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Abstract 
 

Genome-wide transcriptome analysis in Fragile X-associated Primary Ovarian 
Insufficiency (FXPOI) disease 

 
By Can Zhang 

 

 

Fragile X-associated primary ovarian insufficiency (FXPOI) is characterized by reduced 

function of ovaries that is associated with Fragile X syndrome (FXS). Women with 

FXPOI often experience premature ovarian failure, infertility, and menopause before 

age 40, as well as a heightened risk of osteoporosis and cardiovascular disease. Given its 

impact on infertility and its associated health problems, FXPOI has become an emerging 

public health topic yet the mechanisms behind FXPOI are largely unknown. In this 

study, we perform a genome-wide transcriptome analysis in the FXPOI mouse model to 

detect genes that are dysregulated in FXPOI. Using a differential expression cutoff of 

FDR<0.05, we find that 195 genes are significantly down-regulated and 80 genes are 

significantly up-regulated in the FXPOI mouse model. By performing the Gene Ontology 

analysis, we discover that the down-regulated genes are significantly enriched in steroid 

hormone regulatory processes, whereas the up-regulated genes are involved in general 

signaling pathways including stress response, cell communication, etc. We believe this 

genome-wide study reveals a comprehensive landscape of the genetic architecture of 

FXPOI, which will provide an excellent opportunity to search for genes involved in the 

susceptibility to ovarian dysfunction, and improve the chance to develop specific 

therapeutic targets for FXPOI. 
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CHAPTER 1 

Background and Introduction 

 

Introduction to FXPOI 

Fragile X-associated primary ovarian insufficiency (FXPOI) is among a family of 

disorders caused by a premutation of the fragile X mental retardation 1 gene (FMR1). 

The FMR1 gene is located on the X chromosome and encodes the FMR1 protein (FMRP) 

that is essential for normal cognitive development. Normal individuals generally possess 

5-54 CGG trinucleotide repeats within the 5’ untranslated region (UTR) of the FMR1 

gene. In contrast, individuals carrying premutation alleles have 55-200 CGG repeats, 

which could lead to the reduced production of FRMP protein (Feng et al., 1995; 

Sherman, 2002). Twenty percent of women who carry the premutation allele develop 

hypergonadotropic hypogonadism and cease menstruation prior to the age of 40 (Coffey 

et al., 2008; Sherman, 2000). Primary ovarian insufficiency (POI) begins with 

unusually early hormonal changes such as elevated levels of FSH despite normal 

menstrual cycles. The end stage of POI, or complete cessation of menses before the age 

of 40, occurs in about 1% of the general population, but up to 20% of FMR1 pre-

mutation carriers, representing a 20-fold increased risk. On average, women who carry 

the FMR1 premutation alleles undergo menopause about 5 years earlier than the general 

population (Sherman, 2000). The effects of the premutation reach beyond reproductive 

implications to affect all female carriers because in addition to the early loss of fertility, 

these women face the potential early onset of serious conditions associated with 
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menopause, including a heightened risk of osteoporosis and cardiovascular disease. 

However, the molecular mechanism(s) underlying how the FMR1 premutation alleles 

disrupt ovarian function and cause the phenotype of POI remain elusive. How the 

genomic landscape is altered and contributes to FXPOI remain to be determined.  

FXPOI significantly impacts public health 

Reproductive health is a strong predictor of overall health and wellbeing. One marker of 

reproductive health is the age at natural menopause. The median age of menopause is 

~51±1 years, with 1% of women experiencing menopause prematurely (Palacios et al., 

2010). The FMR1 premutation is an established cause of premature ovarian failure 

(POF) (Sherman, 2000). POF is defined as 4 months of amenorrhea before age 40 and 

two follicle stimulating hormone (FSH) levels > 40 MIU/ml. In fragile X research, the 

term primary ovarian insufficiency (POI) is used to indicate a spectrum of reproductive 

outcomes that includes not limited to POF, but also occult indicators of the size of the 

oocyte pool (ovarian age), which may or may not manifest in diminished ovarian 

function among cycling women.  

