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ABSTRACT 

Proteomic profiling of the cerebrospinal fluid of African Americans and Caucasians 

reveals common and unique biomarkers of Alzheimer’s disease 

By Erica Modeste 

 

Despite being twice as likely to get Alzheimer’s disease (AD), African Americans have 

been grossly underrepresented in AD research. While emerging evidence indicates that African 

Americans with AD have lower cerebrospinal fluid (CSF) levels of Tau compared to Caucasians, 

other differences in AD CSF biomarkers have not been fully elucidated. In this thesis, we 

performed unbiased proteomic profiling of CSF from African Americans and Caucasians with and 

without AD to identify both common and divergent AD CSF biomarkers. Multiplex tandem mass 

tag-based mass spectrometry (TMT-MS) quantified 1,840 proteins from 105 control and 98 AD 

patients of which 100 identified as Caucasian and 103 identified as African American. Differential 

protein expression and co-expression approaches were then utilized to assess how changes in 

the CSF proteome were related to race and AD. Co-expression network analysis organized the 

CSF proteome into 14 modules associated with brain cell-types and biological pathways. 

Consistent with previous findings, the increase of Tau levels in AD was greater in Caucasians 

than in African Americans by both immunoassay and TMT-MS measurements. Similarly, modules 

enriched with proteins involved with glycolysis and neuronal/cytoskeletal proteins were more 

increased in Caucasians than in African Americans with AD. In contrast, a module enriched with 

synaptic proteins including VGF, SCG2, and NPTX2 was significantly lower in African Americans 

than Caucasians with AD. CSF modules which included 14-3-3 proteins (YWHAZ and YWHAG) 

demonstrated equivalent disease-related elevations in both African Americans and Caucasians 

with AD. A targeted mass spectrometry method, selected reaction monitoring (SRM), with heavy 

labeled internal standards was then used to measure a subset of CSF module proteins and a 

receiver operating characteristic (ROC) curve analysis assessed the performance of each protein 

biomarker in differentiating controls and AD by race. Following SRM and ROC analysis, VGF, 

SCG2, and NPTX2 were significantly better at classifying African Americans than Caucasians 

with AD. In total, these findings provide insight into additional protein biomarkers and pathways 

reflecting underlying brain pathology that are shared or differ by race. 
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1.1 The increasing burden of Alzheimer’s disease (AD) 

 Alzheimer’s disease (AD) is a progressive and irreversible disorder of the brain that affects 

memory, thinking, and behavior (1). It is the most common form of dementia, accounting for 

approximately 60 to 80 % of all dementia cases (2). AD primarily affects older adults, typically 

starting in individuals over the age of 65 years old (2-6). Notably, the elderly population in the 

United States has been undergoing rapid expansion since 2011 as the first wave of baby boomers 

transitioned into the age of 65 (7). The baby boom era, which spanned from 1946 to 1964, marked 

a distinctive phase in American history characterized by a surge in birth rates following World War 

II (7). Consequently, with the progression of the baby boomer population from middle to older 

ages, there has also been a substantial increase in the incidence of AD (7; 8). Up from 

approximately 4.7 million people in 2010, an estimated 6.7 million people in the United States are 

currently affected by this disease, and this number is only expected to double by the year 2050 

(2; 7; 8) (Figure 1.1). Alongside this rise, there also comes the substantial burden the disease 

places on caregivers and society (2; 8). In 2022 alone, over 11 million Americans selflessly 

provided 18 billion hours of unpaid care to older adults afflicted with dementia; a collective 

contribution valued at nearly $340 billion (2). Furthermore, total annual payments for healthcare 

and long-term care for people with AD and other dementias are expected to increase from $345 

billion in 2023 to just under $1 trillion by 2050, exceeding the costs of treatments for cancer and 

cardiovascular disease (2; 9). This projection includes three-fold increases in government 

spending in Medicare and Medicaid, as well as out-of-pocket expenditures (2). Taking into 

account all of these factors, if there is no progress made in preventing or delaying the onset of 

AD, coupled with the substantial rise in the number of individuals affected by AD, the proportion 

of the population impacted by the disease will also increase. This, in turn, will escalate the overall 

societal burden of AD. 
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Figure 1.1: Projected number of people in the United States with Alzheimer’s disease (AD) 

in millions from 2010 to 2050. The estimated number of people with AD in the United States in 

2023 (orange circle) is predicted to nearly double by 2050.  
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1.2 Monitoring memory loss in those with AD 

AD can be most notably recognized by its incapacitating and progressive memory loss. 

This gradual decline in memory with disease progression is a consequence of spreading neuronal 

damage across the brain (Figure 1.2) (1; 2). Common early signs of memory loss in AD include 

forgetfulness, difficulty in finding words, misplacing items, and struggling with familiar tasks like 

tying a shoe (1; 2). As the disease progresses, individuals may begin to experience confusion, 

mood swings, disorientation, and difficulties in communication and decision-making (1; 2). 

Ultimately, in the later stages, individuals often require full time care, as they lose the ability to 

recognize love ones, communicate, and perform basic activities of daily living (1; 2). In the clinic, 

patients undergo cognitive exams such as the Mini-Mental Status Examination (MMSE) and the 

Montreal Cognitive Assessment (MoCA). These assessments serve as crucial clinical diagnostic 

tools for evaluating and monitoring cognitive impairment. (10-12). While the MoCA test is the 

preferred test for the early detection of dementia such as in cases of mild cognitive impairment 

(MCI), MMSE is often used for monitoring cognitive decline over time (11; 13).  

MCI is an intermediate stage between typical cognitive aging and dementia (11). In the 

beginning, physicians heavily depended on the MMSE to gauge cognitive impairment in 

individuals (12). The MMSE was found to be effective in distinguishing cognitively normal 

individuals from those with cognitive impairment with significant specificity, where a score below 

25 on the MMSE was indicative of impairment (12) (Figure 1.3). Its efficacy declined, however, 

when attempting to identify those with MCI, as individuals with MCI could score between 26 and 

29, falling within the range for cognitively normal individuals (14-16) (Figure 1.3).  This highlighted 

a significant limitation of the test: its difficulty in detecting early dementia-related changes (17). 

Consequently, the MoCA test was developed with a heightened emphasis on MCI, while 

maintaining the scoring ranges of the MMSE (11). Aligned with this, the generally accepted 

optimal threshold for discerning between individuals with typical cognitive function and those with  
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Figure 1.2: Healthy brain compared to a brain affected by Alzheimer’s disease. In 

comparison to a healthy brain, brain changes observed in Alzheimer’s disease include injured 

neuronal cells that are accompanied by abnormal accumulations of amyloid beta (Aβ) plaques 

and tangles of hyperphosphorylated Tau. 
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Figure 1.3: A comparison of the scoring patterns of the Mini-Mental State Examination 

(MMSE) with the Montreal Cognitive Assessment (MoCA). 
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MCI in the MoCA test was determined to be 26 (11) (Figure 1.3). Though, more recent meta-

analysis has suggested that a cutoff score of 23 may be better (18). Moreover, individuals with 

MCI may score between 18 and 25, while those with dementia typically scored below 18 with 

significant specificity (Figure 1.3). Overall, the MoCA test has demonstrated superior 

effectiveness compared to the MMSE in monitoring the progression from MCI to severe dementia 

in clinical settings involving living patients (19-22).  

There are various factors to consider when utilizing the specified scores mentioned above. 

Firstly, studies have indicated that education can significantly impact overall MoCA score (11; 23). 

It was found that persons with 12 years of education or less tended to have worse performance 

on the MoCA (11). To mitigate this, it has become common practice to add 1 point to the final 

score for individuals with 12 years or less of education (11). There is debate, however, as to 

whether this adjustment adequately addresses education-related disparities (24). In some cases, 

it has been observed that this adjustment may in fact reduce the test's sensitivity (25). Besides 

education, age can also impact the score (23; 26; 27). This places older individuals with lower 

levels of education as the group most vulnerable to obtaining false positive results (24). Finally, 

studies have revealed that MoCA performance can also be influenced by racial background (26; 

28; 29).  Including minority participants in a study led to lower cutoffs for distinguishing between 

normal cognition and MCI (26; 28; 29). In addition, when directly comparing optimal MoCA score 

cutoffs across multiple races, it was found that the optimal cutoff for both African Americans and 

Hispanics was lower than that of Caucasians (30). This implies that lower MoCA cutoffs may be 

more appropriate when assessing the MoCA score of minority individuals (26; 28-30). In 

conclusion, considering factors such as education, age, and racial background is essential for 

accurately interpreting and applying MoCA scores in clinical settings. 

1.3 The initial discovery of AD 

Alois Alzheimer was a German psychiatrist and neuropathologist who discovered AD 

through his work with a patient named Auguste Deter. In 1901, Deter, who was in her early 50s, 
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was admitted to the mental asylum where Alzheimer worked for exhibiting symptoms of memory 

loss, confusion, and hallucinations (31). Intrigued by her condition, Alzheimer meticulously 

documented the continued progression of her disease up until her death on April 6, 1906. 

Following her death, Alzheimer was able to investigate the brain of Auguste both morphologically 

and histologically. During the autopsy, Alzheimer noted significant abnormalities in her brain, 

including unusual protein deposits (now identified as amyloid plaques) and tangled nerve fibers 

(now known as neurofibrillary tangles) (31; 32). These observations led him to hypothesize that 

Deter's symptoms stemmed from physical changes in her brain (31). Shortly thereafter, Alzheimer 

published his findings, presenting the case as a distinct form of dementia that differed from the 

typical symptoms associated with aging (31). His work laid the groundwork for understanding 

Alzheimer's disease as a progressive neurodegenerative disorder characterized by cognitive 

decline and distinct brain pathology. Today, the disease bears Alois Alzheimer's name in 

recognition of his pioneering research. 

1.4 Neuropathological hallmarks of AD 

1.4.1 Amyloid Cascade: The amyloid cascade hypothesis is a central theory in AD 

research that proposes that the deposition of amyloid-beta (Aβ) peptides in the brain occurs prior 

to and initiates a series of events that culminate in neurodegeneration and the distinctive 

symptoms of AD (Figure 1.4). More specifically, according to this hypothesis, the abnormal 

accumulation of Aβ peptides leads to the formation of amyloid plaques, which disrupt neuronal 

function and activate inflammatory responses (33). As a consequence, a cascade of subsequent 

events is initiated, including the hyperphosphorylation of Tau protein, the formation of 

neurofibrillary tangles, synaptic dysfunction, and ultimately neuronal death (32). Given its crucial 

role, the formation and inhibition of Aβ has profoundly shaped investigations into the underlying 

mechanisms of AD and the creation of potential therapeutic approaches, which primarily focused 

on Aβ pathways (32; 33). The abnormal accumulation of insoluble Aβ plaques in the extracellular 

space surrounding neurons has become a hallmark pathology of AD (34; 35) (Figure 1.2). Aβ is  
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Figure 1.4: Hypothesized time course of neuropathological and clinical changes in 

Alzheimer’s disease based on biomarker alterations. In Alzheimer’s disease (AD), the 

conversion from a non-demented to demented state is associated with a buildup of amyloid beta 

(Aβ) plaques (purple line), a more gradual accumulation of neurofibrillary Tau tangles (green line), 

and neuronal and synaptic loss (yellow line). Modified from Craig-Schapiro, R., Fagan, A. M., and 

Holtzman, D. M. (2009) Biomarkers of Alzheimer's disease. Neurobiol Dis 35, 128-140. 
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a peptide ranging from 38-43 amino acids long and is the result of sequential cleavages on 

amyloid precursor protein (APP) by β-secretase and γ-secretase (36) (Figure 1.5A). Initially, APP 

is cleaved by β-secretase producing a long soluble secreted form of APP (sAPPβ) and a C-

terminal fragment 99 (CTF99) (37) (Figure 1.5A). Subsequently, CTF99 is cleaved by γ-secretase 

complex to form Aβ and an intracellular amyloid precursor protein intracellular domain (AICD) (38) 

(Figure 1.5A). This cleavage can produce peptides of 43, 45, 46, 48, 49, or 51 amino acids, which 

are subsequently processed to generate two forms of Aβ, Aβ40 or Aβ42 (39). While Aβ40 is the most 

prevalent form, Aβ42 has been noted to be more prominently present in amyloid plaques (40). 

Because this pathway leads to the formation of the Aβ peptides that make up the plaques found 

in AD, its considered amyloidogenic and is associated with the pathological changes observed in 

AD. The accumulation of Aβ peptides in the brain is central to the amyloid cascade hypothesis, 

even though Aβ can be extensively present in the human brain without AD symptoms (36; 41-43) 

(Figure 1.4, purple line). The production of Aβ peptides is not the sole outcome of APP 

processing. Alternatively, APP can also undergo cleavages that diverts the protein toward a non-

amyloidogenic pathway (Figure 1.5B). Here, α-secretase cleaves APP to release soluble APPα 

(sAPPα) and CTF83 (Figure 1.5B). Importantly, this pathway prevents the generation of Aβ as 

the cleavage site for α-secretase is within the Aβ domain (37). γ-secretase then cleaves CTF83 

to form AICD and p3. This neuroprotective pathway promotes neuronal survival, neurite outgrowth 

and neural stem cell proliferation, providing an avenue for mitigating AD (44-47). Under typical 

circumstances, these two pathways operate in equilibrium, permitting neurons to remove 

unnecessary Aβ as required. Nevertheless, in AD, the balance shifts towards heightened Aβ 

formation, triggering the cascading events described earlier. 

1.4.2 Pathologic Tau: The next hallmark of AD is the formation of neurofibrillary tangles 

(NFT) that consist of hyperphosphorylated microtubule-associated protein Tau (MAPT). Tau is 

primarily located intracellularly within neurons, but it can also be found in other cell types of the  
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Figure 1.5: The amyloidogenic and non-amyloidogenic pathways for processing the 

amyloid precursor protein (APP). (A) The amyloidogenic pathway involves cleavages by β-

secretase and γ-secretase resulting in the generation of a long-secreted form of APP (sAPPβ), 

and C-terminal fragments, CTF99, amyloid precursor protein intracellular domain (AICD), and Aβ. 

(B) The nonamyloidogenic pathway involves cleavages by α-secretase and γ-secretase resulting 

the generation of a long-secreted form of APP, sAPPα, and C-terminal fragments, CTF83, AICD, 

and P3. 
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brain, such as microglia (34; 35).  In the brain, normal Tau protein plays a crucial role in promoting 

tubulin assembly and microtubule stabilization. Microtubules are essential structures for 

maintaining the structural integrity of neurons and facilitating intracellular transport, acting like 

highways within neurons, allowing molecules and organelles to move to different parts of the cell. 

