for

the 25◦C worm, resulting in 6 ordered avoidance initial conditions.

Constraints on dynamical parameters For parsimony, the habituation and avoidance

time scales τh, τa, τh,r, τa,r, the maximum conditioning strengths Ah and Aa, and the bias c

are assumed to be common among all starvation durations reared at the same temperature.

From Fig. 3.2, we observe that the mean thermotactic index never goes above ≈ 0.27, so

we choose Θ0 = 0.27 for all starvation and rearing temperatures to simplify the multidi-

mensional fitting.

Since worms generally avoid high temperatures [137], the thermotactic index for starved
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worms at 25◦C have a negative bias after ∼ 3 hours, cf. Fig. 3.2. Such bias is not present

at 15◦C. Thus we choose to set c = 0 for 15◦C worms, and to limit c ≤ 0 for 25◦C worms.

3.6.8 Constraints on parameters for mutants

The ins-1 mutation suppresses the starvation avoidance behaviour [58]. Thus in our

main analysis, we make an assumption that it does not affect any of the parameters except

τa and Aa (there is no starvation and hence no avoidance at the rearing temperature for

any of the mutant worms). Since ins-1(nr2091) is a putative null mutation, we chose to

model its effect as completely removing the avoidance behaviour, while keeping all other

parameters inferred from the N2 worm unchanged. If this assumption is correct, then no

additional fitting is needed to model the ins-1 worms data after we set Aa = 0.

DAF-2 and AGE-1 are homologs of an insulin receptor tyrosine kinase and a phos-

phoinositide 3-kinase, respectively. Mutations in these genes are known to change the

avoidance behaviour [58], and hence the avoidance time scale τa, strength Aa, and the bias

c, as well as the avoidance parameters to the rearing temperature, may be changed by either

mutation. Thus in our main analysis we fit these parameters to the mutant data (separately

for the warm and the cold worms), while keeping the rest of the dynamical and the initial

conditions parameters as inferred from the N2 worms reared at the appropriate temperature.

Note that we do not have starvation data for any of the mutants. Hence initial conditions

for avoidance at the rearing and the assaying temperatures are set to 0, and τa,15/25 do not

enter the model.

3.6.9 Constructing the loss function

To fit models to the data we must define a loss function, which is minimized to find

the optimal parameters. Designing the loss function for physical problems is, generally,

complicated since it also must avoid guiding the optimization to nonphysical regimes. The

following considerations went into choosing the loss in our problem.

We use a simple mean square difference between model prediction for the worm bias at
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time t for the worm condition µ, Θ̂µ(t), and the corresponding individual-averaged worm

trajectories, Θ̄µ(t), as a measure of the quality of fit

Lfit =
1

2

∑
µ∈M

T/∆t∑
n=0

1

vµ(t)
(Θ̂µ(tn)− Θ̄µ(tn))

2. (3.19)

T = 4 h is the duration of the experiment, ∆t = tn − tn−1 = 10 s and vµ is the variance

found in Eq. (3.16). The condition set M with size M consists of different starvation

durations: {0, 1, 2, 3, 5} h for 15◦C, M = 5; and {0, 0.5, 1, 2} h for 25◦C, M = 4. Since

each of the three mutants is well fed, M = 1 for each of them.

Removing non-biological behaviour Some parameter combinations that minimize Lfit

result in the thermotactic behaviour that we consider biologically unrealistic: persistently

oscillating bias at t ≫ T . We expect the bias to converge to a constant value at long

times because we are not aware of any animal that maintains non-diminishing amplitude

oscillatory behaviour forever. The long-term constant bias potentially differs from zero due

to rearing-temperature dependent asymmetry in the thermotactic behaviour [56, 68, 137],

and it is potentially different from the value of the temperature dependent bias c in our

model Eq. (3.6). We impose this by adding the following term to the loss function

Lfar =
γ

2

∑
µ∈M

T/∆t∑
n=0

M∑
ν∈M v̄ν

(Θ̂µ(tn + Tfar)− ¯̂
Θ)2. (3.20)

This term suppresses the mean squared difference between the model predicted trajectories

Θ̂µ(t+Tfar) starting at time Tfar = 16h (long after the 4h of assaying in the droplet) and the

time and the condition averaged model trajectories ¯̂
Θ = ∆t

M ·T
∑

µ∈M
∑T/∆t

n=0 Θ̂µ(tn + Tfar)

after time Tfar. Here ∆t = 10s is the sampling interval, and the ratio T/∆t = 4h/10s =

1440 counts the number of sample points per trajectory. We use γ = 0.1 as a dimensionless

weight in what follows. This is about the smallest value of γ that is able to prevent sustained

oscillations in our fits. There is a wide range of γ > 0.1 that similarly suppresses the oscil-

lations, and still does not result in the degradation of the quality of fit to the experimental

data.



62

Removing flat regions in the loss function Empirically, our optimization landscape

abounds with flat regions, where the model fits have low sensitivity to large correlated

parameter changes. To break this near-invariance and allow gradient-based methods to find

minima faster, we penalize very small and very large parameter values with

Lparam = λ
K∑
k=1

(ln θk)
2, (3.21)

where θk, k = 1, . . . , K are all parameters in the model. We use λ = 0.1 is what follows,

which is about the smallest value of the constraint that still allows the gradient descent to

converge. The quality of the fits evaluated with and without the constraint at this λ does

not change significantly.

Normalization of the loss function In Eq. (3.19), Lfit scales as T , the total number of

time points in the data. However, the data points in the experimental thermotactic trajecto-

ries are correlated because of the slow time scales of the worm behaviour. To reflect that

there is an effective number of independent points in the thermotactic trajectory, we must

normalize Lfit to scale linearly not with the total experiment duration, but with the number

of independent measurements over the duration. For this, we compute the auto-correlation

time Tcorr of the residual Θ̂µ(t) − Θ̄µ(t) over all conditions µ for worms raised at the spe-

cific rearing temperature. The number of independent measurements is then n = T/Tcorr,

or, alternatively, Lfit must be rescaled by ∆t/Tcorr, where ∆t = 10s is the temporal reso-

lution of the experiment. The auto-correlation time Tcorr ≈ 13.3 min for 15◦C, and it is

Tcorr ≈ 16.7 min for 25◦C.
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The overall loss function Overall, the considerations above yield the following loss func-

tion

L =
∆t

Tcorr

1

2

∑
µ∈M

T/∆t∑
n=0

1

vµ(t)
(Θ̂µ(tn)− Θ̄µ(tn))

2

+
γ

2

∑
µ∈M

T/∆t∑
n=0

M∑
ν∈M v̄ν

(Θ̂µ(tn + Tfar)− ¯̂
Θ)2 + λ

K∑
k=1

(ln θk)
2

 , (3.22)

which is what we optimize to fit parameters of the model to data.

3.6.10 Optimization and parameter values

To fit the model to the data we vary the optimization parameters θ⃗ in order to minimize

to the loss function. For each worm type (rearing temperature and mutation), we start

from ∼ 1000 initial values of the parameters being optimized. Since some parameters

take on a certain sign for biophysical reasons, we enforce these constraints by casting

θi = sign(θi) exp(θ
′
i). This means that θ⃗′ is unconstrained and allows us to sample the

parameters θ⃗ across many orders of magnitude. To obtain parameter values which are

O(1), components of the vector θ⃗′ are sampled from a uniform distribution on the unit

interval.

We then use the Quasi-Newton method to minimize the loss function starting from the

initial value. To determine the quality of the fit we utilize the χ2 per degree of freedom:

χ2/f =
Lfit

Mf
. (3.23)

This is a rescaled part of the of the overall loss function, responsible only for the quality of

the fit. A value χ2/f ∼ 1 implies an excellent fit of the model to all data points in the fitted

condition.

The effects of γ on the quality of fit The loss function, Eq. (3.22), includes the term

Lfar, which penalizes nonphysical sustained oscillations in the thermotactic index at long

times. The term is weighted by a coefficient γ, compared to the quality of fit term. The
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γ .1 1 10 106

χ2/f 1.17 1.17 1.17 1.25

Table 3.1: χ2/f as a function of the dimensionless weight γ, which penalizes long-term
oscillations. Quality of fit for the 15◦C worms with all starvation durations is tabulated at
λ = 0.1. The impact of γ > 0.1 on the quality of fit is negligible.

λ .1 1 10 100 1000
χ2/f 1.17 1.18 1.18 1.19 1.76

Table 3.2: χ2/f as a function of the dimensionless weight λ, which penalizes large and
small parameter values. Quality of fit for the 15◦C worms with all starvation durations is
tabulated at γ = 0.1. As long as λ stays below ∼ 100, the effect on χ2/f is minimal.

choice of γ is unclear a priori. In Tbl. 3.1, we report the dependence of χ2/f on γ. The

change in the quality of fit is ∼ 1% in response to many orders of magnitude changes in

γ. We conclude that Lfar is able to dampen the oscillations without significantly altering

the fit quality. We thus choose γ = 0.1 for all fits reported in this work, which is about the

smallest value of γ able to suppress the oscillations.

The effects of λ on the quality of fit The third term of the loss function, Lparam, penalizes

very small and very large values of parameters. It is weighted by the parameter λ relative

to the goodness of fit. In other words, the larger λ is, the smaller the region of parameters

explored in fitting. Just like for γ above, setting the value of λ is impossible based on first

principles. We explore the dependence of χ2/f on λ in Tbl. 3.2. As long as λ < 1000, the

dependence is minimal. We thus choose to work with the smallest value λ = 0.1, which

enabled an effective parameter search, for all results reported here.

