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Abstract

In many medical research studies, survival time is typically the primary outcome
of interest. The Cox proportional hazards model and the accelerated failure time
model are two popular methods to investigate the relationship between covariates
and possibly right-censored survival time. However, in many clinical trials, the true
covariates may not always be accurately measured due to natural biological fluctua-
tion or instrument error. For regression analysis in general, naively using mismeasured
covariates in conventional inference procedures may incur substantial estimation bias.
In this dissertation research, we aim to resolve several issues in survival data analysis
with covariate measurement error, with particular emphasis on the aforementioned
two models.

The first topic focuses on the analysis of recurrent events data, in which the
event of interest may occur more than once for each subject during the follow up
period. We proposes an estimation procedure for recurrent events data under the
accelerated failure time model in which some covariates are not accurately measured.
With replicated mismeasured covariates available, the proposed estimation procedure
requires no distributional assumptions on either the true covariates or the error except
for the boundedness of the latter. The resulting regression coefficient estimators are
shown to be consistent and asymptotically normal. The performance of the proposed
procedure is investigated by extensive numerical studies with practical sample size.
In addition, an application to data from a clinical trial is provided to illustrate the
proposed method.

The second topic considers the Cox proportional hazards model for univariate
survival data. In the presence of covariate measurement error, several functional
modeling methods have been proposed under the situation where the distribution
of the measurement error is known. Among them are parametric corrected score
(Nakamura, 1992) and conditional score (Tsiatis & Davidian, 2001). Although both
methods are consistent, each suffers from severe problem of multiple roots or absence
of appropriate root when the measurement error is substantial. The problem persists
even when the sample size is practically large. We conduct a detailed investigation on
the pathological behaviors of parametric corrected score and propose an approach of
incorporating additional estimating functions to remedy these pathological behaviors.
The estimation and inference are then accomplished by means of quadratic inference
function. Extensive simulation studies are conducted to evaluate the performance of
proposed method.

In the third topic, we consider the Cox proportional hazards model with covari-
ate measurement error where the error distribution is completely unspecified, but
replicated mismeasured covariates are available instead. A consistent nonparamet-
ric corrected score (Huang & Wang, 2000) has been proposed for Cox proportional
hazards model with replicated mismeasured covariates. But it also suffers from finite-



sample pathological behaviors similar to that of the parametric corrected score when
the measurement error is substantial. To address this issue, we develop a similar
technique as in the second topic for the nonparametric corrected score and evaluate
its performance by extensive simulation study.
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Chapter 1

Introduction

1.1 Background

In many clinical research studies, survival time is typically the primary outcome

of interest. The proportional hazards model (Cox, 1972) is one of the most popular

methods to investigate the relationship between covariates and possibly right-censored

survival times. An important alternative to Cox model is the accelerated failure

time (AFT) model. In conventional statistical inference procedures, it is common to

assume that all covariates are observed and measured accurately without any error.

However, in medical research fields, the concerns of measurement errors often arise

because of natural biological fluctuation or instrument error. For regression analysis

in general, it is well known that naively using mismeasured covariates in conventional

inference procedures may incur substantial estimation bias and several statistical

methods have been suggested to address covariate measurement error; see Section 1.3
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for a brief review and the monograph of Carroll et al. (2006) for a more comprehensive

summary.

The goal of this dissertation research is to develop statistical methods to address

several issues on covariate measurement error in survival data analysis. We focus on

two types of data: recurrent events data and univariate survival data.

The first topic studies the recurrent events data under the accelerated failure time

model. The accelerated failure time model is an important alternative to the Cox

model and is appealing in that the model has a direct physical interpretation. But

to our knowledge, there is little development on the accelerated failure time model

for recurrent events data with covariate measurement error. In this topic, we develop

an estimation procedure for recurrent events data under the accelerated failure time

model, with the availability of replicated mismeasured covariates.

The second and third topics concern the Cox proportional hazards model for

univariate survival data. In the presence of covariate measurement error, several

consistent approaches have been proposed for Cox model, namely conditional score

(Tsiatis & Davidian, 2001), parametric corrected score (Nakamura, 1990), and non-

parametric corrected score (Huang & Wang, 2000). But each of these methods suffers

from finite-sample pathological behaviors when the measurement error is substantial.

Nonetheless, neither the nature nor the severity of these pathological behaviors are

well understood in the literature. In these two topics, we investigate the pathologi-

cal behaviors of these methods and propose new estimation procedure to tackle the

pathological behaviors. In the second topic, we consider the situation that the dis-

tribution of measurement error is known. In the third topic, the error distribution is
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no longer known but replicated mismeasured covariates are available.

In this chapter, we first present two real data sets that motivate our dissertation

research, the Nutritional Prevention of Cancer (NPC) trial and the AIDS Clinical

Trial Group (ACTG) 175 study. After that, we will give a brief introduction of general

measurement error problems and existing methods in dealing with them. Reviews of

relevant existing literature specific to survival data will also be provided. Finally, we

will present an outline of this dissertation.

1.2 Motivating Examples

The methods proposed in this dissertation are motivated by two problems. The

first one, which motivates our research on the accelerated failure time model for

recurrent events data, is the Nutritional Prevention of Cancer (NPC) trial (Clark

et al., 1996). Our research on the Cox proportional hazards model is motivated by

the AIDS Clinical Trial Group (ACTG) 175 study.

1.2.1 Nutritional Prevention of Cancer (NPC) Trial

The Nutritional Prevention of Cancer (NPC) trial is a randomized double-blind,

placebo-controlled clinical trial to evaluate the long term safety and efficacy of daily

200-µg supplement of selenium (Se) in preventing two types of skin cancers: basal

cell carcinoma (BCC) and squamous cell carcinoma (SCC). From 1983 through 1991,

a total of 1,312 patients with previous histories of BCC or SCC were recruited and
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randomized into the treatment group in which patients were supposed to take daily

200-µg supplement of selenium (Se), or the control group in which placebo pills were

given. Patients were then followed for a period of over twelve years. Follow up visits

to clinics were scheduled for every 6 months or more frequent if necessary to exam

for new dermatological problems or selenium toxicity. The primary end points of this

trial were new occurrences of BCC or SCC. Possible censoring events include death

and end of routine dermatological exams.

Clark et al. (1996) reported an adverse but statistically non-significant effect of

selenium supplement in prevention of new occurrence of BCC or SCC. Their findings

are contrary to prior expectation since highly significant positive benefits were found

on selenium supplement in preventing a number of other types of cancers. The findings

of Clark et al. (1996) might be contributed to two reasons. First, they did not consider

recurrent BCC or SCC. During the study, each patient might experience multiple

occurrences of BCC or SCC. But in the analysis, they considered only time to the

first occurrence of BCC or SCC. Second, the baseline plasma Se level as an important

prognostic risk factor for BCC and SCC is subject to substantial measurement error.

But the authors did not consider the possible effect of measurement error on statistical

analysis.

One natural question arises is how to incorporate these additional information of

time to multiple occurrences of BCC or SCC and consistently estimate the covariate

effect for recurrent events data under the circumstance of covariate measurement

error. We will develop methods in Chapter 2 to address this question.
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1.2.2 AIDS Clinical Trial Group (ACTG) 175 Study

AIDS Clinical Trial Group (ACTG) 175 study is a randomized clinical trial to eval-

uate four treatments, zidovudine alone (ZDV), zidovudine plus didanosine (ZDV +

ddI), zidovudine plus zalcitabine (ZDV + ddC), and zalcitabine alone (ddC), in HIV-

infected subjects with a initial screening CD4 count between 200 and 500. As a note,

a healthy individual without HIV infection usually has a CD4 count of between 800

and 1200. A total of 2,467 HIV-infected volunteers participated in the ACTG 175

study and, among them, 1,067 of whom had never taken any antiretroviral therapy at

study entry; see Hammer et al. (1996) for a more detailed description of this study.

We are interested in assessing the effect of baseline CD4 count on time to AIDS

or death in patient. The Cox proportional hazards model is the most popular regres-

sion model for right-censored survival data and it has been widely applied in a large

number of HIV/AIDS studies. However, the issue of covariate measurement error

arises often in practice. For example, the CD4 count has no gold standard measure-

ment and is subject to substantial measurement error. In ACTG 175 study, 1,036

antiretroviral naive patients had two duplicated baseline CD4 count measurements

prior to the start of treatment and within 3 weeks of randomization. The duplicated

baseline CD4 count measurements were taken from different blood samples. Figure

1.1 illustrates the issue of measurement error on ACTG 175 study.

Although there exists a rich literature on Cox regression with covariate measure-

ment error, all available consistent methods suffer from severe finite-sample patho-

logical behaviors. For example, the estimating functions may have multiple zero-

crossings, no zero-crossing, or a single zero-crossing that is far away from the true
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Figure 1.1: Replicated baseline CD4 count measurements from 1,036 antiretroviral-
naive patients in the ACTG 175 study.
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parameter. Though the pathological behaviors have been noticed in the literature,

they were never well understood or systematically studies.

The above observation prompts the second research question of how to improve the

finite-sample behaviors of an estimating function for Cox regression with substantial

covariate measurement error.

1.3 Covariate Measurement Error

In literature, there are two broad classes of measurement error models, namely, classi-

cal measurement error model and Berkson measurement error model (Berkson, 1950).

Suppose covariates Z = (ZTa ,Z
T
e )T where Za are those covariates that can be

accurately measured and Ze are covariates prone to measurement error and cannot

be accurately measured. Though Ze cannot be measured directly, we can observe

them through their surrogates, We. Under the classical additive measurement error

model,

We = Ze + εεεe

where εεεe is a mean-zero random noise. In most applications, it is assumed that εεεe is

independent of both Za and Ze, and εεεe ∼ N(0, σ2
e).

On the other hand, Berkson measurement error model is defined as

Ze = We + εεεe
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The true covariate equals mismeasured covariates plus measurement error. Same as

in classical error model, εεεe are usually assumed to be independent of Za and Ze.

In this dissertation research, we will consider the classical measurement error

model. Let W = (Za,We), it is well known that naively replacing Z by W in

regression analysis could lead to substantial bias in estimation of some or all regression

coefficients (Carroll et al., 2006; Fuller, 1987).

Here is a simple example to illustrate the effect of measurement error in naive

analysis. Consider a simple linear regression with classical additive error, Y = β0 +

βzZ + ε, where Var(Z) = σ2
z and Var(ε) = σ2

ε . Covariate Z is unobservable; instead,

a surrogate W = Z + U is observed. E(U |Z) = 0, and Var(U |Z) = σ2
u. If we fit

a naive regression model of Y on W , then the estimator is a consistent estimator of

βz∗ = λβz, where

λ =
σ2
z

σ2
z + σ2

u

< 1

and

Var(Y |W ) = σ2
ε +

β2
zσ

2
uσ

2
z

σ2
z + σ2

u

> σ2
ε

The naive estimation procedure gives an estimator that is attenuated to zero. As

the example shows, measurement error not only produces a biased parameter esti-

mate but also increase the residual variance. In a more complex model, the effect of

measurement error in statistical inference will be much more complicated.

The simple measurement error models introduced above can be extended to ac-

commodate more complex applications. For example, Kipnis et al. (1999) introduced

a complex measurement error model for some nutritional studies which allows for
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both bias and variance components.

To perform measurement error analysis, some additional information is needed.

This additional information could be known error distribution, or in the case when

error distribution is unknown, some forms of extra data. Depending on the source,

these extra data can be categorized as internal data which are obtained for a subset

of primary study and external data which are obtained from independent studies. In

each category, there are three types of data: validation data, in which we can observe

(Z,W) directly for a subset of data; replication data, in which replicates of W are

available for each subject; instrumental data, in which an additional instrumental

variable T is observed in additional to W (correlated with Z, but may or may not be

unbiased for Z). In medical research fields, replication data are more commonly avail-

able and there exists some literature on measurement error problems with replication

data.

1.4 Functional Modeling and Structural Modeling

A large number of statistical models have been proposed to tackle various measure-

ment error problems. Traditionally, based on the property of the unobserved true

covariates Ze, a distinction was made between classical functional models, in which

the Ze are regarded as unknown fixed constants or parameters, and classical structural

models, in which the Ze are regarded as random variables. Carroll et al. (2006) in-

stead suggested to make a distinction between functional modeling, in which Ze may

be either fixed or random, but in the latter case, no or only minimal assumptions
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are made about the distribution of Ze, and structural modeling in which parametric

distributional models are imposed on Ze.

The structural modeling approach plays an important role in application (Carroll

et al., 2006, chapter 8), but the robustness of inference to parametric model assump-

tions is of concern. The functional modeling approach is more appealing in the sense

that the estimation procedures does not need specify a true covariate distribution and

thus not subject to misspecification.

Available functional modeling methods might be categorized into three classes.

The first includes the conditional score method (Stefanski & Carroll, 1987) and lo-

cally efficient score method (Tsiatis & Ma, 2004). Conditional score requires the

measurement error to be normally distributed and the idea is to condition away the

nuisance parameters based on certain sufficient statistics. Stefanski & Carroll (1987)

obtained an unbiased score function for generalized linear measurement error models.

Later, Tsiatis & Ma (2004) proposed a class of semiparametric estimators that require

a pilot distribution of unobserved error-prone covariates to be specified. It is shown

that such estimators are consistent no matter what the pilot distribution is and are

efficient if computed under the truth. It was shown later by Ma & Tsiatis (2006) that

when implemented in generalized liner model and with normal measurement error,

the locally efficient score method (Tsiatis & Ma, 2004) is equivalent to conditional

score. Therefore, their method could be viewed as an extension of conditional score.

The second class is the corrected score method (Nakamura, 1990; Stefanski, 1989;

Huang & Wang, 2001); it is also referred to as parametric correction in the literature.

The corrected score method requires the existence of an estimating function that
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produces consistent estimators in the absence of measurement error. It is called the

original or reference estimating function. A corrected score is an estimating function

based on observed error-contaminated data that has the same limit as the reference

estimating function. If the reference estimating function admits consistent estimates

only, the corrected estimating function inherits this property in a compact parameter

space containing the true value.

The third class is nonparametric correction (Huang & Wang, 1999, 2000, 2001,

2006). Similar to the parametric correction approach, one starts with a reference

estimating function based on the underlying true covariates and then construct an

estimating function with error-contaminated covariates which share the same limit as

reference. The most important difference, however, is that the parametric correction

method requires parametric distributional assumptions on the measurement error,

whereas the nonparametric correction spares them with the availability of replicated

mismeasured covariates.

To avoid any confusion, we will refer to the second class as parametric corrected

score and the third class as nonparametric corrected score later in this dissertation.
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1.5 Measurement Error Techniques in Survival Anal-

ysis

1.5.1 Recurrent Events Data

For recurrent events data without covariate measurement error, a number of regression

models have been proposed in the literature as an extension of the Cox proportional

hazards model. Andersen & Gill (1982) introduced the counting process model with

a Cox-type intensity function for recurrent events and established an elegant large

sample asymptotic theory through martingale theory. Wei et al. (1989) proposed a

marginal approach for the analysis of recurrent failures. Later, Pepe & Cai (1993) and

Lawless et al. (1997) proposed multiplicative models for the rate and mean functions

of arbitrary counting processes. More recently, Lin et al. (1998) proposed to extend

the univariate accelerated failure time model for the analysis of recurrent events. They

developed a class of consistent and asymptotic normal rank estimators. Comparing

to the Cox model, the accelerated failure time model has an appealing feature of a

direct physical interpretation.

