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Abstract 

 

 

Evaluation of Effectiveness of 2013 Action Plan for  

Air Pollution Prevention and Control in North China  

 

By Shuang Wang 

 

 
As the largest developing country, China has some of the worst air quality in the world.   
Fine particulate matter (PM 2.5) is one of major components of air pollution. There is a 
strong association between exposure to PM 2.5 and adverse health outcomes. A linear 
mixed effect (LME) model was established using satellite remote sensing data, 
meteorological parameters, and population data to evaluate the effectiveness of 2013 
Action Plan for Air Pollution Prevention and Control in North China. The cross 

validation (CV) R2 and RMSE of the overall LME model was 0.59 and 34.61 μg/m3, 
respectively.  The results showed that the PM2.5 concentration decreased by 19.62 

μg/m3 and the air pollution prevention policy accounted for 68% of the reduction in PM 
2.5 levels during 2013 to 2015 in North China.  The data required to develop the model 
are accessible in most cities of China. Therefore, the LME model could be used as a tool 
to evaluate the effectiveness of the air pollution control policy in other parts of China. 
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1. Introduction  

Epidemiological studies have provided evidence for a strong association between 

exposure to fine particulate matter (airborne particles with aerodynamic diameter less 

than 2.5 μm, PM 2.5) and adverse health effects on human subjects, such as 

cardiovascular diseases mortality, cardiometabolic disorders, asthma, lower birth 

weights, and respiratory infections(Bonzini et al., 2010; I. Kloog, Coull, Zanobetti, 

Koutrakis, & Schwartz, 2012; Pope et al., 2015; Sheppard, Levy, Norris, Larson, & 

Koenig, 1999; Zanobetti, Franklin, Koutrakis, & Schwartz, 2009).  

 

As the largest developing country, China has suffered from severe, widespread air 

pollution due to the rapid economic development and industrial reconstruction in past 

30 years. In January 2013, 1.4 million km3 of China were covered by harmful dense 

haze and more than 800 million people were affected (Xu, Chen, & Ye, 2013). This 

heavy haze smog led public concern to the problem of air pollution and health impact 

of exposure to PM 2.5 that has been recognized as one of major components of air 

pollution and haze in China. During the heavy haze period in January 2013, one study 

found an association between exposure to heavy smog and an increased risk of 

hospital visits(Chen, Zhao, & Kan, 2013). In 2015, Lu et al. published a systematic 

review and meta-analysis focusing on Chinese population and deduced an increase of 

10 μg/m3 of PM 2.5 is related to a 0.40% (95% CI: 0.22%, 0.29%) increase in total 

non-accidental mortality, a 0.75%(95% CI: 0.39%, 1.11%) increase in mortality due 

to respiratory disease, and a 0.63%(95% CI: 0.35%, 0.91%) increase in mortality of 

cardiovascular disease(Lu et al., 2015).  The Global Burden of Disease Study 2010 
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revealed that ambient air pollution was the fourth leading risk factor for disability-

adjusted life-years (DALYs) (Yang et al., 2013).  

 

To improve air quality concurrently, the State Council of China established the Action 

Plan for Air Pollution Prevention (hereinafter referred to as Action Plan) and Control 

in September 2013. The Action Plan, the only legislative text concerning air pollution 

in China, is designed to regulate nationwide air pollution emission by executing ten 

evidence-based measures, including enhancing overall treatment, reducing emissions 

of multiple pollutants, adjusting and optimizing industrial structure, promoting 

upgrade of economic transition, speeding up technological reform of enterprises, etc. 

The Action Plan had set a list of goals to improve overall air quality across the nation 

through five years. One of those goals can be quantitatively evaluated by PM 2.5 is by 

2017, the annual average concentration of fine particulate matter in Beijing-Tianjin-

Hebei region (including province of Shandong, Shanxi, and Inner Mongolia) will be 

dropped by 25% against 2012 level.  

 

In accordance with the Action Plan, a decrease in PM 2.5 concentration will be 

expected in 2015, which is the second year after the implementation of the Action 

Plan. The objective of this study is to evaluate the effectiveness of the Action Plan in 

Beijing-Tianjin-Hebei region, i.e. North China. North China (Latitude: 34.3°N to 

42.7°N; Longitude: 105.5°E to 126.2°E) is a major economic zone in China, including 

Beijing, Tianjin, the Shanxi, Shandong, and Hebei provinces, and the Inner Mongolia 

region.  From policy makers’ perspective, the evaluation of effectiveness of the 

Action Plan is essential and important for promptly modifying current policy and 

guiding future control measures.  
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Previous methods of evaluation was to compare two annual means of PM 2.5 

concentrations provided by province-level reports based on local monitoring sites. 