3.6.11 Model reduction and fitted values

We choose to use fitted parameter combinations that are strongly constrained by the

data as a hard algebraic constraint on the parameter values, thus reducing the number of

parameters by one per constraint. We measure the effects on such reduction on the quality

of fit using the Bayesian Information Criteria (BIC) [111]. That is, the original model and
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all of the reduced model are assigned a Bayesian score, which, in our case, is

BIC = k ln(nM) + 2

(
L̂fit

∆t

Tcorr

)
. (3.24)

Here, as always, n = T/Tcorr, and M is the number of different starvation conditions. Fur-

ther, L̂fit is the optimal value of the first (quality of fit) term in the loss function, Eq. (3.22),

k is the total number of parameters in the model (including the initial condition that must

be fit). The score balances the complexity of the model (the first term in Eq. (3.24)) with

the quality of the fit (the second term). According to BIC, the reduced model is statistically

better than the full, unconstrained model if its score is lower. More precisely, the posterior

odds of two models are given by P1/P2 ≈ exp(BIC2 −BIC1).

We emphasize that there are no first-principle reasons for the model reduction. In fact,

they may not correspond to realistic biophysical constraints, may not be interpretable, and

are only useful to the extent that they simplify the fitting, while not decreasing the quality

of the fits significantly. Thus we do not push the reduction to the extreme, and stop when

the algebraic constraints coming from the reduction become uninterpretable.

With this, for 15◦C wild type worms, we identify the following candidate parameter

reductions. First, a1,15(0) = a0,15(0) = 0 and a5,15(0) = a3,15(0), so that there are only two

independent initial conditions for the avoidance at the rearing temperature. In other words,

the rearing temperature avoidance for a well-fed worm and a 1 h starved worm are the

same, and so are the avoidances for 3 and 5 h of starvation (the former presumably because

1 h of starvation is not enough to excite large avoidance, and the latter presumably because

the avoidance gets saturated). Second, we expect c = 0, so that there is no long-term

thermotactic bias. Third, we further verify if τh,15/τa,15 = τh/τa. If true, this would signify

that the ratio of habituation to avoidance time scales is independent of the temperature

where it is measured (rearing or assaying).

There are 17 parameters in the unconstrained model for 15◦C data: four assaying and

four rearing temperature avoidance initial conditions as(0) and as,15(0) for different star-

vation times (we remind the reader that a0(0) = a0,15(0) = 0 for this case by construction),
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habituation and avoidance time scales for the memory at the assaying (τh, τa) and the rear-

ing (τh,15, τa,15) temperatures, rearing and assay temperature habituation initial conditions

(h15(0), h(0)) (both are assumed to be saturated and hence independent on the starvation

duration), maximum possible values of avoidance (Aa) and habituation (Ah) at the assay

temperature during assaying, and finally the long term bias c. The 17-parameter model

has the BIC score of BIC17 = 176.6. We progressively reduce the parameters one at a

time and calculate the BIC scores for the reduced models. First, c = 0 (16 parameters),

we have BIC16 = 173.2. We then set a1,15(0) = a0,15(0) = 0 (15 parameters) to get

BIC15 = 168.6. Further, setting a5,15(0) = a3,15(0), we obtain BIC14 = 165.0. Finally,

requesting that τp/τn = τp,train/τn,train results inBIC13 = 161.2. This is the final model we

use. Each of the models in the sequence is progressively more likely than the previous one.

Specifically, the BIC scores give the odds P13 : P17 ≈ 2200:1. The inferred parameters for

this final model are in Tbl. 3.3. The best fit value for this model is χ2/f = 1.17.

For 25◦C wild-type worms, we identify the following putative model reductions. First,

we set a1(0) = a0.5(0), so that the initial conditions for the avoidance at the droplet tem-

perature are the same for starvation durations of 0.5 and 1.0 h. This is reasonable since the

transfer of the worm from the rearing plate to the plate with no food for starvation itself

takes ∼ 0.25h, making the two starvation durations similar to each other. We then explore

Ah = Aa, so that the maximum value of the habituation and avoidance are the same in the

droplet. Finally, like for the cold worm, we try τh/τa = τh,25/τa,25, so that, while the actual

time scales for the memories at the rearing and the experimental temperature may differ

during the assaying in the droplet, the ratios of habituation and avoidance time scales stay

the same.

The 25◦C model starts with 15 parameters (we have one fewer starvation duration than

for the cold worm, and hence two fewer initial conditions). For this model,BIC15 = 123.6.

Setting a1(0) = a0.5(0) results in BIC14 = 120.2. Adding Ah = Aa gives BIC13 = 116.6.

Finally, with τh/τa = τh,25/τa,25, we have BIC12 = 113.2. Again, every next model in
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Parameter τh/τa Ah h(0) τa Aa a0(0)
∗ a1(0) a2(0) a3(0) a5(0)

value 0.28 6.37 -1.92 1.39 6.44 0 -1.68 -1.86 -2.02 -2.91
Σii 0.14 2.3 0.88 0.58 5.1 0.84 0.84 0.85 1.2
h
−1/2
ii 0.009 0.2 0.08 0.06 0.2 0.06 0.08 0.2 0.8

Parameter τh,15/τa,15 h15(0) τa,15 a0,15(0)
∗ a1,15(0) a2,15(0) a3,15(0) a5,15(0) c Θ∗

0

value τh/τa -1.15 6.66 0 a0,15(0) -0.51 -1.41 a3,15(0) 0 0.27
Σii 0.48 4.9 0.42 0.84
h
−1/2
ii 0.05 0.4 0.09 0.2

Table 3.3: Optimal parameter values and their uncertainties (quantified by Σ and h, see
text) for the final, 13-parameter model, describing the thermotactic dynamics of the cold
N2 worm (reared at 15◦C). BIC favors this model over a full 17-parameter model with odds
≈ 2200 : 1. The quality of the fit is χ2/f = 1.17. Σii are the estimates of the upper bound
on the parameter uncertainty, accounting for variation of the other parameters, and h1/2ii

are the estimates of the lower bound on the uncertainty; see text for details. Parameters
indicated by ∗ are set a priori and are not fitted. Parameters with values relating them to
other parameters are set by the model reduction. Parameter values are defined in Eqs. (3.2-
3.6). Briefly: τh/τa – ratio of time scales for habituation and avoidance dynamics at the
droplet temperature during the droplet assay; Ah – the maximum possible value of habitu-
ation at the droplet temperature during the assay; h(0) – the initial value of the habituation
at the droplet temperature at the beginning of the assay (hours); τa – the time scale of the
avoidance at the droplet temperature during the assay; Aa – the maximum possible value
of the avoidance at the droplet temperature during the assay; as(0) – initial values of the
avoidance at the droplet temperature at the beginning of the assay for starvation durations
s; τh,15/τa,15 – the ratio of the time scales for the habituation and avoidance at the rearing
temperature of 15◦C during the assay; h15(0) – initial value of the habituation at the rearing
temperature at the beginning of the assay; as,15(0) – initial values of the avoidance at the
rearing temperature at the beginning of the assay for starvation durations s; c – thermotactic
bias; Θ0 – saturating value of the worm bias.

the sequence is more likely than the previous one, and the odds P12 : P15 ≈ 181 : 1. The

inferred parameters for this final model are in Tbl. 3.4. The best fit value for this model is

χ2/f = 1.12.

3.6.12 Mutant fits

As explained in Section 3.6.8, we inherit most of the parameters for the mutants from

the N2 fits. We do not need to fit any additional parameters for ins-1 mutants. For age-1

and daf-2, we only fit the avoidance parameters τa and Aa, as well as the long-term bias

c. While we try to keep c = 0 for the cold worms, as for N2, the obtained fit for the 15◦C
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Parameter τh/τa Ah h(0) τa Aa a0(0)
∗ a0.5(0) a1(0) a2(0)

value 0.41 Aa 0.25 0.75 7.37 0 0.35. a0.5(0) 0.68
Σii 0.29 0.27 0.39 5.2 0.28 0.46
h
−1/2
ii 0.02 0.1 0.06 0.6 0.1 0.3

Parameter τh,25/τa,25 h25(0) τa,25 a0,25(0)
∗ a0.5,25(0) a1,25(0) a2,25(0) c Θ∗

0

value τh/τa 0.68 2.66 0 0.63 1.2 1.42 -0.1 0.27
Σii 0.36 1.4 0.37 0.49 0.66 0.14
h
−1/2
ii 0.09 0.4 0.1 0.2 0.2 0.03

Table 3.4: Optimal parameter values for the final, 12-parameter model, describing the ther-
motactic dynamics of the warm N2 worm (reared at 25◦C). BIC favors this model over a
full 15 parameter model with odds ≈ 181:1. The quality of the fit is χ2/f = 1.12. Notation
used is the same as in Tbl. 3.3.

daf-2 worm is bad (χ2/f > 2), and so c ̸= 0 is also allowed here. The fitted values of the

parameters and the quality of fits are in Tbl. 3.5.

We additionally argue that fitting just the habituation (rather than the avoidance) pa-

rameters does not produce good fits, so that mutations, indeed, affect the avoidance and not

the habituation pathway. The fitted values of the parameters and the quality of fit for this

model are in Tbl. 3.6.

3.6.13 Parameter and model trajectory error bars

In Tbls. 3.3 and 3.4, we report the best fit parameter values for the reduced models

for the cold and the warm worms. Since, even after the model reduction, there are still

many parameter combinations that result in similar dynamics, we need to quantify the

uncertainty on both the fitted parameter values, and on the dynamics themselves. Due

to the near-degeneracy of the loss function for different parameter values, we consider

the uncertainty on the dynamics a more important characteristic of the model fit than the

parameter uncertainty.