In the presence of covariate measurement error, Jiang et al. (1999) developed

a method using replicated measurements of error-prone covariates and applied their

method to the NPC trial data. Their method is based on a discrete-time proportional

means model (see Lawless & Nadeau, 1995). Parametric assumptions are imposed

on both the true covariates and the errors. Later, Hu & Lin (2004) considered an

extended proportional hazards model. Though no parametric assumption is imposed

on the covariates, their approach requires the errors to be symmetrically distributed.
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To our knowledge, there is little development under the accelerated failure time model

framework for recurrent events data with covariate measurement error.

1.5.2 Univariate Survival Data

There exist a large collection of literature dealing with the problem of measurement

error in the analysis of Cox-type models for univariate survival data. Prentice (1982)

introduced the induced hazard function and proposed an induced partial likelihood

function for the Cox regression model with rare events and utilized the regression

calibration approach to estimate the parameters. Clayton (1991) proposed a mod-

ification of regression calibration that does not require events to be rare. Another

regression calibration method was later developed by Wang et al. (1997).

Though regression calibration is used frequently to yield a reasonable approxima-

tion, it is well known that the regression calibration method is inconsistent and may

have large bias under certain circumstances. Zhou & Pepe (1995) developed a consis-

tent estimator for regression coefficients. But the requirement of discrete covariates

and the availability of a validation set greatly limit the applicability of their method

in practice. Another approach is to correct the partial score or related estimating

functions. Nakamura (1992) developed a parametric corrected score approach for

normal measurement errors and it was shown by Kong & Gu (1999) that, the basic

estimator of Nakamura (1992) is consistent and asymptotically normal. Tsiatis &

Davidian (2001) proposed a conditional score for normal measurement error, which

is asymptotically equivalent to Nakamura’s parametric corrected score with normal

error. For data with at least two replicates for mismeasured covariates, Huang &
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Wang (2000) proposed a consistent nonparametric estimator based on a correction of

the partial score function.

More recently, Song & Huang (2005) investigated the finite-sample performance

of parametric corrected score and conditional score and found that they all might

suffer from pathological behaviors as the error magnitude increases. They suggested

a number of refinements, but the improvement is fairly modest.

1.6 Outline

Chapter 2 deals with parameter estimation in the accelerated failure time model for

recurrent events when covariates are measured with error. We consider the classical

additive measurement error model and propose a consistent estimation procedure for

parameter of interest. With replicated mismeasured covariates available, the pro-

posed estimation procedure requires no distributional assumptions on either the true

covariates or the error except for the boundedness of the latter. The resulting esti-

mators are proven to be consistent and asymptotically normal. Simulation studies

indicate that the proposed model works well for practical sample sizes and moderate

measurement error. An illustration with application to the NPC trial is also provided.

Chapter 3 considers the Cox proportional hazards model. In the presence of co-

variate measurement error, several functional modeling methods have been proposed

for the proportional hazards model under the situation where the distribution of the

measurement error is known. In this chapter, we study the finite-sample patholog-

ical behaviors of parametric corrected score and conditional score. To address the



15

issue of pathological behaviors, we propose an approach to incorporate additional

estimating functions. Extensive simulation studies are conducted to investigate the

performance of the proposed method. Furthermore, we illustrate the practical utility

of the proposed methods via an application to the ACTG 175 study.

In Chapter 4, we propose an extension of the method in Chapter 3 by allowing the

error distribution to be completely unspecified. Huang & Wang (2000) developed a

nonparametric corrected score for proportional hazards model when replicated mea-

surements for mismeasured covariates are available. But the nonparametric corrected

score suffers from similar finite-sample pathological behaviors as the parametric cor-

rected score when the measurement error is substantial. We extend the method

described in Chapter 3 to nonparametric corrected score and the simulation study

result shows that the proposed estimation procedure is promising in resolving those

finite-sample pathological behaviors.

In Chapter 5, we provide a summary and discuss some future work for the disser-

tation.
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Chapter 2

Accelerated Failure Time Model

for Recurrent Events With Errors

in Covariates

2.1 Introduction

In clinical research studies, the event of interest may occur more than once for each

subject during the follow up period. One example is the Nutritional Prevention of

Cancer (NPC) trial (Clark et al., 1996; Duffield-Lillico et al., 2003), which involved

multiple recurrences of skin cancers, basal cell carcinoma (BCC) and squamous cell

carcinoma (SCC). For such recurrent events, a number of statistical methods have

been developed to extend the univariate Cox proportional hazards model, including

Andersen & Gill (1982), Wei et al. (1989), Pepe & Cai (1993) and Lawless et al.
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(1997). More recently, Lin et al. (1998) proposed to extend the univariate acceler-

ated failure time model for the analysis of recurrent events. As an appealing and

well recognized feature, the accelerated failure time model has a direct physical in-

terpretation. All these inference procedures presume the conventional setting that

covariates are observed and measured accurately. However, this assumption may not

be appropriate in some studies, including the aforementioned NPC trial. The base-

line plasma selenium as an important prognostic risk factor for BCC and SCC is

subject to substantial measurement error, due to natural biological fluctuation and

instrument error.

For recurrent events data with covariate measurement error, available approaches

include Jiang et al. (1999)’s method which is based on a discrete-time proportional

means model utilizing replicated measurements of error-prone covariates, and an ex-

tended proportional hazards model developed by Hu & Lin (2004). But for the former

approach, parametric assumptions are imposed on both the true covariates and the

errors, whereas for the latter, though no parametric assumption is imposed on the

covariates, it requires the errors to be symmetrically distributed. To our knowledge,

there is little development on the accelerated failure time model for recurrent events

data with covariate measurement error.

In this chapter, we propose a consistent estimation procedure for the accelerated

failure time model based on replicated mismeasured covariates. The proposed ap-

proach bears similarity, in minimal assumption requirement, to the nonparametric

corrected score method used in the other regression models (Huang & Wang, 2000,

2001, 2006). But this model of interest is not amendable to the correction strategy
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and the proposed estimating function is developed on the basis of a novel identity. In

Section 2.2, we present the proposed estimation procedure. Consistency and asymp-

totic normality of the proposed estimator will also be established. Simulation studies

with practical sample size are reported in Section 2.3, along with an illustration with

the NPC trial data. Further discussion is given in Section 2.4. Technical details and

proofs for the large-sample study on the proposed inference procedure are collected

in Section 2.5.

2.2 Inference Procedure

2.2.1 The Model and Data

Let Ñ∗(t) denotes the number of recurrent events by time t in the absence of censoring

and Z the p-vector covariates of interest. The accelerated failure time model (Lin

et al., 1998) postulates their relationship as

E{Ñ∗(t)|Z} = µ0(e
−βββ′

0Zt), (2.1)

where βββ0 is an unknown p-vector of parameter of interest, and µ0(.) is an unspecified

baseline rate function. Let C be the censoring time, and the conditionally indepen-

dent censoring mechanism is adopted, i.e., C⊥Ñ∗(·) |Z, where ⊥ denotes statistical

independence. In the presence of censoring, Ñ∗(·) is not fully observed but only

through Ñ(·) = Ñ∗(· ∧ C).

In the case of covariate measurement error, some elements of Z cannot be accu-
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rately measured. Split covariates Z = (ZTa ,Z
T
e )T , where Za are accurately measured

and Ze are error prone. Though Ze cannot be measured directly, we can observe it

through their surrogates, We. Under the additive measurement error model, R ≥ 2

surrogates {W(m)
e : m = 1, . . . , R} are observed, where

W(m)
e = Ze + εεε(m)

e ,m = 1, . . . , R. (2.2)

These errors εεε
(m)
e are iid replicates of εεεe and are independent of all other random

variables. No distributional assumption is imposed on covariates Z, nor on εεεe except

for boundedness. The observed data, {Ñi(·); Ci; Zai; Ri; W
(m)
ei : m = 1, . . . , Ri}, i =

1, . . . , n, consist of n iid replicates of {Ñ(·); C; Za; R; W
(m)
e : m = 1, . . . , R}.

2.2.2 Proposed Estimation Procedure

Pick arbitrarily two replicates W
(1)
e and W

(2)
e from {W(m)

e : m = 1, . . . , R} and denote

W(1) = (ZTa ,W
(1)T
e )T and W(2) = (ZTa ,W

(2)T
e )T ; R(R−1) different permutations can

be formed. We assume that εεεe is bounded. Therefore, there exists a function of βββ,

say ξ(βββ), such that

ξ(βββ) ≥ |βββ′(W(1) −W(2))|, a.s. (2.3)

Define counting process N(t;Z,βββ) = Ñ{exp(βββ′Z)t}, and at-risk process Y (t;Z,βββ) =

I{C ≥ exp(βββ′Z)t}. To motivate our estimation procedure, we obtain an important



20

identity:

E{N(t;W(1),βββ0)|Z, Y (eξ(βββ0)t;W(2),βββ0) = 1,W(2)}

= E{Ñ∗(eβββ′
0W

(1)

t ∧ C)|Z, C ≥ eβββ
′
0W

(2)+ξ(βββ0)t,W(2)}

= E{Ñ∗(eβββ′
0W

(1)

t)|Z, C ≥ eβββ
′
0W

(2)+ξ(βββ0)t,W(2)}

= E{Ñ∗(eβββ′
0W

(1)

t)|Z}

= E{µ0(e
βββ′
0εεεet)} ≡ Λ0(t), (2.4)

where we have used the fact βββ′0W
(2) + ξ(βββ0) ≥ βββ′0W

(1) and Λ0(t) is a quantity

independent of Z.

Identity (2.4) naturally leads to the following estimating function of both βββ0 and

Λ0(t):

1

n

n∑
i=1

∫ τ

0

A

 1

W
(2)
i

Yi(eξ(βββ)t;W(2)
i ,βββ)d{Ni(t;W

(1)
i , β)− Λ(t)} = 0,

where τ is a prespecified constant, and A denotes the operator averaging over all the

different permutations of W(1) and W(2). Further profiling out Λ(t), we have the

following estimating function for βββ0:

Ψ(βββ) =
1

n

n∑
i=1

∫ τ

0

A

[
W

(2)
i −

∑n
j=1A{W

(2)
j Yj(e

ξ(βββ)t;W
(2)
j ,βββ)}∑n

j=1A{Yj(eξ(βββ)t;W
(2)
j ,βββ)}

]
×Yi(eξ(βββ)t;W(2)

i ,βββ)dNi(t;W
(1)
i ,βββ) (2.5)

In the absence of covariate measurement error, W(1) = W(2) = Z and we may

set ξ(βββ) = 0. Then, the above estimating function reduces to Lin et al. (1998)’s
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estimating function.

It is clear that ξ(βββ) results in additional censoring in the proposed estimation

procedure. Therefore, this function should be kept as small as possible. Suppose

that Ze is q-dimensional. Let εεε
(1)
[k] , εεε

(2)
[k] ,βββ[k], k = 1, . . . , q, be the kth element of cor-

responding vectors. Let M[k] = max |εεε(1)[k] − εεε
(2)
[k] |, the function ξ(βββ) can be set as

ξ(βββ) =
∑q

k=1 |βββ[k]|M[k]. Of course, M[k] is typically unknown. For practical purpose,

it may be empirically determined; see Section 2.3.

2.2.3 Asymptotic Properties

To allow for a rigorous large-sample study, we consider the following mild regularity

conditions:

C1. Counting process Ñ(·) and covariates Z are bounded;

C2. C has a bounded density function and µ0 has a bounded second derivative;

C3. Support of εεεe is bounded;

C4. Time limit τ satisfies limn→∞ n
−1∑n

i=1 Yi(τ ;Zi,βββ0) > 0.

Theorem 2.1. Under conditions C1-C4, almost surely, a zero-crossing of Ψ(βββ), say

β̂ββ, exists and converges to βββ0.

The estimating function Ψ(βββ) is a piecewise constant function of βββ. Furthermore,

the estimating function is not generally monotone. Therefore, the computation is not

simple. When the dimension of covariates is small, β̂ββ can be obtained by using an
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iterative bisection method (Huang, 2002) or direct grid search. When the dimension

of covariates is high, specialized numerical methods such as simulated annealing (Lin

& Geyer, 1992) might be more efficient.

Theorem 2.2. Under conditions C1-C4, n1/2(β̂ββ −βββ0) is asymptotically normal with

mean 0.

In terms of the interval estimation for βββ0, there are two general approaches avail-

able. One is to use bootstrap resampling which is computational intensive. An alter-

native method was proposed by Huang (2002) who developed a sample-based variance

estimation procedure for the estimators based on nonsmooth estimation functions

in general. Compared to the bootstrap resampling, Huang (2002)’s approach takes

much less computing time. To adopt Huang (2002)’s approach, a consistent estimate

of Ψ(βββ0) is given in Section 2.5.

2.3 Numerical Studies

We investigated the performance of the proposed estimation procedure under practical

sample size via extensive simulation studies. Also the procedure will be illustrated

through an application to the NPC study.

For reference and comparison, the ideal, naive, and regression calibration estima-

tors were also studied. The ideal estimator used the procedure of Lin et al. (1998)

with the true covariates and, of course, it is not a realistic estimator. The naive

approach uses the average of replicated surrogates in replace of true covariates in the

procedure of Lin et al. (1998), whereas the regression calibration approach uses the
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best linear approximation by replication data given in Carroll et al. (2006, chap. 4).

For all these estimators, we used the approach of Huang (2002) for interval estimation.

For all these estimators, one needs to specify the time limit τ for their estimating

function. We chose τ large enough to include all the follow-up time, as is standard

practice in survival analysis.

Typically, the bound of εεεe is unknown. For practical purpose, we suggest to use an

empirical version of M[k] given in Section 2.2.2 in order to specify ξ(βββ) function. Let

W
(1)
[k] ,W

(2)
[k] , k = 1, . . . , q, be the kth element of corresponding vectors. An empirical

version of M[k] is maxi=1,...,n |W(1)
i[k] −W

(2)
i[k]|. The operator max here also applies to

all possible pairs of W(1) and W(2).

2.3.1 Simulations

Systematic numerical experiments were conducted to investigate the finite-sample

performance of the proposed estimation procedure.

We first considered the accelerated failure time model with a single and error-prone

covariate and set β0=0.5. Recurrent events were generated from Poisson processes

with unit baseline rate. To evaluate the performance of the proposed approach in

general applications, we considered both symmetric and asymmetric distributions

of the covariate and measurement error. For the true covariate, we considered i) a

standard normal distribution and ii) a chi-square distribution location-shifted to mean

0 and scale-changed to variance 1. The surrogate W of Z was generated from the

additive error model W = Z + ε, where ε was i) normal with mean zero and variance
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σ2
ε = 0.25, or 0.5, or ii) modified chi-square distribution with mean 0 and variance

0.25 or 0.5. For ii), the modification was made on the chi-square distribution with

1 degree of freedom by truncation at 5 and then by location shift and scale change.