The Ministry of Environmental Protection (MEP) of China began to establish PM 2.5 

monitoring sites in major cities of China since the beginning of 2013. North China has 

an area of 1,782,900 square kilometers. However, there are only no more than 400 

monitoring sites within North China, which means each site would represent more 

than 4,000 square kilometers. In addition, most of monitoring sites are located in 

capital and big cities, such as Beijing, Tianjin, and Shijiazhuang. Therefore, only 

using data from ground monitoring sites for evaluation is non-representative and can 

lead to bias. Since the air pollution levels can be affected by meteorological 

parameters, the change of PM2.5 concentrations can be caused by seasonal fluctuation 

or meteorological factors, such as precipitation, wind speed, and wind direction.  

Therefore, simply comparing annual average PM 2.5 concentrations is unable to 

provide powerful evidence to evaluate the effectiveness of air pollution control 

measures. Liu et al. developed a statistical model using remote sensing data and 

meteorological parameters to evaluate the effectiveness of air pollution control 

policies during the 2008 Beijing Olympic Games. (Y. Liu et al., 2012) The results 

showed there was 70% of the PM 2.5 variability can be explained by the model and 

the emission control policies were able to account for 20-24 μg/m3 reduction in PM2.5 

levels during the Olympic Games. 

 

Satellite remote sensing with broad spatial and temporal coverage can fill the 

spatiotemporal gaps of PM 2.5 left by ground monitors. National Aeronautics and 

Space Administration (NASA) lunched two Earth Observing System satellites, Terra 
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and Aqua, in 1999 and 2002, respectively (Remer et al., 2005). The Moderate 

Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua satellites 

measure aerosol optical depth (AOD) that reflects particle abundance in the 

atmospheric column. Early studies have showed that satellite-derived AOD can be 

used as an effective tool for estimating ground PM 2.5 concentration (Xuefei Hu et 

al., 2013; X. Hu, Waller, Lyapustin, Wang, & Liu, 2014; Koelemeijer, Homan, & 

Matthijsen, 2006). Statistical models have been established to assess the relationship 

between satellite-derived AOD and ground PM 2.5 concentrations (Y. Liu, Paciorek, 

& Koutrakis, 2009; Ma, Hu, Huang, Bi, & Liu, 2014; Mao, Qiu, Kusano, & Xu, 2012; 

You, Zang, Zhang, Li, & Wang, 2016).  Studies have showed the relationship 

between satellite-derived AOD and ground PM 2.5 concentrations can be affected by 

meteorological parameters such as temperature, relative humidity, wind speed, 

precipitation, and planet boundary layer height(I. Kloog, Nordio, Coull, & Schwartz, 

2012; Lee, Liu, Coull, Schwartz, & Koutrakis, 2011; Y. Liu, Sarnat, Kilaru, Jacob, & 

Koutrakis, 2005; Yanosky et al., 2014). Adding land use variables (road network, 

population density, vegetation coverage) can improve the spatial resolution of the 

model.(I. Kloog, Nordio, et al., 2012; Ma et al., 2014; Mao et al., 2012; Wu et al., 

2014).  

 

A linear mixed-effects (LME) model is a generalization of the standard linear model 

that consists of both fixed and random effects in the same analysis. A basic 

assumption is that the relationship between PM2.5 concentrations and AOD varies 

daily because of time-varying parameters.(Chudnovsky, Lee, Kostinski, Kotlov, & 

Koutrakis, 2012) The mixed-effects model approach can provide higher accuracy than 

a simple regression model. (Lee et al., 2011) Studies that applied LME model in the 
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United States and European cities estimated both the average effect of AOD on PM 

for all study days and the daily variability in the relationship between PM and 

AOD.(Chudnovsky et al., 2012; Itai Kloog, Koutrakis, Coull, Lee, & Schwartz, 2011; 

Nordio et al., 2013) Meng et al. used a LME model to predict ground PM10 levels in 

a Chinese metropolis on high spatiotemporal resolution(Meng et al., 2016).   

 

The objective of this study is to evaluate the effectiveness of the Action Plan in North 

China using a statistical method. Firstly, a linear mixed effects (LME) model is 

devolved for each year (i.e. 2013,2014,2015) using satellite-derived AOD, 

meteorological parameters, and land use variable to estimate PM 2.5 concentrations.  