Tau protein binds to and stabilizes these microtubules, helping to maintain their structure and 

function. In addition to this, Tau is also involved in regulating synaptic function, which is essential 

for communication between neurons. It interacts with various proteins involved in synaptic 

transmission, contributing to the proper functioning of synapses. Overall, normal Tau protein in 

the brain is involved in maintaining the structural integrity of neurons by stabilizing microtubules 

and regulating synaptic function; both of which are critical for normal brain function. 

The distinction between normal Tau and pathologic Tau primarily lies in several structural 

and functional characteristics: conformation, phosphorylation, and aggregation (1). Normal Tau 

protein is typically structured in a way that allows it to bind and stabilize microtubules within 

neurons. In contrast, pathological Tau undergoes conformational changes, leading to the 

formation of abnormal Tau aggregates, such as NFTs (48). In addition to conformational changes, 

phosphorylation, which is the addition of phosphate groups to proteins, plays a crucial role in 

deciphering Tau’s normal function from that of pathologic Tau. Under normal conditions, Tau is 

moderately phosphorylated, allowing it to bind and unbind to microtubules effectively. However, 

in AD, Tau becomes hyperphosphorylated, leading to its detachment from microtubules and the 

formation of insoluble aggregates (3). Under normal conditions, Tau remains soluble and 

distributed throughout the neuron, and primarily associated with microtubules. Pathological tau, 

on the other hand, aggregates into insoluble structures, such as paired helical filaments (PHFs) 

and NFTs which disrupt neuronal function. These insoluble structures then obstruct transport of 

essential nutrients and molecules vital for the regular function and survival of neurons (1), making 

it a more immediate precursor to neurodegeneration (Figure 1.4, green and yellow lines) (49-

51). 
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1.5 The ATN framework for staging AD progression 

As defining features of AD, Aβ deposition (A), Tau tangle formation (T), and 

neurodegeneration (N) make up the basis of the ATN framework (52). Essentially, this framework 

proposes different sets of biomarkers to represent hallmark pathological features (Aβ and Tau) 

and cognitive aspects (neurodegeneration) of AD, utilizing them to categorize patients along the 

AD continuum (52). In this framework, amyloid biomarkers represent the earliest indicators of AD 

neuropathological changes in living persons (53-57). Given this, Aβ biomarkers help determine 

whether an individual falls within the AD continuum (52). Examples of biomarkers indicative of Aβ 

plaques include amyloid positron emission tomography (PET) imaging of radiolabeled ligands 

binding to Aβ plaques in the brain and reduced levels of Aβ42 in cerebrospinal fluid (CSF) (58-62). 

The quantification of both Aβ and Tau are required for the diagnosis of AD. Therefore, the 

presence of pathologic Tau biomarkers is what ultimately determines whether an individual within 

the AD continuum truly has AD (52). Examples of Tau biomarkers include monitoring elevations 

in the phosphorylation of Tau at residues Thr181, Thr217, and among other sites  (59) within the 

CSF and PET scans of cortical Tau using radiolabeled ligands that bind to Tau tangles (59; 63-

65). Finally, biomarkers of neurodegeneration gauge the severity of neuronal injury. However, 

these markers do not strictly contribute to the understanding of where a person lies along the AD 

continuum (52). This is because these markers are not specific to neurodegeneration induced by 

AD, making it difficult to determine whether neuronal injury is directly attributed to disease or some 

other comorbid condition (52). Despite this, indicators of neurodegeneration still provide vital 

staging information when combined with measures of pathologic biomarkers for Aβ and Tau (52). 

Biomarkers of neurodegeneration include total Tau levels in the CSF, cortical PET scans 

measuring diminished glucose metabolism, and indicators of brain atrophy detected through 

magnetic resonance imaging (66-73).  
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1.6 Early-onset AD versus late-onset AD 

 The majority of people who develop AD are 65 and older. The presentation of AD at older 

ages is referred to as late-onset AD (LOAD). It is believed that LOAD, like other chronic diseases, 

is brought on as result of multiple factors, i.e. environmental and genetics, rather than a single 

genetic cause. The exception to these would-be cases of AD related to uncommon genetic 

changes that greatly affect risk. In those cases, the person typically develops AD before the age 

of 65. This presentation of AD at younger ages is referred to as early-onset AD (EOAD). While 

the greatest risk factors for LOAD are older age, environmental exposures (i.e lifestyle, education, 

financial attainment), and genetics, EOAD is primarily caused by genetics alone (74-80).  

1.6.1 Early-onset AD: EOAD accounts for only ~2 percent of all cases. Individuals who 

experience familial AD experience rapid decline and die within several years of symptom onset 

(81). EOAD has been most notably tied to gene mutations that affect the processing or production 

of Aβ, whose abnormal accumulation contributes to disease. For this reason, despite being on 

different chromosomes, mutations in APP, PSEN1, or PSEN2 are known to cause AD (5; 82-85). 

Remarkably, both PSEN1 and PSEN2 make up the catalytic components of γ-secretase which 

assists in the cleavage of APP into Aβ. In addition to these three genetic variants that are known 

to cause AD, individuals with Down syndrome are often at high risk for developing EOAD (2). This 

is because they possess an extra chromosome 21, which carries the APP gene. Estimates 

suggests that nearly 50% or more of individuals living with Down syndrome will develop symptoms 

of AD by their 50s or 60s (86; 87). 

1.6.2. Late-onset AD: Contrary to EOAD, LOAD is the most common form of AD, mainly 

occurring in individuals over 65 (3-6). Also known as sporadic AD, LOAD accounts for the 

remaining 98% of cases (2; 81). Multiple gene loci have been implicated in LOAD. As a result, 

LOAD is often considered a polygenic disorder (2). One of the most impactful genetic 

susceptibilities to LOAD involves the Apolipoprotein E gene (5; 88; 89). Apolipoprotein E (APOE) 

epsilon (ε) protein has three different variants that differ at residues 112 and 158: APOE ε2 
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contains a cysteine at both resides 112 and 158 while APOE ε3 contains a cysteine at residue 

112 but an arginine at residue 158. Lastly, APOE ε4 has two arginine residues that occupy 

position 112 and 158 in the full-length protein. Those who inherit a copy of the APOE ε4 allele 

have three times the risk of developing AD while those who inherit two copies have an eight- to 

12-fold risk (90-92). Contrastingly, the inheritance of the APOE ε3 allele has no risk of developing 

AD while the APOE ε2 offers some protection. Although genetic studies support that APOE is the 

largest modifier of an individual’s risk of developing LOAD, half of the individuals with LOAD do 

not possess an APOE ε4 allele indicating that other loci influence LOAD development. Innovations 

in genomic sequencing technology have allowed for the identification of other genetic 

polymorphisms linked to AD through genome wide association studies (GWAS). Such genes 

include genes that encode for proteins involved in the dysregulation of microglia (CD33, 

SHARPIN, TREM2), α-secretase (ADAM10, ADAM17, TSPAN14), endocytosis (BIN1, PICALM, 

WDR81), the lysosome (CTSB, CTSH, IDUA, TMEM106B), and sorting receptors (SORL1, 

SORT1, SNX1) (93; 94). More genes are expected to be revealed as genomic studies continue 

to expand and grow in sample size and ethnic background. 

1.7 Risk factors for AD  

 1.7.1 Age: The most significant contributor to AD risk is age (2; 74). This is evident by the 

steep increases in the percentage of people with AD with advancing age. For example, five 

percent of individuals between 65 and 74 years old have AD which then increases to 13.1 % for 

those aged from 75 to 84 (95). By the time one reaches 85, this number doubles, affecting 33.3% 

of this population range (95). It is worth highlighting again that these prevalence statistics are 

projected to steadily increase as the baby-boom generation continues to move throughout these 

age ranges (8; 95). Although age plays a major role in risk, AD is not a natural outcome of the 

aging process; in other words, simply reaching an older age is not adequate enough to trigger the 

onset of AD (96).  
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1.7.2 Sex: Approximately two-thirds of AD patients are women (97). While men have only 

a 1 in 10 chance of developing AD, women’s likelihood is twice as high, 1 in 5 (95). Although it 

has been speculated that women’s heightened risk of developing AD could be due to their longer 

lifespan, studies indicate that differences in several biological factors such as sex hormones, 

immune response, and metabolic regulation can modulate risk (98). One significant factor 

affecting risk is the sex hormone, estrogen. Estrogen receptors are distributed throughout the 

brain, regulating various physiological processes, some of which exert protection against AD 

pathology. Studies show that estrogen achieves this protective effect by stimulating the 

generation of vesicles containing APP from the Golgi network (99; 100). This mechanism then 

facilitates the transport of APP to the cell surface where, it either undergoes cleavage by α-

secretase, yielding the soluble and neuroprotective molecule, sAPPα, or is re-internalized through 

an endosomal/lysosomal degradation pathway (101-103). Both of which precludes the production 

of insoluble Aβ peptide (99-104). Additionally, estrogen has been shown to decrease the presence 

of hyperphosphorylated Tau and increase the presence of dephosphorylated of Tau (105). In the 

perimenopausal phase, however, which occurs 1-4 years prior to menopause, estrogen levels 

fluctuate significantly. This variability contributes to dysfunction in metabolic, inflammatory, and 

sensory-processing pathways associated with estrogen (106; 107). Consequently, the eventual 

loss of estrogen during menopause contributes to females’ susceptibility to AD (108; 109).  In 

contrast, men do not undergo an equivalent of perimenopause. Instead, they experience a 

gradual decline in testosterone (110). This gradual transition elucidates the age-related 

dysfunction in male hormonal pathways compared to those in females (110).  

1.8 Modifiable risk factors for AD 

1.8.1 Role of modifiable risk factors in AD: Although age and sex cannot be changed, 

some risk factors can be modified to reduce the risk of cognitive decline and dementia without 

relying on a cure or medicine (111). In fact, studies suggest that addressing modifiable risk factors 

may prevent or delay up to 40% of all dementia cases (112).  Notably, nearly a third of cases of 
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AD and other dementias in the United States are associated with at least one of eight modifiable 

risk factors: physical activity, smoking, depression, low education, diabetes, midlife obesity, 

midlife hypertension, and hearing loss (113). Of these, the greatest factors to AD risk have been 

shown to be midlife obesity, physical inactivity, and low educational attainment (113). 

Timing also holds significant importance in relation to modifiable risk factors in that the 

age in which these risk factors develop affects the impact on AD risk. For example, developing 

obesity, hypertension, and high cholesterol during midlife can elevate one’s risk of dementia in 

later stages of life (114-120). For example,  those between 40 and 79 years old lacking a number 

of modifiable risk factors (low education, hypertension, hearing loss, traumatic brain injury, alcohol 

or substance abuse, diabetes, smoking and depression) have been shown to exhibit cognitive 

performance akin to individuals 10-20 years younger with multiple modifiable risk factors (121). 

Conversely, the onset of obesity and hypertension in late life, after the age of 80, is associated 

with a reduced risk in dementia (122; 123).  Moreover, addressing modifiable risk factors during 

midlife was connected to decreased dementia risk, even among individuals with a heightened 

genetic predisposition to dementia (124). In essence, while genetic inheritance is unalterable, 

exerting an influence on cognitive function becomes feasible by avoiding modifiable risk factors.  

1.8.2 Cardiovascular health: The interdependence between brain health and 

cardiovascular health has been recognized for a considerable time. This connection is likely 

rooted in the fact that, despite accounting for just 2% of the body’s weight, the brain utilizes 

approximately 20% of the body’s oxygen and energy resources. In this context, a healthy heart is 

crucial for facilitating adequate blood supply to the brain, while healthy blood vessels ensure the 

delivery of oxygen and nutrient-rich blood to this vital organ. As a result of this intricate relationship 

between brain and cardiovascular health, many factors that increase the risk of cardiovascular 

disease are also associated with a higher risk of dementia (125). Notably, these factors 

encompass conditions such as hypertension and diabetes (114; 116; 118; 119). 
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 1.8.3 Smoking / physical activity / diet: Due to the close relationship between 

cardiovascular health and brain function, behaviors that impact the heart's well-being can also 

influence the brain, thereby affecting the risk of developing dementia. Not surprisingly, smoking 

has been associated with an elevated risk of dementia (126), whereas engaging in physical 

activity has been shown to decrease risk (127-136). Now despite extensive exploration into 

various forms of physical activity, determining the specific types, frequencies, and durations that 

yield the most significant reduction in risk remains an ongoing challenge. In addition to physical 

activity, emerging evidence suggest that adhering to a heart-healthy diet could decrease one’s 

risk of dementia (137-142). A heart-healthy diet places emphasis on fruits, vegetables, whole 

grains, fish, poultry, nuts, legumes, and beneficial fats such as olive oil while simultaneously 

limiting the intake of saturated fats, red meat, and sugar (2).  

1.9 Social determinants of health 

Historically, the healthcare sector bore the primary responsibility for addressing health and 

disease concerns, as it was widely recognized for its role in delivering care to those most in need 

(143). However, it's increasingly evident that medical care alone is not sufficient to improve health 

outcome or mitigate health disparities (144). In fact, research suggests that differences in life 

expectancy and disease prevalence among various demographics are largely shaped by the 

conditions in which individuals are raised, live, work, and age (143). These nonmedical factors,   

encompassing socioeconomic status, educational attainment, job opportunities, social support 

networks, healthcare accessibility, and the quality of the physical environment, profoundly 

influence health outcomes and overall well-being, and are collectively referred to, today, as social 

determinants of health (143). Some of these factors that most notably affect disease risk include 

education, employment, income, environment, discrimination and exposure to stress.  

1.9.1. Education: Education can improve health by increasing health knowledge and 

healthy behaviors (144). In support of this, higher educational attainment has been linked to 

engaging in health-promoting behaviors and adopting health-related recommendations earlier 
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(145; 146). This could partially be attributed to literacy (147; 148). It is believed that literacy 

enables individuals with higher education levels to make more informed health-related decisions 

for themselves and their families (147; 148). Education also holds significance in health by 

influencing employment opportunities (144). Higher levels of education are associated with 

reduced unemployment rates, a factor strongly correlated with poorer health and increased 

mortality (149). Similarly, individuals with higher educational attainment are more inclined to hold 

positions offering healthier physical working environments, superior health-related benefits, and 

higher compensation (150; 151). Lastly, education may also affect health by influencing social 

and psychological factors where higher education levels have been correlated with heightened 

perceived personal control, a factor frequently associated with improved health outcomes and 

health-related behaviors (145; 147). In summary, higher levels of education are associated with 

improved health outcomes because education equips individuals with the knowledge and ability 

to make healthier choices, to obtain secure employment conducive to better access to healthcare, 

and to exercise greater personal control over their health. 