Two replicates of W were generated for each Z. Censoring times C were generated

from the uniform distribution on [0, λ], where λ was chosen to yield an average of 10

events per subject. With a sample size of 400, 1,000 data sets were generated.

Table 2.1 summarizes the simulation results. For each scenario, the mean bias,

standard deviation, averaged standard error, and coverage probability of 95% Wald-

type confidence interval were calculated. For the proposed estimator, median bias, a

robustified standard deviation defined as inter quartile range (IQR) divided by 1.349,

and median of estimated standard error were also calculated. In all different settings,

naive estimator was biased toward 0 with the bias increasing as the magnitude of

measurement error increasing. Naive estimator also had poor coverage probability

under all scenarios. Regression calibration estimator performed well in both bias

and coverage probability when the underlying true covariate was normal. However,

when the true covariate was modified chi-square distribution, regression calibration

estimator was biased toward 0 and the coverage probabilities were lower than nominal

level. The proposed estimator performed well with small bias when the true covariate

was normally distributed. However, when true covariate followed the modified chi-

square distribution, the mean bias could be substantial especially with increasing error

variance although median bias was still small in these circumstances. Nevertheless,

the distribution of the proposed estimator was quite skewed, which is similar to other
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Table 2.1: Simulation summary statistics of the estimators in the single-covariate
model

σ2
ε I NV RC Prop I NV RC Prop

Z, ε ∼ Normal Z, ε ∼ Modified χ2

0.25 B 5 -561 0 5 -5 -11 -1110 -613 394 20

SD 179 187 218 337 311 277 272 297 2044 814

SE 181 197 222 385 361 286 273 308 1755 1060

CP 95.4 19.3 95.3 94.8 94.5 1.7 46.1 93.6

0.5 B 5 -994 16 88 54 -11 -1724 -885 1497 146

SD 179 207 297 535 478 277 278 341 4623 1546

SE 181 203 255 639 547 286 279 351 3086 2103

CP 95.4 0.5 90.6 95.0 94.5 0 28.3 90.4

Z ∼ Normal,ε ∼ Modifiedχ2 Z ∼ Modifiedχ2,ε ∼Normal

0.25 B -8 -304 11 -2 -29 11 -1198 -706 84 29

SD 187 196 209 291 290 282 248 285 619 608

SE 180 188 201 306 293 287 250 283 864 703

CP 95.0 63.3 93.4 95.7 95.7 0.1 30.1 96.2

0.5 B -8 -561 37 17 -29 11 -1859 -1044 446 29

SD 187 200 232 366 362 282 236 314 2404 898

SE 180 195 221 405 391 287 242 303 1944 1270

CP 95.0 19.2 93.3 95.1 95.7 0 8.9 94.3

Note: I, ideal method; NV, naive estimator; RC, regression calibration; Prop, the
proposed estimator. Except for the second column under Prop, B: mean bias (×104);
SD: standard deviation(×104); SE: averaged standard error (×104); CP, coverage
probability(%) of the 95% Wald confidence interval. For the second column under
Prop, B: meadian bias (×104); SD: robustified standard deviation(×104); SE: median
standard error (×104).
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correction-type estimators (e.g. Nakamura, 1990). This skewness is also reflected in

standard deviation versus robustified standard deviation and averaged standard error

versus median standard error. The coverage probabilities of the proposed estimator

were close to nominal level under all settings.

We also considered an accelerated failure time model with two covariates. The

first covariate is subject to measurement error, with two surrogate replicates available,

and the second covariate is measured precisely. The true coefficients βββ = (β1, β2)
T =

(0.5, 0.5)T . We present the results from two scenarios. In the first scenario, the true

covariates followed the standard bivariate normal distribution with correlation co-

efficient ρ. The measurement error follows a normal distribution with mean 0 and

variance 0.25 or 0.5. In the second scenario, the true covariates were generated from

the standard bivariate normal distribution upon a marginal increasing transforma-

tion and that the first covariate has the χ2(1) distribution location-shifted to 0 and

scale-changed to 1. The measurement errors were generated from χ2(1) distribution

truncated at 5 and were transformed to have mean 0 and variance = 0.25 or 0.5 by

scale change and location shift. For both scenarios, we considered different correla-

tion parameter ρ between two true covariates. Recurrent events were generated from

Poisson processes. Censoring times were generated from the uniform distribution on

[0, λ], where λ was chosen to yield an average of 5 events per subject. With a sample

size of 400, 1,000 data sets were generated.

Table 2.2 and 2.3 summarize the simulation results for multivariate cases. As
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Table 2.2: Simulation summary statistics of the estimators in the multi-covariate
model with normal error

estimators of β1 estimators of β2

ρ σ2
ε I NV RC Prop I NV RC Prop

0.5 0.25 B -23 -741 -24 36 0 10 369 11 5 10

SD 285 304 365 555 565 289 316 325 488 507

SE 302 303 361 696 625 277 315 315 519 502

CP 95.7 31.5 94.2 95.3 93.2 78.5 94.1 95.9

0.5 B -23 -1277 -19 44 -68 10 637 10 18 29

SD 285 304 443 893 695 289 337 362 623 623

SD 302 299 414 1169 898 277 339 341 695 625

CP 95.7 1.9 92.7 94.4 93.2 53.6 91.8 96.3

0 0.25 B 4 -556 4 46 29 1 8 7 16 10

SD 260 265 307 521 478 269 293 295 441 434

SE 270 279 315 630 549 254 279 276 460 430

CP 95.7 48.9 94.6 94.8 93.7 93.4 92.7 94.1

0.5 B 4 -1001 10 45 -29 1 11 8 9 -10

SD 260 266 358 712 666 269 311 317 535 513

SE 270 281 354 1007 792 254 297 293 586 533

CP 95.7 5.4 94.6 94.9 93.7 93.9 92.7 95.0

-0.5 0.25 B -3 -718 6 56 -10 2 -360 3 49 10

SD 307 301 365 599 579 292 304 328 531 507

SE 378 366 456 943 822 281 296 312 641 562

CP 98.1 49.3 98.6 98.3 94.3 74.6 93.2 94.9

0.5 B -3 -1253 14 261 44 2 -635 -1 195 29

SD 307 291 432 1167 726 292 313 363 857 644

SE 378 351 529 1413 1043 281 305 339 1003 779

CP 98.1 4.6 98.1 96.8 94.3 45.2 93.1 96.2

Note: Same as that of Table 2.1.



28

Table 2.3: Simulation summary statistics of the estimators in the multi-covariate
model with χ2 error

estimators of β1 estimators of β2

ρ σ2
ε I NV RC Prop I NV RC Prop

0.5 0.25 B -12 -1212 -862 144 10 11 322 151 -10 -29

SD 529 450 491 1073 956 301 314 323 452 449

SE 613 471 532 1544 1191 255 287 279 509 470

CP 97.4 26.5 63.4 96.0 90.5 78.7 57.6 95.7

0.5 B -12 -1872 -1294 328 0 11 501 217 -54 5

SD 529 418 497 2017 1238 301 318 337 644 548

SD 613 427 529 2187 1794 255 299 293 714 636

CP 97.4 0.9 30.2 95.3 90.5 62.1 85.3 95.6

0 0.25 B 9 -720 -419 68 10 6 17 17 19 29

SD 400 354 377 633 652 264 274 274 388 362

SE 412 368 395 826 724 257 266 265 401 394

CP 95.2 48.5 80.2 96.3 93.8 94.3 94.5 94.9

0.5 B 9 -1207 -675 140 29 6 20 20 18 10

SD 400 339 384 866 825 264 283 284 468 463

SE 412 353 404 1707 1074 257 272 271 571 479

CP 95.2 8.0 58.8 96.4 93.8 94.4 93.8 95.4

-0.5 0.25 B 29 -646 -244 58 10 9 -220 -22 10 -10

SD 388 341 376 606 583 296 298 307 442 449

SE 475 422 481 975 858 264 273 276 484 430

CP 97.8 66.2 96.5 98.1 91.7 84.0 91.4 94.0

0.5 B 29 -1115 -396 140 -39 9 -343 -39 38 -10

SD 388 389 461 1054 820 296 461 496 613 557

SE 475 401 512 1605 1232 264 283 292 770 620

CP 97.8 17.6 91.8 98.1 91.7 69.5 91.6 92.9

Note: Same as that of Table 2.1.
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shown, when two covariates are correlated, the measurement error generally has im-

pact not only on the error-prone covariate but also on that of the accurately measured

one. The relative performance is similar to what was observed in the single covariate

case.

2.3.2 Illustration with the NPC Trial Data

The NPC trial is a randomized double-blind, placebo-controlled clinical trial to eval-

uate the long term safety and efficacy of a daily 200-µg supplement of selenium (Se)

in preventing two types of skin cancers, BCC and SCC. Patients with previous his-

tories of BCC or SCC were recruited and randomized into the treatment group in

which patients were supposed to take daily 200-µg supplement of selenium (Se), or

the control group in which placebo pills were given. One of the primary end points

of this trial was newly diagnosed SCC lesions.

In this analysis, we are interested in the effect of baseline plasma Se on new SCC

lesions. In the NPC trial, measurements of plasma Se were taken from routine clinic

visits at approximately six months intervals. For those in the control group, repeated

measurements for each patient might represent replicated measurements of baseline

plasma Se under the assumption of stationarity (Jiang et al., 1999; Hu & Lin, 2004).

This, however, would not be true for patients in the Se group since the plasma Se

level was likely to change due to the treatment. As an illustration of the proposed

estimation procedure, we will restrict our attention to the patients in the control
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group.

We considered selenium measurements within 24 months of randomization and

included 589 patients in the control group with at least 2 such measurements in the

analysis. The average number of replicates was 4.4 with a maximum of 12 replicates.

One hundred sixty seven (28.4%) patients had at least one occurrence of SCC after

randomization. More specifically, 83 (14.1%), 32 (5.4%), 19 (3.2%) and 33 (5.6%)

patients had 1, 2, 3 and 4 or more occurrences. The average duration of follow-up

was 67.7 months and the average number of occurrences was 0.67 per patient.

Table 2.4: NPC Trial SCC Data

log(Se)

Method Estimate SE

Naive I 1.156 0.535

Naive II 1.280 0.634

RC 1.693 0.976

Proposed 1.743 1.292

Note: Baseline Se measurement (Naive I), Average of all Se measurements (Naive II),
Regression Calibration (RC), and Proposed Estimator (Proposed)

The covariate of interest is the logarithm of the true baseline selenium. Table

2.4 shows the analysis results based on the proposed method, regression calibration

method and two naive methods, one using only the baseline selenium measurement

and the other using the average of all selenium measurements within 24 months

of randomization. In comparison, the naive approaches yield coefficient estimates
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of log(Se) with smaller magnitude. Both the regression calibration and proposed

estimates are larger in magnitude. Given the fact that the distribution of error is

symmetric and close to normal (Hu & Lin, 2004), this result was expected, and is

consistent with our simulations.

2.4 Discussion

In this chapter, we have proposed a consistent estimation procedure for the accel-

erated failure time model with recurrent events data in the presence of covariate

measurement error. Under the accelerated failure time model and additive measure-

ment error model, this method yields consistent regression coefficient estimation with

only mild boundedness assumption on the measurement error. Simulation studies

showed satisfactory performance of the proposed estimation procedure in samples of

moderate size and measurement error, even when the measurement error was not

bounded.

Lin et al. (1998) considered a class of weighted estimating functions, including the

log-rank estimating function and Gehan estimating function as special cases. Our

proposed estimation procedure should be able to be extended along the same line.

With a proper chosen weight function, the efficiency of estimation procedure might

be improved.

The proposed estimation procedure falls into the category of functional modeling
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since it does not impose any parametric distribution on covariates. In particular, the

proposed estimation procedure resembles the nonparametric correction method in

that both approaches are free of distributional assumptions on underlying covariates

and measurement error. However, the proposed method is distinct in its motivation,

as being based on a novel identity (2.4). In contrast, the nonparametric correction

method relies on an original estimating function (in the absence of measurement error)

to construct a corrected estimating function with the same limit.

This method requires replicated measurements on error-prone covariates, which

might not always be available. For instance, patients in Se group of the NPC trial

did not have replicated baseline plasma Se measurements. This limitation warrants

future research.

2.5 Appendix: Technical Details

2.5.1 Proof of the Asymptotic Theory

Proof of Theorem 2.1

We first prove the uniform consistency of the estimating function Ψ(βββ) given by
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(2.5). By algebra, we can write Ψ(βββ) as a function of four empirical processes

Ψ(βββ) = ÊA
∫ τ

0

W(2)Y (eξ(βββ)s;W(2),βββ)dN(s;W(1),βββ)

−
∫ τ

0

ÊA{W(2)Y (eξ(βββ)t;W(2),βββ)}
ÊA{Y (eξ(βββ)t;W(2),βββ)}

×dÊA
∫ t

0

Y (eξ(βββ)s;W(2),βββ)dN(s;W(1),βββ)

≡ A(n)
1 (βββ)−

∫ τ

0

A(n)
2 (t,βββ)

A(n)
3 (t,βββ)

dA(n)
4 (t,βββ)

where Ê represents sample empirical mean, e.g., ÊA{W(2)Y (eξ(βββ)t;W(2),βββ)} =

n−1
∑n

i=1A{W
(2)
i Yi(e

ξ(βββ)t;W
(2)
i ,βββ)}.

Using the technique of Kosorok (2008), we will show in the following that all four

empirical processes A(n)
1 to A(n)

4 are P-Donsker classes and thus each of them will

converge to their limits uniformly in t and βββ.

We first show A(n)
3 is P-Donsker class. First consider the case when βββ is a scalar,

we have ξ(βββ) = |βββ|M[1] where M[1] is defined in Section 2.2.2.

Empirical process

Y (eξ(βββ)t;W(2),βββ)

= I(C ≥ eβββW
(2)+ξ(βββ)t)

= I{logC ≥ βββW(2) + ξ(βββ) + log t}

= I{logC ≥ βββ(W(2) +M[1]) + log t} × I{logC ≥ βββ(W(2) −M[1]) + log t}
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I(logC ≥ βββ(W(2) + M[1]) + log t) and I(logC ≥ βββ(W(2) − M[1]) + log t) are in-

dicator functions of half-space in R2 and thus belongs to Vapnik-Červonenkis-class

with index 4 (Kosorok, 2008, Lemma 9.12). Following the proof of Kosorok (2008,

Lemma 8.12), we can show that these functions are pointwise measurable classes.

Applying Theorem 9.3, Theorem 8.19 of Kosorok (2008) and the fact that indica-

tor functions are bounded, we can see that I(logC ≥ βββ(W(2) + M[1]) + log t) and

I(logC ≥ βββ(W(2) −M[1]) + log t) are P-Donsker classes indexed by β and t. We now

have that Y (eξ(βββ)t;W(2),βββ) is Donsker since products of bounded Donsker classes are

also Donsker. When βββ is a p-element vector, Y (eξ(βββ)t;W(2),βββ) can be written as the

product of 2p indicator functions. Each of these indicator functions can be shown as

Donsker class. Therefore we can show Y (eξ(βββ)t;W(2),βββ) is Donsker with similar ar-

gument. Thus A(n)
3 (t,βββ) = ÊA(Y (eξ(βββ)t;W(2),βββ)) is Donsker since sums of bounded

Donsker classes are Donsker.