Then PM2.5 concentrations in areas where had no ground PM2.5 data but had the 

data of all predictors were estimated using the built year-specific models. Since there 

is no ground PM 2.5 measurements before 2013 in China, we estimated PM 2.5 levels 

in 2012 based on the built developed in 2013. A paired t-test was performed to test 

whether there was a significant decrease in PM 2.5 concentrations after the 

implementation of the Action Plan.  Furthermore, a time period variable was added 

into the model and its statistical significance was calculated to illustrate whether or 

not this variable is statistically significant under the model.  
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2. Material and methods 

2.1 Study domain 

The spatial domain of this study consists of Beijing, Tianjin, the Shanxi, Shandong, 

and Hebei provinces, and the Inner Mongolia region, is located in between 34.3°N to 

42.7°N latitude and 105.5°E to 126.2°E longitude. (Figure1) They cover an area of 

approximately 890,000 km2 and have a population of 388,900,000. Economic 

development in this area is highly dependent on heavy industries that are main 

sources for PM 2.5 emission (Zhang et al., 2009). 

 

2.2 Ground PM 2.5 measurements 

Data for daily average PM 2.5 concentrations from January 1, 2013 to December 31, 

2015 were obtained from the official Web site of the China Environmental 

Monitoring Center (CEMC)(http://113.108.142.147:20035/emcpublish/). There are 

some additional monitoring sites established in Shandong and Shanxi provinces, 

Beijing, and Tianjin that are not included in the CEMC’s Web site. Data from these 

monitoring sites are also obtained in this study.  The ground PM 2.5 concentration 

from these sites are measured using Tapered Element Oscillating Microbalance 

(TEOM) or the beta-attenuation method. A total of 463 monitoring sites are included 

in the present study.   

 

2.3 Satellite AOD data 

The Moderate Resolution Imaging Spectroradiometer (MODIS) is aboard the Terra 

satellite and Aqua satellite. The MODIS instruments scan the swath of 2330 km with 

a global coverage of 1 – 2 days, providing nearly two measurements of AOD per day. 

http://113.108.142.147:20035/emcpublish/
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The Aqua and the Terra cross the equator at 13:30 p.m. and 10:30 a.m. local time, 

respectively.  Level 2 Aqua MODIS Aerosol Product (Collection 6, C6) with spatial 

resolution of 10×10 km from January 1, 2012 to December 31, 2015 was downloaded 

from Level 1 and Atmosphere Archive and Distribution System (LAADS Web, 

https://ladsweb.nascom.nasa.gov/). The AOD data that cover the study domain was 

extracted using IDL 8.4.  Finally, the combined AOD data at 550nm with Quality 

Assurance Confidence flag of 2 and 3 were used in the study.   

 

2.4 Meteorological data  

The relationship between AOD and PM 2.5 can be modified by meteorological 

parameters such as relative humidity, temperature, and wind speed(I. Kloog, Nordio, 

et al., 2012; Lee et al., 2011; Y. Liu et al., 2005; Yanosky et al., 2014). On the other 

hand, these meteorological parameters act as temporal predictors for estimating 

concentration of PM 2.5. Hourly meteorological data including planetary boundary 

layer height above surface (PBLH), relative humidity in PBLH (RH_PBLH), wind 

speed at 10m(Wind_10m), temperature at 2m(Temp_2m), and total precipitation 

during 1- 2 p.m. local time (PRETOT) were obtained from the Goddard Earth 

Observing System Model, Version 5(GEOS-5) and Goddard Earth Observing System-

Forward Processing (GEOS-FP).  The spatial resolution of meteorological data is 

0.25° latitude × 0.3125° longitude.  

 

2.5. Land Cover and Population Data  

Normalized difference vegetation index (NDVI) and population density were used in 

the analysis. The MODIS level 3 monthly mean NDVI with a 0.25°× 0.25° spatial 

https://ladsweb.nascom.nasa.gov/
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resolution were downloaded from NASA Earth Observation 

(NEO)(http://neo.sci.gsfc.nasa.gov/). The population data were obtained from the 

WorldPop project (http://www.worldpop.org.uk/) The WorldPop project offers high 

spatial resolution data on human population distributions in the world.  Gridded 

population maps, whereby population numbers per 100×100m grid square are 

estimated based the census, survey, cellphone, and other spatial datasets by WorldPop 

project. The 2010 and 2015 estimates of numbers of people with 100×100m spatial 

resolutions in China were downloaded from the WorldPop website.  Since the 

resolution of population data is 100×100m, which is relatively high when compared 

with the resolution of remote sensing and meteorological data.  

We use the aggregate tool in ArcGIS 10.3 to convert the original resolution of 

100×100m to a resolution of 0.25°× 0.25° and numbers of population per pixel were 

calculated as well. We assumed that the change of population between 2010 and 2015 

could be described by a simple linear regression. So the population density of 2012, 

2013 and 2014 were estimated based on the population data of 2010 and 2015. 