Parameter error bars For estimating parameter uncertainties, we make the usual as-

sumption that the loss function is quadratic in the parameter values around the optimum,

θ⃗∗. While not strictly true, the inaccuracies introduced by this assumption are not critical,
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Temperature 15◦C 25◦C

Parameter τa Aa c τa Aa c

value 0.39 0 0 6.9 0 1.5
ins-1 Σii

h
−1/2
ii

Parameter τa Aa c τ ∗a A∗
a c†

value 7.5 156 -9.7 1.2 3.3 0.026
daf -2 Σii 6.6 260 11 0.64 1.1 0.19

h
−1/2
ii 0.27 4.7 0.34 0.53 0.28 0.046

Parameter τa Aa c τa Aa c

value 3.4 35 0 6.9 120 1.5
age-1 Σii 1.6 16 9.0 170 0.78

h
−1/2
ii 0.08 0.23 0.32 5.5 0.22

Table 3.5: Optimal parameter values and their uncertainties for the parameters that change
between the N2 worm and the mutant worms (daf-2 and age-1) in the model that assumes
that the mutations affect the avoidance pathway only. There are 3 or 2 such parameters
depending on the mutant and the rearing temperature. All notations are as in Tbl. 3.3. The
quality of fit values are listed in Tbl. 3.7. Note that increases (decreases) in the parameter
indexed by ∗ (†) within +h

−1/2
ii (−h−1/2

ii ) result in nonphysical long-term sustained oscil-
lations in the model. The ins-1 mutant is not fitted, instead Aa is set to zero while τa and c
are inherited from Tbls. 3.3, and 3.4.

precisely because we consider the trajectories, and not the parameter values, as the impor-

tant properties of the model fits. The Hessian around the optimal value Hij = ∂θi∂θjL|θ⃗∗

is estimated for us during the optimization by MATLAB’s fminunc() using the finite

differences method.

Parameters have correlated effects on model fits. Thus we report two measures of their

uncertainty. The first is a lower bound on the error bar of each θi, obtained as 1/
√
Hii. This

quantity measures how much the parameter can change and not affect the loss function

significantly, while keeping all other parameters fixed. The second is the upper bound on

the uncertainty in the quadratic approximation, Σii =
√
(H−1|θ∗)ii. This quantity measures

how much a specific parameter can change without affecting the quality of the fit, while

allowing variability in other parameters to compensate for the effects of changes in the

explored parameter. Both errors are shown for the reduced model of the N2 worms in
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Temperature 15◦C 25◦C

Parameter τh Ah c τh Ah c

value 113.9 158.1 0 0.59 10.9 -0.1
ins-1 Σii 19.9 20.1 0.17 0.87

h
−1/2
ii 19.8 20.0 0.12 0.59

Parameter τh Ah c τh Ah c

value 0.11 5.5 -0.5 0.39 11.8 -0.014
daf -2 Σii 0.04 0.14 0.07 0.16 0.86 0.12

h
−1/2
ii 0.02 0.14 0.03 0.14 0.51 0.08

Parameter τh Ah c τh Ah c

value 0.06 3.8 0 0.12 5.4 0.08
age-1 Σii 0.03 0.30 0.01 0.20 0.09

h
−1/2
ii 0.02 0.25 0.01 0.18 0.08

Table 3.6: Optimal parameter values and their uncertainties for the parameters that change
between the N2 worm and the mutant worms (daf-2 , age-1, and ins-1) in an alternative
model, where the mutations affect the habituation pathway only. All notations are as in
Tbl. 3.3. The quality of fit values are listed in Tbl. 3.7. As the data in Tbl. 3.7 shows, the
fits overall are worse than for our primary model.

.

Temperature Avoidance Habituation
15◦C χ2/f BIC χ2/f BIC
ins-1 1.28 23.1 1.19 27.2
daf -2 1.26 31.4 1.76 40.4
age-1 1.20 27.4 2.37 48.4
25◦C χ2/f BIC χ2/f BIC
ins-1 1.59 22.9 0.89 18.2
daf -2 1.06 23.3 1.06 25.1
age-1 1.98 36.5 2.36 42.0

Total BIC 164.5 201.3
Table 3.7: χ2 per degree of freedom and BIC scores for the model fits appearing in Tbl. 3.5
and 3.6. Overall, the BIC scores imply that the model where mutations affect the avoidance
pathway rather than the habituation pathway explains the data much better, with the odds
of 9.6× 1015 :1 in its favor.

Tbls. 3.3 and 3.4, and for the mutant worms in Tbls. 3.5 and 3.6.

Wildtype trajectory error bands To estimate the uncertainty in the fitted dynamics,

we use bootstrapping [49]. We use a single worm (rather than a single time point in
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a worm’s dynamics) as a single unit of data [108]. We sample with replacement Nµ

worms from Nµ worms in the experimental condition µ (here µ defines the rearing tem-

perature and the starvation duration). From the resampled data, for each condition, we

calculate the new four-hour average thermotactic index curve Θ̄µ(t). We repeat this a 100

times, thus obtaining {Θ̄µ,k(t)}, k = 1, . . . , 100. Each of the bootstrapped trajectories is

fit by the model, Eqs. (3.2-3.6), producing parameter fits { ˆ⃗θk} and obtaining predictions

{Θ̂µ,k(t)}, k = 1, . . . , 100. For each time and condition, we report the error bands as the

16.5 . . . 83.5 range within the set {Θ̂µ,k(t)}. These bands would correspond to a one stan-

dard deviation confidence band if the statistics of the trajectories were Gaussian (which

they are not).

Mutant trajectory error bands Mutants reared at warm or cold temperature inherit most

parameters from their respective N2 worms, except for a handful parameters (those describ-

ing avoidance in the primary model, and habituation in the alternative model), which are

fitted to the mutant data. Thus they inherit the bootstrapped N2 data as well, and the asso-

ciated best fit parameters, { ˆ⃗θk}, and model predictions, {Θ̄µ,k(t)}, k = 1, . . . , 100. If addi-

tional mutant-specific parameters are fitted, for such mutants, we generate the bootstrapped

data with 100 sets of worms resampled with replacement, similarly to the wildtype worms.

We then pair, at random, each mutant resampled data set with one of the N2 resampled data

sets, inherited from estimating uncertainty of the N2 models. For each such pair, we use

its fitted N2 parameters and fit the mutant parameters with these N2 ones. The 16.5 to 83.5

percentile range of the fits is then reported as the error band.

3.6.14 Data and material availability:

For the thermotactic index data please see [98].
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Chapter 4 Entropy Estimation for under-sampled
discrete distribution

4.1 Summary

1 A fundamental problem in analysis of complex systems is getting a reliable estimate

of entropy of their probability distributions over the state space. This is difficult because

unsampled states can contribute substantially to the entropy, while they do not contribute

to the Maximum Likelihood estimator of entropy, which replaces probabilities by the ob-

served frequencies. Bayesian estimators overcome this obstacle by introducing a model

of the low-probability tail of the probability distribution. Which statistical features of the

observed data determine the model of the tail, and hence the output of such estimators,

remains unclear. Here we show that well-known entropy estimators for probability distri-

butions on discrete state spaces model the structure of the low probability tail based largely

on few statistics of the data: the sample size, the Maximum Likelihood estimate, the num-

ber of coincidences among the samples, the dispersion of the coincidences. We derive

approximate analytical entropy estimators for undersampled distributions based on these

statistics, and we use the results to propose an intuitive understanding of how the Bayesian

entropy estimators work.

4.2 Introduction

Estimating entropy – that is, the measure of uncertainty [24, 112] – of a random variable

from its samples is often a key question in analysis of complex systems. This estimation

from a finite (and often small) set of samples is a hard problem, especially for high dimen-

sional systems, where the number of states that a variable can take quickly overwhelms

1This chapter presents the paper [48] which is a collaboration with Damián G. Hernández, Ilya Nemen-
man.
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the number of samples N . Then many of the states, hereafter called low probability states,

have probability < 1/N . Collectively, we refer to all of these states as the tail of the prob-

ability distribution. While there may be a lot of samples in the tail, each low probability

state will not be sampled typically, or will be sampled at most once. Because of the tail, the

entropy estimator that replaces probabilities of states by their empirical frequencies (the

so called naive or Maximum Likelihood estimator [116]) has a large sample size depen-

dent bias [89]. Corrections have been derived to overcome this bias [11, 43, 75], but these

tend to be valid only in the well-sampled regime. Outside of this regime, Bayesian [6, 82,

134] and some non-parametric [16–18] estimators may still result in low bias estimates by

imposing a priori assumptions on the probabilities of the low-probability states.

Although these Bayesian and non-parametric estimators perform well on some data

sets, it is known that no estimator can be universally unbiased in this regime [4, 89]. Thus

it is crucial to understand how these estimators extract information about entropy from

data, and hence when they will fail. Unfortunately, such theoretical understanding is miss-

ing for many estimators. Ma was the first to point out that estimation of entropy is possible

for poorly-sampled uniform distributions by analysing a particular statistics of the data:

coincidences [69]. Nemenman extended the theoretical idea that coincidences determine

entropy to non-uniform distributions obeying some Bayesian priors [80]. However, a sim-

ilar theoretical understanding is still missing in a broader context, and it remains unclear

which statistics of data, in addition to the number of coincidences, may contribute to en-

tropy estimation and why.

In this paper, we analytically investigate two Bayesian estimators: that of Nemenman,

Shafee and Bialek [81, 82] and of Archer and Pillow [6]. We focus on the regime, which

is arguably the most important for real life applications, where the number of states with

at least one sample, K1, is similar to the total number of samples, K1 ∼ N ≫ 1, and yet

K1 < N , so that there are coincidences in the data. Outside of this regime, the probability

distribution is either well-sampled (so that many different methods for entropy estimation
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would work), or there are no coincidences at all (so that entropy estimation is impossible).

In our regime of interest, we show that the result of the estimation by the studied estimators

depends on the Maximum Likelihood entropy estimate S0, the number of coincidences, and

also on two measures of dispersion of coincidences. The first of these, K2, is the number

of states with at least two samples. The second, which we call Q1, characterizes the spread

of coincidences over states with three or more samples.