From Condition C3, W(2) is P-Donsker. W(2)Y (eξ(βββ)t;W(2),βββ) is the product of

two bounded P-Donsker classes and therefore it is also P-Donsker. Donsker property

of A(n)
2 (t,βββ) is shown.

Now turn to A(n)
4 (t,βββ) = ÊA

∫ t
0
Y (eξ(βββ)s;W(2),βββ)dN(s;W(1),βββ). Let Tj, j =

1, 2, . . ., be the jth event time for the subject, and B be the upper bound of counting
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process Ñ(·) (Condition C1),

∫ t

0

Y (eξ(βββ)s;W(2),βββ)dN(s;W(1),βββ) = N∗(t ∧ Ce−βββ′W(2)−ξ(β);W(1),βββ)

= Ñ∗(eβββ
′W(1)

t ∧ Ce−βββ′W(2)−ξ(βββ)+βββ′W(1)

)

=
B∑
k=1

I(Tk ≤ eβββ
′W(1)

t ∧ Ce−βββ′W(2)−ξ(βββ)+βββ′W(1)

)

is the summation of a finite number of P-Donsker classes. Therefore∫ t
0
Y (eξ(βββ)s;W(2),βββ)dN(s;W(1),βββ) is P-Donsker. A(n)

4 (t,βββ) and A(n)
1 (βββ) are also P-

Donsker.

With the uniform convergence of A(n)
1 , A(n)

2 , A(n)
3 and A(n)

4 and the fact that the

limit of A(n)
3 is bounded away from 0, the uniform convergence of estimating function

Ψ(βββ) can be established. Ψ(βββ) will converge to its limit ψ(βββ) uniformly in βββ. Note

that the limit function ψ(βββ) has a zero-crossing at βββ0. Thus the uniform convergence

of the estimating function Ψ(βββ) implies that there exists one zero-crossing of Ψ(βββ)

converging to βββ0.

Proof of Theorem 2.2

First, we show the asymptotic normality of the estimating function Ψ(βββ0).

Estimating function Ψ(βββ) is a mapping from four empirical processes which have

been shown to be P-Donsker. It can be shown by Lemma 12.2, Lemma 12.3 and

Lemma 6.19 (chain rule) of Kosorok (2008) that the mapping is Hadamard differ-

entiable. Applying functional delta method, we obtain that n1/2(Ψ(βββ0) − ψ(βββ0))
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converges weakly to a zero mean Gaussian process.

We then establish the asymptotic linearity of Ψ(βββ) in a neighborhood of βββ0. Let

A1 to A4 denote the limit of A(n)
1 to A(n)

4 respectively. We will first show the following

property

lim
η→0

lim sup
n→∞

Pr

{
sup

||βββ−βββ0||≤η
n1/2||A(n)

k (βββ, t)− Ak(βββ, t)− A(n)
k (βββ0, t) + Ak(βββ0, t)|| > ε

}
= 0

(2.6)

for k = 1, · · · , 4.

First consider k = 3. Let M(βββ) = (sgn(β[1])M[1], . . . , sgn(β[p])M[p]). ξ(βββ) can be

re-written as βββ′M(βββ). Therefore A{Y (eξ(β)t;W(2), β)} = A{Y (eβββ
′M(βββ)t;W(2),βββ)}.

We have

Var
[
A{Y (eβββ

′M(βββ)t;W(2),βββ)− Y (eβββ
′
0M(βββ0)t;W(2),βββ0)}

]
= A (Var [I{logC ≥ βββ′U(βββ) + log t} − I{logC ≥ βββ′0U(βββ0) + log t}]) (let U(βββ) = W(2) + M(βββ))

= A(Var [I{βββ′U(βββ) + log t ≤ logC ≤ βββ′0U(βββ0) + log t}

+ I{βββ′0U(βββ0) + log t ≤ logC ≤ βββ′U(βββ) + log t}])

= A(Var [I{βββ′U(βββ) + log t ≤ logC ≤ βββ′0U(βββ0) + log t}]

+Var [I{βββ′0U(βββ0) + log t ≤ logC ≤ βββ′U(βββ) + log t}])

≤ A(E [I{βββ′U(βββ) + log t ≤ logC ≤ βββ′0U(βββ0) + log t}]

+E [I{βββ′0U(βββ0) + log t ≤ logC ≤ βββ′U(βββ) + log t}])

= A(P1 + P2)
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βββ′U(βββ) is continuous in βββ at βββ0. When ||βββ − βββ0|| ≤ δ and δ → 0, we have P1 and P2

→ 0. By Condition C2, then

Var
[
A{Y (eξ(βββ)t;W(2),βββ)− Y (eξ(βββ)t;W(2),βββ0)}

]
→ 0

The Donsker property of A{Y (eξ(β)t;W(2),βββ)} implies the tightness of the process.

Thus Var
[
A{Y (eξ(βββ)t;W(2),βββ)− Y (eξ(βββ)t;W(2),βββ0)}

]
→ 0 implies that equation (2.6)

holds (Kosorok, 2008, p.15).

Now we have shown equation (2.6) holds for k = 3. Similarly, we can also show

that equation (2.6) holds for k = 1, 2 and 4.

Then with some simple algebra, one can show that

lim
ξ→0

lim sup
n→∞

Pr

{
sup

||βββ−βββ0||≤ξ
n1/2||Ψ(βββ, t)− ψ(βββ, t)−Ψ(βββ0, t) + ψ(βββ0, t)|| > ε

}
= 0

(2.7)

After proving (2.7), together with the asymptotic normality of Ψ(βββ), the asymp-

totic normality of β̂ββ follows via fairly standard arguments.

2.5.2 Asymptotic Variance of Estimating Function

For abbreviation of notation, we will use Y (1) to denote Y (eξ(βββ)s;W(1),βββ) and N (1)

to denote N(t;W(1),βββ). Similar abbreviations will also be used for other notations.
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With functional delta method, straightforward algebra gives

n1/2Ψ(βββ) = n−1/2
n∑
i=1

[Bi1 −Bi2] + op(1) (2.8)

where

Bi1 = A
∫ τ

0

{
W

(2)
i −

EW(2)Y (2)

EY (2)

}
Y

(2)
i dN

(1)
i

Bi2 = A
∫ τ

0

{
W

(2)
i Y

(2)
i

EY (2)
−
(
EW(2)Y (2)

)
Y

(2)
i

(EY (2))
2

}
dE
∫
Y (2)dN (1)

Thus, n1/2Ψ(βββ) is asymptotically a sum of iid random variables.

For fixed βββ, n1/2(Ψ(βββ) − ψ(βββ)) is asymptotically normal with mean 0 and a co-

variance matrix Ω(βββ) that can be consistently estimated by

Ω̂(βββ) = n
n∑
i=1

{ωi(βββ)− ω̄(βββ)} {ωi(βββ)− ω̄(βββ)}′

where ωi(βββ) = n−1 (Bi3 −Bi4), ω̄(βββ) = n−1
∑n

i=1 ωi(βββ), and Bi3 and Bi4 are defined

as

Bi3 = A
∫ τ

0

{
W

(2)
i −

ÊAW(2)Y (2)

ÊAY (2)

}
Y

(2)
i dN

(1)
i , and

Bi4 = A
∫ τ

0

{
W

(2)
i Y

(2)
i

ÊAY (2)
− (ÊAW(2)Y (2))Y

(2)
i

(ÊAY (2))2

}
× dÊA

∫
Y (2)dN (1).
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Chapter 3

Augmented Parametric Corrected

Score for Proportional Hazards

Model with Covariate

Measurement Error

3.1 Introduction

The proportional hazards model is one of the most popular models to investigate

the relationship between time to failure and covariates. However, in many clinical

trials, the true covariates may not always be accurately measured. In some studies,
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the magnitude of measurement error could be substantial to the extent that it is

comparable to or even larger than that of the true underlying covariate. An example

of substantial measurement error is the HIV viral load in HIV/AIDS studies.

As introduced in Chapter 1, available functional modeling methods for Cox pro-

portional hazards model include the conditional score (Tsiatis & Davidian, 2001),

the parametric corrected score (Nakamura, 1992; Kong & Gu, 1999), and the non-

parametric corrected score (Huang & Wang, 2000, 2006; Hu & Lin, 2004). The idea

of the conditional score is to condition away the nuisance parameters based on cer-

tain sufficient statistics whereas the last two classes adopt a correction strategy by

constructing a corrected estimating function with error-contaminated covariates that

shares the same limit as a reference estimating function with true underlying co-

variates. If the reference estimating function admits consistent estimates only, the

corrected estimating function shall inherit this property in a compact parameter space

containing the true value. Conditional score and parametric corrected score are gen-

erally different. But in the case of the Cox proportional hazards model and normal

measurement error, the conditional score and parametric corrected score estimators

are asymptotically equivalent.

Although all three aforementioned methods produce consistent estimators, they

all suffer from finite-sample pathological behaviors especially when the measurement

error is substantial. Though noticed in some literature, the pathological behaviors

of these estimation procedures were never well understood. Recently, Huang (2011)
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proposed an approach to incorporate additional estimating functions which constrain

the derivatives of the parametric corrected score for loglinear model. This approach

effectively remedies those pathological behaviors and also considerably improves the

estimation efficiency. Huang’s approach provides a promising general strategy to

handle similarly ill-behaved estimating functions. Motivated by this approach, we

will develop an estimation procedure for the Cox proportional hazards model with

covariate measurement error.

In this chapter, we first conduct a detailed investigation on pathological behav-

iors of parametric corrected score and conditional score. After that, we propose an

augmented estimation procedure in which additional estimating functions are added

to the parametric corrected score for the proportional hazards model. In Section

3.2, we briefly describe the parametric corrected score and conditional score for the

proportional hazards model and present the investigation results on the pathological

behaviors when covariate measurement error is substantial. The proposed approach

of incorporating additional estimating functions for the parametric corrected score is

presented in Section 3.3. Simulation studies with practical sample size are reported in

Section 3.4 together with an application to the ACTG 175 clinical trial data. Further

discussion is given in Section 3.5. Technical details is collected in Section 3.6.
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3.2 Parametric Corrected Score and Conditional

Score and Their Pathological Behaviors

The proportional hazards model postulates that the cumulative hazard function Λ(·)

of survival time T of an individual with a p-vector of covariate Z has the form

Λ(dt|Z) = exp(βββ′Z)Λ0(dt)

where βββ is a p-vector parameter of interest and Λ0(·) is an unspecified baseline cu-

mulative hazard function. Let C denotes the censoring time and adopt the usual

independent censoring mechanism: given Z, C is independent of T.

The observed data, (Xi,∆i,Zi, i = 1, . . . , n), consist of n iid replicates of {X ≡

T ∧ C,∆ ≡ I(T ≤ C),Z}. The standard inference procedure for Cox proportional

hazards model is then to maximize the partial likelihood or, equivalently, to solve

estimating function

ξξξ∗(b, Λ̃0(·)) = n−1
n∑
i=1

∫ τ

0

(
1

Zi

){
dNi(t)− Yi(t) exp(b′Zi)dΛ̃0(t)

}
, (3.1)

where Ni(t) = I(Xi ≤ t,∆i = 1) is the counting process, Yi(t) = I(Xi ≥ t) is the

at-risk process and τ is a positive constant such that Pr(T ≥ τ) > 0. Profiling out
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Λ̃0(·), the estimating function for βββ alone is

ξξξ(b) = n−1
n∑
i=1

∫ τ

0

{
Zi −

∑n
j=1 Yj(t)Zj exp(b′Zj)∑n
j=1 Yj(t) exp(b′Zj)

}
dNi(t). (3.2)

Estimating function (3.2) is actually the usual partial score function.

3.2.1 Parametric corrected score and conditional score

Split covariates Z = (ZTa ,Z
T
e )T where Za are those covariates that can be accurately

measured and Ze are covariates prone to measurement error and cannot be accurately

measured. Though Ze cannot be measured directly, we can observe them through

their surrogates We. Under the classical additive measurement error model, We =

Ze +εεεe, where εεεe is the error vector and εεεe is assumed to be independent of (T,C,Z).

In this chapter, we consider the situation that the distribution of εεεe is known; The

situation where distribution of εεεe is unknown is studied in Chapter 4.

Let W = (Za,We) and εεε = (0, εεεe). The observed data now consist of (Xi,∆i,Wi, i =

1, . . . , n) in the presence of covariate measurement error. It is well known that naively

replacing Z by W in estimating functions (3.1) or (3.2) could incur substantial estima-

tion bias. Denote the cumulant-generating function of εεε as Ω(b) ≡ log E{exp(b′εεε)}

and its derivative Ω̇(b) ≡ ∂Ω(b)/∂b. The parametric corrected score estimating



44

function is given by

ηηη∗(b, Λ̃0(·)) = n−1
n∑
i=1

∫ τ

0

(
1

Wi − Ω̇(0)

)
dNi(t) (3.3)

−
∫ τ

0

Yi(t) exp{b′Wi − Ω(b)}
(

1

Wi − Ω̇(b)

)
dΛ̃0(t).

Further profiling out Λ̃0(·), we obtain the corrected score for βββ (Nakamura, 1992):

ηηη(b) = n−1
n∑
i=1

∫ τ

0

{
Wi + Ω̇(b)− Ω̇(0)−

∑n
j=1 Yj(t)Wj exp(b′Wj)∑n
j=1 Yj(t) exp(b′Wj)

}
dNi(t) (3.4)

which has the same limit as reference (3.2) asymptotically for each and every finite

b. The estimation is then to find the zero crossing of the above estimating function.

The consistency and asymptotic normality of corrected score estimator are later es-

tablished by Kong & Gu (1999).

A root-consistent estimating function is an estimating function such that every

zero-crossing is consistent and a normalized estimating function is root-consistent if

its limit has a unique root at the estimand (Huang and Wang, 1999). By defini-

tion, reference (3.2) is a root-consistent estimating function and the new estimating

function (3.4) shall inherit the root-consistency from (3.2). The root-consistency of

(3.4) assures that in a compact parameter space containing the true parameter βββ, the

parametric corrected score will admit a unique root asymptotically and the root is

consistent and asymptotically normal.

As for the conditional score estimating function for the Cox proportional haz-
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ards model (Tsiatis & Davidian, 2001), when the measurement error is normally

distributed and the variance matrix is ΣΣΣ, it can be written as:

ηηηcon(b) = n−1
n∑
i=1

∫ τ

0

{Wi + ΣΣΣb (3.5)

−
∑n

j=1 Yj(t)[Wj + ΣΣΣbdNj(t)] exp(b′[Wj + ΣΣΣbdNj(t)])∑n
j=1 Yj(t) exp(b′[Wj + ΣΣΣbdNj(t)])

}
dNi(t)

In fact, it can be shown that estimators from parametric corrected score and

conditional score are asymptotically equivalent in the case of normal measurement

error (Tsiatis & Davidian, 2001).