1.9.2. Employment: The physical aspects of work can have clear impacts on health (144). 

For instance, occupations involving repetitive movements and/or high physical demands increase 

the likelihood of workers experiencing muscular or skeletal injuries and disorders (152). Similarly, 

individuals with sedentary jobs who are physically inactive face elevated risks of obesity and 

chronic diseases such as diabetes and heart disease (153). Besides physical factors, the 

psychosocial aspects of work also have an impact on health (144). Psychosocial factors refer to 

the circumstances wherein a person’s social environment, cultural norms, interpersonal 

relationships, and overall well-being shapes their mindset and behavior. For instance, employees 

in roles marked by high demands coupled with low control or perceived imbalance of efforts and 

rewards face an increased risk of experiencing poor health (154; 155). Those who are socially 

disadvantaged frequently contend with lower wages or income and are typically the ones most 

likely to confront these health-harming physical and psychosocial conditions in their workplaces 
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(156). In conclusion, both the physical and psychosocial aspects of work play crucial roles in 

determining individuals' health outcomes, with socially disadvantaged groups often bearing a 

disproportionate burden of these adverse conditions, further exacerbating health disparities. 

Work can also affect health through the opportunities and resources it provides (144). In 

general, for most Americans, earnings from employment constitute their primary economic 

resource. Consequently, health can be influenced by employment-related benefits such as 

medical insurance, paid leave, flexible scheduling, workplace wellness initiatives, resources for 

child and elder care, and retirement benefits (144). Positions with higher salaries are likelier to 

provide benefits, increased financial security, and the means to afford healthier living 

environments (144). On the flip side, those categorized as the working poor generally earn 

inadequate income to meet basic needs and are less likely to have access to health-related 

benefits (157; 158). In summary, the opportunities and resources available through employment 

significantly impact health outcomes. While higher salaries often come with benefits and financial 

security conducive to healthier living, those who are poor often face challenges accessing basic 

necessities and health-related benefits. This underscores how the socioeconomic impacts of 

employment can contribute to disparities in health. 

1.9.3 Environment: There are many characteristics of one’s environment and 

neighborhood that can  influence health (144). Regarding physical characteristics, the quality of 

air and water, along with the accessibility of nutritious foods and safe exercise spaces, can 

collectively influence an individual's health (159-165). For example, exposure to pollutants, unsafe 

living conditions, and limited access to green spaces can contribute to respiratory problems, 

injuries, and chronic diseases such as cardiovascular diseases. In addition to the physical 

characteristics, the availability and quality of the services a neighborhood offers could also 

influence health. Services such as schools, transportation, medical care and employment 

resources can influence health by shaping individuals’ opportunities to earn a living (166-168). 

Interestingly, neighborhood features can be linked to health even when considering individuals 
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within the same neighborhood (169). Remarkably, some researchers have found poorer health 

among disadvantaged individuals living in relatively advantaged neighborhoods (170-172). This 

could be largely due to the adverse psychological effects of feeling worse off than one’s neighbors, 

the perception of having weaker social ties to other residents in the neighborhood, or even having 

increased exposure to discrimination (173). In conclusion, the environment, or neighborhood, in 

which one lives plays a significant role in shaping an individual's health outcomes. Beyond the 

physical aspects such as air and water quality and access to nutritious foods and safe exercise 

spaces, the availability and quality of neighborhood services also exert considerable influence. 

Surprisingly, even within the same neighborhood, disparities in health outcomes can persist, 

highlighting the complex interplay of social and psychological factors. As we continue to explore 

these dynamics, it becomes increasingly clear that addressing health disparities requires a 

multifaceted approach that considers not only physical environments but also social and 

economic factors. 

1.9.4 Stress: Coping with daily challenges can be particularly taxing, especially when an 

individual's financial and social resources are restricted (144). Recent evidence suggests that, in 

fact, chronic stress connects many social determinants of health and likely plays a causal role in 

their effects on health (174; 175). Stressful experiences, such as those associated with social 

disadvantage, like economic hardship and racial discrimination, triggers the release of cortisol, 

cytokines, and other substances that can damage immune defenses, vital organs, and physiologic 

systems  (174; 176-179). Subsequently, this harm contributes to the accelerated onset or 

advancement of chronic conditions, such as cardiovascular disease, and the physical toll from 

chronic stress may hasten the aging process (175; 180-182). In fact, evidence suggest that the 

accumulated strain from repeatedly attempting to cope with daily challenges, especially with 

limited resources, may actually cause more physiological damage than a single significantly 

stressful event would (180). In conclusion, the intricate relationship between chronic stress and 

health emphasizes the urgent need for comprehensive interventions that address the systemic 
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inequities contributing to daily challenges. This highlights the increased significance of allocating 

resources and establishing support systems to address health disparities. 

1.9.5 Discrimination and social exclusion: In the United States and many other societies, 

race or ethnic group is another important social factor that influences health, primarily because of 

racism (144). It’s important to note that the associations between discrimination and health are 

not uniquely observed in the United States and has been also observed in other countries (178). 

Racism encompasses not only explicit, intentional acts and beliefs of discrimination, but also 

entrenched societal systems that, even without explicit discriminatory intent, systematically limit 

the opportunities and resources available to certain individuals based on their race or ethnic 

background (144). Racial segregation in residential areas is a critical mechanism by which racism 

generates and sustains social disadvantage (168; 183). African American and Hispanic 

individuals are more prone to living in underprivileged neighborhoods characterized by poorly 

equipped schools, leading to lower educational achievement and quality, which can result in 

health consequences through the pathways outlined earlier (184). Racism can also have a more 

direct impact on health by triggering chronic stress. Persistent stress resulting from encounters 

with racial or ethnic bias, including subtle instances lacking overt prejudicial intent, can potentially 

contribute to health inequalities based on race or ethnicity, regardless of one's neighborhood, 

income, or educational attainment (178; 185). In fact, research suggests that African Americans 

and Hispanic Americans with more education or income are exposed to more discrimination than 

those who are disadvantaged (144). Acknowledging the widespread impact of racial or ethnic bias 

on health outcomes underscores the imperative of addressing systemic inequities to achieve 

genuine health equity. 

1.9.6 Final conclusions: Ultimately, insufficient and unequal living conditions arise from 

flawed social policies, unfair economic structures, and ineffective governance (143). As a result, 

tackling the social determinants of health necessitates a holistic approach involving government 

at various levels, civil society, local communities, businesses, international organizations, and 
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global initiatives (143). Consequently, policies and programs designed to enhance health 

outcomes must encompass all sectors of society, rather than solely concentrating on healthcare 

(143). Collaboration among these sectors is crucial for implementing policies and programs that 

address the root causes of health disparities, especially across racial and ethnic background. 

1.10 Therapeutic attempts to slow the progression of AD 

Despite decades of research, we still have no disease modifying treatment and no cure. 

Although the clinical symptoms of AD are frequently diagnosed in older age, the degenerative 

process of AD can begin many years prior to disease onset where individuals can remain 

cognitively normal for 10-20 years despite accumulating pathology (Figure 1.4) (186-188). Given 

this, AD has remained an elusive disease to treat and cure. Current treatments available mainly 

alleviate the cognitive deficits associated with AD. Cholinesterase inhibitors, such as galantamine, 

rivastigmine, donepezil, and memantine, have remained routine treatment options for the 

symptomatic relief of mild to moderate AD. Drugs such as these were first implemented to combat 

the theory that the loss of acetylcholine (ACh) neurons is to blame for the cognitive deficits 

observed in AD (189). Similarly, declines in nicotinic ACh receptors and M2 muscarinic ACh 

receptors have been shown to be responsible for AD progression (190; 191). Overall, these 

treatments have remained ineffective in removing the root of AD pathogenesis, merely targeting 

symptoms so as to only temporarily improve a patient’s cognitive outcome. Consequently, it has 

become a critical goal of AD research to develop drugs that target the underlying mechanisms 

and processes involved in the progression of AD. Such therapies would aim to modify the course 

of the disease by reducing the build-up of Aβ plaques and Tau tangles, which are hallmarks of 

AD pathology. For this reason, immunotherapeutic strategies such as Aβ-directed immunotherapy 

dominated the AD research for its potential to directly target the plaques associated with disease. 

Passive immunotherapies, such as bapineuzumab and ALZ 801, relied on the direct injection of 

monoclonal antibodies into the patient’s body, utilizing the immune system to increase clearance 

of pathologic Aβ fragments (192). Remarkably, recent amyloid immunotherapy treatments 
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lacanemab and donanemab were found to not only reduce amyloid burden in the brain but also 

moderately slow cognitive decline (193; 194). Despite this, however, they were unable to reverse 

the neuronal loss and cognitive impairments observed in advanced stages of AD (193-196). This 

failure has been attributed to the initial treatment being administered at too advanced stage of AD 

in which neuronal damage is severe (195; 197; 198). Thus, it has become a prioritization of AD 

research to shift towards the early detection and or prevention of AD (52).   

1.11 Cerebrospinal fluid (CSF) as a gateway to neuropathological changes in AD 

CSF has become a promising source of biomarkers for the early detection and monitoring 

of AD in living patients. CSF is made by highly vascularized tissue within the ventricles of the 

brain called choroid plexus (199). Once created, CSF flows from the lateral ventricles to the third 

and fourth ventricles, and then into the subarachnoid space and spinal cord (Figure 1.6A). This  

direct contact with the brain gives CSF, removed via lumbar puncture from the spinal cord, the 

ability to reflect neuropathological changes in the brain of living patients (200). More specifically, 

decreases in Aβ and elevations in Tau in the CSF have been shown to distinguish healthy controls 

from AD (201) (Figure 1.6B). Decreases in Aβ in the CSF is thought to be the result of increases 

in accumulations of Aβ into plaques in the brain which have been largely found to be the result of 

the impaired clearance of Aβ out of neurons during disease (202). Interestingly, only a fraction of 

Tau found in the CSF is due to the passive release of Tau from dying cells (203). Markedly, 

increasing levels of Tau in the CSF are predominantly the result of the enhanced secretion or 

release of Tau from the intracellular regions of neurons into the extracellular space. In fact, studies 

have shown that Tau hyperphosphorylation may be critical for its secretion (Figure 1.7). For 

example. studies have shown that Tau can be secreted at the synaptic terminal during normal 

synaptic activity  (204; 205). Tau hyperphosphorylation, however, can enhance its secretion at 

the synaptic terminal as hyperphosphorylated Tau has been shown to be preferentially secreted 

during both ectosome shedding and exosome fusion (Figure 1.7B & C)  (204; 206). Moreover, 

unlike normal physiological Tau, hyperphosphorylated Tau can also be secreted directly across  
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Figure 1.6. Cerebrospinal fluid (CSF) creation and flow alongside sample immunoassay 

measurements of Amyloid beta1-42 (Aβ42) and Tau from 105 controls and 98 AD cases. (A) 

CSF is created by and secreted from highly vascularized tissue called the choroid plexus located 

within each ventricle of the brain. The CSF flows from the lateral ventricles to the the third and 

fourth ventricles and then into the subarachnoid space and spinal cord. (B) Aβ42 and total Tau 

levels as measured by Roche Elecsys Platform between 105 control and 98 AD cases. T-test 

determined significance and Aβ42 values that reached saturation (1700 pg/mL) were excluded.  
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Figure 1.7. Methods by which pathological Tau can be secreted or released into 

extracellular space. (A) Tau can be actively secreted through the plasma membrane. (B) Tau 

can be released by ectosome shedding from the plasma membrane. (C) Tau can be packed into 

exosomes by inward budding and become secreted by of multivesicular bodies along the plasma 

membrane. Modified from Brunello, C. A, Merezhko, M., Uronen, R., and Huttunen, H. J. (2019) 

Mechanisms of secretion and spreading of pathological tau protein. Cellular and Molecular Life 

Sciences. https://doi.org/10.1007/s00018-019-03349-1 
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the plasma membrane (Figure 1.7A) (207; 208). While the exact mechanism by which Tau is 

secreted into the CSF is unclear, it remains evident that the CSF of AD patients displays changes 

in Tau composition and that these changes, particularly that of phosphorylated Tau species, 

significantly correlate with neocortical NFT pathology in the brain (209). Together, these changes 

observed in CSF biomarkers, Aβ and Tau, give physicians the ability to determine individuals at 

risk of developing AD and researchers the ability to use CSF as a tool for assessing biological 

processes reflective of early disease stages (210).   

1.12 African Americans: the most at-risk racial group for AD 

African Americans are almost twice as likely to have AD compared to Caucasians (211-

213). Current evidence suggests that this difference in risk could be explained by a multitude of 

factors including genetic ancestry and disparities in health, socioeconomic and environmental 

conditions (214-217). For example, GWAS show that the ABCA7 gene has stronger associations 

with AD risk in individuals with African ancestry than in individuals with European ancestry       

(216; 217). ABCA7 also has a stronger effect size in African Americans than even the strongest 

genetic risk factor gene for AD, the APOE ε4 allele (216). Yet, despite the APOE ε4 allele being 

more prevalent amongst African Americans, APOE ε4 confers a lower risk for AD compared to 

Caucasians (76). Beyond genetic ancestry, chronic health conditions associated with higher risk 

for dementia, such as cardiovascular disease and diabetes, also disproportionally affect African 

Americans (214; 215). Furthermore, societal and environmental disparities that disproportionately 

affect African Americans, including lower levels and quality of education, higher rates of poverty, 

and greater exposure to adversity and discrimination, increase risk for both chronic diseases and 

dementia (214; 215). This highlights how racial differences in AD risk cannot be explained by 

genetics alone (214). Currently there is a gap in knowledge of the racial differences in underlying 

pathophysiology related to AD. Therefore, a better understanding of these mechanisms can help 

move towards a more precise definition of AD across diverse racial, ethnic, and genetic 
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backgrounds. An unbiased analysis into the CSF proteome of African Americans could provide 

insight into additional biomarkers reflecting underlying brain pathology that differ by race in AD.   

1.13 The utility of mass spectrometry (MS)-based proteomics in identifying novel protein 

signatures in AD 

1.13.1 Strategies for MS-based quantification of proteomes: Proteomic analyses of AD 

brain have predominantly utilized "bottom-up" mass spectrometry (MS) for protein identification 

and quantification. This workflow generally involved enzymatic digestion of proteins with trypsin, 

followed by protein separation via liquid chromatography (LC), and subsequent measurement of 

protein peptides using tandem mass spectrometry (MS/MS) (218). The first stage of measurement  

(MS1) involves the selection of several precursor peptides for fragmentation. The fragmented 

peptides are then identified through spectral matching and quantified using well-established 

statistical and informatic methods during the second stage of tandem MS (219-224). In summary, 

the “bottom up” approach to MS has become a cornerstone in the comprehensive analysis of 

proteomic profiles in AD research. Since then, significant advancements have been made to 

enhance protein identification and quantification, resulting in more detailed proteomic profiles. 