 

2.6 Data integration  

A 0.25°× 0.25° resolution grid (2882 grid cells in total) covering our study domain 

(Latitude: 34.3°N to 42.7°N; Longitude: 105.5°E to 126.2°E) was created using 

fishnet tool in ArcGIS 10.3 and each grid cell was assigned a unique grid cell ID. The 

gridded satellite daily AOD values were assigned to the grid cell where the centroid 

of AOD retrieval was located using R function “over” of package “sp”. If there were 

more than one AOD retrievals fell into the same grid cell, the average AOD value was 

calculated for that grid cell. PM 2.5 measurements, meteorological parameter, NDVI, 

http://neo.sci.gsfc.nasa.gov/
http://www.worldpop.org.uk/
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and population data were assigned a grid cell ID and averaged over the 0.25°× 0.25° 

grid cells using the same method. Finally, AOD, PM2.5, NDVI, PBLH, Temp_2m, 

Wind_10m, RH_PBLH, PRETOT, and population density for all days and all grid 

cells were matched by grid cell ID and day of year (DOY) for model fitting. All 

procedures were conducted in R 3.1.3 environment. 

 

2.7 Model development and validation  

A linear mixed effects (LME) model of each year is developed using AOD, NDVI, 

population density, planetary boundary layer height above surface (PBLH), relative 

humidity in PBLH (RH_PBLH), wind speed at 10m(Wind_10m), temperature at 

2m(Temp_2m), and total precipitation (PRETOT) during 1- 2 p.m. local time 

(PRETOT) as independent variables.  The dependent variable of the model was 

PM2.5 concentration.  The LME model with AOD allows us to explore the day-to-day 

variability in the PM 2.5-AOD relationship.  The AOD in the LME model has both 

fixed and random effects, which represent daily variability in the relationship between 

PM2.5 and AOD and the average effect of AOD on PM 2.5 for the whole year, 

respectively. Fixed and random slops of AOD and temperature were estimated: 

 

PM 2.5gt  =  (b0 + b0, t) + (b1 + b1, t) AODgt +(b2 + b2, t) Temp_2mgt +b3PBLHgt + b4RH_PBLHgt 

+ b5Wind_10mgt + b6PRETOTgt + b7NDVIgt + b8pop_densitygt + εgt          (1) 

 

Where PM 2.5gt is the daily average ground measurement of PM 2.5 concentration 

(μg/m3 ) in grid cell g on day t; b0 and b0, t (day-specific)are the fixed and random 

intercepts, respectively; AODgt  is the AOD value (unitless) in grid cell g on day t; b1 

and b1, t (day-specific) are fixed and random slopes for AOD; Temp_2mgt(K), PBLHgt 
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(m), RH_PBLHgt (%), Wind_10mgt(m/s), PRETOTgt (mm), NDVIgt(unitless), 

pop_densitygt (N/cell)corresponding to grid cell g on day t, respectively; b2 and b2, t 

(day-specific) are the fixed and random slopes for Temp_2m, respectively; b3 to b8 are 

the fixed slopes for their corresponding variables; εgt is the error term in grid cell g on 

day t. 

 

10-fold Cross Validation (CV) was performed to test for potential model overfitting, 

that is, the model could have better predictive performance in the data set used in 

model fitting than the data from the rest of the study domain. 90% of the data were 

randomly selected for model building and the remaining 10% of the data formed a test 

data for prediction. This procedure was repeated 10 times. Root mean squared error 

(RMSR) and overall fit R-square were used to evaluate the model performance.  

 

2.8 Evaluation of the effectiveness of the Action Plan  

Although the Action Plan was published on September 2013, we allowed some time 

for regional governments to form a plan that would achieve compliance with the 

Action Plan. We chose February 1, 2014 as the cut-off date of the Action Plan.  

Namely, we defined February 1, 2014 was the day that the Action Plan had real 

effects on the aerosol fine particulate matter concentration. There are two reasons for 

choosing February 1, 2014 as the cut-off point. The first reason was to keep the same 

sample sizes of before and after groups for further paired t-test. The other reason was 

February 1, 2014 was the day that all regional government were required to deliver 

the Action Plan to local industries and submit their letter of responsibility to the 

CMEP. 
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Based on the equation (1), there were three annual LME models built for 2013, 2014, 

and 2015, respectively.  The PM 2.5 concentrations were estimated for the grid cells 

lack ground PM2.5 measurements but with values of all independent predictors based 

on the built model of each year. Since there was no ground PM 2.5 measurements 

before 2013 in China, the established model of 2013 using data from 2013 was 

adopted to predict the PM 2.5 concentrations in 2012.  The dataset was divided into 

two parts according to the cut-off point. One was composed of the data before 

February 1, 2014; the second part was formed of the data after February 1, 2014. For 

each part, the monthly average concentrations of PM2.5 in each grid cell were 

calculated from both measurements and predicted PM 2.5.  A paired t-test was 

performed to test the difference in PM 2.5 concentrations between two datasets. The 

data was paired with each other based on the month and grid cell ID.  The null 

hypothesis was that the difference of the means is equal to zero. The alternative 

hypothesis was the average PM 2.5 concentration of the data after February 1, 2014 is 

greater than the average PM 2.5 concentration of the data before February 1, 2014.  