We show that values of these statistics are related to the structure of the tails of the

probability distribution that is assumed by the estimators. Specifically, a short, exponential,

tail is more likely to be inferred by the estimators when there many coincidences or they

are dispersed. If the number of coincidences is intermediate, and the coincidences are

concentrated, then the estimators infer a long tail 2. In between these two regions, a mixed

tail dominates. We show that the studied estimators correct Maximum Likelihood, and

that the correction is larger when there are fewer coincidences and they are concentrated,

which in turn happens with a large exponential tail or a slowly-decaying long tail. This

understanding relates the observable data statistics to assumptions that Bayesian estimators

make about the underlying probability distributions (see Fig. 4.1), and hence provides an

intuitive explanation for how these estimators work and, crucially, when they fail.

4.3 Overview of Bayesian entropy estimation

Given a probability distribution {qx} = q for a discrete one-dimensional random vari-

able X , its entropy is defined as [112]

S(q) = −
∑
x

qx log qx. (4.1)

Note that we use the natural logarithm throughout this paper, and hence entropy is measured

in nats. One is often faced with a problem when S must be estimated for unknown qx

from a set of N samples {x1, . . . , xN} from the probability distribution. The Maximum

2a long tail is power law tail
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Figure 4.1: Relation between assumptions about the tail structure and the statistics that
determine entropy estimation. The set of unsampled states, qi ≤ 1/N , which we refer to
as the tail, may contribute substantially to the entropy. However, the Maximum Likelihood
estimation overlooks this contribution. If the rank ordered plot of the tail is exponential with
the scale α (top panel), then the tail has effectively α states, which contribute δS ∼ logα
to the entropy. While the tail cannot be observed directly, it pulls samples from the head of
the distribution, so that the number of coincidences, ∆, in the head decreases as α grows.
Thus one can estimate α and hence the entropy itself from ∆. Alternatively, if the rank-
ordered plot of the tail has a power law structure with the exponent −1/d, then the tail does
not have a finite effective size (bottom panels). Then its contribution to entropy depends
on d as δS ∼ (1 − d)−1. In this case, one can estimate d, and hence the entropy, from the
dispersion of the coincidences, which depends, in part, on how many samples happen once
or more, K1, or twice or more, K2, in the dataset.

Likelihood estimator of entropy, S0, is then defined by replacing the probabilities with

frequencies qx → q̂x = nx/N ,

S0 = S(q̂) = −
∑
x

nx

N
log

nx

N
. (4.2)

States with zero frequencies in the sample do not contribute to S0 resulting typically in

underestimation of the entropy [89]. In general, because of this low probability tail, esti-

mation of entropy from data is very hard when the number of samples is smaller than the

number of effective states of the variable, N ≪ exp(S).

Bayesian estimators address the problem by imposing various a priori assumptions
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p(q). One then uses Bayes theorem to infer the a posteriori distribution of q, and finally

integrates over q to get the a posteriori distribution or moments of entropy. Specifically,

the mean posterior entropy Ŝ = ⟨S|n⟩ given the counts n = {nx} of how many times state

x was sampled is given by

Ŝ = ⟨S|n⟩ =
∫
S(q)p(S|q)p(q|n)dq

=

∫
S(q)δ

(
S +

∑
x

qx log qx

)
p(q|n)dq, (4.3)

where p(q|n) is the posterior over q under some prior p(q),

p(q|n) = p(n|q)p(q)
p(n)

=

∏
x q

nx
x p(q)

p(n)
. (4.4)

For distributions with known finite size A of the space of the possible outcomes (aka the

alphabet size), the Dirichlet distribution is often chosen as a prior due to its conjugacy with

the categorical distribution:

p(q) = Dirichlet(q|λ) ∝
A∏
i=1

qλi , (4.5)

where λ is known as the concentration parameter.

Note that any chosen prior p(q) implicitly imposes assumptions on the structure of

the low probability tail (and hence its contribution to the entropy) based on the observed

statistics of the well-sampled part of the probability distribution. However, these implicit

assumptions usually are not made explicit, and they remain mysterious even for most com-

monly used Bayesian estimators. Lifting this veil is the goal of this work.

4.3.1 The Nemenman-Shafee-Bialek (NSB) Estimator

Nemenman et al. [82] showed that, for variables with the finite alphabet size A, Dirich-

let priors on q with a fixed value for the concentration parameter λ correspond to highly

concentrated a priori distribution on entropy, which persists for large sample sizes. This

bias induces incorrect entropy estimates, which nonetheless have low variance and hence
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are certain about their outputs. To address this issue, Ref. [82] suggested a Dirichlet-

mixture prior

pNSB(q) =

∫
Dirichlet(q|λ)pprior(λ)dλ, (4.6)

where p(λ) are the mixture weights determined by

pprior(λ) ∝ ∂λ⟨S|λ⟩ = Aψ1(Aλ+ 1)− ψ1(λ+ 1), (4.7)

and where ⟨S|λ⟩ is the a priori expected entropy under the Dirichlet(q|λ) prior, and ψ1(·)

is the tri-gamma function [1]. This choice of weights implies a nearly uniform a priori

distribution for the entropy S on the interval [0, logA]. The resulting entropy estimate is

then

ŜNSB = ⟨S|n⟩ =
∫ ∫

S(q)p(q|n, λ)p(λ|n)dqdλ

=

∫
⟨S|n, λ⟩p(n|λ)pprior(λ)

p(n)
dλ. (4.8)

Here ⟨S|n, λ⟩ is the posterior mean entropy under the prior Dirichlet(q|λ), and p(n|λ) is

the evidence (which has a Polya distribution) [76],

p(n|λ) =
∫
p(n|q)p(q|λ)dq

=
N ! Γ(Aλ)

Γ(λ)AΓ(N +Aλ)

A∏
i=1

Γ(ni + λ)

ni!
(4.9)

where Γ(·) is the gamma function [1]. Using the analytical expressions for the first two

moments of posterior mean entropy ⟨S|n, λ⟩ (available from Refs. [82, 134]), one then

uses one-dimensional numerical integration over λ to obtain ŜNSB.

4.3.2 The Dirichlet and the Pitman-Yor Processes

When the size of the state space is unknown or infinite, the standard NSB construction

does not work. Then one commonly uses one of the following two stochastic processes to

construct a prior p(q) over a countably infinite state space: the Pitman-Yor Process (PYP)

[92] and its special case, the Dirichlet Process (DP) [39]. To specify these processes, one
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requires two inputs: a parameter vector and a base distribution. Parameters of the Pitman-

Yor process are known as the discount parameter d, 0 ≤ d < 1, and the concentration

parameter α. The parameters control the shape of typical distributions generated by the

process. Specifically, d controls the structure of the low probability tail of q, so that the

tail typically decays as qx ∝ x−1/d. The concentration parameter α control the probability

mass near the head of the distribution. In the limit d→ 0, PYP(d, α) becomes the Dirichlet

Process, DP(α). In other words, the Dirichlet Process generates distributions with short

tails.

When the base distribution is the Beta distribution, one draws samples qx ∼ PYP(d, α)

via the so called stick-breaking process [53], which uses an infinite sequence of independent

Beta-distributed random variables βx ∼ Beta(1− d, α+ xd), so that

q̃x = βx

x−1∏
y=1

(1− βy). (4.10)

Thus obtained q̃ are not strictly decreasing with x, and so one obtains a strictly non-

increasing distribution q from them by rank ordering.

4.3.3 Expectations over DP and PYP Posteriors

Previous studies [52] showed that PYP priors (for multinomial observations) yield a

posterior p(q|n, α, d), which consists of two parts: probability of K1 states that exist in the

sample with the counts of, at least, one, and probability of states that are not sampled. We

will denote the set of states with nonzero counts as K, and its cardinality is K1 = ||K||.

Then the first term of the posterior is given by the Dirichlet distribution, p(q ∈ K|µ) ∝∏
x q

µx
x , where µ is a concentration vector µ = (n1−d, · · · , nK1−d, α+K1d). This leaves

the probability of q∗ = 1 −
∑

x∈K qx for the unobserved states. In other words, the states
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with nonzero counts contribute the following to the posterior:

p(q ∈ K|n) = p(q1, · · · , qK1 , q∗|n)

= Dirichlet(n1 − d, · · · , nK1 − d, α+K1d)

∝ qα+K1d
∗

K1∏
i=1

qni−d
i . (4.11)

For the states that have no samples, the posterior is equal to the prior. Thus their contribu-

tion to the posterior is the Pitman-Yor Process, normalized by their total probability being

q∗:

p(q ̸∈ K) = p(qK1+1, qK1+2, · · ·) = q∗PYP(d, α+K1d). (4.12)

Overall, this yields a closed form solution for the posterior mean and variance of the entropy

S. Specifically, the resulting posterior mean ⟨S|n, α, d⟩ is

⟨S|n, α, d⟩ = ψ(α +N + 1)− α +K1d

α +N
ψ(1− d)

− 1

α +N

(
K1∑
x=1

(nx − d)ψ(nx − d+ 1)

)
,

(4.13)

where ψ(x) = ∂x log Γ(x) is the di-gamma function [1]. Unfortunately, this is usually not

a good estimate of entropy since, for fixed α and d, the prior PYP(d, α) on q corresponds

to a highly concentrated a priori distribution on entropy, just like was noted before in the

context of the NSB estimator. To counter this, Archer and Pillow [6] followed the NSB pre-

scription and introduced a prior (mixture) over the parameters of PY P (d, α), pprior(α, d),

which uniformized the induced prior over entropy (with the caveat that, for a distribution

on a countable alphabet, the entropy may be infinite, and hence strict uniform distribution

over entropy is impossible). Specifically, they used

pprior(α, d) = p(γ) = e−10/(1−γ), where (4.14)

γ = (ψ(1)− ψ(1− d))/(ψ(α + 1)− ψ(1− d)), (4.15)

and then they confirmed numerically that this choice of the prior leads to good estimates of

entropy for various test data sets. In other words, they proposed a new estimate of entropy,
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the Pitman-Yor Mixture (PYM):

ŜPYM = ⟨S|n⟩ =
∫
⟨S|n, α, d⟩pposterior(α, d|n)d(α, d)

=

∫
⟨S|n, α, d⟩p(n|α, d)pprior(α, d)

p(n)
d(α, d), (4.16)

where ⟨S|n, α, d⟩ is given in Eq. (4.13). The evidence p(n|α, d) is then given by (see

Ref. [6] for a detailed derivation)

p(n|α, d) = Γ(1 + α)
∏K1

l=1(α + ld)
∏K1

x=1 Γ(nx − d)

Γ(1− d)K1Γ(α +N)
. (4.17)

Note that taking d → 0 in Eqs. (4.16 and 4.17) and making the identification α = Aλ

in the limits λ→ 0 and A → ∞ such that α is finite, result in a countably-infinite analogue

of the NSB estimator.