FXPOI significantly impacts public health. The most immediate and significant 

consequence of diminished ovarian function is reduced fertility (Allen et al., 2007; 

Streuli et al., 2009). POF occurs in ~20% of women with the FMR1 premutation, 

making the rate of POF in this population ~20 times higher than the general population 

(De Caro et al., 2008; Sherman, 2000). Taking all women who carry the mutation, on 

average they go through menopause about five years earlier than those without the 

mutation (Murray, 2000; Sullivan et al., 2005). Consistently, the frequency of 
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premutation carriers among women attending reproductive endocrinology clinics for 

infertility is about 11% of those with familial POF and 3% of those with isolated POF 

(Sherman et al., 2007). The frequency is highly elevated compared with that in the 

general population, between 1/150- 1/250 female. Moreover, this makes FXPOI the 

leading known inherited cause of idiopathic primary ovarian insufficiency. 

In addition, the state of early estrogen deficiency observed in FXPOI patients has 

significant clinical consequences such as an increased risk for low bone density, earlier 

onset osteoporosis and bone fractures (Gallagher, 2007), impaired endothelial function 

(Kalantaridou et al., 2004), earlier onset of coronary heart disease (Atsma et al., 2006), 

and increased cardiovascular mortality and overall mortality (Jacobsen et al., 2003). 

Specific Aim and Significance 

FXPOI is an understudied manifestation of the FMR1 premutation. It leads to 

subfertility and early onset of disorders usually reserved for the aged population. Based 

on our current knowledge, we know that the three primary risk factors for FXPOI are 

CGG repeat length, ever smoking, and age at menopause among first-degree relatives 

(Spath et al., 2011). Beyond these associations, the mechanism behind FXPOI and the 

modifying factors that influence its onset and severity are unknown. As well as 

improving the chance to develop specific therapeutic targets for FXPOI, we believe that 

a comprehensive study of genetic architecture of FXPOI provides an excellent 

opportunity to define susceptibility genes of ovarian dysfunction, a clinically significant 

trait leading to subfertility and medical disorders due to early estrogen-deficiency. In 

this study, we aim to: 
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1. Characterize the genome-wide transcriptome in FXPOI using the newly 

characterized mouse model; 

2. Perform the Gene Ontology (GO) term enrichment analysis to predict candidate 

biological processes that modulate the ovarian phenotype. 

POI is common and costly. We hope this project can contribute to better understanding 

of the perturbed biological pathways leading to ovarian dysfunction. Also, this study is 

timely, as we can garner new knowledge to design a focused search for genes involved in 

the susceptibility to ovarian dysfunction and infertility. FXPOI has the potential to serve 

as a model to identify factors that modify, predict, and ameliorate the clinical burden of 

early diminished ovarian reserve for many women. 

Approach 

Animal preparation: Both control (wild-type background with no FMR1 premutation) 

and FXPOI (disease background with FMR1 premutation) mice are raised under the 

same environment and sacrificed at 6 months to dissect ovaries for RNA extraction. For 

each condition, we collect 3 biological replicates due to resource and budget limitations. 

We pay attention to represent every experimental condition in each batch to avoid 

possible confounding factors. 

Isolate total RNA from ovary tissues: We will use Trizol to extract RNA from 6-month-old 

control and FXPOI mouse ovaries respectively. One microgram of total RNA will be used 

to generated RNA-seq libraries using the Illumina TruSeq RNA Sample Preparation Kit 

v2 following manufacturer's protocol. Briefly, Poly-A enriched mRNAs from total RNA 

samples will be reverse transcribed, and the cDNA of each sample will be amplified and 
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indexed. Qubit Fluorometric Quantitation will be used to determine the library 

concentration. An Agilent 2100 BioAnalyzer will be used to QC the libraries. 20 pM 

diluted libraries will be used for sequencing. 50-cycle pair-ended sequencing reactions 

will be performed using Illumina HiSeq 2000 platform. Image processing and sequence 

extraction will be conducted following the standard Illumina Pipeline. 

