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Abstract

Lower Bounds for Relaxation-Based Shortest Path Algorithms
By Adrian Gushin

Computing shortest paths in directed, weighted graphs is a classical algorithms
problem with applications to transportation, social networking, and many other fields.
Although recent years have seen the development of fast shortest path procedures, the
traditional Bellman-Ford algorithm and others like it remain the only shortest path
algorithms that can operate on a general graph and therefore still see use in fields like
packet routing.

This paper examines existing lower bounds for the performance of Bellman-Ford-
like shortest path algorithms. It moves beyond the non-adaptive setting that has
received frequent attention to examine adaptive algorithms, which are attentive to
information beyond the mere topology of the input graph. Specifically, I will expand
some existing results about non-adaptive algorithms to a more general set of non-
adaptive and weakly adaptive approaches. Additionally, I will produce new lower
bounds for several Bellman-Ford-like adaptive algorithms that show the inclusion of
adaptive heuristics does not improve the minimum number of relaxation operations
beyond Ω(n3) on a weighted graph with n vertices.
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Chapter 1

Introduction

Computing the shortest path between two points in a network is a common graph

theory problem with a litany of uses. An algorithm that quickly performs this task

has applications in social networking, transportation, and packet routing, among other

areas [12, 14, 19]. One of the first attempts to solve this problem is the Bellman-Ford

algorithm, which accepts a graph and a start node as input and outputs a set of

optimal paths to every other vertex in the graph. This algorithm works on any graph

structure that does not contain negative cycles. However, it is quite slow, and on a

graph with n vertices and m edges, it requires Ω(mn) operations in the worst case.

Two approaches have been taken to improve upon the Bellman-Ford algorithm.

The first is the development of more efficient path-finding algorithms. Dijkstra’s

algorithm, one of the most commonly used improvements to Bellman-Ford, reduces

the runtime to O((m + n) · log n). If a Fibonacci heap is used, Dijkstra’s runtime

decreases further to O(m+n log n). Very recently, a new algorithm has been developed

that can find shortest paths in near-linear time [2].

However, it is important to note that the development of these new algorithms

has not rendered more classical approaches like Bellman-Ford obsolete. For example,

Dijkstra’s algorithm cannot handle negative edge weights and the near-linear time
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algorithm only accepts small integer weights. Because Bellman-Ford is more general

than these newer approaches, it still has uses today in negative cycle detection and

managing internet traffic [5, 16]. This commentary motivates the second approach

to improving Bellman-Ford, which is to implement heuristics that allow the path-

finding algorithm to terminate early, skip unnecessary steps, or otherwise speed up

its performance without compromising its generalizability. When an algorithm is

improved by these heuristics, it is called adaptive.

Much attention has been given to quantifying the performance of Bellman-Ford

and other similar path-finding algorithms. In fact, recent papers have been able to

get within a constant factor of the number of operations these algorithms require [3].

However, very little work has been done into assessing the performance of the adaptive

variants of these algorithms. This paper will contribute to the current body of work

by exploring the runtime of Bellman-Ford-like algorithms when they are improved by

commonly discussed adaptive heuristics.



Chapter 2

Definitions

Consider a weighted directed graph G with an edge set E, vertex set V , and designated

start vertex s, where s ∈ V . Define a cost function c : E → R that maps an edge to

its associated weight in the digraph. A path π of length l is a sequence of l edges that

join l + 1 vertices. For all ei = (ui, vi) ∈ π where 1 ≤ i < l, vi = ui+1. This property

requires that π’s edges be consecutive; however, this behavior does not matter at the

endpoints. π is considered a shortest path from s to a destination t ∈ V \ {s} if the

following criteria are met:

1. For all 1 ≤ i ≤ l, ei ∈ E.

2. s = u1.

3. t = vl.

4. Suppose d∗ =
∑l

i=1 c(ei) is the total cost of traversing π. Then, d∗ must be less

than or equal to the cost of every other possible path from s to t.

The single-source shortest paths (SSSP) problem extends this idea to a larger graph

structure. Solving SSSP requires finding the shortest path between s and every other

vertex v ∈ V . Solving this problem is equivalent to computing a shortest-path tree

3
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rooted at s. A tree T with a vertex set V ′ is a shortest-path tree if it has the following

properties:

1. V ′ equals the set of all vertices reachable from s.

2. If d′ is the cost of the path from s to t′ ∈ V ′ in T , then d′ must also be the cost

of the shortest path from s to t′ in G.