  

Furthermore, an overall LME model was built using the data from 2013, 2014, and 

2015. A new variable “POLICY” was added into the model, with POLICY = 0 for the 

time before the policy implementation and POLICY = 1 for the time after the policy 

implement. Ultimately, we performed the likelihood ration test to analysis the 

statistical significance of the POLICY variable and determine whether or not the 

variable should be included in the final model.  
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3. Results and Discussion  

3.1 Descriptive Statistics 

Table 1(a) to Table 1(d) show the descriptive statistics of the model variables in the 

LME model fitting datasets of 2013, 2014, 2015, and overall, respectively.  A total of 

11,586, 12,741, and 16,883 data records were included in the 2013, 2014, and 2015 

model fitting dataset, respectively. The overall dataset covers 1095 sample days (from 

January 1, 2012 to December 31, 2015). Within this time interval, the overall mean 

PM 2.5 concentration was 69.29 μg/m3, and the mean values of AOD was 0.58. The 

year specific mean PM 2.5 concentrations were 83.80 μg/m3, 68.26 μg/m3, and 60.12 

μg/m3 for 2013, 2014, and 2015, respectively.  The corresponding annual mean AOD 

values were 0.64, 0.60, and 0.54,respectively. The annual average PM 2.5 

concentrations show a decreasing trend from 2013 to 2015.  

 

The seasonal mean PM2.5 concentration was highest in winter and lowest in summer 

(Table 2(a) to Table 2(d)), which was consistent with previous study.(Lv, Hu, Chang, 

Russell, & Bai, 2016) The highest mean AOD was in summer and the lowest in fall. 

The seasonal patterns of PRECTOT, PBLH, RH_PBLH and NDVI were similar that 

the highest value occurred in summer and the lowest in winter.  The seasonal patterns 

of PM2.5 and AOD were different. The relationship between PM2.5 and AOD is 

complex, which can be strongly affected by geographical, meteorological, and 

seasonal conditions. (Yang Liu, Franklin, Kahn, & Koutrakis, 2007) 
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3.2 Model fitting and cross validation  

Figure 2 shows the scatter plots for the model fitting and cross validation of 2013, 

2014, 2015, and overall. The R2 and 10-fold CV R2 of the 2013 LME model were 0.73 

and 0.68, respectively. The RMSE was 34.46 μg/m3 for the 2013 LME model and 

37.00 μg/m3 for CV. Comparing to the model fitting, the CV R2 decreases by 0.05 and 

CV RMSE increases by 2.54 μg/m3 for the 2013 LME model. The R2 and 10-fold CV 

R2 of the 2014 LME model were 0.68 and 0.62, respectively. The RMSE was 29.39 

μg/m3 for the 2013 LME model and 31.76 μg/m3 for CV. Comparing to the model 

fitting, the CV R2 decreases by 0.06 and CV RMSE increases by 2.37 μg/m3 for the 

2014 LME model. The R2 and 10-fold CV R2 of the 2015 LME model were 0.67 and 

0.63, respectively. The RMSE was 25.32 μg/m3 for the 2013 LME model and 26.58 

μg/m3 for CV. Comparing to the model fitting, the CV R2 decreases by 0.04 and CV 

RMSE increases by 1.26 μg/m3 for the 2013 LME model. The R2 and CV R2 of the 

overall LME model were 0.62 and 0.59. The RMSE was 33.51 μg/m3 and CV-RMSE 

was 34.61 μg/m3. Compared with the year-specific model, the R2 and CV R2 were 

relatively low.  

 

The application of AOD data allowed us to substantially expand the temporal 

flexibility and resolution of the model. In our model, AOD was positively associated 

with daily PM 2.5 concentrations. Since the relationship between AOD and PM 2.5 

can be influenced by meteorological conditions, meteorological parameters were 

added to improve the model performance. The application of AOD in predicting 

ground PM 2.5 concentration is rare in China. A study by Ma et al. (2014) used 

geographical weighted regression (GWR) method to predict PM 2.5 concentration in 
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the entire China in 2013 with CV R2 = 0.64 and RMSE=32.98 μg/m3 and concluded 

that over 96% of the Chinese population lives in areas that exceed the Chinese 

National Ambient Air Quality Standard (Ma et al., 2014).  The CV R2 of 2013 in our 

study is higher than that value.  It is mainly because of the study domain of our study 

is smaller than the entire China, which could decrease the variability. A developed 

Bayesian hierarchical model was developed by Lv et al. (2016) to estimate spatio-

temporal relationship between AOD and PM2.5 in North China in 2014. They got a 

CV R2= 0.61 when a novel interpolation-based variable, PM 2.5 Spatial Interpolator 

(PMSI2.5), was included, and a CV R2=0.48 without PMSI2.5(Lv et al., 2016).   