4.4 Determining data statistics that define entropy esti-
mates

In the section, we approximate the likelihood function of the Pitman-Yor process,

Eq. (4.17), analytically in terms of coincidence-based data statistics. We then numerically

show that the resulting analytical entropy estimates are close to the exact Pitman-Yor Mix-

ture estimator. We focus on the regime where the Maximum Likelihood entropy estimator

fails dramatically. For this, we study random variables with many accessible states in the

regime where the number of unique samples, K1, is of the order of the total sample size N .

This regime corresponds to K1 ≲ N ≤ exp(S), where N is the number of samples and S

is the true entropy.

We start by considering the log-likelihood function, which is the logarithm of the evi-

dence p(n|α, d) in Eq. (4.17):

L(n|α, d) = log Γ(1 + α)− log Γ(N + α) + log Γ
(α
d
+K1

)
− log Γ

(α
d
+ 1
)
+

K1∑
i=1

log Γ(ni − d)−K1 log Γ(1− d). (4.18)
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We now define Km as the number of states with at least m counts in the total sample of

size N , Km =
∑

ni≥m 1. We denote by mf the largest occupancy of any state in the

sample. Further, we define K as the vector, whose mth element is Km. We note that, for

any function f(n), ∑
i

f(ni) =
∑
m

(Km −Km+1)f(m). (4.19)

Thus, in particular, the log-likelihood L(n|α, d) can be viewed as L(K|α, d). With this, we

can expand Eq. (4.18) around d = 0 to get (see Appendix 4.7.1 for details):

L(n|α, d) ≈ La(K|α, d) ≡ log Γ(1 + α)

− log Γ(N + α) + log Γ
(α
d
+K1

)
− log Γ

(α
d
+ 1
)

+ (K1 − 1) log d+K2 log(1− d)−Q1d+O(d2), (4.20)

where

Q1 =

mf∑
m=3

Km

m− 1
, (4.21)

and the subscript a denotes the d→ 0 asymptotic nature of the expression.

By rewriting the Maximum Likelihood estimate S0 of Eq. (4.2) in terms of coincidences

(see Appendix 4.7.2), using the identity Eq. (4.19), and approximating certain terms that

are finite in the limit d → 1 via a Taylor expansion around d ≪ 1, the mean posterior

entropy, Eq. (4.13), results in (see Appendix 4.7.3):

⟨S|n, α, d⟩ ≈ ⟨S|K, α, d⟩a ≡ ψ(N + α + 1)

−
(
α +K1

α +N

)
ψ(1− d) +

1

α +N

[
.N(S0 − logN)−K1

+K2(log 4− 1− ψ(2− d)) +Q1d

+O

(
d2,
∑
m=3

Km

(m− 1)2

)]
, (4.22)

where O(d2,
∑

m=3Km/m
2) means that we kept terms that are at most linear in d and

at most proportional to
∑

m=3
Km

(m−1)
. Interestingly, within this approximation, the log-

likelihood and the posterior mean entropy depend on the sample size N , the Maximum
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Figure 4.2: Comparison between PYM and related estimators and their approximations for
distributions with different tails. The upper panels (a-c) show the distributions, whose en-
tropy is being estimated. The lower panels (d-f) show the corresponding entropy estimates
as a function of the number of samples, averaged over ten sets of samples. The full esti-
mators, PYM and NSB (with a large alphabet size A = 20K1), almost overlap with our
approximations, aPYM and aNSB. In all panels, we show results for Maximum Likelihood
(black), NSB (blue), aNSB (dashed blue), PYM (orange), aPYM (dashed orange), and Ŝlong

(green) estimators. The dashed gray line represents the true value of entropy for each of
the studied distributions.

Likelihood entropy estimate S0, and the three characteristics of the coincidence vector:

K1, K2 and Q1.

The final step in approximating the estimator ŜPYM , Eq. (4.16), is to integrate the ex-

pected entropy for fixed hyper-parameters ⟨S|K, α, d⟩a over the posterior pposterior(α, d|n) ∝

p(n|α, d)pprior(α, d) to form the Pitman-Yor mixture. Then the variance of the resulting es-

timator is dominated by the contribution from the uncertainty in the posterior distribution

of the parameters α, d, which is about 80% of the total variance in our simulations.

This procedure of replacing ⟨S|n, α, d⟩ with the asymptotic expression ⟨S|K, α, d⟩a in

Eq. (4.16) leads to a new estimator of entropy, which we call approximate PYM estimator,

or aPYM. This estimator is fully determined by just few data statistics, N , S0, K1, K2, and

Q1. There are also two limiting cases of this estimator. First, by taking d→ 0 in Eqs. (4.20,

4.22), we define the approximate version of the NSB limit of the PYM estimator on a
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Figure 4.3: a: Phase diagram of the dominant tail hypothesis selected by the PYM estimator
as a function of various statistics of the data sample. The explored statistics are the fraction
of coincidences in the sample, ∆/N , and dispersion of the coincidences, K2/K1. This
diagram is evaluated at the third crucial data statistics set at Q1 = 0.3Qmax = 0.3(∆ −
K2)/2. b: Schematic diagram that illustrates how sample sets with different ∆, K1, and
K2 may look like. An empty or gray circle above a state xi represent a single sample for
that state. Gray circles denote coincidences.

countably infinite number of possible outcomes, which we denote as aNSB. At the other

extreme, taking α → 0 in Eqs. (4.20, 4.22), corresponds to a prior that favors distributions

with long tails. We denote the corresponding estimator as Ŝlong.

The above observation that, in the undersampled regime where exp(S/2) < N <

exp(S), the PYM entropy estimator and its relatives are determined approximately by

just few statistics of the data, {N,S0, K1, K2, Q1}, is the main result of our paper. To

corroborate this, we explore the quality of the approximation numerically for different

distributions q. Figure 4.2 presents results for three distributions with different struc-

tures of tails, generated from the Pitman-Yor Process: a distribution with an exponential

tail (Fig. 4.2a, PYP(d = 0, α = 400) = DP(400)), one with a mixed tail (Fig. 4.2b:

PYP(d = 0.4, α = 100)), and one with a long tail (Fig. 4.2c: PYP(d = 0.6, α = 0)).

In the lower panels we show the results of estimating entropy for different dataset sizes
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using the ML estimator, the PYM estimator, the NSB estimator with a large alphabet size

A = 20K1, and the three approximations: aPYM, aNSB, and Ŝlong. All results are averaged

over ten sets of random samples. In all cases, the differences between NSB and aNSB on

the one hand, and PYM and aPYM on the other are negligible, supporting the accuracy

of the approximation. All four of these estimators produce high quality estimates for all

sample sizes. Further, we also checked that the approximation of the posterior error of the

estimators is close to that of the full versions (not shown). In contrast, Ŝlong only performs

well when the distribution has a long tail, and the Maximum Likelihood never works well.

4.5 Tail-hypothesis and entropy estimation phase diagrams

The above discussion shows that the PYM estimator and its relatives work by first

estimating the most likely α and d from the sampled data, and then using these estimated

parameters to approximate the structure of the low probability tail (from short, to long)

and hence of its contributions to the entropy. We further showed that, in the regime of

interest, the log-likelihood of α and d is dominated by just few statistics: N , S0, K1, K2,

and Q1. It is thus illustrative to understand, which combinations of these statistics select

which hypothesis on the structure of the tail. Building the corresponding phase diagram of

the selected tail structure as a function of the data statistics is the goal of this Section.

We will consider three classes of tails: exponential (d = 0 selected, denoted as hypoth-

esis H = 1), long tail (α = 0 selected, denoted as hypothesis H = 2), and a mixed tails

(arbitrary α and d, denoted as H = 3). Our goal is then to evaluate which of the three tail

hypotheses has a higher probability given the data. Long and short tail hypotheses have

one parameter each, while the mixed tail hypothesis has two parameters and contains the

other two hypotheses as special cases. Thus when evaluating the log-likelihoods of each of

the hypotheses, we must penalize them for having a different number of parameters, which
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we do using Bayesian Information Criterion [111]. To do this, we evaluate the likelihoods

LH = log p(K|α̂, d̂) + log pprior(α̂, d̂)−
nH

2
logN, (4.23)

where α̂ and d̂ are the maximum likelihood values of the parameters within each hypothesis,

and nH is the number of parameters for the hypothesis (nH = 2 for H = 3, and nH = 1

otherwise). We remind the reader that, by construction, α̂ = 0 for the long tail hypothesis,

H = 2, and d̂ = 0 for the short tailed hypothesis, H = 1.

We determine the regions of the N,S0, K1, K2, Q1 space, where one of the three LH

dominates, and plot the slice of this phase diagram in Fig. 4.3. Specifically, in the Figure,

we vary the total number of coincidences, ∆ = N − K1, and the number of states with

coincidences, that is, the number of states with more than two counts, K2. By sampling

many distributions, we empirically observe that the value Q1 ∼ 0.6(∆ − K2)/2 is when

the rest of the ∆ − K2 counts are uniformly dispersed, and Q1 tends to zero when the

rest of the counts are concentrated in a single state. Note that the maximum value Q1 can

take is Qmax = ∆−K2

2
. For this reason, we choose the intermediate representative value

Q1 = 0.3Qmax = 0.3∆−K2

2
.