There are many modern algorithms that compute the shortest path tree efficiently,

including the near-linear time approach that operates on all integer edge weights

discussed in the introduction. However, this approach is not directly comparable to

Bellman-Ford and other classical algorithms as it introduces an extra O(logW ) factor,

where “W ≥ 2 is the minimum integer such that [c(e)] ≥ −W for all e ∈ E” [2].

A popular algorithmic technique, used by both Bellman-Ford and Dijkstra’s

algorithm, is relaxation. Algorithms based on this principle store a set of tentative

distance labels from s to all other v ∈ V , denoted as d(v). The initialization procedure

for these distances takes G as input and is shown below.

Algorithm 1 Initialize(G) Procedure

for v ∈ G.V do
if v == s then

d(v)← 0
else

d(v)←∞
end if

end for

A popular approach to solving SSSP is the use of relaxation-based algorithms. A

relax is an operation that accepts as input an edge e = (u, v) and attempts to update

d(v) to a smaller value. The specifications for relaxation are shown in Algorithm 2.

Implementations of relaxation-based algorithms vary across adaptive and non-

adaptive, sometimes called oblivious, approaches [3, 8, 11]. A non-adaptive implemen-

tation uses a predetermined relaxation sequence computed exclusively based upon
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Algorithm 2 Relax(u, v) Procedure

d∗ ← d(u) + c(u, v)
if d∗ < d(v) then

d(v)← d∗

end if

information found in the topology of the graph, and it will not change or skip parts

of its sequence mid-execution. The algorithm is therefore oblivious to information

about the edge weights or whether or not the path it is taking is “smart.” Algorithm

3 shows a typical implementation of non-adaptive Bellman-Ford.

Algorithm 3 Non-Adaptive Bellman-Ford

initialize G
for i = 1 to |V | − 1 do

for e ∈ E do
relax(e)

end for
end for

In contrast, adaptive approaches can be attentive to information beyond the

topology of the input graph. These modifications can allow the algorithm to skip

unnecessary relaxations or alter its approach to minimize its computational workload.

A simple and commonly used adaptive modification to Bellman-Ford is to terminate

the algorithm after no distance label receives an update during a round. Dijkstra’s

algorithm uses a more complicated adaptive approach that uses a priority queue to

greedily choose the next edge to relax. Because of the wide number of modifications

that can be made to an algorithm, it is prudent to define classes of adaptivity that

describe the level of awareness a procedure has to non-topological features. These

definitions are summarized in Table 2.1. The table is organized in ascending order of

awareness.
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Class Algorithm Knowledge
Non-Adaptive Only knows G’s topology.
Weakly Adaptive Also knows when d(v) is updated, for all v.
Moderately Adaptive Can also compare d(v) and d(v′), for all v and v′.
Strongly Adaptive Knows value of d(v) for all v.

Table 2.1: Descriptions of varying levels of adaptivity.

Adaptive algorithms use edge eligibility to leverage their extra information and

make performance gains. An edge e = (u, v) is eligible if d(u), the distance label

of its parent vertex, has been updated since the last time e was relaxed. This rule

may also be referred to as the parent-checking heuristic [11]. The parent-checking

heuristic can be implemented by modifying the relax function to take timestamps into

account. Suppose t : V ∪ E → R is a function that accepts either a vertex or an edge

as input and maps it to the time at which it was most recently updated. For a vertex

v, an update occurs when its d(v) is reduced. For an edge e, an update occurs when

relax(e) is called, regardless of whether any distance labels are changed. Therefore,

if e = (u, v), then the comparison t(u) > t(e) checks if u has received a distance

label improvement since the last time e was relaxed, the core operation behind the

parent-checking heuristic. Algorithm 4 uses this function to implement LazyRelax, an

altered version of the relax procedure that utilizes this heuristic.

Algorithm 4 LazyRelax(e) Procedure

e = (u, v)
if t(u) > t(e) then

relax(e)
end if

The precise interaction of an algorithm with its eligible edges varies based on

implementation. An algorithm that uses a fixed relaxation sequence may simply skip

over all non-eligible edges in its ordering. Dijkstra’s algorithm, a more complicated

approach, makes a greedy choice by always choosing to relax edges whose parent
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has the lowest known d(v) amongst the vertices on its visited queue. To generalize,

adaptive algorithms prefer to relax eligible edges over non-eligible ones, as doing so

prevents wasted operations and speeds up the algorithm.