3.2.2 Pathological behaviors

When the magnitude of measurement error is small, the asymptotic results of para-

metric corrected score and conditional score provide a good approximation for prac-

tical purposes. However, when the measurement error increases, the pathological

behaviors may start to arise (Song & Huang, 2005). These pathological behaviors

include multiple zero-crossings or a single wrong zero-crossing that is inappropriate.

These pathological behaviors may cause serious concerns when the measurement error

is substantial and limit the applicability of parametric corrected score and conditional

score in practice. But these pathological behaviors were never well understood or

thoroughly investigated in the literature. In this section, we will conduct a detailed

investigation of pathological behaviors for these two methods.
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We first consider the parametric corrected score. Consider a single-covariate model

with normal measurement error. In the absence of measurement error, the partial

likelihood score function ξ(b) is monotonically decreasing and has a unique root.

The asymptotic result suggests that the parametric corrected score η(b) should be

monotonically decreasing as well in a compact parameter space containing the true

parameter when the sample size is large. One may speculate the parametric corrected

score to have an overall decreasing trend over the entire parameter space. But sur-

prisingly, the overall trend of parametric corrected score in an unbounded parameter

space is increasing. Function η(b) takes a value of −∞ when b = −∞ and a value

of +∞ when b = +∞. This observation suggests that the parametric corrected score

η(b) has an odd number of roots. In our numerical studies, only single- and triple-root

patterns have been observed and two typical plots of parametric corrected score are

illustrated in Figure 3.1. The same root patterns were observed in Huang’s (2011)

investigation of loglinear model.

An alternative way of constructing corrected score is to first construct corrected

partial likelihood and then take derivative. So if we characterize a root by increase

or decrease of η(·) around it, the increasing and decreasing roots correspond to local

minimizers and maximizers of corresponding corrected partial likelihood function,

respectively. Therefore, an increasing root is considered as an inappropriate one. In

the case of single-root pattern, the only root is increasing and thus inappropriate. For

the triple-root pattern, an appropriate root exists since there is only one decreasing

root. The single-root pattern is considered as root-finding failure.
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Figure 3.1: Observed root patterns of the parametric corrected score η(b). The true
β is -1 and these two corrected curves correspond to the same profile score (with true
covariates). Portion of a corrected curve is thickened to indicate negative derivative.

Table 3.1: Prevalence (%) of single-root pattern for the parametric corrected score
with E(X) = 0, Var(X) = 1, β = −1, and ε ∼ Normal(0,1).

Size

Censoring Rate Distribution of X 100 200 400 800

20% Normal 68.0 52.1 38.0 20.3

Modified Chi-square 65.8 57.9 52.3 40.1

Uniform 64.5 51.9 37.6 19.6

40% Normal 62.4 49.0 36.3 17.8

Modified Chi-square 64.4 58.0 50.9 43.1

Uniform 60.4 49.5 37.1 19.3

60% Normal 61.0 46.5 32.1 16.0

Modified Chi-square 62.7 57.3 50.9 42.6

Uniform 58.5 47.9 36.8 21.2
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We conduct a simulation study to exam the prevalence of single-root pattern. We

consider a single covariate Z and generate it from various distributions: A) standard

normal distribution, B) modified chi-square distribution, and C) uniform distribution

with mean 0 and variance 1. To generate the modified chi-square distribution, the

chi-square distribution with 1 degree of freedom was first truncated at 5 and then

location-shifted to mean 0 and rescaled to variance 1. The measurement error follows

standard normal distribution. The true coefficient was taken to be β = −1 and the

baseline hazard is constant 1. Censoring was generated from a uniform distribution

on [0, µ], where µ is chosen so that the censoring rate is ranged from 20% to 60%.

These set-ups represent a practical scenario with substantial error contamination

on the covariate. The results based on 1,000 iterations are reported in Table 3.1.

The prevalence of single-root patten is similar across different scenarios with various

censoring rates. When the sample size is 100, the percentage of single-root pattern

under all three distributions are close to or over 60%. Even when the sample size

increases to 800, the prevalence of single-root pattern is still quite high.

For the conditional score, the patterns are more complicated. When the absolute

value of β gets large, the estimating function fluctuates around zero and finally ap-

proaches zero as β goes to infinity. Therefore the conditional score may have many

zero-crossings. When the β is not so extreme, two general patterns for the con-

ditional scores are observed and plots from two simulation data sets are shown in

Figure 3.2. As explained in previous section, conditional score and corrected score

are asymptotically equivalent. Therefore an appropriate zero-crossing for conditional
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score should be a decreasing one as well. In the first pattern, the conditional score has

one zero-crossing close to the true parameter. This single zero-crossing is decreasing

and thus an appropriate one. In the second patten, the conditional score appears

to have no proper zero-crossing near the truth though it may have multiple zero-

crossings at extreme values of β. For conditional score, we define the estimator as the

local point having the smallest `2-norm in the neighborhood of the naive estimation.

If the estimator is not a zero-crossing, we consider it as root-finding failure. Table

3.2 summarizes the prevalence of root-finding failure for the conditional score. The

same simulation set up as in the corrected score is used. With a sample size of 100,

the root-finding failure rate for conditional score varies from 3% to 5% for normal

covariate and from 14% to 25% for modified chi-square covariate. As the sample size

increases to 800, the failure rate drops to 0.2% for normal covariate but remains at
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Figure 3.2: Observed root patterns of the conditional score estimating function. The
true β is -1.
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least 14% for modified chi-square covariate.

Table 3.2: Prevalence (%) of root-finding failure for the conditional score with E(X) =
0, Var(X) = 1, β = −1, and ε ∼ Normal(0,1).

Size

Censoring Rate Distribution of X 100 200 400 800

20% Normal 2.7 1.5 0.6 0.3

Modified Chi-square 14.4 12.2 15.1 13.9

Uniform 3.1 1.6 0.6 0.1

40% Normal 4.6 2.3 0.8 0.2

Modified Chi-square 20.0 16.7 20.9 18.7

Uniform 3.1 2.1 0.3 0.5

60% Normal 4.7 2.5 0.7 0.3

Modified Chi-square 24.6 21.7 25.7 25.0

Uniform 5.7 2.7 1.4 1.0

The above investigation results show that, in the presence of substantial measure-

ment error, both parametric corrected score and conditional score suffer from severe

finite-sample pathological behaviors. Therefore improvements are required for these

methods to have practical applicability. We observe that an appropriate zero-crossing

of an estimating function should be a decreasing one. This observation suggests that

the trend of estimating function is also informative and could be taken into account

in the estimate determination. By Taylor expansion, the trend of estimating func-

tion may be quantified by its derivative. Recognizing this feature, Huang (2011)

proposed an approach to incorporate additional estimating functions which constrain

the derivatives of the corrected score for the loglinear model. The estimation and

inference are then accomplished by means of empirical likelihood. This approach

effectively remedies the pathological behaviors of corrected score for loglinear model



51

and also considerably improves the estimation efficiency. However, in the case of the

Cox proportional hazards model, we are unable to construct additional estimating

functions that effectively constrain the derivative of the parametric corrected score

or conditional score because of the very nature of these two estimating functions.

Nevertheless, Huang’s approach provides an insight into a new approach to address

pathological behaviors of estimating functions. If we could identify additional esti-

mating functions that do not share the same wrong roots as the original estimating

function, then by combining the original and additional estimating functions, patho-

logical behaviors could be reduced or eliminated. But if either the original estimating

function or the additional estimating functions vanish to zero, then wrong root shar-

ing would easily arise. We have shown in the simulation that the conditional score

would vanish to zero when the absolute value of parameter becomes large. Thus,

the trend pattern of the parametric corrected score is more desirable than that of

the conditional score and our method will be developed for the parametric corrected

score.

3.3 Improving Corrected Score

3.3.1 Augmented Estimation Method

Motivated by Huang’s (2011) trend-constrained corrected score, we first establish the

following result:
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Theorem 3.1. Under the proportional hazards model and the classical additive mea-

surement error model,

E

[∫ τ

0

∂k1+···+kp exp{b′W − Ω(b)}
∂bk11 · · · b

kp
p

dNi(t)

∣∣∣∣∣
b=0

(3.6)

∫ τ

0

∂k1+···+kpY (t) exp{b′W − Ω(b)}
∂bk11 · · · b

kp
p

dΛ0(t)

∣∣∣∣∣
b=βββ

 = 0,

for kl ≥ 0, l = 1, . . . , p, where bl, l = 1, . . . , p, is the lth element of b.

Proof. Given

E [exp{b′W − Ω(b)}|Z] = exp(b′Z)

under additive measurement error model, one may obtain

E

[∫ τ

0

Y ∂k1+···+kp exp{b′W − Ω(b)}
∂bk11 · · · b

kp
p

dΛ0(t)

∣∣∣∣∣Z
]

=

p∏
l=1

Zkl
l

∫ τ

0

Y (t) exp(b′Z)dΛ0(t)

and

E

[∫ τ

0

∂k1+···+kp exp{b′W − Ω(b)}
∂bk11 · · · b

kp
p

dN(t)

∣∣∣∣∣
b=0

∣∣∣∣∣Z
]

=

p∏
l=1

Zkl
l N(τ).

Then given the fact that M(t) = N(t) −
∫ t
0
Y (u) exp(βββ′Z)dΛ0(u) is a mean zero

martingale, equation (3.6) is implied by the above two equations.

Equation (3.6) is useful in constructing additional estimating equations for βββ.

When
∑p

l=1 kl = 0 and 1, one may obtain the usual parametric corrected score. When∑p
l=1 kl = 2, the additional estimating functions are the upper triangular elements of
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the following symmetric matrix:

n−1
n∑
i=1

∫ τ

0

[
{Wi − Ω̇(0)}⊗2 − Ω̈(0)

]
dNi(t)

−
∫ τ

0

Yi(t) exp{b′Wi − Ω(b)}
[
{Wi − Ω̇(b)}⊗2 − Ω̈(b)

]
dΛ̃0(t).

By profiling out Λ̃0(·), we obtain

n−1
n∑
i=1

∫ τ

0

[
{Wi − Ω̇(0)}⊗2 − Ω̈(0) (3.7)

−

∑n
j=1 Yj(t) exp{b′Wj − Ω(b)}

[
{Wj − Ω̇(b)}⊗2 − Ω̈(b)

]
∑n

i=j Yj(t) exp{b′Wj − Ω(b)}

 dNi(t)

The additional estimating functions would be helpful if both parametric corrected

score and additional estimating function are close to 0 around the truth (not neces-

sarily having roots) and the additional estimating function is not close to 0 when the

parametric corrected score is close to 0 at any point far away from the truth. Fig-

ure 3.3 shows four typical patterns of parametric corrected score and corresponding

additional estimating function based on equation (3.7) for a single-covariate model

with true parameter β = −1. Plot (a) is the ideal scenario. The parametric cor-

rected score have three zero-crossings. The additional estimating function shares the

same decreasing zero-crossing as the parametric corrected score. Moreover, they do

not share any wrong zero-crossings. In plot (b), the parametric corrected score have

three zero-crossings and two of them are close to each other. In this case, discrimi-
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Figure 3.3: Parametric corrected score and additional estimation function based on
equation (3.7) for a single-covariate model with β = −1.
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nating the two roots around the truth is not very important since they are close to

each other anyway. In plots (c) and (d), the parametric corrected score has a single

wrong zero-crossing but the additional estimating function is not close to 0 near this

wrong zero-crossing. Both estimating functions are close to 0 around the truth.

3.3.2 Estimation and inference

With the additional estimating functions, we have more estimating functions than

the number of parameters. Available methods to synthesize estimating functions

that exceed the number of parameters include empirical likelihood (Qin & Lawless,

1994) and quadratic inference function (QIF) method (Lindsay & Qu, 2003). In

this research, we shall use the quadratic inference function method to determine the

estimate since the estimating functions are not sums of iid terms, thus the empirical

likelihood would be computational difficult.

Let ϕϕϕ(b) denotes the estimating functions. ϕϕϕ(b) is comprised of the original para-

metric corrected score and additional estimating functions. The quadratic inference

function takes the form

Q(b; Ĉ) = ϕϕϕ′(b)Ĉ−1(b)ϕϕϕ(b), (3.8)

where Ĉ(b) is any consistent estimator for the asymptotic variance of ϕϕϕ(b). Then

the estimator is defined as the minimizer of (3.8) and is consistent for the true value
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of b. Furthermore, the estimator is asymptotically efficient in the class of consistent

estimators based on linear combination of parametric corrected score and additional

estimating functions. The construction of a quadratic inference function helps to solve

both aspects of pathological behaviors of the parametric corrected score. Firstly, in

the case of multiple zero-crossings, the introduction of additional estimating func-

tions helps to pick up the right zero-crossing out from multiple ones if the additional

estimating functions do not share the same wrong roots as the original parametric

corrected score. Secondly, the problem of no appropriate zero-crossing could be solved

by minimizing the quadratic inference function.

We name the method to incorporate additional estimating functions based on

(3.6) as the augmented parametric corrected score. One important special case is the

method incorporating the upper triangular elements of matrix (3.7) and was termed

the second order augmented parametric corrected score. Augmented parametric cor-

rected scores with higher order are also available, with additional estimating functions

corresponding to kl such that
∑p

l=1 kl > 2. In Section 3.4, we will conduct extensive

simulation studies to evaluate the performance of the augmented parametric corrected

score and its applicability in practice.

Figure 3.4 plots quadratic inference functions corresponding to the two datasets

in Figure 3.1. The second order augmented parametric corrected score is adopted.

The formula for a consistent estimator of the asymptotic variance of ϕϕϕ(b) is given in

Section 3.6.
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Figure 3.4: Quadratic inference functions for the two datasets in Figure 3.1.

The interval estimation can be easily achieved by inverting the hypothesis test-

ing statistics. As an inference function, Q(b; Ĉ) has similar properties as the log-

likelihood function (Lindsay & Qu, 2003):

(a) Q(βββ0)−Q(β̂ββ) is asymptotically chi-squared with degree of freedom p;

(b) the profile test statistics Q(ψψψ0, λ̂λλ0)−Q(ψ̂ψψ, λ̂λλ), where (ψψψ,λλλ) is a partition of the

parameter of βββ and λ̂λλ0 is the profiled estimate of λλλ given ψψψ = ψψψ0, is asymptotically

chi-squared as a test of H : ψψψ = ψψψ0, with degree of freedom equal to the dimension

of ψψψ.
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3.4 Numerical Studies

3.4.1 Simulations

Extensive simulations studies were conducted to evaluate the performance of aug-

mented parametric corrected score. For reference and comparison, the ideal, naive,

regression calibration, conditional score, and parametric corrected score were also

studied. The ideal estimator used the ordinary partial score function with true co-

variates and, of course, it is not a realistic estimator. The naive approach uses the

mismeasured surrogates in place of true covariates in the partial score function. For

the regression calibration method, Ze is replaced by E(Ze|Za,We) in the partial score

function. For the proposed approach, the optimization algorithm of Nelder & Mead

(1965) will be used.