Bioinformatic analysis: RNA-seq reads will be aligned to mouse mm9 genome (UCSC 

genomic browser) using TopHat v2.0.13 (Trapnell et al., 2009) with default parameters, 

and differential RPKM (Reads Per Kilobase of transcript per Million mapped reads) 

expression values will be generated using Cuffdiff v2.2.1 (Trapnell et al., 2012). Gene 

expression will be evaluated by RPKM values between experimental conditions, and genes 

with a FDR value <0.05 will be considered as significantly differentially expressed. 

A basic overview of the main steps in this study is given in Figure 1. 
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Figure 1.  Overview of the main steps in current study.  
The total RNA is isolated from mouse ovary. The cDNA library is generated, sequenced and the reads 
are aligned to mouse mm9 genome. Downstream data analysis is performed to examine differential 
gene expression between disease and control mice. 
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CHAPTER 2 

Genome-wide transcriptome analysis reveals differential gene expression 

in FXPOI 

 

RNA-sequencing applications 

In order to better understand the molecular mechanism of the phenotypic differences 

between disease and normal groups, we need to identify differentially expressed genes 

(DEGs). The idea is to identify a set of genes with altered expressions in disease states, 

which may contribute to the disease phenotype. The DEGs will provide a basis to further 

discover the molecular pathways/mechanisms associated with disease pathogenesis, 

and hopefully shed light on discovering potential therapy target.  

RNA-sequencing (RNA-seq) is a technique that utilizes next-generation sequencing 

platforms to investigate the quantify and sequence of total RNA (transcriptome) in a 

genome (Metzker, 2010). Comparing to the traditional microarray technology, RNA-seq 

is more advantageous in many aspects. First, it covers the whole genome instead of 

known genes, thus provides an unbiased open system to profile transcriptome. 

Secondly, it measures gene expression at much higher resolution and dynamic range 

than microarray, yet at a comparable cost (Marioni et al., 2008). RNA-seq has become 

the most popular option for gene expression study nowadays, and has been widely 

applied to basic science research, translational clinical research, as well as public health 

study (Oakeson et al., 2017). 
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RNA-sequencing differential expression analysis 

Although RNA-seq experiment can serve many purposes, one of the most popular 

practices of RNA-seq is to identify differences in gene expression between two or more 

groups (for example, diseased group vs. normal group). This is also the first aim of the 

current study, i.e., characterizing the genome-wide transcriptome and find differentially 

expressed (either up- or down- regulated) genes between FXPOI and control mouse 

ovaries.  

RNA-seq experiments produce enormous volumes of raw sequences containing millions 

to billions of short (50-150bp) cDNA fragments or “reads”. In order to translate the raw 

data into quantitative measurements of gene expressions, we will need to analyze the 

raw reads with efficient and statistically principled bioinformatics algorithms. 

Fortunately, the biostatistics and bioinformatics community has developed many 

software tools to handle the raw dataset from RNA-seq. After studying published 

literatures (Trapnell et al., 2013; Trapnell et al., 2012) and trying differential analytic 

tools, we come up with the following protocol for differential expression analysis 

(summarized in Figure 2): 

First, we will map raw reads for both conditions to the reference genome (mouse mm9 

from UCSC genomic browser) using TopHat v2.0.13. In most eukaryotic genome, genes 

contain both exon (coding-sequence) and intron (noncoding-sequence). Only exons will 

retain in mRNA during transcription and contribute to protein synthesis. Since the 

cDNA fragments generated from RNA-seq correspond to mRNA sequence without 
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intron, for a read spanning an exon boundary, part of the constituent sequence will be 

separated by tens of thousands of nucleotides in the genome. This raises a potential 

mapping challenge, since the spanning reads need to be properly aligned in order to 

accurately count the reading depths. TopHat is a fast read-mapping tool to align RNA-

seq reads to genome. It first aligns reads to a reference genome, and then goes through 

the results to find splicing junctions between exons (Trapnell et al., 2009). 