Much attention has already been given to the performance of non-adaptive Bellman-

Ford algorithms [3, 7, 8]. This paper will emphasize weakly adaptive relaxation-based

algorithms that use the parent-checking heuristic. I will show two results. Firstly,

there exist classes of adaptive relaxation-based algorithms that use the parent-checking

heuristic that cannot outperform, in the general case, the non-adaptive lower bound

of Ω(mn) relaxations on an input graph with m edges and n vertices. Additionally, I

show that introducing an element of stochastic choice to these algorithms reduces the

average-case number of relaxations needed to Ω(ml log c), where l and c are parameters

to a class of graph that will be discussed later.



Chapter 3

Related Work

There are three areas of related works. The first is the supersequence problem: given a

set, create a sequence that contains, as a subsequence, every possible permutation of the

elements in the set. The second category of relevant problems concerns the calculation

of a sequence of operations that minimize the number of relaxes necessary from

relaxation-based SSSP algorithms like Bellman-Ford. In doing so, these procedures

attempt to tighten the upper bounds on the number of relaxations required to converge

to the shortest path solution. The final class of relevant literature presents already

existing bounds on relaxation-based SSSP algorithms.

3.1 The Supersequence Problem

The shortest path problem can be solved by computing a supersequence of G′s vertices.

Because the shortest path is guaranteed to be a subsequence in this ordering, a naive

procedure that simply iterates through the supersequence and, for every entry v in the

sequence, relaxes all of v’s edges. The efficiency of this approach therefore depends

greatly on the length of the supersequence. Historical results about this length include

[6, 9, 13]. The most recent solution to the problem still cannot reduce the length

of the supersequence from being quadratic in the number of set elements [15]. As a

8
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result, this naive algorithm cannot perform better than Bellman-Ford.

3.2 Existing Upper Bounds

3.2.1 Yen’s Algorithm

Yen’s algorithm, an old approach, remains the tightest upper bound on this problem

in the deterministic case [18]. Suppose that a graph G is given as input, with a vertex

set V , edge set E, and a start node s. The algorithm initializes by arbitrarily labelling

every vertex v ∈ V with a distinct, positive integer, starting with s. Yen forms two

sub-graphs from E. G+ contains every edge (u, v) where the arbitrary label assigned

to u is lower than that assigned to v. Its complement, G−, contains the rest of the

edges, which are those where u has a greater label than v. These sub-graphs are DAGs

and Yen’s algorithm processes them in a topological fashion. For G+, this ordering

sorts the vertices by ascending label order. For G−, the order is descending instead.

After initializing the two DAGs, the algorithm executes a “round of relaxation,” which

is one iteration of the outer while loop shown in Algorithm 5, until the stop condition

is reached. This condition is usually either a number of iterations or a point where no

vertex receives a distance label update. The code in Algorithm 5 shows an example

that halts when no updates have occurred.

Each round of relaxation has two main events. First, for each vertex u ∈ G in

the topological order of G+, relax all the edges e outgoing from u such that e ∈ EG+ .

Then, repeat this step for all the edges in EG− . The following pseudocode shows [1]’s

implementation of the procedure. Their version has some adaptive features, including

the parent-checking heuristic and an early termination if no vertices have their distance

labels updated.

For any input graph, there will exist some number of iterations t such that this

procedure finds the shortest path. To gain an intuition for this result, note that if
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Algorithm 5 Yen’s Algorithm

number the vertices arbitrarily, starting with s
while LazyRelax succeeds on at least 1 vertex do

for each vertex u in ascending order do
for e+ = (u, v) ∈ G+ do

LazyRelax(e+)
end for

end for
for each vertex u in descending order do

for e− = (u, v) ∈ G− do
LazyRelax(e−)

end for
end for

end while

multiple sequential edges are in the same DAG and their source has a correct distance

label, the topological sorting of the DAG ensures that only one relaxation round is

needed to properly update all of these sequential edges. If the edges alternate between

the two DAGs, then one round will properly update two edges since both DAGs are

relaxed. It follows that the absolute worst case for Yen’s procedure is one in which

the edges on a shortest path alternate between G+ and G−. Since every round of

relaxation will properly update two edges, the algorithm will need |V |/2 rounds of

relaxation, or |E| · |V |/2 relaxation operations, to correctly solve the problem in the

worst case. It is important to observe that although the implementation of Yen’s

algorithm shown in 5 and the subsequent modifications done in 6 incorporate some

adaptive elements, these components do not ultimately improve the performance of

the algorithm in the worst case, when one edge from each DAG is discovered at a

time.