As shown in previous section, both conditional score and parametric corrected

score have high prevalence of root-finding failure. To permit a fair comparison, we

propose the following re-defined conditional score and re-defined parametric corrected

score. If an appropriate zero-crossing could be found, the estimators will take the

value of zero-crossing. But if root-finding failure occurs, the estimators will be de-

fined as the local minimizer in the `2-norm of the estimating functions closest to the

naive estimator. Operationally, we will use the following modified Newton-Raphson

algorithm. We start with the naive estimator and calculate the Newton-Raphson step

size. Since the goal is to find a root or local minimizer, we need prevent overshooting.
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In our simulation, we cap the step size at 0.2. During each iteration, we compare

the `2-norm evaluated at new estimator to that evaluated at current estimator. If

the `2-norm evaluated at new estimator is smaller, then the new estimator will be

accepted and the algorithm continues to the next iteration. Otherwise, we will halve

the step size and calculate the new estimator again. Iterations will be repeated until

that i) the absolute value of estimating function is less than 10−6 or ii) the step size

has been halved for more than 10 time during any single iteration. If criteria i) is

satisfied, the algorithm converges to a zero-crossing and a root is identified in this

case. If criteria ii) is satisfied, the algorithm converges to a local minimizer and root-

finding failure occurs. Comparing to the original definition that estimators take the

values of zero-crossings of estimating function, this new definition actually benefits

the conditional score and corrected score. As shown in Figure 3.1 and 3.2, in the case

of root-finding failure, zero-crossings of conditional score and corrected score are at

extreme and far away from the true value.

In the simulation, we consider both single- and double-covariate models. In the

single-covariate models, the true covariate X is of mean 0 and variance 1. The true

regression coefficient was set to be -1 and the baseline hazard is constant 1. The

measurement error follows the standard normal distribution. Two different distribu-

tions of X were studied: A) standard normal distribution and B) modified chi-square

distribution. To generate the modified chi-square distribution, the chi-square distri-

bution with 1 degree of freedom was first truncated at 5 and then location-shifted

to mean 0 and rescaled to variance 1. Censoring time was generated from a uniform
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distribution on [0, µ] and we will consider two different settings of censoring rate at

20% and 60%.

In the double-covariate models, true covariate X follows bivariate normal distri-

bution with mean (−1, 1) and correlation coefficient of 0.5. The first covariate was

subject to a standard normal measurement error, whereas the second covariate was

accurately measured. The regression coefficients were set to (−1, 1) and the baseline

hazard is constant 1.. Censoring time was also generated from a uniform distribution

on [0, µ], where µ is chosen so that the censoring rate is 20% or 60%.

Sample sizes 100, 200, 400, 800, and 1,600 were investigated. For each scenario,

1,000 samples were simulated. We report the results on point and interval estimation

separately.

Table 3.3 and 3.4 summarize the simulation results on the estimators in the single-

covariate models with censoring rates of 20% and 60% respectively. The quantile-

quantile plots are shown in Figure 3.4 and 3.5. For each scenario, the mean bias, and

standard deviation were calculated. For augmented parametric corrected score, three

sets of additional estimating functions were considered where k = 2, 3, 4. As expected,

the naive estimator has substantial bias under both scenarios. The regression calibra-

tion estimator shows moderate bias, with larger bias in modified chi-square covariate

case than normal covariate case. The re-defined conditional score shows slight bias

under both scenarios, probably due to its left skewness. The quantile-quantile plots

show that the re-defined conditional score deviates from normality considerably even
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Table 3.3: Simulation summary statistics for the single-covariate models with 20%
censoring rate: Ideal, naive(NV), regression calibration (RC), re-defined conditional
score (ConS), re-defined parametric corrected score (CS), and first k augmented para-
metric corrected score (ACS:k), k = 2, 3, 4.

Ideal NV RC ConS CS ACS: 2 ACS: 3 ACS: 4

size B SD B SD B SD F B SD F B SD B SD B SD B SD

Case A

100 -15 154 593 99 148 254 2.7 -376 920 68.0 -11 287 46 431 -43 414 -103 381

200 -8 104 602 65 189 163 1.5 -251 719 52.1 -89 273 -60 330 -130 348 -172 351

400 -5 73 601 48 195 113 0.6 -202 575 38.0 -146 282 -99 287 -153 313 -184 327

800 1 49 604 32 206 76 0.3 -99 351 20.0 -129 267 -87 246 -83 226 -123 256

1600 1 36 605 23 0 -43 200 5.6 -75 206 -45 163 -60 178 -62 166

Case B

100 -25 204 639 91 242 247 14.4 -485 1221 65.8 145 241 110 387 41 409 9 409

200 -5 136 640 63 267 155 12.2 -396 1022 57.9 47 241 -10 351 -81 381 -128 381

400 -6 98 642 43 280 101 15.1 -329 895 52.3 -21 237 -10 285 -76 306 -122 323

800 -3 70 641 32 281 72 13.9 -249 740 40.1 -70 245 -34 241 -81 237 -95 241

1600 0 47 644 21 12.5 -139 486 30.3 -82 242 -9 152 -29 133 -42 139

Note: F: root-finding failure (%); B: mean bias (×103); SD: standard deviation(×103).
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Table 3.4: Simulation summary statistics for the single-covariate models with 60%
censoring rate: Ideal, naive(NV), regression calibration (RC), re-defined conditional
score (ConS), re-defined parametric corrected score (CS), and first k augmented para-
metric corrected score (ACS:k), k = 2, 3, 4.

Ideal NV RC ConS CS ACS: 2 ACS: 3 ACS: 4

size B SD B SD B SD F B SD F B SD B SD B SD B SD

Case A

100 -24 206 550 134 57 335 4.7 -429 1014 61.0 -27 301 94 478 -24 502 -90 551

200 -15 142 562 88 109 206 2.5 -272 738 46.5 -101 303 10 298 -99 347 -188 395

400 -8 97 563 63 119 142 0.7 -197 578 32.1 -139 305 -27 235 -96 257 -152 294

800 -2 65 567 42 132 96 0.3 -100 379 16.0 -113 271 -33 189 -72 199 -103 223

1600 1 46 567 30 0 -51 238 4.9 -68 205 -17 128 -38 125 -57 148

Case B

100 -66 351 687 124 351 288 24.6 -259 1154 62.7 247 297 196 459 219 531 260 568

200 -24 239 691 84 370 190 21.7 -291 1042 57.3 133 287 81 359 44 429 54 496

400 -16 159 693 57 382 124 25.7 -202 841 50.9 57 268 37 322 -22 368 -52 423

800 -9 112 693 40 385 86 25.0 -172 684 42.6 -8 263 1 280 -55 276 -94 306

1600 0 78 697 28 21.5 -77 412 34.0 -29 258 -3 232 -29 194 -57 207

Note: Same as in that of Table 3.3
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Figure 3.5: Quantile-quantile plots for β in the single-covariate models with 20%
censoring rate, where β = −1. Red, yellow, green, blue, and black correspond to
sample sizes 100, 200, 400, 800, and 1,600.
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Figure 3.6: Quantile-quantile plots for β in the single-covariate models with 60%
censoring rate, where β = −1. Red, yellow, green, blue, and black correspond to
sample sizes 100, 200, 400, 800, and 1,600.
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when the sample size is 1,600. It also has a much larger standard deviation comparing

to the re-defined parametric corrected score and the augmented parametric corrected

score. The re-defined parametric corrected score is unbiased for both scenarios and

the standard deviation is small. All three augmented corrected scores are consistent

under both scenarios, and they become less biased as sample size increases. In com-

parison with higher-order augmented corrected scores, the second order augmented

corrected score seems more favorable overall in terms of bias and standard error.

Compared to the re-defined parametric corrected score, the second order augmented

corrected score has a larger standard deviation when the sample size is small. But

the standard deviation of augmented corrected score decreases rapidly as the sample

size increases and is smaller than that of the re-defined corrected score when then

sample size is 1,600.

Table 3.5 and 3.6 show the simulation results for the double-covariate models. As

expected, when two covariates are correlated, the measurement error generally has

impact not only on the mismeasured covariate but also on that of the accurately mea-

sured one. The relative performance of all estimators is similar to what was observed

in the single-covariate models. For multiple-covariate models, each set of additional

estimating functions contains more than one element. For example, when k = 2,

the additional estimating functions includes three elements in the upper triangle of

matrix (3.7). Various augmented corrected score could be constructed depending

on the additional estimating functions chosen. Since the second order augmented

corrected score shows a more favorable overall performance in the single-covariates



66

models, we consider only the second order augmented corrected score and augmented

corrected scores using a subset of the three elements in this simulation. Simulation

results show that the second order augmented corrected score performs better than

two other augmented corrected scores. The bias of the second order augmented cor-

rected score reduced quickly as sample size increased. Meanwhile, it also has the

smallest standard deviation.

Table 3.5: Simulation summary statistics for the double-covariate models with 20%
censoring rate: Ideal, naive(NV), regression calibration (RC), re-defined conditional
score (ConS), re-defined parametric corrected score (CS), and augmented parametric
corrected score (ACS:1/3, ACS:2/3, ACS:2)

Ideal NV RC ConS CS ACS: 1/3 ACS: 2/3 ACS: 2

size B SD B SD B SD F B SD F B SD B SD B SD B SD

100 β1 -23 175 637 101 66 381 57.5 215 348 72.0 267 322 170 532 245 514 308 538

β2 23 171 -400 142 -113 246 -67 336 -100 327 -60 456 -97 404 -142 399

200 β1 -13 114 648 66 136 224 46.9 155 315 62.8 186 294 -18 382 42 375 92 339

β2 16 117 -412 101 -154 161 -35 310 -47 286 54 349 18 327 -20 276

400 β1 -5 82 649 48 168 144 33.4 65 297 46.2 71 280 -89 301 -56 277 -28 255

β2 4 80 -416 68 -177 103 5 257 15 243 85 269 60 233 40 210

800 β1 -2 55 651 33 181 93 20.0 22 224 30.5 -3 252 -99 282 -80 262 -56 220

β2 1 56 -420 52 -185 74 16 186 44 203 88 255 72 230 52 186

1600 β1 -2 40 652 23 8.0 -13 178 10.5 -43 207 -71 219 -67 204 -61 190

β2 1 39 -419 34 21 134 45 155 59 180 57 163 51 145

F: root-finding failure (%); B: mean bias (×103); SD: standard deviation(×103).
ACS: 1/3 and ACS: 2/3 correspond to the additional estimating functions containing
the (1,1) element and the first row elements of matrix (3.7), respectively. ACS: 2 is
the second order augmented parametric corrected score.

Table 3.8 and 3.8 report the coverage of three types of 95% confidence intervals
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Table 3.6: Simulation summary statistics for the double-covariate models with 60%
censoring rate: Ideal, naive(NV), regression calibration (RC), re-defined conditional
score (ConS), re-defined parametric corrected score (CS), and augmented parametric
corrected score (ACS:1/3, ACS:2/3, ACS:2)

Ideal NV RC ConS CS ACS: 1/3 ACS: 2/3 ACS: 2

size B SD B SD B SD F B SD F B SD B SD B SD B SD

100 β1 -32 242 610 140 -13 513 43.3 96 428 64.8 239 320 225 668 326 666 392 660

β2 33 245 -352 206 -40 336 -27 408 -72 362 -50 536 -104 500 147 465

200 β1 -20 160 617 95 59 286 36.1 29 393 57.8 145 300 14 387 93 360 140 344

β2 21 161 -362 138 -81 209 24 344 -8 301 48 369 -7 310 -41 264

400 β1 -6 109 619 65 97 182 21.5 -2 293 40.4 45 279 -65 321 -9 273 30 241

β2 6 111 -366 97 -106 137 31 225 36 254 79 301 35 246 6 197

800 β1 -1 72 621 45 112 120 10.8 -23 249 25.7 -16 257 -73 267 -32 213 -9 192

β2 2 76 -369 69 -115 94 34 198 55 214 72 236 40 189 23 160

1600 β1 -2 53 622 33 7.6 -24 186 11.3 -46 212 -55 193 -40 171 -29 162

β2 0 53 -371 46 28 142 47 161 46 162 36 140 26 124

Note: Same as in that of Table 3.5
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in the single- and double-covariate models. All three scenarios use the second order

augmented corrected score. In constructing the confidence interval, we use two dif-

ferent approaches: inverting the hypothese testing statistics as introduced in Section

3.2.2, and the Wald-type confidence interval. For the former, we use two critical

values based on the asymptotic chi-square distribution and the bootstrap calibration

(Efron & Tibshirani, 1993, chap. 12). Bootstrap size of 500 is used for the bootstrap

calibration. The Wald-type confidence interval and test based one with chi-square

distribution critical values have poor coverage when the sample size is small, but

improve with larger sample size. The coverage probability of test based confidence

interval using bootstrap-calibrated critical value is close to the nominal level of 95%

for all sample sizes.

Table 3.7: Coverage of 95% confidence interval for the second order augmented para-
metric corrected score with 20% censoring rate. C (chi-square distribution), BC
(bootstrap calibration) and W (Wald-type) indicate the type of confidence interval.

size 100 200 400 800 1600

C BC W C BC W C BC W C BC W C BC W

Single-covariate: Case A

β 90.2 96.8 87.0 91.7 96.6 91.1 87.1 96.6 93.8 87.6 97.1 94.8 91.8 95.6 94.9

Single-covariate: Case B

β 82.0 92.9 76.8 88.8 92.2 84.3 87.6 94.3 85.6 90.0 94.6 89.2 91.6 94.8 91.8

Double-covariate

β1 75.8 94.5 78.4 86.3 95.4 87.3 88.3 96.3 94.0 89.7 96.7 95.8 89.4 96.2 97.2

β2 79.2 93.0 83.9 86.8 93.8 92.3 88.1 92.3 95.6 86.7 93.5 96.2 89.4 95.5 97.6
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Table 3.8: Coverage of 95% confidence interval for the second order augmented para-
metric corrected score with 60% censoring rate. C (chi-square distribution), BC
(bootstrap calibration) and W (Wald-type) indicate the type of confidence interval.

size 100 200 400 800 1600

C BC W C BC W C BC W C BC W C BC W

Single-covariate: Case A

β 89.5 97.6 86.8 94.2 96.7 92.0 91.5 96.8 94.7 93.6 96.2 96.3 98.5 95.5 97.5

Single-covariate: Case B

β 87.5 93.7 73.9 89.7 92.4 79.1 88.4 93.2 80.4 90.4 93.9 85.8 91.8 94.3 88.6

Double-covariate

β1 92.0 92.6 80.7 93.8 96.6 89.6 92.6 94.9 94.1 93.2 96.9 95.8 92.6 96.2 98.0

β2 92.0 93.9 87.3 93.5 94.5 93.7 92.3 92.7 96.0 91.5 93.4 96.3 92.7 95.8 97.1

3.4.2 Application to ACTG 175 data

We apply the proposed approach to the AIDS Clinical Trial Group (ACTG) 175 study,

a randomized clinical trial to evaluate four treatments in HIV-infected patients with

an initial screening CD4 counts of between 200 and 500 per cubic millimeter. A total of

2,467 patients were enrolled and an almost equal number of patients were randomized

into each of the four treatment groups: zidovudine alone (ZDV), zidovudine plus

didanosine (ZDV + ddI), zidovudine plus zalcitabine (ZDV + ddC), and zalcitabine

alone (ddC). We are interested in assessing the effect of baseline CD4 count on time to

AIDS or death in antiretroviral-naive patients. Among all study patients, 1,067 had no

prior antiretroviral therapy at enrollment, among which 1,036 patients had two CD4
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measurements prior to the start of treatment and within 3 weeks of randomization.