 

3.3 Effectiveness of the Action Plan 

The cut-off date of the policy implementation is February 1, 2014.  Using the 

developed LME model of 2013, the PM 2.5 concentrations of 2012 were estimated. 

There were a total of 160,743 estimations of 2012. The estimated annual PM2.5 

concentration of 2012 is 59.37 μg/m3 (Table 3). The seasonal pattern of 2012 was 

similar to 2013, 2014, and 2015. The highest seasonal mean value of 91.75 μg/m3 

occurred in winter and the lowest seasonal mean value of 52.14 μg/m3 occurred in 

summer.  A summary of descriptive statistics of predicted PM 2.5 in grid cells 

without ground PM 2.5 measurements for 2013, 2014, and 2015 was provided in 

Table 3 as well.  The annual predicted PM2.5 levels of 2012, 2013, and 2014 are 

showed in Figure 3. We noticed that the annual PM 2.5 concentrations of 2013 were 

highest in both ground measurements group and predictions group.  The high PM2.5 

levels in 2013 were mainly caused by the high-intensity emissions in winter, and the 

relative humidity, continuous low temperature, and the allocation of the surface 
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pressure field also have effects on PM2.5 concentrations.  (Wang, Liao, Wang, & 

Sun, 2016) 

 

A paired t-test was performed to compare mean monthly mean PM 2.5 concentrations 

before the cut-off date and after the cut-off date in each grid cell.  There were a total 

of 20,171 pairs. The results of one tailed paired t-test showed there was a significant 

difference in PM 2.5 concentration for days before February 1, 2014 (M=66.14 

μg/m3, SD= 35.73) and days after cut-off date (M=52.33 μg/m3, SD=24.57); p-value 

<0.0001. The mean difference was 13.81 μg/m3 (95%CI: 13.51 μg/m3, 14.11 μg/m3). 

 

A new model with a variable called “POLICY” was built based on the equation (1) 

using the multiyear dataset. The R2 and CV R2 of the new model were 0.63 and 0.60, 

respectively. The RMSE was 33.15 μg/m3 for the new model and 34.13 μg/m3 for CV. 

Compared with the R2 and CV R2 of the overall LME model without the variable 

“POLICY” the R2 and CV R2 of the new model were increased due to adding the 

period variable. The Likelihood ratio test indicated the Action Plan affected annual 

PM2.5 concentration (χ2 (1)=30.40, p-value<0.0001), lowering it by about 13.5 ± 

0.42 μg/m3. The annual average PM 2.5 level of 2013 was 83.80 μg/m3. The average 

PM 2.5 level of 2014 and 2015 was 64.19 μg/m3.  Therefore, the annual PM 2.5 levels 

decreased by 19.61 μg/m3 since the implication of the Action Plan. Our model 

suggested that the implementation of policy was responsible for about 68.84% of the 

reduction in PM2.5 level.  
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Liu et al. conducted an evaluation of effectiveness of emission control measures 

during the Beijing Olympic Games in 2008, and reported a 27-33% reduction in daily 

PM 2.5 concentration because of the control policies (Y. Liu et al., 2012). Our study 

showed a higher relative reduction in PM 2.5 level due to the Action Plan 

implementation. It is because the effect of extremely high PM2.5 levels of 2013 and 

the Action Plan is long-term policy.   

 

3.4. Limitations 

The study has several limitations. Firstly, missing AOD values due to clouds can limit 

the temporal coverage of the predicted PM 2.5 concentration.  The PM2.5 

concentrations were highest in winter due to fuel combustion. The extremely high 

concentration of PM 2.5 limits eligibility of remote sensing retrieval of AOD values. 

Therefore, days with extremely high PM 2.5 levels are more likely to lose AOD data, 

which could cause a bias. Secondly, there is no regulatory monitoring data of PM 2.5 

in China before 2013.  In order to keep the same time interval before and after the 

policy implementation, we had to use the developed LME model of 2013 to estimate 

PM2.5 concentrations in 2012.  The overall LME model was built based on the data 

of 2013, 2014, and 2015, which means the distribution of data was not balanced. 