3.2.2 Randomized Approaches

Bannister and Eppstein improve Yen’s upper bound, with high probability, by intro-

ducing randomization into the algorithm [1]. Their procedure initializes the vertex

ordering as a random permutation of all possible sequences with the start node s first,
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in order to maintain the usefulness of the topological ordering described earlier. Their

pseudocode is shown below in Algorithm 6. The core insight: given a triple of sequen-

Algorithm 6 Bannister and Eppstein’s Algorithm

number the vertices randomly such that all permutations starting with s
are equally likely
while LazyRelax succeeds on at least 1 vertex do

for each vertex u in ascending order do
for e+ = (u, v) ∈ G+ do

LazyRelax(e+)
end for

end for
for each vertex u in descending order do

for e− = (u, v) ∈ G− do
LazyRelax(e−)

end for
end for

end while

tial connected vertices, {a, b, c}, that are being labeled by the random permutation,

there are 3! = 6 possible labelings. If li denotes the label of vertex i, then of those 6

labelings, 4 of them are “good” for the algorithm, meaning they reduce the number of

rounds of relaxations needed to achieve correctness. Specifically, any configuration

in which lb is not the minimum label is a good result for the algorithm. If la is the

minimum, then edge (a, b) must be in G+. If edge (b, c) is in G+ as well, then the

topological sort of the DAG ensures that (a, b) is relaxed before (b, c), maintaining

the order. However, if it is in G−, (b, c) will still be relaxed second because, as used in

Eppstein and Bannister [1], one relaxation round goes through all the edges in G+

followed by all the edges in G−. Note that reversing the order of relaxations does

not interfere with the result; instead, the “good” outcomes become all those in which

lb is not the maximum. To complete the argument, note that if lc is the minimum,

then (b, c) must be in G−. If (a, b) is in G−, it will be relaxed first because of the

topological ordering; if not, it will still be relaxed first because edges in G+ are relaxed

first. The two cases where lb is the minimum label correspond to behavior similar to
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that of the original Yen’s algorithm. This situation corresponds to the case in which

(a, b) ∈ G− and (b, c) ∈ G+. (a, b) needs to be relaxed before (b, c) but since G+ is

relaxed prior to G−, the algorithm needs two rounds of relaxation to properly update

both edges, which is the same performance as the worst case of Yen’s algorithm. Note

that because each triple minimum requires a round of relaxation to correctly set its

distance label, the total number of relaxation rounds can be upper-bounded by the

expected number of triple minima whose distance labels need to be corrected. Since

the probability of a triple containing a minimum is 1/3 and there are n− 2 candidate

minima–Bannister and Eppstein assume the shortest path tree is a line, so the start

and end cannot be minima–then there are (n− 2)/3 expected minima. But, the start

node already has its label set correctly, so there are in total (n− 3)/3 expected rounds

of relaxation needed and therefore at most mn/3 total relaxations needed.

3.2.3 Related Problems

Another notable discovery, although less directly pertinent to the content of this paper,

is that of the minimum violation permutation. Introduced by Lattanzi et al.[10], the

problem attempts to approximate the best possible vertex ordering for several inputted

graphs. The authors produce a linear program, the solution to which approximates

an ordering that minimizes the number of relaxations needed to correctly label every

edge in all the inputted graphs. A restriction of this approach is its generalizability;

Lattanzi et al.’s procedure requires that all input graphs be highly similar–such as

several graphs with the same topology but different edge weight sets.
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3.3 Existing Lower Bounds