To simplify the presentation, we plot the winning tail hypothesis as a function of ∆/N

and K2/K1. Normalized in this way, the diagram is constrained to a square of size 1, as

0 ≤ ∆/N,K2/K1 ≤ 1. In addition, K2 ≤ ∆, which means that the upper left corner is

not accessible. The ratio ∆/N determines how common are the coincidences, and the ratio

K2/K1 describes whether the coincidences in the data are concentrates in a few states, or

dispersed over many states (see Figure 4.3b).

Figure 4.3a show that the exponential tail hypothesis dominates when there are many

coincidences, ∆/N ∼ 1, or when the coincidences are dispersed, that is K2/K1 ∼ 1

or K2/∆ ∼ 1. Both cases can be explained as corresponding to distributions that are

relatively uniform on some fixed number of states, and have zero probability elsewhere. A

long tail only dominates when the fraction of coincidences has an intermediate value, but

the coincidences are highly concentrated, K2/K1 ≪ 1. In other words, in this case, there
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are dominant states, but a lot of samples still fall outside of them. For other values of ∆/N

and K2/K1, the mixed tail hypothesis dominates.

Equipped with this picture of which tail hypothesis is selected by the PYM estima-

tor as a function of data statistics, we now can calculate how the estimator corrects the

ML entropy value S0 for different data statistics. Integrating the mean posterior entropy

⟨S|K, α, d⟩a, Eq. (4.22), over our approximation of the posterior, pa(α, d|K), which we

obtain by exponentiating Eq. (4.20), we get the approximate PYM estimator ŜPYM,a. The

Maximum Likelihood estimate S0 enters linearly in the posterior mean entropy, Eq. (4.22).

Thus we write

⟨S|K, α, d⟩a = bα,d S0 + δSα,d, (4.24)

where bα,d and δSα,d can be read off from Eq. (4.22). Performing the integral over the

approximate posterior, this becomes:

Ŝ = δS + b S0, (4.25)

where δS and b are averages of the corresponding α- and d-dependent quantities. Thus in-

dependent of the Maximum Likelihood entropy value, within our approximation, the PYM

estimator obtains the entropy estimate by decreasing the ML contribution from the well-

sampled head of the distribution and adding an offset that comes from the low probability

tail. This is similar to so-called partition-based entropy estimators, [18, 81, 83, 113], which

divide the state space into sub-spaces, estimate entropy in each sub-space, and then add

the estimates weighted by the probability of being in a corresponding sub-space. However,

here this partitioning arises naturally from the Bayesian framework within our approxima-

tions.

Both the scale factor and the offset depend on the dominant α and d contributing to the

estimator, and hence on the usual statistics of the data, ∆, K1, K2, and Q1. Specifically,

we numerically observe that the value of b obtained from Eq. (4.25) satisfies

b = ⟨N/(α +N)⟩ ≤ 1, (4.26)
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Figure 4.4: Corrections to entropy estimation as a function of determining data statistics.
We break down the final estimation for entropy in two parts, as Ŝ = δS(∆/N,K2/K1) +
b(∆/N,K2/K1)S0, where δS is the additive correction and b is scaling factor or weight for the
Maximum Likelihood estimate. Well-sampled distributions are located in the upper-right
corner where δS = 0 and b = 1. As in the previous plots, we leave Q1 = 0.3 (∆−K2)/2.
a: Additive correction to entropy. b: Scaling correction to entropy.

where the average is over the product of the approximate posterior obtained by exponenti-

ating Eq. (4.20) and the prior p(γ) = e−7γ/100 with γ defined in Eq. (4.15). Note that α is

a measure of how much probability is concentrated in the tail. Thus the ratio N/(α + N)

approximates the overall weight of the the well-sampled head of the distribution, requiring

to decrease the contribution to the entropy from the head by this factor. This matches our

assertion that the aPYM estimator is a partition-based estimator, separating the head from

the tail.

In Figure 4.4 we show results of numerical estimation of the offset δS and the scaling

factor b as a function of the fraction of coincidences, ∆/N , and the dispersion of coinci-

dences, K2/K1. As in the previous case, we keep Q1 = 0.3Qmax. We also set N = 104.

Figure 4.4(a) shows that the additive term grows when the fraction of coincidences ∆/N

decreases, and when K2/K1 is small, so that coincidences are concentrated. Both of these

cases correspond to a lot of mass in the tail (see corresponding long tail region in Fig-
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ure 4.3(a). The largest values of δS occur along the boundary strip (∆/N,K2/K1 ≪ 1)

and the boundary K2 = ∆. Panel b shows that the scaling factor b is close to 1 in most

areas, except near the boundary edge K2 = ∆. Along this boundary, the scaling factor

becomes the largest when the number of coincidences decreases, ∆/N ≪ 1. Figure 4.4

clearly highlights when Bayesian corrections to the ML estimation of entropy are essential:

regions of few and concentrated coincidences.

4.6 Discussion

The major finding of this work is an excellent approximation for the PYM estimator,

one of the best Bayesian entropy estimators, and its various relatives (such as NSB). The ap-

proximation simplifies the numerics considerably. Crucially, the approximation also shows

that the output of the PYM entropy estimator depends on just a few statistics of the data,

namely the maximum likelihood (ML) entropy estimate, the fraction of coincidences ∆/N ,

and the dispersion of coincidences K1/K2, and Q1. We showed that that workflow of the

estimator can be interpreted as first estimating the parameters d and α based on the afore-

mentioned statistics, and with them the tail structure and the total weight of the tail. Then

the estimator rescales the ML entropy estimate by the weight of the well-sampled head of

the distribution, and adds to it the estimated entropy of the tail. The phase diagrams of

which tail structure the estimator selects, Fig. 4.3, and how it corrects the ML estimate,

Fig. 4.4, illustrate these points.

Early work of Ma [69] showed that when states are equiprobable, in the under-sampled

regime, the coincidences in counts can help with the inference of the entropy of a system.

Later Nemenman [80] showed that in the severely under-sampled regime (K1 close to N ),

entropy estimation depends on the number of coincidences K1. Further, he pointed out

how reliable entropy estimates may be obtained by partitioning the overall state space of

the variable into sub-spaces with similar sampling properties [83]. Here we extend these

results to the whole regime where entropy estimation is challenging for multinomial ob-
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servations, exp(S/2) < N < exp(S), by approximating the more general PYM estimator.

Our identification of the small set of statistics, which define the output of the estimator, lifts

the veil from its inner workings, allowing for a simple, semi-analytical estimation proce-

dure. In particular, this allows us to predict if a particular estimator will be biased simply

by looking at the values of the select statistics of the data.

How to match a priori assumptions about the underlying distributions to the data to

allow for an unbiased estimation of quantities of interest—such as entropy [6, 81] or the

mutual information [46]— is an open problem [47]. It requires understanding the relation

between the a priori assumptions and the data features that influence the inference. In this

work, we build such a link for entropy estimation, and we hope that similar links might

exist for other difficult estimation problems.

4.7 Appendix

4.7.1 Marginal likelihood approximation for a Pitman-Yor process

In this Appendix we show how to approximate the marginal posterior of a Pitman-Yor

process in the regime K1 ≲ N ≤ exp(S). We start by manipulating each term in the

logarithm of the evidence L = log p(n|α, d) from Eq. (4.17),

L(n|α, d) =
K1−1∑
l=1

log(α + ld) +

K1∑
i=1

log Γ(ni − d)−K1 log Γ(1− d)

+ log Γ(1 + α)− log Γ(N + α). (4.27)

To simplify the first term in Eq. (4.27), we rewrite it in terms of coincidences K1 as
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follows:

I1 =

K1−1∑
l=1

log(α + ld) (4.28)

=

K1−1∑
l=1

[
log d+ log

(α
d
+ l
)]

(4.29)

= (K1 − 1) log d+

K1−1∑
l=1

[
log Γ

(α
d
+ l + 1

)
− log Γ

(α
d
+ l
)]

(4.30)

= (K1 − 1) log d+ log Γ
(α
d
+K1

)
− log Γ

(α
d
+ 1
)
. (4.31)

In order to rewrite the rest of the terms of Eq. (4.27) in terms of various coincidence statis-

tics, we use the identity Eq. (4.19). Joining the second and third terms in Eq. (4.27) and

rewriting them in terms of count multiplicities yields

K1∑
i=1

log Γ(ni − d)−K1 log Γ(1− d)

= −K2 log Γ(1− d) +
∑
m=2

(Km −Km+1) log Γ(m− d)

=
∑
m=2

Km [log Γ(m− d)− log Γ(m− 1− d)]

=
∑
m=2

Km log(m− 1− d)

= K2 log(1− d) +Q(d), (4.32)

where

Q(d) =

mf∑
m=3

Km log(m− 1− d). (4.33)

where mf denotes the largest occupancy of any state in the sample. Since the domain of

0 ≤ d < 1 is small, Q(d) is approximately linearly varying with d, so that we can expand

it around d = 0:

Q(d) = Q(0)−
∑
j=1

[∑
m=3

Km

(m− 1)j

]
dj

j

≈ Q(0)−

[∑
m=3

Km

m− 1

]
d− 1

2

[∑
m=3

Km

(m− 1)2

]
d2 +O(Q3),

= Q0 −Q1d−
1

2
Q2d

2 +O(Q3). (4.34)



91

where

Qj =
∑
m=3

Km

(m− 1)j
(4.35)

for j ≥ 1. As d approaches 1, the term K2 log(1 − d) goes to infinity, which renders any

error in the Taylor expansion of Q(d) irrelevant. This makes the approximations above

useable even if we ignore O(d2) terms.