Next, we use Cufflinks to assemble individual transcripts from the reads that have been 

aligned to the reference genome. The assembly would serve as a uniform basis for 

further calculation of gene expression levels. The transcript assembly are then sent to 

Cuffdiff v2.2.1 to calculate the expression level of each gene in both conditions and to 

test the statistical significance of any change between them. Gene expression change will 

be evaluated by RPKM (Reads Per Kilobase of transcript per Million mapped reads) 

values between experimental conditions, and genes with a FDR value <0.05 will be 

considered as significantly differentially expressed (Trapnell et al., 2012).  

Finally, we will use R to generate plots for results display. 

This analysis generated mapped reads corresponding to more than 23,000 transcripts 

(Figure 3). Among these transcripts, using a differential expression cutoff of FDR<0.05, 

we identified 195 significantly down-regulated genes and 80 significantly up-regulated 

genes in FXPOI mouse ovaries (Figure 4). 
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Figure 2. Overview of the RNA-seq differential expression analysis protocol. 
Raw reads are first mapped to the reference genome using TopHat. The mapped reads are loaded 
to Cufflinks to produce transcript expressions. The estimated expressions are then analyzed by 
Cuffdiff to find differentially expressed genes. Finally, R plots help to visualize the data. 
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Figure 3. Heat map of the RNA-seq data.  
Color-coded heap map illustrating gene expression level for a number of transcripts in 
control and FXPOI mouse ovaries 
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Figure 4. Volcano plot displaying differential gene expression in control 
and FXPOI mouse ovaries from RNA-seq (n=3).  
It plots the negative log of the FDR value on the y-axis and fold change between the two 
conditions on the x-axis. Up-regulated genes in FXPOI mouse ovaries were highlighted in 
red, and down-regulated genes in blue. 
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CHAPTER 3 

Gene Ontology analysis identifies dysregulated biological processes in 

FXPOI 

Scientific background of Gene Ontology analysis 

The differential gene expression analysis of RNA-seq data returns sets of genes that are 

either up- or down- regulated. Some genes may work coordinately in the same signaling 

pathway to conduct certain biological process. Identification of these dysregulated 

biological processes will help to elucidate the underlying molecular and pathological 

mechanisms associated with the disease condition. To have an overall understanding of 

what biological processes are over-represented (or under-represented) in the FXPOI 

mouse ovary, we performed a functional profile of the gene set through the Gene 

Ontology (GO) analysis.  

The GO analysis provides a system for hierarchically classifying genes by their function, 

and testing if a GO term is statistically enriched for the given set of genes. Therefore, it 

is also called term overrepresentation analysis.  

We consider the set of up- or down-regulated genes identified in RNA-seq as the input 

list or test list, and the entire set of genes mapped in RNA-seq as the reference list. Each 

list is classified into different biological processes (e.g., cell proliferation, stress 

response, etc.). The statistical test is to answer the following question: for each 

biological process, are genes in the input list statistically over- or under- represented 

when compared to the reference list? Fisher’s exact test and binomial test are two 
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common statistical tests used for this purpose (Mi et al., 2013). The false discovery rate 

(FDR) is calculated and interpreted: a significant FDR value (i.e., FDR<0.05) indicates 

the biological process in the input list is nonrandom and potentially interesting; whereas 

a non-significant FDR (i.e., FDR>0.05) suggests the result is random and not worth 

following. Here we use a FDR value cutoff of 0.05 as a starting point (Mi et al., 2019).  