For this analysis, we will consider the subset of 1,036 patients. The median length of

follow-up was 32 months, and 85 events were observed.

Table 3.9: Comparison of regression coefficient estimators in the ACTG 175 data

log(CD4) ZDV + ddl ZDV + ddC ddl

Est Var Est Var Est Var Est Var

NV -1.838 .1183 -.652 .0881 -.895 .1006 -.598 .0802

ConS -2.172 .1698 -.659 .0916 -.892 .1024 -.604 .0835

CS -2.177 .1678 -.659 .0900 -.892 .1012 -.604 .0819

ACS -2.177 .1422 -.657 .0991 -.876 .1028 -.596 .0827

.1678 .0905 .0964 .0811

Note: For proposed estimator, the first row of variance estimator is obtained by
inverting hypothese testing statistics with bootstrap critical value; the second row of
values is from sandwich variance estimator. Est: Estimated coefficient; Var: Variance.

We consider a Cox regression mode with 4 covariates: the true baseline log(CD4)

and three indicators for the four treatments with ZDV group as the reference. We

define the baseline log(CD4) as the average of the two log(CD4) measurements. From

the duplicated measurements, we estimated the variance for error and true underlying

log(CD4) to be 0.033 and 0.076 respectively. Note that the variance of measurement

error is estimated using two replicated measurements of baseline log(CD). Therefore

there is an additional estimating function for the variance of measurement error.

Table 3.9 shows the estimators based on the naive, conditional score, parametric

corrected score, and the proposed augmented corrected score. In comparison, the

naive approach gives an coefficient estimator of log(CD4) with substantially smaller
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magnitude. All the other approaches have similar estimates for all coefficients.

3.5 Discussion

For proportional hazards model with covariate measurement error, several consistent

methods have been proposed under the functional modeling framework, including the

conditional score and the parametric corrected score. However, when the measure-

ment error is substantial to the extent that the errors are comparable to the true

covariates in variance, both methods might experience pathological behaviors and

root finding failure. Recently, Huang (2011) developed a novel approach to incorpo-

rate additional estimating functions which constrain the derivatives of the parametric

corrected score. That approach proves effective and eliminates finite sample patho-

logical behaviors of parametric corrected score for the loglinear model. Motivated by

Huang’s (2011) approach, we conduct an investigation on the pathological behaviors

of parametric corrected score and conditional score and propose an augmented para-

metric corrected score for the proportional hazards model by incorporating additional

estimating functions to the original parametric corrected score. Results of simulation

studies show the proposed approach is effective in eliminating pathological behav-

iors even with small sample size and substantial measurement error. The variance of

proposed estimator appears to be larger than the parametric corrected score when

sample size is smaller than 400, but it decreases rapidly and become smaller than the

parametric corrected score as the sample size increases to 400.
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In this chapter, we have only considered the situation where the distribution of

the measurement error is known. With additional data available on the measurement

error, the parametric distribution imposed on the measurement error may be spared.

With the availability of replicated mismeasured covariates, Huang & Wang (2000) de-

veloped a nonparametric corrected score method for the proportional hazards model.

In Chapter 4, we will extend the approach of incorporating additional estimating

functions to the nonparametric corrected score.

3.6 Appendix: Asymptotic Variance of Estimating

Function

For simplicity, we consider the single-covariate model given in Section 3.2.2. The

second order augmented corrected score has the form

ϕϕϕ(b) = n−1
n∑
i=1

∫ τ

0

{(
Wi + bσ2

W 2
i − σ2

)
−
∑n

j=1 Yj(t) exp(bWj)
(

Wj

(Wj−bσ2)2−σ2

)∑n
j=1 Yj(t) exp(bWj)

}
dNi(t).

With functional delta method (Huang & Wang, 2000), straightforward algebra gives

n1/2ϕϕϕ(b) = n−1/2
n∑
i=1

(Bi1 −Bi2) + op(1)
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where

Bi1 =

∫ τ

0


(
Wi + bσ2

W 2
i − σ2

)
−
E
{
Y (t) exp(bW )

(
W

(W−bσ2)2−σ2

)}
E {Y (t) exp(bW )}

 dNi(t), and

Bi2 =

∫ τ

0

{
exp(bWi)

(
Wi

(Wi−bσ2)2−σ2

)
E {Y (t) exp(bW )}

−
E
{
Y (t) exp(bW )

(
W

(W−bσ2)2−σ2

)}
exp(bWi)

[E {Y (t) exp(bW )}]2

Yi(t)dEN(t).

Thus, n1/2ϕϕϕ(b) is asymptotically a sum of iid random variables.

For fixed b, n1/2ϕϕϕ(b) is asymptotically normal with a covariance matrix Σ(b) that

can be consistently estimated by

Σ̂(b) = n
n∑
i=1

{ωi(b)− ω̄(b)} {ωi(b)− ω̄(b)}′

where ωi(b) = n−1 (Bi3 −Bi4), ω̄(b) = n−1
∑n

i=1 ωi(b), and Bi3 and Bi4 are defined as

Bi3 =

∫ τ

0


(
Wi + bσ2

W 2
i − σ2

)
−
Ê
{
Y (t) exp(bW )

(
W

(W−bσ2)2−σ2

)}
Ê {Y (t) exp(bW )}

 dNi(t), and

Bi4 =

∫ τ

0

{
exp(bWi)

(
Wi

(Wi−bσ2)2−σ2

)
Ê {Y (t) exp(bW )}

−
Ê
{
Y (t) exp(bW )

(
W

(W−bσ2)2−σ2

)}
exp(bWi)[

Ê {Y (t) exp(bW )}
]2

Yi(t)dÊN(t).

Asymptotic variance of other augmented corrected scores could be derived similarly.
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Chapter 4

Augmented Nonparametric

Corrected Score for Proportional

Hazards Model with Covariate

Measurement Error

4.1 Introduction

In Chapter 3, to address the issue of finite-sample pathological behaviors of the para-

metric corrected score, we propose an approach to incorporate additional estimating

functions. In that topic, we consider the situation where the distribution of mea-
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surement error is known. But in practice, it is common that the measurement er-

ror distribution is unknown but rather replication data are available for error-prone

covariates. Based on replicated mismeasured covariates, Huang & Wang (2000) pro-

posed a nonparametric corrected score for the Cox proportional hazards model under

additive measurement error model and the resulting regression coefficient estimators

are shown to be consistent and are asymptotically normal.

In this chapter, we conduct an investigation on the pathological behaviors of

nonparametric corrected score and extend the approach developed in Chapter 3 to the

nonparametric corrected score for the proportional hazards model. In Section 4.2, we

briefly describe the nonparametric corrected score method and investigate its finite

sample behaviors. The proposed approach of incorporating additional estimating

functions is presented in Section 4.3. Simulation study results and an application to

the ACTG 175 clinical trial data is summarized in Section 4.4. Further discussion is

given in Section 4.5.
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4.2 Nonparametric Corrected Score and Patholog-

ical Behaviors

4.2.1 Nonparametric Corrected Score

In this section, we will briefly describe the nonparametric corrected score of Huang

& Wang (2000) and study its pathological behaviors when the measurement error is

substantial.

First note that the partial score function (3.2) can be rewritten as a function of

four empirical processes

ξξξ(b) =

∫ τ

0

[
dÊ{ZN(t)} − Ê{Y (t)Z exp(b′Z)}

Ê{Y (t) exp(b′Z)}
dÊ{N(t)}

]
(4.1)

where Ê represents sample empirical mean as defined in Chapter 2. With the func-

tional representation of ξξξ(b), we can see clearly its limit:

ξ̃ξξ(b) =

∫ τ

0

[
dE{ZN(t)} − E{Y (t)Z exp(b′Z)}

E{Y (t) exp(b′Z)}
dE{N(t)}

]
(4.2)

Split covariates Z = (ZTe ,Z
T
a )T , where Za are accurately measured and Ze ≡

(Z1, . . . , ZL)T are subject to an additive measurement error εεεe. εεεe = (ε1, . . . , εL)T

are mutually independent and independent of all other variables. Under the additive

measurement error model, for each Zl, l = 1, . . . , L, a finite number of Rl ≥ 2
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surrogates W
[Rl]
l ≡ {Wlm : m = 1, . . . , Rl} are observed, where Wlm = Zl + εlm.

These error εlm are iid replicate of εl. The observed data,

{Xi;Yi;W
[Rli]
li : l = 1 . . . , L;Zai}, i = 1, . . . , n,

consist of n iid replicates of {X;Y ;W
[Rl]
l : l = 1 . . . , L;Za}.

Pick arbitrarily two replicates from each W
[Rl]
l where l = 1, . . . , L to form two

vectors W(r) ≡ (W
(r)T
1 , . . . ,W

(r)T
L ,ZTa )T , r = 1, 2. Since the selection of W(1) and

W(2) is arbitrary,
∏L

l=1Rl(Rl−1) different permutations can be formed. The following

nonparametric corrected estimating function is proposed by Huang & Wang (2000):

ξ̂ξξ(b) =

∫ τ

0

[
dÊ{AW(1)N(t)} − Ê{AY (t)W(1) exp(b′W(2))}

Ê{AY (t) exp(b′W(1))}
dÊ{N(t)}

]
(4.3)

where A denotes the operator averaging over all the different permutations of W(1)

and W(2). Estimating function (4.3) converges to the same limit as reference (4.1)

and the resulting regression coefficient estimators are shown to be consistent and are

asymptotic normal.

4.2.2 Pathological Behaviors

Consider a single covariate model. In the absence of measurement error, the partial

score function is monotonically decreasing and has a unique zero-crossing. But with
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measurement error, we observe five different patterns for the nonparametric corrected

score estimating functions and typical plots from simulated data sets are shown in

Figure 4.1.

Pattern (a) in Figure 4.1 has no zero-crossing and represents a case of root-finding

failure. Pattern (b) is monotonically decreasing with one zero-crossing and is con-

sidered as the ideal case. A correct root can be easily identified for this pattern.

Though pattern (c) also has only one zero-crossing, it is an increasing root and is

also considered as root finding failure. Pattern (d) has two zero-crossings that are far

away from each other. With a properly chosen numerical algorithm and initial value,

the correct root could be identified. Pattern (e) has two zeros-crossings that are both

close to the true parameter.

We conducted a simulation study to investigate the prevalence of root-finding

failure in the presence of substantial measurement error. We use the same simulation

set up, definition of root-finding failure and modified Newton-Raphson algorithm

as described in Chapter 3. For each covariates subject to measurement error, two

replicated surrogates were generated. As shown in Table 4.1, in the single-covariate

models, the failure rate is about 11-14% for normal covariate model and 27-29% for

modified chi-square covariate model when the sample size is 100. The root-finding

failure rate decreases as the sample size increases. But even when the sample size

increases to 800, the failure rate is still 11-16% for modified chi-square covariate

model.
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Figure 4.1: Observed root patterns of the nonparametric corrected score estimating
function. The true β is -1.
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Table 4.1: Prevalence (%) of root-finding failure for the nonparametric corrected score
with E(X) = 0, Var(X) = 1, β = −1, and ε ∼ Normal(0,1).

Size

Censoring Rate Distribution of X 100 200 400 800

20% Normal 10.7 7.4 2.6 1.1

Modified Chi-square 27.0 20.9 14.0 11.2

Uniform 12.5 7.9 3.8 1.3

40% Normal 10.9 6.8 2.7 1.1

Modified Chi-square 29.2 23.5 17.3 14.5

Uniform 12.3 8.4 3.5 1.3

60% Normal 13.8 7.5 2.6 1.0

Modified Chi-square 28.4 23.9 22.0 15.7

Uniform 13.9 10.0 4.9 2.2

4.3 Improving Nonparametric Corrected Score

Let Z = (Z1, Z2, . . . , Zp)
T , where Zl is the lth element of vector Z. Consider the

following class of estimating equations:

∫ τ

0

[
dÊ{Zk1

1 · · ·Zkp
p N(t)} − Ê{Y (t)Zk1

1 · · ·Z
kp
p exp(b′Z)}

Ê{Y (t) exp(b′Z)}
dÊ{N(t)}

]
,where

p∑
l=1

kl = k.

(4.4)

Equations (4.4) present a class of estimating functions for parameter b in the

absence of measurement error. When k = 1, (4.4) reduces to the usual partial score

function. Using (4.4) as a class of reference functions, their corresponding corrected

version could serve the purpose of providing additional estimating functions to the

nonparametric corrected score function.
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Let W(r) = (W
(r)
1 , . . . ,W r

p )T , r = 1, 2. Mimicking the argument in Huang & Wang

(2000), we obtain the following additional estimating functions with mismeasured

covariates sharing the same limit as reference (4.4):

∫ τ

0

[
dÊ{A(W

(1)
1 )k1 · · · (W (1)

p )kpN(t)}

−Ê{AY (t)(W
(1)
1 )k1 · · · (W (1)

p )kp exp(b′W(2))}
Ê{AY (t) exp(b′W(1))}

dÊ{N(t)}

]
,where

p∑
l=1

kl = k.

Quadratic inference function method will then be used to combine nonparametric

corrected score and these additional estimating functions. We will name this method

the augmented nonparametric corrected score. Specifically, when
∑p

l=1 kl = k, this

method will be called the k-th order augmented nonparametric corrected score. Figure

4.2 illustrates the quadratic inference functions for the five typical plots in Figure 4.1.
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Figure 4.2: Quadratic inference functions for the data sets in Figure 4.1.
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4.4 Numerical Studies

4.4.1 Simulations

The simulation set up is same as in that of Chapter 3. For each covariate sub-

ject to measurement error, two replicated surrogates were generated. For reference

and comparison, the ideal, naive, regression calibration, and nonparametric corrected

score estimators are also presented. The nonparametric corrected score is similarly

re-defined and solved using a modified Newton-Raphson algorithm as in Chapter 3.

For naive estimator, the average of two replicated measurements will be used in place

of the true covariate in the usual partial score function. For regression calibration,

the best linear approximation given in Carroll et al. (2006, chap. 4) will be used.

Table 4.2 and 4.3 summarize the simulation results on the estimators in the single-

covariate models. Quantile-quantile plots are shown in Figure 4.3 and 4.4. Under

each scenario, the mean bias, and standard deviation were calculated. In addition,

median bias and a robustified standard deviation (IQR divided by 1.349) are also

reported for nonparametric corrected score and the proposed approach. As expected,

naive estimator incurs substantial bias under all scenarios. The regression calibration

estimator shows small bias for normal covariate. But it shows substantial bias when

the covariate is modified chi-square. The nonparametric corrected score estimator is

consistent and shows little bias. For the single-covariate models with 60% censoring

rate, the finding failure rate is about 11% for normal covariate when the sample size
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Table 4.2: Simulation summary statistics for the single-covariate models with 20%
censoring rate: Ideal, naive(NV), regression calibration (RC), re-defined nonparamet-
ric corrected score (NPC), and second order augmented corrected score (ACS:2).