Over the years technological strategies have further improved this workflow by enhancing 

the quantification and depth of proteomic datasets. Initially, label-free quantification (LFQ) was 

the preferred technique. Using this technique, each sample is individually prepared and analyzed 

using LC-MS/MS. Since each sample is analyzed individually, a limitation of this technique is that 

the peptides selected and analyzed can vary significantly between samples. This is due to the 

inherent nature of MS1 where peptide selection is biased toward the most intense signals (225). 

When trying to quantify proteins that are lost in a disease, this means that a protein quantified in 

a healthy state may be completely absent in the disease state and therefore not quantified. This 

results in a well-documented "missing value" problem, ultimately reducing the number of proteins 

retained in an LFQ dataset (225-228). Multiplex isobaric peptide labeling with tandem mass tags 

(TMTs) helps address the issue of missing values by allowing the simultaneous analysis of 
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multiple samples within a single LC-MS/MS run, currently accommodating up to 16 samples per 

run (229; 230). When combined with off-line fractionation, this strategy can quantify thousands of 

additional proteins compared to LFQ, which has enabled remarkably deep proteomic analysis of 

AD brain tissue (227; 228; 231; 232). A study that came out of the Seyfried Lab, Johnson et al., 

demonstrated this advantage in one of the first TMT-MS network proteome studies of the AD 

brain. This study quantified 6,533 proteins across 47 brain tissues compared to just 2,736 proteins 

quantified by LFQ-MS using the same samples (227). Despite these advancements in 

quantification, TMT-MS may still produce missing values across multiple batches which occurs 

when analyzing large numbers of samples (233). Targeted approaches such as selected reaction 

monitoring (SRM) can serve as a mitigate for the limitation of “missing values” by utilizing its ability 

to identify nearly all detectable peptides within a selected mass range. This allows for 

comprehensive and accurate quantification of the identified proteins in the sample with minimal 

to no missing values. This method is often used in research settings for more robust quantification 

of pre-specified individual peptides (234). Utilizing a targeted approach like this can be useful in 

validating discovery-driven data that results from tandem MS, as it requires specifying a target 

beforehand. In conclusion, the evolution of technological strategies, from LFQ to multiplex isobaric 

peptide labeling and targeted approaches like SRM, has significantly enhanced proteomic 

workflows, enabling comprehensive and accurate quantification of proteins.  

1.13.2 Fundamentals of network construction and module identification: Unbiased 

proteomics of human brain coupled with network analysis has emerged as a valuable approach 

for organizing complex proteomic data into groups or “modules” of co-expressed proteins that 

reflect various biological functions (227; 235-237). Co-expression network analysis operates on 

the premise that proteins react to biological stimuli as a "system," altering expression collectively 

within groups or "modules" of a network. Effectively organizing proteomic datasets into the 

described co-expression protein modules requires a thoroughly validated statistical algorithm. 

One such extensively validated algorithm, commonly employed in transcriptomic studies, is 
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Weighted Gene Co-expression Network Analysis (WGCNA) (235; 238-241). This algorithm 

applies graph theory principles to detect modules of proteins exhibiting highly correlated 

abundance levels across samples. Through evaluating the connectivity of each protein within a 

module, researchers can identify module-specific hubs or proteins that play central roles in 

module function. Typically, the most centrally connected proteins in a module serve as key drivers 

(238; 240; 242). Module-level abundance profiles can then be correlated with various phenotypic 

traits of the disease, such as amyloid burden, tangle deposition, and cognitive decline (243). 

These module-trait correlations reveal protein groups with strong positive or inverse relationships 

to the disease. In addition to module-trait correlations, module enrichment profiles can also 

provide important insights into proteomic composition. This analysis seeks to identify the over-

representation of module proteins linked to specific cell types, biological functions, or genetic risk 

factors. It accomplishes this by cross-referencing the proteins within a module with well-validated 

databases. For instance, cell type enrichment is usually conducted by comparing module proteins 

with marker lists from established reference proteomes or transcriptomes of purified murine brain 

cells (218; 227; 228). In addition to cell enrichment lists, numerous resources are available for 

pathway and ontology analysis. Go Elite is a versatile analytical tool that enables users to 

incorporate both reference and custom databases to investigate ontological over-representation 

at biological, molecular, and organellar levels (244). Altogether, network analysis offers the ability 

to resolve the complex nature of disease by utilizing mathematical and computational tenets of 

system biology which results in the formation of communities (modules) of proteins, which can be 

representative of phenotypes that arise out of the molecular pathophysiology of disease. 

1.13.3 Why prioritize the study of the proteome over the genome: Proteins are the ideal 

markers for understanding diseases such as AD because they are most proximal to the 

phenotypic changes seen in AD. Protein-level analysis offers the advantage of revealing disease-

related changes that are not easily detectable in transcriptomic networks. Notably, only 30-40% 

of the modules in the AD brain network proteome overlap with those in the network transcriptome. 
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(235; 245). Furthermore, despite the fact that differential protein expression within these 

overlapping modules has been found to exhibit a reasonable degree of concordance, with a 

correlation coefficient of approximately 0.5, it has been repeatedly observed that the targets within 

the most concordant modules across transcriptomics and proteomics exhibit highly discordant 

changes at the protein and RNA levels (235; 245; 246). These discrepancies highlight the 

complexity and non-linear relationship between the transcriptome and proteome, stressing the 

importance of the numerous events that occur from the initial transcription of DNA to the point 

when a protein performs its function. This also aligns with the observation that only half of the 

disease-related variance in the AD network proteome is mirrored in transcriptome-level gene 

expression, while the remaining 50% results from transcriptional and post-translational effects 

(246). These findings align with previous comparisons of protein and mRNA data (237), and 

strongly supports the value of protein profiling in AD research, highlighting the unique aspects of 

proteomic changes that can only be achieved through protein analysis. 

1.13.4 Core modules of the AD brain network proteome: Nearly a dozen comprehensive 

network-based analyses of the AD proteome in the human brain have led to the identification of 

six highly conserved modules, each with reproducible associations to specific cell types, 

organelles, and biological functions (217; 221; 225; 226; 235-241). Several modules, such as 

inflammatory, myelination, and RNA binding/splicing, consistently showed increases in the AD 

brain network proteome, while others, like synaptic, mitochondrial, and cytoskeleton, displayed 

consistent decreases. Notably, some of these modules (inflammatory, myelination, synaptic, and 

mitochondrial) appear to be driven by cell-type-specific perturbations (226), while those lacking 

such enrichment (RNA binding/splicing and cytoskeleton) represented underlying biochemical 

changes associated with the disease. The complexity of the modules preserved in AD confirms 

the multifactorial nature of the condition, which has led to inherent challenges in understanding 

AD and, consequently, in developing effective interventions. 
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1.13.5 The CSF proteome as a reflection of AD brain changes: The close proximity of CSF 

to the brain, along with its ability to reflect changes in amyloid burden and neurodegeneration 

through markers like Aβ and Tau, provides a compelling rationale for integrating the CSF 

proteome with the brain proteome. Furthermore, the reflection of other AD pathophysiologies in 

the CSF would provide additional avenues for detecting and monitoring treatment responses, 

especially at earlier stages of disease. Our first attempt to validate this interaction via proteomics 

was based on findings by Johnson et al., which identified that approximately 20 proteins from the 

highly conserved microglial module showed significant elevations in AD CSF (237). This provided 

the initial evidence necessary to explore this interaction more deeply. In another large-scale study 

by the Seyfried lab, Higginbotham et al. used a similar integrative proteomic approach to examine 

the statistical overlap between the entire AD brain network proteome and differentially expressed 

proteins in the AD CSF proteome (245). Notably, fifteen of the 44 brain modules identified in this 

study showed a strong overlap with the markers differentially expressed in AD CSF. Collectively, 

those 15 modules from the brain were being represent by 300 proteins that were significantly 

altered in AD CSF compared to controls. Based on their corresponding brain modules, these 

approximately 300 CSF AD targets were then segregated into five biomarker panels that 

represented a wide range of brain pathophysiology. These panels included synaptic transmission, 

vascular biology, myelination, glial-mediated inflammation, and energy metabolism. The panels 

highlighting brain changes in AD that could potentially be monitored through CSF. This 

comprehensive approach highlights the potential of CSF proteomics to uncover diverse aspects 

of AD pathology and to enhance the precision of biomarker-based diagnosis and therapeutic 

monitoring. 

1.14 Summary 

Evidence of differences in AD biomarkers between African Americans and Caucasians 

exists yet the underrepresentation of African Americans in research means data to support such 

alterations is lacking. This demonstrates a greater need for broad investigations into the 



 57 

underlying biological differences of AD in African Americans as a means to identify AD biomarkers 

that are representative of and generalizable across diverse racial, ethnic, and genetic 

backgrounds. Including participants from diverse racial backgrounds ensures that research 

findings are more representative of the entire population and can be generalized to different racial 

and ethnic groups. Without this, there lies a risk of bias and limited applicability of research 

outcomes to specific populations. The following research will demonstrate how an integrated 

proteomic and network approach can be utilized to comprehensively define the proteomic profiles 

of AD within individuals of African American or Caucasian background. We hypothesize that the 

biological pathways most relevant or impacted by changes in Tau burden will demonstrate varying 

expression levels in the CSF of African Americans and Caucasians with AD. Through a 

combination of unbiased system level and target approaches, I have been able to (i) directly 

characterize CSF within a large cohort of individuals (ii) gain insight into race-specific molecular 

signatures of AD and (iii) validate novel race-dependent signatures for AD pathogenesis using an 

independent mass spectrometry technique. In total, there is a significant gap in our knowledge of 

the racial differences underlying molecular mechanisms of AD biology. A better understanding of 

these mechanisms is critical to move the field towards clearer biological methodologies for the 

early detection of AD across a diverse population of people.  
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CHAPTER 2: 

MATERIALS AND METHODS 

 

 

This Materials and Methods was originally published in Molecular Neurodegeneration:  

Modeste, E.S., Ping, L., Watson, C.M. et al. Quantitative proteomics of cerebrospinal fluid from 
African Americans and Caucasians reveals shared and divergent changes in Alzheimer’s 
disease. Mol Neurodegeneration 18, 48 (2023). https://doi.org/10.1186/s13024-023-
00638-z 
 
 
 

A full list of tables can be accessed at the following link: 

https://molecularneurodegeneration.biomedcentral.com/articles/10.1186/s13024-023-00638-z 

  

https://doi.org/10.1186/s13024-023-00638-z
https://doi.org/10.1186/s13024-023-00638-z
https://molecularneurodegeneration.biomedcentral.com/articles/10.1186/s13024-023-00638-z
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2.1 CSF samples 

All cerebrospinal fluid (CSF) samples were collected as part of ongoing studies at Emory’s 

Goizueta Alzheimer’s Disease Research Center (ADRC) including participants in the ADRC 

Clinical Core, the Emory Healthy Brain Study, and the ADRC-affiliated Emory Cognitive 

Neurology Clinic. All participants provided informed consent under protocols approved by Emory 

University’s Institutional Review Board. Clinical diagnosis of AD as well as classification as 

cognitively normal controls was based on review of clinical history, neurological examination, 

detailed cognitive testing, and diagnostic studies including Magnetic Resonance Imaging and 

CSF AD biomarker testing. Diagnosis of AD was made by subspecialty certified Cognitive and 

Behavioral Neurologists with additional input from Neuropsychologists based on current NIA-AA 

criteria (247; 248). A consensus clinical diagnosis of controls was made without consideration of 

CSF biomarkers by a panel of experts at the Emory Goizueta ADRC. Criteria for assigning 

diagnosis are provided in the National Alzheimer Coordination Center coding guidelines, form D1, 

based on clinician judgment. The basis for this judgment includes many metrics, with controls 

considered to have normal cognition and normal behavior after reviewing all testing including 

Montreal Cognitive Assessment (MoCA), Clinical Dementia Rating (CDR) score, and detailed 

neuropsychological testing. Hence, control participants may have MoCA scores that are lower 

than traditional cut points for impairment on this screening test. CSF was collected by lumbar 

puncture and banked according to best practice guidelines outlined by the National Institute on 

Aging for Alzheimer's Disease Centers (https://alz.washington.edu/BiospecimenTaskForce.html), 

and identical pre-analytic steps were followed in all groups. Measurements of Amyloid-beta1-42 

(Aβ42), total Tau (tTau), and phosphorylated Tau181 (pTau181) was performed on the Roche 

Diagnostics Elecsys platform (249-251) using recommended protocols. In total, the cohort was 

comprised of 105 healthy controls and 98 AD. The racial background of each case was based 

upon self-identification. Of the 203 cases, 100 identified as Caucasian or White while 103 

identified as African American or Black. Case metadata can be found in Appendix Table 6.1. 

https://alz.washington.edu/BiospecimenTaskForce.html
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2.2 Protein digestion of CSF 

In order to sample the CSF proteome in an unbiased manner and given that we have 

previously shown that immunodepletion resulted in only a marginal improvement in proteomic 

coverage, the CSF samples were not immunodepleted prior to digestion (252; 253). First, 70 µL 

of CSF was transferred to 1 mL deep well plates for digestion with lysyl endopeptidase (LysC) 

and trypsin. The samples were then reduced and alkylated with 1.4 µL of 0.5 M tris-2(-

carboxyethyl)-phosphine (ThermoFisher) and 7 µL of 0.4 M chloroacetamide in a 90°C water bath 

for 10 min. The water bath was then turned off and allowed to cool to room temperature along 

with samples for 5 minutes. Following this, water bath sonication was performed for 5 min. The 

samples were then allowed to cool again to room temperature for 5 mins prior to adding urea. 

Then 78 µL of 8M urea buffer (8M urea, 10mM Tris, 100mM NaH2PO4, pH 8.5) and 3.5 µg of LysC 

(Wako), was added to each sample, resulting in a final urea concentration of 4M. The samples 

were then mixed well, gently spun down, and incubated overnight at 25oC for digestion with LysC. 