Gene Ontology analysis using the PANTER classification system 

There are multiple online tools for the GO analysis. In this work, we used PANTHER 

Classification System (www.pantherdb.org). PANTHER is a comprehensive system that 

combines gene classification, function, and statistical tests. We followed the most 

updated protocol (Mi et al., 2019) and conducted the two analyses using PANTER: 

1. Functional classification viewed in gene list 

2. Statistical overrepresentation test 

GO analysis of the down-regulated genes showed enrichment in several key steroid 

hormone regulatory terms, including sterol biosynthetic process, sterol metabolic 

process, and steroid biosynthetic process (Figure 5). In contrast, upregulated genes were 

enriched in several general biological functions such as stress response, cell 

proliferation, and signal transduction (Figure 6). 

 

  

http://www.pantherdb.org/
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Figure 5. Gene Ontology analysis on a subset of downregulated genes.  
FDR<0.05 was applied as the threshold cutoff for significantly overrepresented biological 
processes and top 10 processes were displayed in the bar graph. Several biological processes 
involved in hormone signaling were enriched and highlighted in red.  
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Figure 6. Gene Ontology analysis on a subset of upregulated genes.  
FDR<0.05 was applied as the threshold cutoff for significantly overrepresented biological 
processes and top 10 processes were displayed in the bar graph. Upregulated genes were 
enriched in general biological processes such as stress response, cell proliferation, and cell 
cycle arrest.  
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Chapter 4 

Discussion and Perspective 

 

Studies of FXPOI disease in recent years have uncovered more information on its 

clinical features, diagnostic standards, genetic inheritance, and so on. Yet the underlying 

molecular and pathologic mechanisms are largely unclear. In this thesis study, we 

applied a genome-wide transcriptome analysis using the FXPOI mouse model, and 

discovered the set of genes and biological processes that are dysregulated in FXPOI. 

Here we show that several steroid hormone biological processes are down-regulated in 

the FXPOI mouse model. This is in consistent with the previous finding that selective 

serum hormones, such as FSH, LH, and 17β-estradiol, are alternated in FXPOI patients 

(Lu et al., 2012), suggesting these biological terms may be involved in the susceptibility 

to ovarian dysfunction and infertility in FXPOI patients. In fact, hormone (i.e., 

Estrogen) replacement therapy has been recommended and applied for women with 

POI by the American Society for Reproductive Medicine and the International 

Menopause Society.  

With the practiced and established bioinformatics pipeline in this thesis work, we would 

like to apply the whole-genome study on FXPOI patients next. We plan to collaborate 

with the scientists in the National Fragile X Center an Emory to conduct the following 

Case-control study: We will recruit 100 women with the FXPOI prior to age 35 and 100 

matched control women. We will collect personal background information such as 

medical history, education levels, and environmental exposures, to characterize 

potential risk factors. We will then perform the whole genome sequencing to identify 



18 

any genetic mutations that may suggest involvement in ovarian dysfunction. In addition, 

we will also perform whole genome transcriptome analysis to identify altered expression 

patterns and biological pathways that could contribute to ovarian dysfunction. We hope 

these studies could provide insight into mechanism of ovarian dysfunction associated 

with FXPOI. 
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Appendix 

 

setwd("/Users/canzhang/Box Sync/RSPH/Can.Analysis.FXPOI") 

library(dplyr) 

library(ggplot2) 

 

#Volcano plot with sig diff genes 

RNA = read.table("gene_exp.diff", header = T, stringsAsFactors = F) 

#RNA = subset(RNA, status == "OK") 

#RNA = RNA[RNA$value_1 != 0 & RNA$value_2 !=0,] 

 

#Risk = read.csv("risk.csv",header = T) 

#RiskRNA = RNA[RNA$gene_id %in% Risk$Gene,] 

 

tiff('volcano.tiff', units="in", width=5, height=4, res=300, compression = 'lzw') 

ggplot() +  

  geom_point(data = RNA, aes(RNA$log2.fold_change., -log10(RNA$p_value)), color =       

         ifelse(RNA$significant == "yes",  

              ifelse(RNA$log2.fold_change. > 0, "red", "blue"), "black"), shape = 16, size = 1, show.legend = F)   