3.3.1 Non-Adaptive Deterministic Algorithms

Most relevantly, Eppstein [3] shows that on complete graphs, the class of non-adaptive

relaxation-based algorithms require at least (1
6
− o(1))n3 relaxations. Since these

algorithms are all non-adaptive, they have some fixed and pre-determined relaxation

sequence σ, where each entry in σ is an edge to be relaxed. For simplicity, Eppstein

labels each path edge with weight 0 and all other edges with weight 1. The goal

is to greedily select the position of the path edges in σ to maximize the number of

wasted relax operations before a path edge is discovered; in other words, to maximize

the distance between two consecutive path edges in σ. For simplicity, Eppstein only

explicitly places the even-numbered path edges. This choice is equivalent to choosing

every edge, as since the graph is complete, choosing an edge in position i and in

position i+2 leaves only 1 choice to maintain the path in position i+1, provided that

i is even. Therefore, if si is the position of the ith edge in the path in σ, Eppstein

defines the following telescopic sum:

S = (s2 − s0) + (s4 − s2) + (s6 − s4) + · · ·

This sum represents the total distance between all the even-numbered path edges in

σ. Therefore, |σ| ≥ S, and by maximizing S, the algorithm will be forced to compute

many relax operations before finding the path. To do so, note that for any edge i, the

i− 1 edges that were selected prior have already added i− 1 vertices to the path (not

i vertices, since the start node s is always trivially included in the path). If the graph

has n total vertices, this statement implies the existence of n− i+1 remaining vertices

that still need to be added to the path. Between steps si−2 and si, the algorithm

must first relax at least all the n− i+ 1 edges originating at vertex i− 2 connecting

to the n− i+ 1 remaining vertices. To connect vertex i to the path, all of the pairs
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between the remaining unmatched vertices must be explored. Therefore, an additional

2 ·
(
n−i+1

2

)
relaxations must be performed. The factor of 2 is included because an edge

that connects vertex A and then vertex B is distinct from a path that connects vertex

B and then vertex A. Note that the path edge must be the last edge to be relaxed

amongst all of these edges, otherwise the greedy principle for assigning the path edges

would be violated. Therefore, Eppstein bounds one term in the telescopic sum S as

si − si−2 ≥ (n− i+ 1) + 2 ·
(
n− i+ 1

2

)
= (n− i+ 1)2

By induction, it follows that

∑
i=2,4,6...

Si ≥
∑

i=2,4,6...

(n− i+ 1)2 =
n3 − n

6

This statement completes the proof.

It is important to note that this proof requires assuming that the relaxation

algorithm is completely non-adaptive. Consider instead a weakly adaptive algorithm

that skips relaxations that violate the parent-checking heuristic. In order to keep σ

fixed, an e = (u, v) violating the parent-checking heuristic in position σ[i] does not

affect σ, but rather causes the algorithm to skip the relaxation of e and proceed to

step σ[i+ 1] in the sequence. Suppose G is complete and initialized using the steps in

Algorithm 1. Path edges have weight 0; all other edges have weight 1. Eppstein tries

to maximize

(s2 − s0) + (s4 − s2) + ...

where si is the position of the ith path edge in σ. Note that because G is complete

and the path must start at s, it follows that only selecting even edges in the path creates

a unique set of odd edges in the path as well. Therefore, maximizing the distance
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between the even path edges in σ maximizes the number of relaxation operations

required. si and si−2 are chosen greedily, such that the number of relaxes needed

to properly label them in σ is maximized. This rule means that once the first path

edge (s, u) has been discovered, the distance label to all vertices in V \ {s, u} is now 1

because an edge from s to that vertex must have been relaxed. If this is not the case,

then the greedy rule is violated as another non-path edge could have been relaxed

before the discovery of a path edge. Since all of these vertices received a distance

label update, none of them violate the parent-checking heuristic and their edges can

be relaxed as the algorithm looks for the second path edge. However, since all the

vertices not currently in the path have a distance label of 1, the only way they can

receive an update is via the discovery of their path edge. By the time q, the second

vertex on the path, is discovered, q will be the only eligible vertex. Therefore, only q’s

n− 1 outgoing edges will be relaxed, at which point the process repeats itself for the

next path vertex until the shortest path has been discovered. The result is a Ω(n2)

lower bound on the number of relaxes needed, as the O(n) path edges after q has been

discovered take O(n) work to find, plus the O(n2) work that went into finding u and

q. Therefore, Eppstein’s original labelling scheme does not generalize to the weakly

adaptive case.