The following day, samples were diluted to 1M urea with a blend of 468 µL of 50 mM ammonium 

bicarbonate (254) and 7 µg of trypsin (ThermoFisher). The samples were subsequently incubated 

overnight at 25oC for digestion with trypsin. The next day, the digested peptides were acidified to 

a final concentration of 1% formic acid and 0.1% trifluoroacetic acid. This was immediately 

followed by desalting on 30 mg HLB columns (Waters) and then eluted with 1 mL of 50% 

acetonitrile (ACN) as previously described (228). To normalize protein quantification across 

batches, 100 µl was taken from all CSF samples and then combined to generate a pooled sample. 

This pooled sample was then divided into global internal standards (GIS) (255). All individual 

samples and the pooled standards were then dried using a speed vacuum (Labconco).  

2.3 Tandem mass tag labeling of CSF peptides 

All CSF samples were balanced for diagnosis, race, age, and sex (in that order) across 

16 batches using ARTS (automated randomization of multiple traits for study design) (256). Using 
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a 16-plex Tandem Mass Tag (TMT) pro kit (Thermo Fisher Scientific, A44520, Lot number: 

VH3111511), 13 channels of each batch were allocated to a CSF sample (127N, 127C, 128N, 

128C, 129N, 129C, 130N, 130C, 131N, 131C, 132N, 132C, 133N). The remaining 3 channels 

were occupied with a GIS pool (126), a standard biomarker negative pool (133C), and a standard 

biomarker positive pool sample (134N). Information regarding the origination of these pooled 

samples were reported previously (257). Appendix Table 6.2 provides the sample to batch 

arrangement. In preparation for labeling, each CSF peptide digest was resuspended in 75 µl of 

100 mM triethylammonium bicarbonate buffer meanwhile 5 mg of TMT reagent was dissolved into 

200 µl of ACN. Once both were in suspension, 15 µl of TMT reagent solution was subsequently 

added to the resuspended CSF peptide digest. After 1 hour, the reaction was quenched with 4 µl 

of 5% hydroxylamine (Thermo Fisher Scientific, 90115) for 15 min. Then, the peptide solutions 

were combined according to the batch arrangement. Finally, each TMT batch was desalted with 

60 mg HLB columns (Waters) and dried via speed vacuum (Labconco).  

2.4 High-pH peptide fractionation 

Dried samples were re-suspended in high pH loading buffer (0.07% vol/vol NH4OH, 

0.045% vol/vol FA, 2% vol/vol ACN) and loaded onto a Water’s BEH column (2.1 mm x 150 mm 

with 1.7 µm particles). A Vanquish UPLC system (ThermoFisher Scientific) was used to carry out 

the fractionation. Solvent A consisted of 0.0175% (vol/vol) NH4OH, 0.01125% (vol/vol) FA, and 

2% (vol/vol) ACN; solvent B consisted of 0.0175% (vol/vol) NH4OH, 0.01125% (vol/vol) FA, and 

90% (vol/vol) ACN. The sample elution was performed over a 25 min gradient with a flow rate of 

0.6 mL/min with a gradient from 0 to 50% solvent B. A total of 96 individual equal volume fractions 

were collected across the gradient. Fractions were concatenated to 48 fractions and dried to 

completeness using vacuum centrifugation. 

2.5 Mass spectrometry analysis and data acquisition 
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All samples (~1µg for each fraction) were loaded and eluted by an Easy-nLC 1200 

(Thermofisher Scientific) with an in-house packed 15 cm, 150 μm i.d. capillary column with 1.7 

μm CSH (Water’s) over a 35 min gradient. Mass spectrometry (MS) was performed with a high-

field asymmetric waveform ion mobility spectrometry (FAIMS) Pro front-end equipped Orbitrap 

Lumos (Thermo) in positive ion mode using data-dependent acquisition with 1 second top speed 

cycles for each FAIMS compensative voltage. Each cycle consisted of one full MS scan followed 

by as many MS/MS events that could fit within the given 1 second cycle time limit. MS scans were 

collected at a resolution of 120,000 (410-1600 m/z range, 4x10^5 AGC, 50 ms maximum ion 

injection time, FAIMS compensative voltage of -45 and -65). Only precursors with charge states 

between 2+ and 5+ were selected for MS/MS. All higher energy collision-induced dissociation 

MS/MS spectra were acquired at a resolution of 50,000 (0.7 m/z isolation width, 35% collision 

energy, 1×10^5 AGC target, 86 ms maximum ion time). Dynamic exclusion was set to exclude 

previously sequenced peaks for 30 seconds within a 10-ppm isolation window. 

2.6 Database search and protein quantification 

All raw files were analyzed using the Proteome Discoverer Suite (v.2.4.1.15, Thermo 

Fisher Scientific). MS/MS spectra were searched against the UniProtKB human proteome 

database (downloaded in 2019 with 20338 total sequences). The Sequest HT search engine was 

used to search the RAW files, with search parameters specified as follows: fully tryptic specificity, 

maximum of two missed cleavages, minimum peptide length of six, fixed modifications for TMTPro 

tags on lysine residues and peptide N-termini (+304. 304.2071 Da) and carbamidomethylation of 

cysteine residues (+57.02146 Da), variable modifications for oxidation of methionine residues 

(+15.99492 Da), serine, threonine and tyrosine phosphorylation (+79.966 Da) and deamidation of 

asparagine and glutamine (+0.984 Da), precursor mass tolerance of 10 ppm and a fragment mass 

tolerance of 0.05 Da. Percolator was used to filter peptide spectral matches and peptides to a 

false discovery rate (FDR) <1%. Following spectral assignment, peptides were assembled into 

proteins and were further filtered based on the combined probabilities of their constituent peptides 



 63 

to a final FDR of 1%. Peptides were grouped into proteins following strict parsimony principles. A 

complete TMT reporter ion abundance-based table output of assembled protein abundances 

without adjustments can be found at https://www.synapse.org/EmoryDiversityCSF.  

2.7 Adjustment for batch and other sources of variance 

Only proteins quantified in ≥ 50% of samples were included in subsequent analysis (n = 

1,840 proteins). Of the 1,840 proteins, 1,327 proteins were quantified across all samples. As 

previously reported (236; 237; 252; 258), batch correction was performed using a Tunable 

Approach for Median Polish of Ratio, (https://github.com/edammer/TAMPOR), an iterative 

median polish algorithm for removing technical variance across batch. Multidimensional scaling 

plots (MDS) were used to visualize batch contributions to variation before and after batch 

correction. Noticeably, prior to batch correction, cases within the same batch clustered together 

and batches ran consecutively tended to cluster more closely together (Figure 2.1A). Following 

batch correction using a median polish algorithm, the cases were no longer clustering by batch 

(Figure 2.1B). The data was then subjected to outlier removal using a robust principal component 

analysis method, PcaGrid (259). A scree plot graphing the eigenvalue against the principal 

component (PC) number was utilized to determine the number of PCs to include in the parameters 

(Figure 2.1C). Briefly, the parameters used for outlier detection were as follows: the desired 

number of principal components = 7, method = mean absolute deviation, and criterion for 

computing cutoff values = 0.99 (Figure 2.1D). This resulted in the detection and removal of 15 

outliers, resulting in a final n=189 samples. Bootstrap regression was then performed to remove 

for covariates such as age at collection and sex. Variance partition analysis was performed to 

confirm appropriate regression of these traits (Figure 2.1E & F). Since the variancePartition 

package does not allow missing values, proteins with missing quantifications were temporarily 

imputed using the impute.knn function of the impute R package. The final cleaned dataset after 

regression and log2 transformation can be found at 

https://molecularneurodegeneration.biomedcentral.com/articles/10.1186/s13024-023-00638-z. 

https://www.synapse.org/EmoryDiversityCSF
https://molecularneurodegeneration.biomedcentral.com/articles/10.1186/s13024-023-00638-z
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Figure 2.1: Batch correction, outlier removal and bootstrap regression. Multidimensional 

scaling plots (MDS) were used to illustrate batch contributions to variance before and after batch 

correction. In MDS plots, the distance a case is from one another is reflective of how similar or 

dissimilar a case is from the other. (A) Prior to batch correction, the samples clustered by batch 

(B) After batch correction, the samples no longer cluster by batch. (C)  After batch correction, a 

principal component (PC)-based outlier removal method was utilized to detect outliers. By 

graphing the eigenvalue of each component against the PC number, the elbow or bend in the 

graph, which in this case was 7, was indicative of the ideal number of components to include 

within the parameters. (D) With a criterion for computing cutoff values set to 0.99, the cutoffs for 

the detection of outliers for the orthogonal distance and score were 16.79257 and 4.654674 

respectively. This resulted in the detection of 15 outliers (b1.128N, b11.130C, b13.130N, 

b14.127N, b14.133N, b15.128C, b15.131N, b2.127C, b2.128C, b2.133N, b5.131C, b7.127C, 

b7.130N, b8.129N, b9.127C). B14.133N was such an extreme outlier because it was an empty 

channel.  (E) After outlier removal, the matrix underwent bootstrap regression to remove 

variations in the dataset that were due to age and sex. Variance partition plots were employed to 

illustrate the percent contribution of diagnosis, race, age, and sex to the variance of each protein. 

(F) Following bootstrap regression, variations explained by age and sex were removed. 
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2.8 Differential expression analysis 

One-way ANOVA followed by Tukey’s post hoc adjustment for multiple comparisons was 

performed on four groups (Control-Caucasian, Control-African American, AD-Caucasian, and AD-

African American) to identify differentially expressed proteins across diagnosis and within each 

race. Differentially expressed proteins for comparisons of interest (i.e., Control-Caucasian vs AD-

Caucasian and Control-African American vs AD-African American) were then presented as 

volcano plots using the ggplot2 package in R v4.1.2. A list of all comparisons computed with 

corresponding adjusted p-values is provided in Appendix Table 6.3. 

2.9 Weighted Gene Co-expression Network Analysis 

As previously published (235-237; 252), the blockwiseModules function from the WGCNA 

package in R was utilized to derive the weighted protein co-expression network. Briefly, the 

following parameters were used: soft threshold power beta = 3, deepSplit = 4, minimum module 

size = 5, merge cut height = 0.07, and a signed network with partitioning about medoids. Using 

the pairwise.wilcox.test R function with Bonferroni correction, a pairwise Wilcox test was 

performed to calculate pairwise comparisons between each group with corrections for multiple 

testing.  

2.10 Gene ontology and cell type enrichment analysis 

To characterize co-expressed protein module biology, gene ontology (GO) annotations 

were retrieved from the Bader Lab’s monthly updated .GMT formatted ontology lists 

downloaded July 5, 2022 (260). A Fisher’s exact test for enrichment was performed into each 

module’s protein membership using an in-house script 

(https://github.com/edammer/GOparallel). For cell type enrichment analysis, an in-house 

marker list was used as previously described (236). A Fisher’s exact test was performed for 

each module member list using the merged human cell type marker list to determine cell type 

enrichment. For brain-CSF module overlap a one-sided Fisher’s exact test to compare 

significance of module membership.   

https://github.com/edammer/GOparallel
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2.11 Selected reaction monitoring 

Selected reaction monitoring (SRM) assays were performed on 195 of the 203 cases to 

determine whether a separate targeted proteomic approach could replicate proteomic changes 

seen in TMT discovery proteomics. An attempt was made to include all 203 samples from 

discovery TMT for SRM analysis however, samples 52524, 51520, 52055, 48617, 48615, 48769, 

49537, 45707 had low remaining sample volume and had to be removed. Sample 62762 was 

later removed due to irregularities in retention time shifts. Peptide selection, sample preparation, 

peptide quantification, and data acquisition for the SRM assay was performed as previously 

described (257). Briefly, peptides were selected based on their robust detection and significant 

differential expression in previous CSF discovery proteomic projects for synthesis as heavy 

standards (237; 252). More specifically, the peptide had to i) have one or more spectral matches, 

ii) be significantly differentially abundant when evaluating AD versus Control cases, iii) and map 

to proteins that appeared in brain-based biological panels outlined in Higginbotham et al 2020 

(252) that differed in AD. Ultimately, this led to approximately 200 peptides being nominated for 

synthesis by Thermo Fisher Scientific (Thermo PEPotec SRM Peptide Libraries; Grade 2; crude 

as synthesized). In addition to the 195 clinical samples from before, two pools of CSF were utilized 

as AD biomarker positive and AD-biomarker negative quality controls (QC) standards (257). After 

the CSF samples were blinded and randomized, each sample (50 μL) was reduced, alkylated, 

denatured and then subjected to digestion as described (257). After digestion, the heavy labeled 

standards, 15uL per 50 μL of CSF, were added to each digested sample. Each digested sample 

then underwent acidified, desalted and dried under vacuum. Following this, the peptide targets 

were quantified using TSQ Altis Triple Quadrupole mass spectrometer as previously described 

(257). The resulting raw files were uploaded to Skyline-daily software (version 21.2.1.455) for 

peak integration and quantification by peptide ratios. Peptides were filtered by first assessing 

retention time reproducibility, then by matching light and heavy transitions, and finally by 

determining the peptide ratio precision using the coefficient of variation (CV) as described by 
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Watson et al 2023 (257). The technical CV of each peptide was calculated based on the peptide 

area ratio for the AD-positive and AD-negative QC pools (Appendix Table 6.4). CSF peptide 

targets with CVs ≤ 20% in at least one pooled standard were determined as peptides with high 

precision and were kept for subsequent analysis, leaving a total of 85 peptides that mapped to 58 

proteins. The total area ratio for each targeted peptide in each sample made up the final data 

matrix. Due to the nature of SRM in that each peptide is explicitly targeted, a value for each 

peptide is always assigned in each sample (down to and including the limit of detection) as 

previously published by our group (257). As a result, the total area ratio for each targeted peptide 

in each sample made up the final data matrix, leaving a matrix with no blank cells or missing 

values. In preparation for analysis, this matrix of peptide ratios was log2 transformed and true zero 

values were replaced after log2-transformation with the minimum value for that peptide minus 1. 