Putting all of the approximations above together, the ensuing approximate logarithm of

the evidence L(n|α, d) is

L(n|α, d) ≈ (K1 − 1) log d+ log Γ
(α
d
+K1

)
− log Γ

(α
d
+ 1
)
+ log Γ(1 + α)

− log Γ(N + α) +K2 log(1− d)−Q1d+O

(
d2
∑
m=3

Km

(m− 1)2

)
, (4.36)

up to an additive constant. This is Eq. (4.20) in the main text.

4.7.2 Maximum likelihood Entropy in terms of coincidences

To relate the conditional entropy, Eq. (4.13), to the Maximum Likelihood entropy es-

timator S0, we need to rewrite the latter in terms coincidences. Utilizing the identity

Eq. (4.19), we write

N [S0 − logN ] = −
∑
i

ni log ni (4.37)

= −
∑
m=2

(Km −Km+1)m logm (4.38)

= −K2(2 log 2)−
∑
m=3

Km[m logm− (m− 1) log(m− 1)]. (4.39)

Rewriting the expression in brackets as

m logm− (m− 1) log(m− 1) = 1 + ψ(m) +O(m−2). (4.40)

and plugging this into Eq. (4.39), we finally obtain,

N [S0 − logN ] = −K2 log 4− (N −K1−K2)−
∑
m=3

Kmψ(m)+O

(∑
m

Km/m
2

)
.

(4.41)
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4.7.3 Mean posterior entropy approximation for the Pitman-Yor Pro-
cess

Similar to Appendix 4.7.1, here we approximate the posterior entropy, Eq. (4.13), in

the limit of small d. To simplify the notation, we use the shorthand S = ⟨S|n, α, d⟩ in this

Appendix. Rearranging Eq. (4.13), we obtain

(α +N) [S − ψ(N + α + 1)] =

− αψ(1− d)−K1 dψ(1− d)−
∑
i

(ni − d)ψ(ni + 1− d). (4.42)

We now again use Eq. (4.19) and a Taylor expansion in small d to rewrite the last term

on the right hand side of Eq. (4.42):

K1 dψ(1− d)−
∑
i

(ni − d)ψ(ni + 1− d)

= K1 dψ(1− d)−
∑
m=1

(Km −Km+1)(m− d)ψ(m+ 1− d)

= −
∑
m=1

Km [(m− d)ψ(m+ 1− d)− (m− 1− d)ψ(m− d)]

= −
∑
m=1

Km [1 + ψ(m− d)]

= −
∑
m=1

Km −
∑
m=1

Kmψ(m− d)

= −N −K1ψ(1− d)−K2ψ(2− d)−
∑
m=3

Kmψ(m− d). (4.43)

where we used ψ(m+ 1− d) =
(
ψ(m− d) + 1

m−d

)
.

Since m ≥ 3, we can Taylor expand the sum in this last term around d = 0 to obtain

∑
m=3

Kmψ(m− d) ≈
∑
m=3

Kmψ(m) + d
∑
m=3

Kmψ
′(m) +O(d2

∑
m

Kmψ
′′(m)). (4.44)

Now using the relationsψ′(m) = 1
m−1

+O(m−2) and the expression for
∑

m=3Kmψ(m)

in Eq. (4.41), we rewrite Eq. (4.44) as

∑
m=3

Kmψ(m− d) ≈ K2 log 4 + (N −K1 −K2)−N [S0 − logN ]

+ d
∑
m=3

Km

m− 1
+O(d2,

∑
m=3

Km/m
2), (4.45)
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where O(d2,
∑

m=3Km/m
2) means that we kept terms that are at most linear in d and

whose summands are at most proportional to
∑

m=3Km/m. Plugging these approximation

in Eq. (4.43) and noticing that Q1 =
∑

m=3
Km

m−1
, we obtain

(α +N) [S − ψ(N + α + 1)] = N(S0 − logN)− αψ(1− d) +K1 [−1− ψ(1− d)]

+K2 [−1− ψ(2− d) + log 4]−Q1 d+O(d2,
∑
m=3

Km/m
2), (4.46)

which after isolating S becomes Eq. (4.22) of the main text.
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Chapter 5 Conclusion

In the previous chapters, we discovered new physics from our analysis of biology and

data. We learned a new universality class of surface growth that is inspired by the behavior

of Dictyostelium discoideum cells [103]. By analyzing experiments of thermal learning in

C. elegans, we learned a new model of conditioning. This led to the understanding of a

new mechanism that explains previously unexplained phenomena in associative learning

[84, 90, 98]. By analyzing Bayesian entropy estimators, we found that few emergent data

statistics reflect the tail hypothesises assumed by the estimators. In all of these cases, new

physics emerged from the analysis. Here we discuss possible extensions of the work done

in this thesis.

5.1 Surface Growth

In Chapter 2, we discussed a biologically inspired extension of the ballistic deposition

model. We found a new universality class that requires three dynamical exponents. It re-

mains unclear how general this new class is and how relevant it is to the biological systems

that inspired it. One way to test the generality of this class is by conducting experiments

that probe large spatiotemporal scales that are beyond the typical scales studied in current

experiments to test our predicted exponents. Experimental cultures on the length scale of

meters and time scale of many days would be needed to observe and measure the relevant

exponents. Another way is to write down a system of stochastic partial differential equa-

tions that describe the growth phenomena observed in our simulations. Phenomena that

can be described by the ensuing equations should fall into the same universality class. We

also expect many other universality classes to come about as a consequence of introducing

internal states to the constituents that make up the interface. We hope that our new rule will
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inspire many growth rules and universality classes.

5.2 Animal Learning

The prevailing models of the thermotactic behavior of C. elegans are models of expo-

nential decay of the thermal preference of the worm to the cultivation temperature. These

models assume that the worms possess a preference for a single temperature: the cultiva-

tion temperature. The more complex model we developed in Chapter 3, was able to explain

behavioral phenomena such as the spontaneous recovery of associations that were extinct.

It was also able to fit the behavior of four-hour long thermotactic index trajectories, which

previous models could not do. We expect our model to describe learning in many other

animals as well. However, all of these models described above preclude the possibility of

the worm possessing multiple temperature preferences at the same time.

In the wild, animals encounter multiple environmental cues that animals associate with

predators. The variety of these environmental cues selects for animals that are able to

recognize and remember multiple cues; animals that do not recognize their predator’s cues

are destined for extinction. The ability to store and recognize multiple cues is therefore

essential to the survival and fitness of animals. While higher organisms do possess the

ability to form multiple associations, it would be intriguing to observe it in worms with

brains consisting of only 302 neurons. It would also lead to novel and realistic models of

learning in animals.

Worms do not live in an environment where food and temperature are the only stimuli.

Worms in their natural environments interact with other worms. Intuitively, there should

be many advantages to being in a group instead of living alone. In the context of learning,

is there a learning advantage to being in a group? Can two worms that are reared at dif-

ferent temperatures with food influence each other’s behavior on a thermal gradient? Can

a learned worm that associates certain temperatures with punishment (heat from laser zap)

teach a novice worm to avoid such temperatures, thereby accelerating the learning pro-
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cess? Can a learned rat that knows how to reach the cheese in a complex maze lower the

time it takes another rat to reach the cheese? Through experiments, quantitative answers to

these questions will spur theoretical advances that could uncover new physics that explains

how an individual learner is fundamentally different from collective learners. This could

have an impact on our understanding of how C. elegans interacts with other species on an

ecological level [64] and how learning influences ecology in general [79, 99–101]. It will

also shed light on how animals at large learn from each other instead of learning from the

environment and the communication channels through which the teaching occurs.

5.3 Data statistics

In Chapter 4, we showed that a well-known Bayesian entropy estimator, the PYM es-

timator, relies on a few data statistics to correct the Maximum Likelihood estimate in the

undersampled regime. It would be interesting to repeat the analysis of Chapter 4 for more

Bayesian entropy estimators that allow for a larger class of tail hypothesis. This would

clarify if tail hypothesises are generally summarized by a few data statistics or is that just

a property of a certain class of tail hypothesises? Another useful extension of this work

would be to estimate mutual information between two random variables where their joint

distribution is undersampled. This is a likely scenario in modern data analysis and may

provide new methods for estimating mutual information.

Another possible extension is to calculate analytically the PYM entropy estimate and

write it in terms of the data statistics mentioned in the chapter. This can be done by using

asymptotic techniques to approximate the integral of the product of the expected entropy

4.22, the posterior (the exponential of Eq. 4.20), and the mixing prior Eq. 4.14. The

resulting formula would make estimating entropy for multinomial observations devoid of

any numerical calculation of quadrature.

Entropy is not special in the sense that it is but one property of a distribution. The

techniques used in our work can be applied to any other property of a distribution. It would
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be interesting to see if estimating moments of an undersampled discrete distribution also

relied on a few data statistics similar to what we found in entropy estimation.
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11. Berry II, M. J., Tkačik, G., Dubuis, J., Marre, O. & da Silveira, R. A. A simple
method for estimating the entropy of neural activity. Journal of Statistical Mechan-
ics: Theory and Experiment 2013, P03015 (2013).

12. Biron, D. et al. A diacylglycerol kinase modulates long-term thermotactic behavioral
plasticity in C. elegans. Nat Neurosci 9, 1499–505 (2006).

13. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (05/1974).

14. Byrne Rodgers, J. & Ryu, W. S. Targeted thermal stimulation and high-content phe-
notyping reveal that the C. elegans escape response integrates current behavioral
state and past experience. PLOS ONE 15, 1–22 (03/2020).



99

15. Cavagna, A. & Giardina, I. Bird Flocks as Condensed Matter. Annual Review of
Condensed Matter Physics 5, 183–207 (2014).

16. Cerquetti, A. Exact Good-Turing characterization of the two-parameter Poisson-
Dirichlet superpopulation model. arXiv preprint arXiv:1901.09665 (2019).