Ideal NV RC NPC ACS: 2

size B SD B SD B SD F B SD B SD

Case A

100 -11 152 421 119 111 212 10.7 -349 -97 842 466 -633 -105 2121 442

200 -5 106 429 79 134 139 7.4 -214 -64 565 330 -385 -67 1510 322

400 -4 72 435 55 148 95 2.6 -92 -28 332 191 -167 -20 1025 199

800 -2 51 437 37 155 61 1.1 -33 -9 151 128 -35 -7 171 126

1600 -2 37 436 27 152 44 0.1 -21 -9 101 96 -22 -14 103 97

Case B

100 -28 202 492 108 212 198 27.0 -299 -41 882 484 -804 -90 2373 543

200 -10 136 496 75 236 127 20.9 -194 -46 626 368 -333 -51 1009 350

400 -9 92 500 52 244 88 14.0 -175 -24 583 304 -222 -17 1102 233

800 -6 67 498 37 245 62 11.2 -115 -35 346 244 -126 -24 646 161

1600 -2 46 500 26 250 43 5.2 -68 -14 241 161 -53 -12 241 115

Note: F: root-finding failure (%); B: bias (×103); SD: standard deviation(×103).
For NPC and ACS: 2, The first column under B is mean bias and the second column
is median bias; The first column under SD is the usual standard deviation and the
second column is robustified standard deviation defined as IQR/1.349.
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Table 4.3: Simulation summary statistics for the single-covariate models with 60%
censoring rate: Ideal, naive(NV), regression calibration (RC), re-defined nonparamet-
ric corrected score (NPC), and second order augmented corrected score (ACS:2).

Ideal NV RC NPC ACS: 2

size B SD B SD B SD F B SD B SD

Case A

100 -24 206 382 160 52 273 13.8 -338 -98 888 494 -463 -112 1799 422

200 -15 142 384 105 66 180 7.5 -205 -81 534 347 -271 -78 1025 304

400 -8 97 395 72 89 120 2.6 -79 -23 303 202 -85 -27 413 186

800 -2 65 400 51 99 83 1.0 -30 -5 173 139 -24 -2 173 128

1600 1 46 398 36 95 57 0 -21 -13 109 94 -14 -9 106 88

Case B

100 -66 351 545 149 294 255 28.4 -215 55 922 523 -410 -22 1488 598

200 -24 239 557 102 329 161 23.9 -134 34 673 401 -298 -39 1106 474

400 -16 159 562 70 338 111 22.0 -155 -11 606 377 -355 -38 1169 405

800 -9 112 562 52 342 81 15.7 -108 9 426 309 -181 -16 720 254

1600 0 78 564 37 345 57 12.2 -81 -2 305 236 -107 -10 500 179

Note: Same as in that of Table 4.2.
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Figure 4.3: Quantile-quantile plots for β in the single-covariate models with 20%
censoring rate, where β = −1. Red, yellow, green, blue, and black correspond to
sample sizes 100, 200, 400, 800, and 1,600.
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Figure 4.4: Quantile-quantile plots for β in the single-covariate models with 60%
censoring rate, where β = −1. Red, yellow, green, blue, and black correspond to
sample sizes 100, 200, 400, 800, and 1,600.
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is 100. The failure rate deceases to 1% as the sample size increases to 800. The failure

rate is much higher for modified chi-square covariates. Even with a sample size of

800, the failure rate is around 11%. Similar root-finding failure rates are observed

for models with 20% censoring rate. The proposed augmented corrected score is

left skewed with substantial mean bias and large standard deviation. But the median

bias is close to zero and the robustified standard deviation is comparable to or smaller

than that of nonparametric corrected score. The quantile-quantile plots show that

the proposed estimator suffers from substantial skewness.

Table 4.4 and 4.5 report the simulation results with the double-covariate models.

The relative performance of most estimators are as expected and follow a similar

pattern to that in the single-covariate models.

The coverage of the 95% confidence intervals are summarized in Table 4.6 and

4.7. The test based confidence interval using chi-square distribution critical value

and Wald-type one appear to have poor coverage probability, whereas the one using

bootstrap-calibrated critical value has coverage probability close to nominal level of

95%.

4.4.2 Application to ACTG 175 data

We apply the proposed approach to the AIDS Clinical Trial Group (ACTG) 175 study.

Among 1,067 antiretroviral-naive patients at enrollment, 1,036 patients had two CD4
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Table 4.4: Simulation summary statistics for the double-covariate models with 20%
censoring rate: Ideal, naive(NV), regression calibration (RC), re-defined nonparamet-
ric corrected score (NPC), and second order augmented corrected score (ACS:2).

Ideal NV RC NPC ACS: 2

size B SD B SD B SD F B SD B SD

100 β1 -23 175 463 122 61 271 30.5 -47 69 518 383 -500 -106 1856 506

β2 23 171 -289 154 -88 211 100 -41 512 335 468 108 1536 427

200 β1 -13 114 477 85 100 174 21.0 -24 38 386 278 -300 -70 1136 349

β2 16 117 -307 105 -122 140 57 -16 373 235 217 57 772 290

400 β1 -5 82 485 58 137 115 9.4 -9 10 217 196 -155 -27 751 243

β2 4 80 -313 74 -137 94 23 -8 188 167 124 34 612 190

800 β1 -2 55 482 39 135 78 4.5 -28 -14 166 150 -86 -25 481 157

β2 1 56 -313 50 -138 64 28 15 134 119 64 27 344 122

1600 β1 -2 40 485 28 140 54 0.6 -25 -11 119 106 -16 -16 201 111

β2 1 39 -313 37 -141 46 20 13 93 92 17 17 140 93

Note: Same as in that of Table 4.2.

Table 4.5: Simulation summary statistics for the double-covariate models with 60%
censoring rate: Ideal, naive(NV), regression calibration (RC), re-defined nonparamet-
ric corrected score (NPC), and second order augmented corrected score (ACS:2).

Ideal NV RC NPC ACS: 2

size B SD B SD B SD F B SD B SD

100 β1 -32 242 429 172 2 347 27.8 -78 28 556 373 -510 -74 2334 507

β2 33 245 -252 204 -38 270 113 -9 551 343 446 79 2178 438

200 β1 -20 160 437 119 40 230 17.3 -73 13 452 291 -326 -76 1372 374

β2 21 161 -260 144 -62 186 91 9 432 265 233 58 1028 305

400 β1 -6 109 451 81 80 152 7.7 -35 9 304 230 -138 -36 847 237

β2 6 111 -268 103 -80 127 43 1 279 188 102 34 505 208

800 β1 -1 72 452 54 81 101 2.8 -37 -16 183 167 -66 -24 306 152

β2 2 76 -273 68 -88 82 27 13 143 131 44 19 206 125

1600 β1 -2 53 449 38 83 68 0.6 -32 -20 128 116 -45 -18 219 104

β2 0 53 -268 49 -84 57 24 15 99 89 34 20 146 88

Note: Same as in that of Table 4.2.
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Table 4.6: Coverage of 95% confidence interval for the second order augmented non-
parametric corrected score with 20% censoring rate. C (chi-square distribution), BC
(bootstrap calibration) and W (Wald-type) indicate the type of confidence interval.

size 100 200 400 800 1600

C BC W C BC W C BC W C BC W C BC W

Single-covariate: Case A

β 79.6 93.9 86.7 81.5 96.2 90.5 85.3 96.2 90.6 86.7 95.5 91.3 88.4 95.2 90.6

Single-covariate: Case B

β 82.7 96.4 84.6 83.3 96.9 87.9 85.3 96.8 90.7 85.1 96.1 91.0 86.2 95.8 91.6

Double-covariate

β1 72.1 95.1 75.2 78.6 96.8 88.3 82.7 95.4 88.4 85.3 96.2 90.3 84.8 96.1 88.5

β2 73.7 93.0 77.9 79.4 95.2 87.5 84.0 96.9 88.5 85.3 95.7 90.5 86.0 95.4 89.6

Table 4.7: Coverage of 95% confidence interval for the second order augmented non-
parametric corrected score with 60% censoring rate. C (chi-square distribution), BC
(bootstrap calibration) and W (Wald-type) indicate the type of confidence interval.

size 100 200 400 800 1600

C BC W C BC W C BC W C BC W C BC W

Single-covariate: Case A

β 84.0 94.0 89.7 84.6 95.8 93.5 89.6 95.4 94.1 88.9 95.0 93.9 89.3 95.0 92.0

Single-covariate: Case B

β 88.2 96.2 84.6 90.9 98.3 90.5 89.2 96.6 90.2 88.8 94.7 91.0 89.4 94.7 91.0

Double-covariate

β1 81.2 95.6 84.6 81.0 97.2 89.5 86.8 93.6 90.3 88.5 96.3 91.8 89.0 96.1 91.7

β2 83.0 94.7 86.6 84.8 95.8 89.2 86.4 94.5 91.8 89.1 95.7 92.0 87.6 95.4 89.8
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measurements prior to the start of treatment and within 3 weeks of randomization.

For this analysis, we will consider the subset of 1,036 patients and use the two CD4

counts as replicated measurements of true baseline CD4 count.

We consider a Cox regression mode with 4 covariates: the true baseline log(CD4)

and three indicators for the four treatments with ZDV group as the reference. Table

4.8 shows the estimators based on the naive, regression calibration, nonparametric-

correction and the proposed approaches. In comparison, the naive approach gives an

coefficient estimator of log(CD4) with substantially smaller magnitude. All the other

approaches have similar estimates for all coefficients.

Table 4.8: Comparison of regression coefficient estimators in the ACTG 175 data

log(CD4) ZDV + ddl ZDV + ddC ddl

Est Var Est Var Est Var Est Var

NV -1.838 .1183 -.652 .0881 -.895 .1006 -.598 .0802

RC -2.235 .1756 -.649 .0882 -.890 .1008 -.603 .0803

NPC -2.200 .1795 -.653 .0906 -.870 .1010 -.603 .0828

Proposed -2.186 .2135 -.652 .0970 -.877 .1168 -.604 .0900

.1820 .0901 .0999 .0826

Note: For proposed estimator, the first row of variance estimator is obtained by
inverting hypothese testing statistics with bootstrap critical value; the second row of
values is from sandwich variance estimator. Est: Estimated coefficient; Var: Variance.
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4.5 Discussion

In this chapter, we have extended the approach of incorporating additional estimat-

ing functions developed in Chapter 3 into the nonparametric corrected score for Cox

proportional hazards model. With replicated measurements of error-prone covari-

ates available, this approach does not require any assumptions in addition to the

Cox proportional hazards model and the additive measurement error model. This

is an appealing feature because many assumptions can be difficult to verify in prac-

tice. Simulation studies show that the proposed approach produces small bias and

is promising in eliminating root finding failure. The proposed estimator suffers from

left skewness, especially in the case of modified chi-square covariate. In general, the

variance of proposed estimator appears to be larger than the nonparametric corrected

score when sample size is smaller than 400, but it becomes smaller than the nonpara-

metric corrected score for sample size greater than 400.
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Chapter 5

Summary and Future Work

5.1 Summary

In this dissertation research, we study three measurement error problems in the anal-

ysis of survival data.

We first study the analysis of recurrent events data under the accelerated failure

time model in the presence of covariate measurement error. With replicated mis-

measured covariates available, we propose a estimation procedure based on a novel

identity. The proposed estimation procedure requires no distributional assumptions

on either the true covariates or the error except for the boundedness of the latter.

The resulting regression coefficient estimators are shown to be consistent and asymp-

totically normal. Simulation studies show the proposed procedure performance well
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with practical sample size and moderate measurement error. We apply the proposed

method to NPC clinical trial to illustrate its practical utility.

We then study the Cox proportional hazards model assuming the distribution of

the measurement error is known. Both existing consistent methods, parametric cor-

rected score (Nakamura, 1992) and conditional score (Tsiatis & Davidian, 2001), suffer

from severe finite-sample pathological behaviors when the measurement error is sub-

stantial. We study the finite sample pathological behaviors of these two estimators

and propose an augmented parametric corrected score by incorporating additional

estimating functions to the original parametric corrected score. The estimation and

inference are then accomplished by means of quadratic inference function. Simulation

studies show the proposed approach is effective in eliminating finite-sample patholog-

ical behaviors even with small sample size and substantial measurement error. An

application to ACTG 175 study is presented.

Furthermore, we consider the Cox proportional hazards model when the error dis-

tribution is completely unspecified but replicated mismeasured covariates are avail-

able. We applied the technique in the second topic to the nonparametric corrected

score and the simulation study result shows that the proposed estimation procedure

is promising in resolving those pathological behaviors.

For all three measurement error problems, the naive estimators are biased, which is

obvious and well expected. Prediction and hypothesis testing are, however, different

stories. In general, the presence of measurement error has no effect on prediction
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problem. The surrogate W is error-free as a measurement of itself. So if a model is

built on the mismeasured covariate, predicting the response from the mismeasured

covariate does not involve any bias. The effect of measurement error on hypothesis

testing is much more complicated. See the monograph of Carroll et al. (2006) for a

detailed discussion on the hypothesis testing problem. In general, the naive test of

no effects due to Ze is still valid. But the naive test of no effects due to Za is not

valid except for under some restrictive assumptions.

5.2 Future Work

In this subsection we discuss some future research topics and possible extensions of

this dissertation work.

In the first topic, the proposed method requires replicated measurements on error-

prone covariates, which might not always be available in practice. For example,

patients in Se group of the NPC trial did not have replicated baseline plasma Se

measurements. In some other applications, due to financial constrains or various

other reasons, the replication data may only be available for a subset of all subjects.

This limits the applicability of the proposed method. One direction of future research

is to relax this requirement and to develop an estimating function that can utilize the

whole data set.

The method of incorporating additional estimating functions in the last two topics



96

are motivated by Huang’s (2011) investigation of loglinear model. But it turns out

that we have a weaker claim than in Huang’s (2011) paper. In the case of loglin-

ear model, the additional estimating functions effectively impose constrains on the

derivative of corrected score. But for Cox regression model, we do not have such nice

property because of the form of partial score function. Another issue is the efficiency.

The proposed estimator should be asymptotically more efficient than the corrected

score estimator since it involves more estimating functions. However, this research

shows that having additional estimating function might not always provide better

efficiency when sample size is small or moderate. How to improve the estimation

efficiency is a tough problem to solve but an interesting topic for future research.

In this dissertation research, we adopt the classical measurement error model. In

many applications, the measurement error models may be much more complex. For

example, in nutritional studies, the observed surrogate may be a linear function of

the true underlying covariate and several other covariates (Kipnis et al., 1999, 2001,

2003). One potential future research topic is to extend the proposed approaches to

accommodate different measurement error models.
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