Bootstrap regression was then used to regress for age and sex (Appendix Table 6.5). Bicor was 

then utilized to calculate the correlation between SRM peptides and TMT-MS protein 

measurements (Appendix Table 6.6). In cases where multiple peptides mapped to one protein, 

the most correlated peptide was kept for further analysis (Appendix Table 6.7). One-way ANOVA 

analysis with Tukey adjustment was then utilized once again to examine pairwise interactions 

(Appendix Table 6.8) and receiver operating characteristic (ROC) curve analysis was performed 

as previously described (257) (Appendix Table 6.9). 
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CHAPTER 3: RESULTS 

 

 

These Results were originally published in Molecular Neurodegeneration:  

Modeste, E.S., Ping, L., Watson, C.M. et al. Quantitative proteomics of cerebrospinal fluid from 
African Americans and Caucasians reveals shared and divergent changes in Alzheimer’s 
disease. Mol Neurodegeneration 18, 48 (2023). https://doi.org/10.1186/s13024-023-
00638-z 
 
 
 
 

A full list of tables can be accessed at the following link: 

https://molecularneurodegeneration.biomedcentral.com/articles/10.1186/s13024-023-00638-z 

  

https://doi.org/10.1186/s13024-023-00638-z
https://doi.org/10.1186/s13024-023-00638-z
https://molecularneurodegeneration.biomedcentral.com/articles/10.1186/s13024-023-00638-z
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3.1 CSF cohort characteristics 

This study was comprised of two balanced groups of cerebrospinal fluid (CSF) samples 

from African American and Caucasian individuals, matched for age and sex with roughly equal 

numbers of control and Alzheimer disease (AD) cases (Table 3.1). This included 53 Caucasian 

controls, 52 African American controls, 47 AD Caucasians, and 51 AD African Americans. The 

majority were female and on average the controls (64.5 years) were slightly younger than AD (68 

years). Notably, there were no statistical differences between the ages of the African Americans 

and the Caucasians within diagnosis (control: p=0.8848, AD: p=0.9998). As expected, AD cases 

had lower Montreal Cognitive Assessment (MoCA) scores than controls, but there were no 

statistically significant differences between MoCA scores across race within controls and AD 

(control: p=0.7559, AD:p=0.2055). The AD cases also had lower Amyloid-beta (Aβ42) levels and 

elevated total Tau (tTau) and phosphorylated Tau181 (pTau181) levels. Notably, Aβ42 levels were 

significantly lower in African American Controls compared to Caucasian controls (p = 0.0021) but 

not different between African American AD and Caucasian AD. This may indicate potentially early 

changes in brain amyloid deposition or processing of APP in African American controls versus 

Caucasian controls. Notably, the distribution of APOE4 carriers did not differ significantly by race 

in the control population and so does not account for the pattern observed (Appendix Table 6.1). 

Conversely, tTau and pTau181 levels were significantly lower in African Americans with AD 

(tTau:p<0.0001, pTau181:p<0.0001) but not different between African American and Caucasian 

controls. Data on comorbid conditions, including whether or not the person had hypertension, 

diabetes, dyslipidemia, or cerebrovascular disease, is presented for all cases in Appendix Table 

6.1. Notably, none of the comorbid conditions was statistically overrepresented in either racial 

group. 
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Table 3.1. Cohort Characteristics 
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3.2: Discovery tandem mass spectrometry analysis of cerebrospinal fluid from African 

Americans and Caucasians reveals unique and shared changes in Alzheimer’s disease 

3.2.1 Correlation analysis uncovers a strong relationship between mass spectrometry and 

immunoassay measurements of Tau 

Following enzymatic digestion, tandem mass tag (TMT) labeling, and off-line fractionation, 

all samples were subjected to liquid chromatography mass spectrometry (MS) (Figure 3.1A). In 

total, TMT-MS proteomic analysis identified 34,330 peptides mapping to 2,941 protein groups 

across the 203 samples (16 total batches). To account for missing protein measurements across 

batches, we included only those proteins quantified in at least 50% of samples following outlier 

removal as previously described (227; 235-237; 252), resulting in the final quantification of 1,840 

proteins. Protein abundance was adjusted for batch and age and sex were regressed. As 

expected, Tau levels were significantly elevated in both African Americans and Caucasians with 

AD across both platforms compared to controls (Figure 3.1B and C). Consistent with the 

immunoassay measurements, TMT-MS Tau levels also showed significantly lower levels in 

African Americans with AD compared to Caucasians with AD (Figure 3.1C). Notably, protein 

levels of Tau (MAPT) by TMT-MS correlated strongly to independently measured tTau levels via 

immunoassay (r=0.83, p = 4.7e-47) (Figure 3.1D).  Thus, in this study, both platform measures 

of CSF Tau support a reduction of total Tau levels in African Americans with AD, consistent with 

previous findings (261; 262). 

3.2.2 Differential expression analysis of African American and Caucasian CSF proteome reveals 

unique and shared changes in AD 

Differential expression analysis was performed to identify changes in the CSF proteome 

by race in AD (Appendix Table 6.3). Consistent with previous proteomic analyses of AD CSF 

(237; 252; 263-265), there was a significant increase in Tau (MAPT), 14-3-3 proteins, (YWHAZ, 

YWHAG, and YWHAE), SMOC1, neurofilaments (NEFM and NEFL) and proteins involved in  
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Part A of this figure was created with BioRender.com 
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Figure 3.1: Schematic of experimental workflow and correlation between proteomic Tau 

and total Tau immunoassay measurements. (A) Schematic of experimental workflow for 

quantification of cerebrospinal fluid proteome. (B) Total Tau levels as measured by Roche 

Elecsys Platform between control (CT) and AD cases and stratified by self-identified race: 

Caucasian (Cau) or African American (AA) (C) Tau levels measured by mass spectrometry. One-

way ANOVA with Tukey post-hoc correction determined pairwise relationships (D) Correlation of 

Tau levels by TMT-MS (x-axis) to paired immunoassay total Tau levels (y-axis). Biweight 

midcorrelation coefficient (bicor) with associated p-value is shown. Only 179 cases were included 

in the linear regression analysis because of sample outlier removal and missing values in the 

TMT-MS. 
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glucose metabolism in both African Americans and Caucasians with AD compared with race 

matched controls (Figure 3.2A & B). However, Caucasians with AD exhibited a bias towards 

proteins that were increased in AD, where the number of differentially expressed proteins (DEPs) 

was nearly double (n=183 proteins) the number of decreased DEPs in AD (n=74 proteins) (Figure 

3.2A). In contrast, in African Americans, the number of increased and decreased DEPs was more 

balanced (151 increased proteins vs. 162 decreased proteins) (Figure 3.2B). A Venn diagram 

illustrates the overlap of DEPs from African Americans and Caucasians with AD (Figure 3.2C), 

with the majority of proteins (n=168 proteins) differentially expressed in both races. Furthermore, 

a correlation analysis of both shared and unique DEPs showed overall high agreement in direction 

of change (bicor=0.887, p=2.47e-136, Figure 3.2D). However, there were some exceptions 

including SLIT1 and VSTM2A, which were significantly increased in Caucasians, but decreased 

in African Americans with AD. Both proteins are predominantly enriched in neuronal-cell types 

(266; 267). Thus, despite the differences in the number of significant DEPs in African Americans 

compared to Caucasians with AD, the direction of change with disease remains largely similar 

across both races. 

3.2.3 Network analysis of the CSF proteome reveals modules related to pathways and brain cell-

types  

Co-expression network analysis of the AD brain proteome organizes proteins into modules 

related to molecular pathways, organelles, and cell types impacted by AD pathology (227; 235-

237). Moreover, integration of the human AD brain and CSF proteome revealed that 

approximately 70% of the CSF proteome overlapped with the brain proteome (252). While 

proteomic networks in AD brain have been examined, network changes in the AD CSF proteome, 

including those associated with race and AD biomarkers are less well understood. Thus, we 

applied Weighted Gene Co-expression Network Analysis (WGCNA) to define trends in protein co-

expression across 1840 CSF proteins in all individuals. These parameters identified 14 modules  
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Figure 3.2. Differential expression of Caucasian and African American CSF proteomes in 

AD. Volcano plot displaying the log2 fold change (FC) (x-axis) against one-way ANOVA with 

Tukey correction derived -log10 p-value (y-axis) for all proteins (n=1840) comparing AD versus 

Controls for Caucasians (A) and African Americans (B). Cutoffs were determined by significant 

differential expression (p<0.05) between control (CT) and AD cases. Proteins with significantly 

decreased levels in AD are shown in blue while proteins with significantly increased levels in 

disease were indicated in red. Select proteins were denoted and labeled by whether they were 

differentially expressed in both proteomes (yellow), in only the Caucasian proteome (green), or in 

only the African American proteome (purple). (C) Venn diagram illustrating the number of 

differentially expressed proteins (DEPs) that were uniquely changed in one proteome (green or 

purple) or changed in both proteomes (yellow) (D) The correlation between the fold change of all 

DEPs (n=402) across the African American proteome (x-axis) and the Caucasian proteome (y-

axis) were strongly correlated (bicor=0.887, p=2.47e-136), regardless of whether the DEP was 

significant in one (green or purple) or both proteomes (yellow).  
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(M), ranked by size, ranging from the largest M1, with 370 proteins to the smallest, M14, with 16 

proteins (Figure 3.3A). Many of these modules were significantly enriched for brain-specific cell 

types (Figure 3.3B) as well as established brain gene ontologies (GO), cellular functions and/or 

organelles (Figure 3.3C). The three largest modules were associated with categories of 

“Postsynaptic Membrane” (M1), “Complement Activation” (M2), and “Extracellular Matrix” (M3) 

whereas M5 represented “Lysosome / Catabolism” and M6 “Gluconeogenesis”. Other modules 

included those with GO terms linked to “Cell Morphogenesis” (M4), “Cell Redox / Proteasome” 

(M7), “Protein Polyubiquitination” (M8), “Angiogenesis / Cell Migration” (M9), “Synapse Assembly” 

(M10), Myofibril Assembly (M11), “Actin Cytoskeleton” (M12), “Kinase Signaling / Activity” (M13), 

and “Carbohydrate Metabolism” (M14).    

Protein-based network analysis in AD brain tissue has shown that the cellular composition 

represents a major source of biological variance and that many of the network modules are 

enriched in proteins that are expressed by specific brain cell types (236; 237). To determine if a 

similar relationship exists with protein-based networks in CSF, we evaluated the overlap of 

proteins in each module with brain cell-type specific makers (Figure 3.3B), generated previously 

from cultured or acute isolated neurons, oligodendrocytes, astrocytes, endothelial, and microglia 

from brain (266; 267). The largest module, M1, was enriched with neuron/synaptic proteins (i.e., 

NPTX1, NPTXR, SCG2, VGF, NRN1, and L1CAM) and to a lesser degree oligodendrocyte 

proteins (i.e., IGSF8, VCAN, APLP1). Neuronal loss or the active secretion of neuronal proteins 

into the extracellular space could account for the presence of neuronal proteins in the CSF.  The 

M4 module was also enriched for neuronal protein markers including RTN4R1, LINGO2, OLFM1, 

and PLXNA2, associated with “Nervous Systems and Cell Morphogenesis”.  Modules most 

enriched with microglia markers were M2 (i.e., C2, C3, C1RL, C1QA, C1QB, C1QC, LCP1, etc.) 

and M5 (i.e., HEXB, CTSZ, HEXA, CTSA, CTSB) consistent with a role in complement activation 

and lysosome function, respectively. Finally, endothelial markers were mainly overrepresented in  
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Figure 3.3: Network analysis classifies the CSF proteome into modules associated with 

specific brain cell-types and gene ontologies. (A) Weighted Gene Co-expression Network 

Analysis cluster dendrogram groups proteins (n=1840) into 14 distinct protein modules (M1-M14). 

(B) Cell-type enrichment was assessed by cross referencing module proteins by matching gene 

symbols using a one-tailed Fisher’s exact test against a list of proteins determined to be enriched 

in neurons, oligodendrocytes, astrocytes, microglia and endothelia. The degree of cell-type 

enrichment increases from yellow to dark green with asterisks denoting the following statistical 

significance (*p≤0.05; **p≤0.01; ***p≤.001). Top gene ontology (GO) terms were selected from 

significant GO annotations. 
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modules M3 (i.e., NID2, ECM2, NID1, LTBP4, LAMA5, LAMC1), M9 (IGFBP7, F5, SDCBP, BGN) 

and M11 (FLNA, ANXA5, S100A11, MYL6) consistent with roles in extracellular matrix, 

angiogenesis and myofibril assembly, respectively. Thus, as seen in the network analysis of bulk 

proteome from human brain (236; 237), certain modules of co-expressed proteins in CSF were 

enriched with markers of specific brain cell-types. To further support this observation, we 

assessed the protein overlap between modules in CSF and modules from a recent large-scale 

consensus TMT-MS proteomic network of bulk human AD brain tissue (236). (Figure 3.4). Except 

for M9, M10 and M14, which had minimal overlap with the brain, all other modules (79% total) in 

the CSF network significantly overlapped with at least one of the 44 brain modules (B-M1 to B-

M44). For example, there is overlap with CSF proteins in M1 “Postsynaptic Membrane” with 

several neuronal modules in the consensus brain network (B-M1, B-M4, B-M5, B-M10, and B-

M15). In addition, M2 “Complement Activation” in CSF overlaps with modules in human brain 

associated with complement and immune response (B-M26 and B-M40), whereas M3 

“Extracellular Matrix” strongly overlap with B-M27 in brain enriched with endothelial cell markers 

(Figure 3.4). Collectively, this supports that the co-expression in protein levels is, in part, shared 

between CSF and brain tissue, which could reflect changes in activation or phenotypes of specific 

brain cell types.  

3.2.4 CSF protein modules correlate to race and clinicopathological phenotypes of AD 

We assessed module correlation to race, cognitive scores (MoCA), and the hallmark AD 

biomarkers Aβ42, tTau, and pTau181. The protein network resulted in three main groups/clusters 

based on module relatedness (Figure 3.5A). The first cluster (Group 1) was comprised of four 

modules (M2 “Complement Activation”, M5 “Lysosome / Catabolism”, M3 “Extracellular Matrix”, 

and M9 “Angiogenesis / Cell Migration”. Of these modules, M3 and M9 exhibited baseline racial 

differences in abundance levels (Figure 3.5B). Notably, the eigenprotein, which corresponds to  
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Figure 3.4: Protein overlap between modules in CSF network and modules in a human AD 

brain network. (A) Protein module enrichment across the CSF and brain was assessed by 

matching gene symbols of proteins in each module from the CSF network against gene symbols 

for protein in each module from a human AD consensus brain network using a one-tailed Fisher’s 

exact test The degree of enrichment increases from pink to light purple to dark purple with 

asterisks denoting the following statistical significance (**p≤0.01 and ***p≤.001).  (B) Similar to 

CSF, cell-type enrichment was assessed by cross referencing brain module proteins against a 

list of proteins determined to be enriched in neurons, oligodendrocytes, astrocytes, and microglia 

using a one-tailed Fisher’s exact test. The degree of cell-type enrichment increases from yellow 

to green-yellow to dark green with asterisks denoting the following statistical significance 

(**<p≤0.01 and ***p≤.001).  
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Figure 3.5: CSF protein modules correlate to race and clinicopathological phenotypes of 

AD. (A) Modules were clustered based on relatedness defined by correlation of protein co-

expression eigenproteins (indicated by position in color bar). There were three main clusters in 

the network:  Groups 1, 2 and 3. Biweight midcorrelation (bicor) analysis of module eigenprotein 

levels with diagnostic measures of AD, including MoCA score, immunoassay Amyloid-beta1-42 

(Aβ42), total Tau (tTau), phosphorylated Tau181 (pTau181), ratio measures of tTau/Aβ42, diagnosis, 

whether the sample has APOE ε4 allele or not, and race. The strength of positive (red) and 

negative correlations are shown by a heatmap with annotated bicor correlations and associated 

p-values. (B) Eigenprotein values distributed by race and diagnosis of representative modules for 

each cluster. (C) Differential protein abundance AD samples compared to controls, by module 

with Caucasian proteome on the left and African Americans on the right. The height of the bars 

represents the fraction of module member proteins that DEPs compared to controls. The bars are 

color coded by heatmap for average log2 difference in abundance, where red represents an 

increase in abundance in AD, and blue represents a decrease in abundance in AD. 
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the first principal component of a given module and serves as a summary expression profile for 

all proteins within a module, were increased for these two modules in African Americans 

compared to Caucasians. Of note, these modules were enriched with endothelial cell markers 

(Figure 3.3B) which suggests that genetic ancestry and/or environmental differences influence 

expression or secretion of these cell-type markers. Similarly, M2 and M5, both of demonstrated 

enrichment for microglial markers, trended towards higher levels in both African American controls 

and AD (Figure 3.3B and 3.6), suggesting an accompanying immune response to the vascular 

alterations seen in modules M3 and M9. 