3.3.2 Non-Adaptive Randomized Algorithms

Interestingly, Eppstein also shows that if σ is selected randomly from a distribution of

possible relaxation sequences instead of being deterministically generated, then the

lower bound remains ( 1
12
− o(1))n3. Eppstein approaches this proof by defining D

as a random permutation of the vertices of a complete graph. He assigns a weight

of 0 to all the edges that connect consecutive vertices in this ordering and a weight

of 1 to every other edge, thus creating a unique shortest path. He maintains the

sum S defined above, with one difference. Because the algorithm’s procedure is now
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random, he introduces a conditional probability distribution Ci, which is defined as

distribution for the remaining, unordered vertices in D conditioned on the i edges,

and their associated i+ 1 vertices, that have already been added to the shortest path.

There are therefore n− i−1 remaining vertices, and each permutation of these vertices

has equal probability. As in the deterministic case, there are 2 ·
(
n−i+1

2

)
choices for

the edge i+ 2. Therefore, E[si+2 − si] ≥ the average distance of these choices from si

because the position of each edge is equally likely in the relaxation sequence. Note

that in the best case, σ can minimize this average by having the next 2 ·
(
n−i+1

2

)
relaxes

operate on a distinct edge. Therefore,

E[si+2 − si|Ci] ≥
(
n− i+ 1

2

)
Eppstein then applies a corollary of Yao’s principle [17] to the summation. The

relevant definitions for the corollary are DG, which is the set of all possible probability

distributions for the assignment of weights to the edges of G, and ΣG, the set of

relaxation sequences that are guaranteed to produce a correct result if executed. If

ρ(σ,D) is a function that outputs the number of relaxations needed to correct all the

distance labels for a sequence σ ∈ ΣG on weights drawn using distribution D ∈ DG,

then minσ∈ΣG
ρ(σ,D) lower bounds the relaxation cost of all randomized non-adaptive

relaxation algorithms. Performing the above sum and applying this corollary yields

the desired result.

Kolliopoulos and Stein [8] find an alternative statement of the above results in

the non-adaptive case and claim that for any non-adaptive relaxation-based SSSP

algorithm, there exists a G that requires Ω(mn) relaxations to ensure a correct result.

The above proof demonstrates that Eppstein’s complete graph could be such a G for

oblivious relaxation-based algorithms.
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3.3.3 Stochastic Algorithms

Meyer et al. [11] introduce an approach that handles cases where the edge weights

are determined stochastically as opposed to designed adversarily. They also explore

sparser graphs, distinct from the analysis on complete graphs performed by Eppstein.

Figure 1 shows the gadget on which they perform their calculations.

Figure 3.1: The gadget used by Meyer et al. to create their graph.

The graph in Figure 1 is composed of r of the triangular gadget between vertices

vr−1, xr, and vr. Connected to vr is an additional component with Θ(r) vertices.

This problem is stochastic because they assume all of the weight edges are randomly

assigned in a uniform manner from the range [0,1]. They argue that the existence of

this class of graph shows that there exist graphs with O(n) nodes and random edge

weights that force relaxation-based algorithms to use at least Θ(n2) operations with

high probability. They do this by defining a random variable Zi, which is 1 if the cost

of the path vi−1 → xi → vi < the cost of the path vi−1 → vi, and 0 otherwise. They

prove that P[Zi = 1] = 1/6 and argue that this implies Z = Z1 + · · ·+ Zr is binomial

with p = 1/6. As a result of the Chernoff bound (see [4]) vr is relaxed, with high

probability, Θ(n) times. This step forces another Θ(n) relaxes in the group of Θ(n)

nodes at the end of the graph, resulting in the promised Θ(n2) bound.
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3.3.4 Hardness of Bellman-Ford

Finally, Kociumaka and Polak [7] reduce the Bellman-Ford algorithm to two related

problems, the APAS hypothesis and the Min-Plus Convolution hypothesis. The APAS

hypothesis states: “there is neither a O(h1−ϵm) nor O(hm1−ϵ) time algorithm for

finding the length of a shortest h-hop-bound s-t path in undirected graphs with

non-negative edge weights, for any ϵ > 0.” The result holds for n = Θ(
√
m and

h = Θ(mη) for η ∈ (0, 1/2]. The statement of the Min-Plus Convolution hypothesis

is identical, except for that it holds for graphs with n = Θ(mν) and h = Θ(mη)

with η ∈ [1/2, 1]. These lower bounds apply to all instances of relaxation-based

algorithms, regardless of whether or not they are adaptive. Both of these hypotheses

are currently unproven, and the paper assumes that they are correct in order to reduce

hop-bounded Bellman-Ford. However, if the hypotheses are true, then it follows that

the Bellman-Ford running time of O(hm) is optimal, where h is the number of edges

permitted to be in the path.