17. Chao, A. & Shen, T.-J. Nonparametric estimation of Shannon’s index of diversity
when there are unseen species in sample. Environmental and ecological statistics
10, 429–443 (2003).

18. Chao, A., Wang, Y. & Jost, L. Entropy and the species accumulation curve: a novel
entropy estimator via discovery rates of new species. Methods in Ecology and Evo-
lution 4, 1091–1100 (2013).

19. Chechik, G., Globerson, A., Tishby, N. & Weiss, Y. Information Bottleneck for
Gaussian Variables. Journal of Machine Learning Research 6, 165–188 (2005).

20. Chen, Z. et al. Two insulin-like peptides antagonistically regulate aversive olfactory
learning in C. elegans. Neuron 77, 572–85 (2013).

21. Chi, C. A. et al. Temperature and food mediate long-term thermotactic behavioral
plasticity by association-independent mechanisms in C. elegans. J Exp Biol 210,
4043–52 (2007).

22. Chi, C. A. et al. Temperature and food mediate long-term thermotactic behavioral
plasticity by association-independent mechanisms in C. elegans. eng. J Exp Biol
210, 4043–4052 (11/2007).

23. Clark, D. A., Biron, D., Sengupta, P. & Samuel, A. D. The AFD sensory neurons
encode multiple functions underlying thermotactic behavior in Caenorhabditis ele-
gans. J Neurosci 26, 7444–51 (2006).

24. Cover, T. M. & Thomas, J. A. Elements of information theory (John Wiley & Sons,
2012).

25. Daniels, B. C. & Nemenman, I. Automated adaptive inference of phenomenological
dynamical models. Nature Communications 6, 8133 (2015).

26. Daniels, B. C., Ryu, W. S. & Nemenman, I. Automated, predictive, and interpretable
inference of Caenorhabditis elegans escape dynamics. Proc Natl Acad Sci (USA)
116, 7226–7231. ISSN: 0027-8424 (2019).

27. Darling, D. The influence of the maximum term in the addition of independent
random variables. Transactions of the American Mathematical Society 73, 95–107
(1952).

28. Das Sarma, S. & Tamborenea, P. A new universality class for kinetic growth: One-
dimensional molecular-beam epitaxy. Physical Review Letters 66, 325–328 (1991).

29. Daw, N. D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal
and dorsolateral striatal systems for behavioral control. Nature neurosci 8, 1704–
1711 (12/2005).

30. Dayan, P. in Steven’s Handbook of Experimental Psychology (ed Gallistel, C. R.)
1–35 (John Wiley and Sons, New York, NY, 06/2001).



100

31. Dayan, P. & Niv, Y. Reinforcement learning: the good, the bad and the ugly. Curr
Opin Neurobiol 18, 185–196 (04/2008).

32. De Houwer, J., Thomas, S. & Baeyens, F. Associative learning of likes and dislikes:
a review of 25 years of research on human evaluative conditioning. Psychol Bull
127, 853–69 (2001).

33. Dunsmoor, J. E., Niv, Y., Daw, N. & Phelps, E. A. Rethinking Extinction. Neuron
88, 47–63 (10/2015).

34. Eden, M. A two-dimensional growth process in Proc Fourth Berkeley Symp Mathe-
matics, Statistics, and Probability 4 (Berkeley: UC Press, 1961), 223–239.

35. Evertsz, C. Self-affine nature of dielectric-breakdown model clusters in a cylinder.
Phys Rev A 41, 1830–1842 (1990).

36. Faghihi, F., Moustafa, A. A., Heinrich, R. & Wörgötter, F. A computational model
of conditioning inspired by Drosophila olfactory system. Neural Netw 87, 96–108
(2017).

37. Family, F. Scaling of rough surfaces: effects of surface diffusion. Journal of Physics
A: Mathematical and General 19, L441–L446 (1986).

38. Family, F. & Vicsek, T. Scaling of the active zone in the Eden process on percolation
networks and the ballistic deposition model. Journal of Physics A: Mathematical
and General 18, L75–L81 (1985).

39. Ferguson, T. S. A Bayesian Analysis of Some Nonparametric Problems. The Annals
of Statistics 1, 209–230. ISSN: 00905364 (1973).

40. François-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G. & Pineau, J. An
Introduction to Deep Reinforcement Learning. Found Trends Machine Learning 11,
219–354 (2018).

41. Gems, D. et al. Two pleiotropic classes of daf-2 mutation affect larval arrest, adult
behavior, reproduction and longevity in Caenorhabditis elegans. eng. Genetics 150,
129–155 (09/1998).

42. Goodman, M. B. & Sengupta, P. How Caenorhabditis elegans Senses Mechanical
Stress, Temperature, and Other Physical Stimuli. Genetics 212, 25–51 (05/2019).

43. Grassberger, P. Entropy estimates from insufficient samplings. arXiv preprint physics/0307138
(2003).

44. Hawk, J. D. et al. Integration of Plasticity Mechanisms within a Single Sensory Neu-
ron of C. elegans Actuates a Memory. English. Neuron 97, 356–367.e4 (01/2018).

45. Hedgecock, E. M. & Russell, R. L. Normal and mutant thermotaxis in the nematode
Caenorhabditis elegans. Proc Natl Acad Sci (USA) 72, 4061–5 (1975).

46. Hernández, D. G. & Samengo, I. Estimating the Mutual Information between Two
Discrete, Asymmetric Variables with Limited Samples. Entropy 21, 623 (2019).

47. Hernández, D. G. & Samengo, I. Inferring a property of a large system from a small
number of samples. Entropy 24, 125 (2022).



101

48. Hernández, D. G., Roman, A. & Nemenman, I. Low probability states, data statis-
tics, and entropy estimation 2022.

49. Hesterberg, T. Bootstrap. Wiley Interdisciplinary Reviews: Computational Statistics
3, 497–526. ISSN: 1939-5108 (2011).

50. Hobert, O. Behavioral plasticity in C. elegans: paradigms, circuits, genes. eng. Jour-
nal of Neurobiology 54, 203–223 (01/2003).

51. Holmes, C. M. & Nemenman, I. Estimation of mutual information for real-valued
data with error bars and controlled bias. Phys. Rev. E 100, 022404 (2 08/2019).

52. Ishwaran, H. & James, L. F. GENERALIZED WEIGHTED CHINESE RESTAU-
RANT PROCESSES FOR SPECIES SAMPLING MIXTURE MODELS. Statistica
Sinica 13, 1211–1235. ISSN: 10170405, 19968507 (2003).

53. Ishwaran, H. & James, L. F. Gibbs Sampling Methods for Stick-Breaking Priors.
Journal of the American Statistical Association 96, 161–173 (2001).

54. Jurado, P., Kodama, E., Tanizawa, Y. & Mori, I. Distinct thermal migration behaviors
in response to different thermal gradients in Caenorhabditis elegans. Genes Brain
Behav 9, 120–7 (2010).

55. Kardar, M., Parisi, G. & Zhang, Y.-C. Dynamic Scaling of Growing Interfaces. Phys-
ical Review Letters 56, 889–892 (1986).

56. Kimata, T., Sasakura, H., Ohnishi, N., Nishio, N. & Mori, I. Thermotaxis of C.
elegans as a model for temperature perception, neural information processing and
neural plasticity. Worm 1, 31–41 (2012).

57. Kimura, K. D., Miyawaki, A., Matsumoto, K. & Mori, I. The C. elegans thermosen-
sory neuron AFD responds to warming. Curr Biol 14, 1291–5 (2004).

58. Kodama, E. et al. Insulin-like signaling and the neural circuit for integrative behavior
in C. elegans. Genes Dev 20, 2955–60 (2006).

59. Kolchinsky, A. & Tracey, B. D. Estimating mixture entropy with pairwise distances.
Entropy 19, 361 (2017).

60. Krypotos, A.-M., Effting, M., Kindt, M. & Beckers, T. Avoidance learning: a re-
view of theoretical models and recent developments. Frontiers in Behavioral Neu-
roscience 9 (2015).

61. Lai, Z. W. & Das Sarma, S. Kinetic growth with surface relaxation: Continuum
versus atomistic models. Physical Review Letters 66, 2348–2351 (1991).

62. Lamperti, J. A contribution to renewal theory. Proceedings of the American Mathe-
matical Society 12, 724–731 (1961).

63. Lesne, A., Blanc, J.-L. & Pezard, L. Entropy estimation of very short symbolic se-
quences. Phys. Rev. E 79, 046208 (4 04/2009).

64. Lev, I. & Zimmer, M. Predator–prey interactions: Strategic biting. Current Biology
32, R367–R370 (2022).



102

65. Lin, C. H. A. et al. Insulin Signaling Plays a Dual Role in Caenorhabditis elegans
Memory Acquisition and Memory Retrieval. The Journal of Neuroscience 30, 8001–
8011 (06/2010).

66. Lombardi, D. & Pant, S. Nonparametric k-nearest-neighbor entropy estimator. Phys.
Rev. E 93, 013310 (1 01/2016).

67. Luo, L., Clark, D. A., Biron, D., Mahadevan, L. & Samuel, A. D. Sensorimotor
control during isothermal tracking in Caenorhabditis elegans. J Exp Biol 209, 4652–
62 (2006).

68. Luo, L. et al. Bidirectional thermotaxis in Caenorhabditis elegans is mediated by
distinct sensorimotor strategies driven by the AFD thermosensory neurons. Proc
Natl Acad Sci (USA) 111, 2776–2781 (2014).

69. Ma, S.-k. Calculation of entropy from data of motion. Journal of Statistical Physics
26, 221–240 (1981).

70. MacKay, D. J. C. Information theory, inference, and learning algorithms (Cam-
bridge UP, 2003).

71. MacKay, D. J. Bayesian interpolation. Neural computation 4, 415–447 (1992).
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