The second cluster of modules (Group 2) was comprised of six modules (M8, M7, M12, 

M6, M11, and M14) that were all increased in AD (Figure 3.5A). These AD modules also 

demonstrated significant negative correlations to MoCA scores and, conversely, significant 

positive correlations to tTau/Aβ42 ratio. With the exception of M11, these modules also exhibited 

positive correlations to APOE ε4 risk (Figure 3.5A). Interestingly, a hub protein of the M12 “Actin 

Cytoskeleton” module was Tau (MAPT). Consistent with CSF levels observed for Tau by 

immunoassay and TMT-MS (Figure 3.1B and C), the M12 eigenprotein had lower levels in 

African Americans, compared to Caucasians with AD, albeit not significant (p=0.055) (Figure 

3.5B). Notably, M6 “Gluconeogenesis” was significantly lower in African Americans compared to 

Caucasians with AD, highlighting another module of CSF proteins that differed by race in AD 

(Figure 3.5A and B). This also indicated that the increased glycolytic signature of AD previously 

reported in CSF (237; 252) is higher in Caucasians with AD. Consistently, a greater proportion of 

increased DEPs in Caucasians with AD mapped to M6 compared to African Americans with AD 

(Figure 3.5C). In contrast, M7 “Cell Redox / Proteasome” and M8 “Protein Polyubiquitination”, 

had the strongest correlations to tTau/Aβ42 ratio and cognition (Figure 3.5B), and both 

demonstrated strong, equivalent elevations in African Americans and Caucasians with AD 

(Figure 3.5B). This is consistent with an equivalent fraction of increased DEPs mapping to these 

modules in African American and Caucasians with AD (Figure 3.5C). Therefore, proteins in these  
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Figure 3.6: Additional CSF network protein modules. (A) Eigenprotein levels were distributed 

by race and diagnosis for remaining modules not shown in main Figure 4. This includes M5, M2, 

M10, and M13. 
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modules including 14-3-3 family members (YWHAZ, YWAHB, YWHAG, YWHAE) likely represent 

the best class of CSF AD biomarkers that are not influenced by race. M14 “Carbohydrate 

Metabolism” and M11 “Myofibril Assembly” were both elevated in both African Americans and 

Caucasians with AD (Figure 3.5A and B), yet to a lesser degree than M7 and M8.  

The final group of modules (Group 3) contained two modules, M1 “Postsynaptic 

Membrane” and M4 “Cell Morphogenesis”, that showed strong correlations to both race and AD 

diagnosis (Figure 3.5A). Both modules were i) decreased in AD compared to controls and ii) and 

were lower in African Americans compared to Caucasians. In addition, both M1 and M4 were 

enriched with neuronal markers and positively associated with cognitive MoCA scores (Figure 

3.5A). Markedly, pairwise statistical analysis of eigenprotein levels for M1 across diagnosis and 

race revealed significantly lower levels in African Americans with AD (Figure 3.5B). To this end, 

most of the decreased DEPs in African Americans with AD mapped to M1 and to a lesser degree 

M4, whereas decreased DEPs in Caucasians with AD were equally distributed to M1, M4, M13 

and M10 (Figure 3.5C). Notably, M10 and M13 within Group 3 did not show any differences with 

AD or race and did not significantly correlate with traits explored in this study (Figure 3.5 and 

Figure 3.6). Overall, network analysis effectively organizes the CSF proteome into protein 

modules that are strongly linked to hallmark AD biomarkers (Aβ42, tTau and pTau181) and 

cognition, which in some cases were also influenced by race. 

3.3 Selected reaction monitoring validates protein alterations across Alzheimer's disease 

and race 

To further validate these network findings, we used a targeted mass spectrometry method, 

selected reaction monitoring (SRM), with heavy labeled internal standards to measure CSF 

proteins across 195 of the 203 cases included in the discovery TMT-MS assays (Figure 3.7A). 

The proteins and corresponding targeted peptides were previously selected based on their robust 
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detection and significant differential expression in previous CSF discovery proteomic datasets 

 
Part A of this figure was created with BioRender.com 
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Figure 3.7 Validation of shared and divergent CSF protein levels across AD and race. (A) 

Schematic of experimental workflow for SRM analysis of cerebrospinal fluid proteome (B) 

Heatmap of peptides that were significantly differentially expressed between Control and AD 

Caucasians or African Americans. Stars are indicative of the level of significant difference 

(*p≤0.05; **p≤0.01; ***p≤0.001) seen for each peptide between AD and Control within each race. 

Meanwhile the colors are indicative of the log2 fold change (FC) of each peptide from Control and 

AD for each race where blue is indicative of the degree of decrease and shade of red is indicative 

of the degree of increase. (C) Log2 abundance of peptides that mapped to modules of interest 

distributed by race and diagnosis. Pairwise significance was calculated using one-way ANOVA 

with Tukey adjustment. 

  



 92 

(252; 268). We used pooled CSF samples of control, and AD cases as quality controls replicates 

(n=29 samples total) to assess technical reproducibility. Of the peptides targeted, 85 (mapping to 

58 proteins) had a coefficient of variation of <20% in both the control and AD pools with no missing 

values (Appendix Tables 6.4). Following adjustments of co-variates (i.e., age and sex), peptide 

levels were highly correlated with protein levels measured by TMT-MS from the same samples 

(Appendix Table 6.6). If a protein was measured by more than one peptide the most correlated 

peptide to the TMT-MS protein level was selected for further analysis. The final peptide list can 

be found in Appendix Table 6.7. ANOVA analyses determined pairwise significance between the 

four groups (i.e., Control-Caucasians vs Control-African Americans vs AD-Caucasians vs AD-

African Americans, Appendix Table 6.8). Figure 3.7B highlights peptides (n=24) that reached 

significance and that mapped to proteins in CSF modules associated with race and/or AD. 

Consistent with the TMT-MS protein measurements, proteins measured by SRM within M7 

(GAPDH and YWHAG) and M8 (YWAHB and PPIA) had strong elevations (p < 0.001) in 

abundance in AD in both races, whereas proteins in M12  (SMOC1, PARK7, and LDHB) had a 

greater magnitude of change in Caucasians than African Americans with AD (for a list of all M12 

members, see Supplemental Table 6) . Similarly, a majority of the proteins measured by SRM in 

M6 (PKM, GDA, TPI1, GOT1, ALDOA and ENO2) were more increased in Caucasians than 

African Americans with AD (Figure 3.7B and C). Proteins in the synaptic M1 module (VGF, 

SCG2, NPTX2, and NPTXR) were significantly decreased in African Americans with AD 

compared to Caucasians (Figure 3.7B and C), again consistent with TMT-MS protein level 

abundance. Notably, African Americans with or without APOE ε4 allele in the AD group had 

reduced levels of these CSF peptide biomarkers compared to Caucasians indicating that race 

and not APOE status was driving the difference in abundance (Figure 3.8A). Furthermore, these 

differences across race remained consistent even after removing patients with one or more 

comorbid condition (i.e., hypertension, diabetes, dyslipidemia, or cerebrovascular disease; 

Figure 3.8B). 
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Figure 3.8. Stratification of SRM CSF protein measurements by APOE genotype and 

comorbidity. (A) Within each race, protein levels for were not affected by APOE ε4 genotype for 

YWHAB, GAPDH, SMOC1, PKM, VGF, PPIA, SPP1, LDHB, ALDOA, and NPTX2. (B) Within 

each race, protein levels were not affected by patient co-morbidities (hypertension, diabetes, 

dyslipidemia, or cerebrovascular disease) for YWHAB, GAPDH, SMOC1, PKM, VGF, PPIA, 

SPP1, LDHB, ALDOA, and NPTX2. 

  



 95 

Finally, a receiver operating characteristic (ROC) curve analysis was performed to assess 

the performance of each peptide biomarker in differentiating controls and AD by race (Figure 3.9 

and Appendix Table 6.9). We generated an area under the curve (AUC) for AD in African 

American and Caucasian individuals for each protein biomarker (considered separately in each 

race). As expected, proteins mapping to M8 and M7 including 14-3-3 proteins (YWHAB, YWHAG 

and YWHAZ) were equally able to discriminate AD from control irrespective of racial background.  

Notably, despite having lower levels in African Americans with AD compared to Caucasians with 

AD, only a modest improvement in the AUC for SMOC1 was observed for classifying AD in 

Caucasians AUC=0.8255 (p=1.71e-08, CI=0.7421-0.9090) compared to African Americans 

AUC=0.7618 (p=4.12e-06, CI=0.6660-0.8576). Similar findings were observed for another M12 

protein, LDHB, as well as M6 proteins PKM and ALDOA. However, the M1 protein VGF was only 

nominally significant at classifying AD in Caucasian AUC=0.6030 (p=0.0406, CI=0.4887-0.7173), 

yet highly significant in African Americans AUC=0.7593 (p=5.03e-06, CI=0.6634-0.8552). Similar 

results were observed for other synaptic M1 proteins, NPTX2 and SCG2, whereas NPTXR 

showed only a modest improvement in the AUC between African Americans compared to 

Caucasians with AD (Figure 4.9 and Appendix Table 7.15). Collectively this supports a 

hypothesis that African Americans with AD have lower levels of a subset of neuronal biomarkers 

compared to Caucasians with AD.  
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Figure 3.9: ROC analysis evaluated CSF protein classification of AD by race. (A) YWHAB, 

PPIA, GAPDH, and SPP1 had similar performance in classifying Caucasians and African 

Americans with AD (B) SMOC1, PKM, LDHB and ALDOA showed modest improvement in the 

AUC for Caucasians with AD compared to African Americans with AD (C) VGF, SCG2, and 

NPTX2 were better classifiers for AD in African Americans compared to Caucasians, whereas 

NPTXR showed modest improvement in classification of AD in African Americans. All protein 

AUCs with p-values and confidence internals (CI) are provided in Supplemental Table 15. 
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CHAPTER 4: DISCUSSION 

 
 

Segments of this discussion were originally published in Molecular Neurodegeneration:  

Modeste, E.S., Ping, L., Watson, C.M. et al. Quantitative proteomics of cerebrospinal fluid from 
African Americans and Caucasians reveals shared and divergent changes in Alzheimer’s 
disease. Mol Neurodegeneration 18, 48 (2023). https://doi.org/10.1186/s13024-023-
00638-z 
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Here we performed an unbiased quantitative analysis of the CSF proteome to identify 

protein biomarkers reflective of underlying AD brain physiology that are shared or unique across 

race. Using network analysis, we organized the CSF proteome into 14 modules of proteins with 

highly correlated levels in CSF. Notably, these modules were associated with cell-types and 

biological pathways in brain and largely overlapped with modules from a consensus human AD 

brain proteomic network (236). Consistent with previous findings (261; 262), we also show that 

Tau levels were lower in African Americans with AD compared to Caucasians in CSF. Notably, 

Tau mapped to a CSF module enriched with other related neuronal/cytoskeletal proteins with a 

magnitude of increase greater in Caucasians than in African Americans with AD. This indicated 

that an entire network of proteins, rather than a single protein, is changing differently with disease 

between these two racial groups. In contrast, CSF modules which included 14-3-3 proteins, were 

elevated equivalently in both African Americans and Caucasians with AD, suggesting similar 

changes in pathophysiology. Lastly, a module enriched with neuronal/synaptic proteins including 

VGF, SCG2, and NPTX2 was significantly lower in African Americans than Caucasians with AD. 

These findings were consistent when VGF, SCG2, and NPTX2 levels in CSF were measured 

using SRM analysis, which also showed significantly better classification of African Americans 

with AD compared to Caucasians. Together, our findings suggest that there are likely distinct 

mechanisms underlying the abundance and/or secretion of neuronal markers including Tau and 

VGF that differ by race. Collectively, these data underscore the need for further investigations into 

how AD biomarkers and underlying physiology vary across different racial backgrounds. 

4.1 Protein co-expression between the brain and CSF reflects the intricate role of CSF in 

brain function and health. 

In a previous study we performed unbiased TMT-MS on a small discovery cohort of control 

and AD CSF samples (n=40) and mapped these proteins onto a human AD brain co-expression 

network, revealing that approximately 70% (n=1936) of the CSF proteome (N=2,875) overlapped 
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with the brain network (N=8817) (252). Additionally, it was found that 271 of the proteins that were 

significantly altered in the CSF were also differentially expressed in the brain (245). The increased 

sample size in this study afforded the opportunity to extend beyond this analysis by constructing 

an independent co-expression network on the CSF proteome and assessing its overlap with 

modules in a consensus brain network. This analysis revealed a strong overlap between CSF and 

brain modules, with 11 of the 14 CSF modules significantly overlapping with one or more brain 

modules, further supporting that protein co-expression in the brain is conserved in the CSF. These 

findings are not surprising considering the close relationship between CSF and brain. It is already 

known that substrates needed by the brain can be transported from the blood through the choroid 

plexus into the CSF, and then from the CSF into the extracellular space within the brain (269). 