Namely, there was one-year data before the cut-off date but two-year data after the 

cut-off point.  
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Conclusion  

The LME model described in this study aimed to evaluate the effective of the China’s 

2013 Action Plan for Air Pollution Prevention and Control. The model attempted to 

estimate PM2.5 levels by incorporating AOD data, meteorological data, land cover 

status, and population density.  Additionally, temporal and spatial variation was 

resolved by applying random effect terms. According to the predictions of the year-

specific models, the mean difference of monthly PM 2.5 concentrations in between 

days before and after the implementation of the Action Plan was 13.81 μg/m3. Our 

model indicates that the Action Plan was accounted for 68% of the reduction of 

PM2.5 levels. The data used as predictors in this model are accessible for most cities 

in China, which suggests that the model could be applied as a tool to expand the 

assessment of PM 2.5 levels to a greater spatial coverage, as well as an approach for 

evaluation other air pollution control measurements. 
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Tables and Figures 

 

Figure 1 Study domain.  
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Table 1(a) Summary statistics of the variables in the whole LME model fitting 

dataset, 2013 

 

Statistic N Mean St. Dev. Min Max 

 

PM2.5 11,586 83.80 65.74 3.00 863.00 

PRECTOT 11,586 0.25 1.70 0.00 60.78 

PBLH 11,586 1,821.17 627.61 60.62 5,623.15 

Temp_2m 11,586 293.10 11.53 263.40 317.10 

Wind_10m 11,586 4.50 2.43 0.084 18.12 

RH_PBLH 11,586 0.41 0.15 0.081 0.94 

AOD 11,586 0.64 0.59 -0.05 4.65 

NDVI 11,586 0.36 0.17 -0.10 0.83 

pop_density 11,586 804,694 744,310 10,804 4,244,479 
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Table 1(b) Summary statistics of the variables in the whole LME model fitting 

dataset, 2014 

 

Statistic N Mean St. Dev. Min Max 

 

PM2.5 12,741 68.26 51.98 3.00 615.50 

PRECTOT 12,741 0.17 1.44 0.00 112.84 

PBLH 12,741 1,922.90 674.15 63.50 4,903.70 

Temp_2m 12,741 294.00 11.82 262.00 317.40 

Wind_10m 12,741 4.37 2.50 0.038 16.30 

RH_PBLH 12,741 0.42 0.15 0.069 0.91 

AOD 12,741 0.60 0.55 -0.050 4.50 

NDVI 12,741 0.37 0.16 -0.10 0.79 

pop_density 12,741 859,900 826,410 9,002 4,829,235 
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Table 1(c) Summary statistics of the variables in the whole LME model fitting 

dataset, 2015 

 

Statistic N Mean St. Dev. Min Max 

 

PM2.5 16,883 60.12 44.000 4.44 476.08 

PRECTOT 16,883 0.37 2.800 0.00 99.44 

PBLH 16,883 1,795.75 708.000 63.46 4,879.86 

Temp_2m 16,883 292.80 11.000 261.70 316.90 

Wind_10m 16,883 4.33 2.500 0.012 15.76 

RH_PBLH 16,883 0.43 0.150 0.10 0.95 

AOD 16,883 0.54 0.510 -0.050 4.25 

NDVI 16,883 0.36 0.170 -0.10 0.88 

pop_density 16,883 746,785 752,025.000 6,567 4,829,235 
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Table 1(d) Summary statistics of the variables in the whole LME model fitting 

dataset, overall 

 

Statistic N Mean St. Dev. Min Max 

 

PM2.5 41,210 69.29 54.17 3.00 863.00 

PRECTOT 41,210 0.28 2.14 0.00 112.84 

PBLH 41,210 1,842.22 677.86 60.62 5,623.15 

Temp_2m 41,210 293.30 11.54 261.70 317.40 

Wind_10m 41,210 4.39 2.45 0.012 18.12 

RH_PBLH 41,210 0.42 0.15 0.069 0.95 

AOD 41,210 0.58 0.55 -0.050 4.65 

NDVI 41,210 0.36 0.17 -0.10 0.88 

pop_density 41,210 798,038 775,138 6,567 4,829,235 
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Table 2(a) Seasonal patterns of measured PM 2.5, AOD, NDVI and meteorological 

variables in the whole LME model fitting dataset, 2013 

 

Statistic  Fall Spring Summer Winter 

 

PM2.5  77.56(51.39) 74.02(46.56) 63.62(36.42) 129.27(102.28) 

PRECTOT  0.13(0.88) 0.14(1.24) 0.74(3.09) 0.019(0.13) 

PBLH  1777.58(459.87) 2103.275(746.34) 2035.30(515.09) 1294.36(449.76) 