+ 

  #Titles the x and y axes, graph, and legend  

  xlab("log2FC") + ylab("-log10(pValue)") + ggtitle("Significantly Up and Down Regulated Genes") + 

   

  #Sets the x and y graph limitations 

  xlim(-15,15) + ylim(0,5) + 

  theme( plot.title = element_text(size = 12, hjust = 0.5, face = "bold"),  

                axis.title = element_text(size = 15, face = "bold"), #Adjusts text properties of the axis titles 

                axis.line = element_line(colour = "black"), #Adds axis lines in black color 
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                axis.text.x = element_text(angle = 0, hjust = 1, size = 12),  

                axis.text.y = element_text(angle = 0, size = 12), 

                #axis.ticks = element_blank(), #Removes axis tick marks 

                #legend.text = element_text(size = 10), #Adjusts font size of the legend elements 

                #legend.title = element_text(size = 12),  #Adjusts font size of the legend title 

                #Modifies the position of the legend. c(0,0) represents the bottom left corner of the graph and  

                 #c(1,1) represents the top right corner of the graph 

                 #legend.position = c(0.2,0.9), 

                 panel.background = element_blank(), #Removes gray background 

                 text = element_text(family = "Arial") #Customizes text font and applies to all text 

                 #fonts() displays all the available fonts to use 

                 #Recommended font: Arial 

     )  

dev.off() 

 

##heatmap with sig diff genes 

setwd("/Users/canzhang/Box Sync/RSPH/Can.Analysis.FXPOI") 

mat = read.table("sig.diff.gene.txt", header = T, stringsAsFactors = F) 

pmat=as.matrix(mat[,2:3]) 

pmat=pmat[order(-pmat[,1]),] 

lpmat=log2(pmat) 

 

library(pheatmap) 

library(RColorBrewer) 

#customize color 

color = colorRampPalette(rev(brewer.pal(n = 7, name ="RdYlBu")))(100) 

#adjust color 'Yellow' to center at 0 

breaks=c(seq(-3,1.9, length.out = 51)[1:50],2, seq(2.1,11, length.out=51)[2:51]) 
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pheatmap(lpmat, 

         color=color, 

         breaks=breaks, 

         cluster_row=F, 

         cluster_cols=F, # don't cluster columns 

         show_rownames=T, 

         #treeheight_row=0, 

         #treeheight_col=0, 

         #cutree_cols=3, 

         #cutree_rows=5, # cut hclust result into groups? 

         gaps_row=197, 

         #gaps_col=c(2,4,6,8), #create white gap 

         #annotation_row=anno.rows, 

         #annotation_colors=list( 

             #GeneClass=c(red='red', blue='blue', green='green')), 

             #GeneClass=GeneClass), 

         #annotation_legend=T, 

         #annotation_names_row=F 

) 

 

####bar plot GO-down 

 

expfile="Sig.down.GO.txt" 

mat=read.table(expfile,header=T,sep="\t") 

lgmat=-log2(mat$FDR) 

 

op <- par(mar = c(5,18,4,2) + 0.1) 

barplot(rev(lgmat), col="darkviolet", horiz=TRUE, names.arg=rev(mat$GO), las=1, xlab="-logFDR") 

axis(side=1,lwd=3) 
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####bar plot GO-up 

 

expfile="Sig.up.GO.txt" 

mat=read.table(expfile,header=T,sep="\t") 

lgmat=-log2(mat$FDR) 

 

op <- par(mar = c(5,20,4,2) + 0.1) 

barplot(rev(lgmat), col="deeppink", horiz=TRUE, names.arg=rev(mat$GO), las=1, xlab="-logFDR") 

axis(side=1,lwd=3) 

 

 