Inversely, CSF aids in the removal of brain metabolism waste products, such as glycosylated 

proteins, excess neurotransmitters, and other unnecessary molecules, from the cerebral region 

(269). As a result of these exchanges, changes in brain chemistry can ultimately influence CSF 

composition, allowing the CSF to mirror neuropathological changes in the brain. Our studies 

suggests that the observed changes in CSF are mainly driven by cell-type alterations, as most 

CSF modules were enriched with either neuronal (M1, M4, M6, M10 and M12), glial (M2, M5, and 

M14), astrocyte (M4 and M5), oligodendrocyte (M1and M3), and endothelial-specific markers (M3, 

M9, and M11). The remaining modules that did not exhibit enrichment with cell type markers 

represented processes related to cellular signaling (M13) and degradation pathways (M7 and 

M8), including kinase signaling and activity, protein polyubiquitination, and cell redox/proteasome 

processes. This reflects another crucial function of the CSF, which is aiding in the clearance of 

waste products from the brain (269). In conclusion, network analysis of the CSF underscores the 

intricate relationship between CSF and brain biology in AD, revealing shared protein alterations 

and cell-type enrichments across both compartments. These findings support our understanding 

of CSF as a conduit for biomarkers of neuropathological changes in AD and provide insights into 

the underlying mechanisms driving early disease progression. 
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4.2 CSF network analysis indicated differences in endothelial markers across race, 

irrespective of disease, yet there is insufficient evidence to indicate that these differences 

stem from variations in endothelial damage. 

In regards to the CSF network biology that differed by race, it's noteworthy that modules 

significantly enriched in endothelial proteins (M3 and M9) were elevated in African Americans 

across both control and AD individuals. M3 is primarily comprised of extracellular matrix (ECM) 

proteins, and ECM proteins make up the dynamic network of macromolecules providing structural 

support for cells and tissues. In the brain, ECM proteins are vital for maintaining the integrity of 

the blood-brain barrier (BBB) and neurovascular units (262-265). ECM proteins in the BBB are 

crucial for preserving brain tissue homeostasis by preventing the entry of unwanted cells and 

molecules and by removing metabolic waste. Additionally, ECM proteins within the neurovascular 

unit play a crucial role in regulating cerebral blood flow (CBF), ensuring sufficient blood supply to 

meet the demands of neurons (266; 267). Consequently, malfunctioning ECM proteins in the brain 

can result in compromised function of both the BBB and neurovascular units. Notably, two critical 

vascular changes associated with AD are the breakdown of the BBB (270; 271) and compromised 

CBF (272). Moreover, these dysfunctions can subsequently trigger increases in proteins 

associated with angiogenesis, the process of forming new blood vessels. Pathological 

angiogenesis has been significantly implicated in perpetuating AD by fostering further Aβ 

generation, which, in turn, can exacerbate BBB dysfunction and impaired CBF (273). It is 

noteworthy that the M9 module is enriched with proteins involved in angiogenesis and is also 

elevated in African Americans compared to Caucasians, irrespective of disease status. In 

conclusion, the increased presence of endothelial proteins among African Americans implies that 

vascular differences may play a role in the heightened susceptibility to AD within this 

demographic. This highlights the necessity for additional investigation into how differences in 

vascular health between racial groups may impact the susceptibility and advancement of AD.  
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Currently, growing evidence suggests that endothelial dysfunction plays a significant role 

in the cognitive decline associated with AD (268), raising the question of whether the elevated 

levels observed in African Americans could indicate such injury. Furthermore, endothelial 

impairment is common among individuals with atherosclerosis, hypertension, diabetes, and 

chronic kidney disease (266), conditions that are more prevalent in the African American 

population. Several studies have already highlighted plausible biomarkers for endothelial 

dysfunction (268). Osteopontin (OPN) (269; 270) and cell adhesion molecules like VCAM1 and 

ICAM1 (271-273) are indicators of vascular inflammation, while albumin (ALB) (274-277), soluble 

platelet-derived growth factor receptor-beta (sPDGFRβ) (278), vasoactive molecules such as 

atrial natriuretic peptide (ANP), adrenomedullin (ADM), and B-type natriuretic (BNP) (279; 280), 

metalloproteinases (MMPs) (281-286), and blood coagulation proteins like fibrinogen (FGB) (287) 

and plasminogen activator inhibitor-1 (PAI1) (288) reflect vascular damage. Additionally, growth 

factors such as vascular endothelial cadherin (VGEF) (289-297), angiogenin (ANG) (292; 298), 

and angiopoietin-1 (ANG1) (299) have been shown to be altered during endothelial injury. When 

overlaying these indicators over proteins assigned to module memberships in the CSF proteome, 

it was found that only one of these markers, ANG, mapped to M9 or M3. Most of the other proteins 

identified within this CSF proteome (ICAM1, CDH5, ALB, MMP2, FGB) mapped to the blue 

module, which remained largely unchanged across both control and AD groups as well as 

between races. One exception was sPDGFRβ, which mapped to the M1 module. Increased CSF 

levels of sPDGFRβ have been linked to BBB breakdown in individuals with mild cognitive 

impairment (274). It has also been demonstrated that heightened levels of sPDGFRβ correlate 

with cognitive decline in the early stages of AD (275). Nevertheless, the module members of M1 

decrease with disease progression, and even exhibit even greater declines in African Americans. 

Remarkably, alongside being identified as elevated in AD, sPDGFRβ levels have been noted to 

be lower in African Americans compared to Caucasians (276). Together, the data is insufficient 

to support that the elevated levels of endothelial markers observed in African Americans in this 
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study are indicative of endothelial impairment or injury. However, this study still indicates 

fundamental differences in the levels and/or activation states of cells residing in the vasculature 

between African Americans and Caucasians. Whether this biological difference is observed in 

brain tissues or relates to a higher incidence of vascular health disparities between African 

Americans and Caucasians (300) requires further investigation. Genomic analysis could prove 

invaluable in this endeavor, shedding light on whether these elevations are attributable to genetic 

variations. Furthermore, it is crucial to consider the influence of social determinants of health, 

such as education, socioeconomic status, and exposure to adversity and discrimination, on 

overall health, and thus AD risk and progression. Future studies should aim to integrate CSF 

protein levels with vascular risk factors, environmental metrics, and sociodemographic data to 

better elucidate the underlying racial differences in the CSF proteome. This holistic approach will 

help uncover the complex interplay between genetic, environmental, and social factors that 

contribute to AD pathogenesis and inform on the development of targeted interventions for diverse 

populations. 

4.3 Unveiling the interplay between neuronal alterations in AD and the role of the CSF in 

mirroring cognitive decline 

The current biological framework for the pre-symptomatic stages of AD is based on the 

presence of Aβ deposition (A), tauopathy (T), and neurodegeneration (N) also termed the A/T/N 

framework (277). CSF remains the gold standard for A/T/N biomarkers of neurodegenerative 

disease as it maintains direct contact with the brain and reflects biochemical changes in amyloid 

(Figure 4.1, purple line), Tau (green line) and neurodegeneration (yellow line). A strength of 

our study was the balanced nature of African American samples, which offered the ability to 

examine racial differences in both cognitively normal controls with individuals diagnosed with AD. 

Our mass spectrometry measurements of Tau strongly correlated with immunoassay levels 
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Figure 4.1: Hypothesized time course differences in neuropathological and clinical 

changes based on biomarker alterations between Caucasians and African Americans with 

Alzheimer’s disease. In Alzheimer’s disease (AD), the conversion from a non-demented to 

demented state is associated with a buildup of amyloid-beta (Aβ) plaques (purple line), the 

accumulation of neurofibrillary Tau tangles (green line), and neuronal and synaptic loss (yellow 

line). Based on biomarker studies, the trajectory of change for the accumulation of Tau and the 

subsequent neuronal loss differs in African Americans with AD (dashed lines).  
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measured on the Roche Elecsys platform reinforcing measurements made by TMT-MS. 

Increased Tau in CSF is considered to result from neurodegeneration, however, it has also been 

shown to be increased in early pre-symptomatic disease stages when neurodegeneration is 

limited (277; 278) (Figure 4.1, preclinical AD). Recently, Tau CSF levels have been linked to 

enhanced synaptic plasticity where high levels of CSF Tau levels can be reflective of increased 

neuronal plasticity (279). Network analysis revealed a cluster of proteins, M12, along with another 

module, M6, exhibiting similar fluctuations in levels as Tau across racial groups, suggesting the 

involvement of other proteins that may function similarly to Tau in early disease synaptic plasticity. 

Other proteins that have been associated with synaptic plasticity include Calcium/calmodulin-

dependent protein kinase II (CaMKII), cAMP-response element binding protein (CREB), Protein 

Kinases A and B (PRKAC1A and PRKAC1B), and growth-associated protein (GAP43) (269-273). 

Interestingly, all these proteins, including CAMK2A, CAMK2B, PRKAC1A, PRKAC1B, and 

GAP43, were categorized within the M6 module, indicating the potential association of other 

proteins within this module in synaptic plasticity. Further exploration of these proteins and their 

implications in racial disparities could provide valuable insights into AD pathogenesis and aid in 

developing targeted interventions. 

Significantly, a considerable portion of synaptic proteins identified in this study aligned 

with M1 and M4. These modules demonstrated an overall decrease in levels with cognitive 

decline. We, also, observed that African Americans in this study had on average lower levels of 

neuronal markers mapping to M1 and M4 in the network, which are reduced in AD. Paradoxically, 

African Americans also have lower levels of neuronal proteins in M6 and M12, which all increase 

in AD. Consistent with this observation, in a recent CSF proteomic study in an asymptomatic 

Caucasian European population stratified by Tau CSF levels, individuals deemed to have high 

Tau levels maintained levels of M1 post-synaptic proteins (CADM3, NEO1, NPTX1, CHGB, 

PCSK1, NEGR, L1CAM, PTPRN, CACNA2D, PAM, VEGFA, NBL1 etc.) compared to individuals 

with lower Tau levels (279). This observation is analogous to differences we see between African 



 107 

Americans and Caucasians with AD. M1 members VGF and NPTX2, strongly correlate to 

antemortem cognitive measures (280-282) and VGF and NPTX2 have been nominated as 

biomarkers of neurodegeneration (N) as their CSF levels enhance prediction of MCI to AD (282-

284). Collectively, this would suggest that a specific sub-group of individuals with AD, including 

African Americans, have a higher burden of neurodegeneration (N) despite low CSF Tau levels 

(Figure 4.1, dashed lines). Longitudinal studies examining changes in CSF levels of neuronal 

proteins and other module constituents over time, with a specific focus on diverse racial 

populations, will be essential. By tracking the temporal patterns of protein biomarkers, 

researchers can gain a better understanding of critical timeframes for potentially delaying 

cognitive decline associated with the disease and addressing racial disparities in disease 

progression. Moreover, longitudinal studies can offer insights into the efficacy of therapeutic 

interventions and assist in devising personalized treatment approaches.  

Collectively, these data suggest that there are likely distinct mechanisms responsible for 

the dysregulation of neuronal proteins, resulting in two separate pools of neuronal proteins that 

either go up or down with disease in CSF. Further investigations should be conducted to explore 

the distinct mechanisms that contribute to the differences in abundance and/or secretion of 

neuronal markers such as Tau and other proteins increased in AD CSF like CAMK2A, SNCB, and 

SYN1, In conjunction, the interplay between the neuronal markers that increase and neuronal 

markers that decrease with disease like VGF, NPTX2, and SCG2, which have also been found to 

differ by race, should be further explored.  

4.4 Future directions 

Although a strength of our study was the large number of African Americans included, 

there are several limitations that should be noted. First, we acknowledge that many of the protein 

changes we observe in the CSF across race could be due to ancestral or genetic differences 

(285; 286). There were no genetics a priori performed on these study participants to confirm 
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enrichment of African vis a vis European ancestry (287) as we stratified race solely by self-

identification. Future studies, which include the integration of genetics and protein abundance to 

define protein quantitative trait loci (pQTL) will be necessary to resolve which proteins are under 

genetic control across race (288-290). It is noteworthy that the expression level of most modules 

which differed between racial groups were decreased in African Americans relative to 

Caucasians. Upon integration with whole genome profiling of larger cohorts, these patterns may 

help in the future to identify pQTLs or other mechanisms influencing synthesis and turnover of 

proteins that differ by race. Additionally, only a few studies to date have investigated proteomic 

difference by race in AD (291; 292), which have predominately focused on brain tissues and not 

on the scale of this current study. However, a major initiative of the Accelerating Medicine 

Partnership (AMP)-AD partnership (293) is to increase the number of diverse tissues included in 

multi-omic analyses, which will complement data generated from these previous studies. To 

support this effort, 81 brain tissue samples, obtained from Emory’s Alzheimer’s Disease Research 

Center, were prepared for future analysis. These samples have since been integrated with brain 

tissues from other AMP-AD partners, broadening the scope of the large-scale brain analyses 

(294; 295). Furthermore, despite the well documented differences in the quality of education, 

higher rates of poverty, and greater exposure to adversity and discrimination that increase risk for 

dementia (214; 215), these metrics were not captured on the participants in this study. Integrating 

CSF protein levels with vascular risk factors, and other environmental metrics in larger cohorts 

may help better resolve some of the underlying racial differences in the CSF proteome. Finally, in 

this study we adjusted for co-factors such as age and sex to pinpoint changes that are most likely 

to be associated with race and AD. Sex and age have an impact on the abundance of CSF Tau 

and other protein levels (296). Therefore, future studies that assess the interactions between, 

age, sex and race will be informative. Nevertheless, this study reveals an impressive view of 

protein co-expression in AD CSF across race, which provides new insights into the pathways 

underlying cell-type changes and further evidence that race may mediate these in AD. Future 
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directions in AD research should aim to unravel the distinct mechanisms underlying racial 

differences in AD biomarkers and underlying physiology. Integrating genetic, proteomic, and 

sociodemographic data, along with longitudinal investigations, will contribute to a more 

comprehensive understanding of AD pathogenesis and facilitate the development of targeted 

interventions for diverse populations affected by AD.   
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CHAPTER 6: Appendix 

Table 6.1: Cohort characteristics 
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Table 6.2: TMT Batch Arrangement. 
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Table 6.3: TMT-MS ANOVA Table 
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Table 6.4: SRM Peptide Coefficients of Variation 
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Table 6.5: SRM Ratio Abundances Post-Regression 
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Appendix Table 6.6: Correlation Values Between SRM and TMT-MS 
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Appendix Table 6.7: SRM Culled Protein List 
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Appendix Table 6.8: SRM ANOVA Table 
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Appendix Table 6.9: ROC-AUC Analysis Table 
 

 
 
 
 