Temp_2m  292.99(8.35) 293.41(8.81) 306.03(4.08) 278.09(4.47) 

Wind_10m  4.27(2.27) 5.69(2.75) 3.71(1.86) 4.29(2.31) 

RH_PBLH  0.3(0.13) 0.33(0.13) 0.54(0.12) 0.37(0.13) 

AOD  0.54(0.50) 0.68(0.58) 0.75(0.60) 0.62(0.70) 

NDVI  0.35(0.11) 0.30(0.12) 0.56(0.13) 0.20(0.07) 
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Table 2(b) Seasonal patterns of measured PM 2.5, AOD, NDVI and meteorological 

variables in the whole LME model fitting dataset, 2014 

 

Statistic  Fall Spring Summer Winter 

 

PM2.5  59.73(42.00) 68.31(41.81) 55.00(30.25) 99.14(80.35) 

PRECTOT  0.084(0.44) 0.12(0.84) 0.42(2.64) 0.03(0.27) 

PBLH  1665.11(430.27) 2330.57(673.60) 2311.87(530.18) 1289.54(434.61) 

Temp_2m  292.23(7.54) 295.86(8.08) 306.25(4.07) 276.88(4.53) 

Wind_10m  4.27(2.35) 5.16(2.75) 3.48(1.76) 4.66(2.60) 

RH_PBLH  0.43(0.14) 0.32(0.12) 0.53(0.12) 0.37(0.12) 

AOD  0.44(0.41) 0.63(0.47) 0.84(0.62) 0.47(0.60) 

NDVI  0.35(0.12) 0.34(0.13) 0.54(0.13) 0.21(0.06) 
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Table 2(c) Seasonal patterns of measured PM 2.5, AOD, NDVI and meteorological 

variables in the whole LME model fitting dataset, 2015 

 

Statistic  Fall Spring Summer Winter 

 

PM2.5  50.54(38.42) 57.35(31.45) 45.28(25.62) 86.13(61.01) 

PRECTOT  0.21(1.12) 0.27(1.79) 1.06(5.26) 0.03(0.20) 

PBLH  1623.66(514.69) 2087.75(646.84) 2176.69(703.66) 1244.54(511.30) 

Temp_2m  294.60(6.74) 294.12(8.39) 305.28(3.87) 278.25(4.53) 

Wind_10m  3.87(2.12) 5.24(2.67) 3.32(1.92) 4.53(2.51) 

RH_PBLH  0.43(0.14) 0.36(0.14) 0.52(0.13) 0.42(0.13) 

AOD  0.41(0.43) 0.58(0.42) 0.70(0.58) 0.46(0.55) 

NDVI  0.36(0.13) 0.33(0.15) 0.55(0.13\5) 0.22(0.08) 
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Table 2(d) Seasonal patterns of measured PM 2.5, AOD, NDVI and meteorological 

variables in the whole LME model fitting dataset, overall 

 

Statistic  Fall Spring Summer Winter 

 

PM2.5  62.45(45.59) 64.72(39.45) 53.60(31.35) 100.95(80.88) 

PRECTOT  0.14(0.91) 0.19(1.44) 0.75(3.97) 0.03(0.20) 

PBLH  1687.87(474.13) 2160.11(689.46) 2183.64(609.27) 1269.97(475.86) 

Temp_2m  293.28(7.63) 294.71(8.53) 305.82(4.02) 277.83(4.55) 

Wind_10m  4.14(2.26) 5.33(2.72) 3.48(1.86) 4.50(2.50) 

RH_PBLH  0.42(0.14) 0.34(0.13) 0.53(0.13) 0.39(0.13) 

AOD  0.46(0.45) 0.62(0.48) 0.76(0.60) 0.51(0.61) 

NDVI  0.36(0.12) 0.32(0.14) 0.55(0.14) 0.21(0.07) 
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Figure 2. Results of model fitting and cross validation.  RMSE: root mean squared 

prediction error (μg/m3). The dash line is the 1:1 line as a reference. (a)-(d) are model 

fitting results of 2013, 2014, 2015, and overall, respectively; (e)-(h)  are CV results of 

2013, 2014, 2015, and overall, respectively. 
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Table 3 Summary statistics of the predicted PM 2.5 concentration (μg/m3) of  

2012-2015 

 Mean SD Minimum P25 Median P75 Maximum 

2012 59.37 37.92 -16.92 36.14 51.87 72.90 728.40 

2013 62.56 42.57 -26.15 37.26 53.73 75.94 794.01 

2014 54.80 39.86 -19.95 30.53 46.39 67.65 735.36 

2015 48.30 30.60 -12.60 27.94 41.67 60.86 619.89 
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Figure 3 Predicted PM2.5 annual concentration of 2012-2015 