Chapter 4

Our Results

4.1 Improving Existing Results

4.1.1 Meyer et al.

Consider a queue-based relaxation algorithm similar to the one implemented by [11]

operating on a graph G with V vertices and E edges. The algorithm stores vertices

to be relaxed in a FIFO queue Q. While Q is non-empty, the algorithm removes the

vertex at the head of Q and relaxes its associated edges. If, as a result of a relaxation

operation, the distance label d(v) of some vertex v is updated, then v is immediately

pushed onto Q. In this way, the algorithm implements the parent-checking heuristic.

However, to save time, the algorithm will not add v to Q if there is another copy of v

in Q already waiting to be relaxed. The algorithm initializes by setting d(v) =∞ for

all v ∈ V and then updates d(s)→ 0, where s is the start node. Q therefore starts

with s enqueued as the only element. I will show that on a complete graph with

n = |V | vertices, this procedure requires Θ(n3) relaxes to solve the SSSP problem.

Proof. Suppose z = n− 1 represents the number of outgoing edges associated with

a vertex. Then, consider the the function g : V → Rz, which maps the edges of a

vertex to a vector of their weights. Let W ∼ n2 be a large, positive integer weight.

19
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Additionally, if σ is the order that vertices will be added to Q in the first iteration of

the algorithm, let σi represent the ith vertex in this ordering. Finally, the destination

node t will be chosen such that it is always the first vertex the algorithm explores. In

other words, t = σ1. Using these definitions, g is implemented as follows:

1. If v = s, assign W to all edges.

2. Otherwise, v = σi, where i > 0 and represents v’s position in the queue order.

3. Assign a weight of 0 to the one edge originating from v and connecting to s.

4. Assign a weight of 1− i to all edges pointing to the vertices σj , where 0 < j < i.

5. Assign a weight of W to the remaining vertices. These vertices are represented

by σh, where i < h < n.

Figure 4.1 shows an example of this scheme applied to a graph of 3 vertices. Note

that the shortest path is s→ σ2 → σ1, demonstrating that σ is always in reverse-path

order.

Figure 4.1: The queue labeling scheme applied to a graph of 3 vertices.
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Lemma 4.1.1. A digraph weighted using the above scheme will never produce any

negative cycles.

This scheme will create 1 vertex with n− 2 negative edges, 1 vertex with n− 3

negative edges, and so on. Vertex s will always have 0 negative edges. Suppose the

vertex with only negative outgoing edges is vertex r. Then, the cycle containing the

most negative edges starts from edge (s, r) and then takes every negative edge back to

s. There are n−1 such edges, so this cycle has total cost W−(n−2)−(n−3) · · ·−2−1.

W can always be set to some positive number on the order of n2 such that the above

sum is non-negative, preventing a negative cycle. Note that this cycle contains the

most negative edges possible, so every other cycle in the graph must also have a total

cost much larger than 0, proving that this scheme will never create negative cycles.

Lemma 4.1.2. σ will continue to be in reverse path order between rounds of relaxation.

In the first round of relaxation, s will be relaxed and every other vertex will be

added to Q in the order σ. Then, after a vertex is processed, it will be removed from

Q. Because of the structure of the graph, a negative edge will be relaxed to each vertex

in positions 1 through i− 1 in σ. Since vertices will not be added to Q multiple times,

the effect of this ordering is that relaxing a vertex in position i will append the vertex

in position i− 1 to the end of Q. The exception is the final vertex in σ. This vertex

will not receive any distance label updates, as no negative edges are directed towards

it. It will therefore not be added back to Q. For example, after the first round of

relaxation, σ will contain the vertices in positions 1 to n − 2 in reverse path order.

This pattern will continue until the algorithm is complete.

Theorem 4.1.3. This queue-based relaxation algorithm requires at least Ω(n3) relax-

ations to correct every distance label.

Because σ is guaranteed to be in reverse path order, each round of relaxation will

only correct 1 distance label in the path (with the exception of the first round, in
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which 2 distance labels will be corrected). By construction, the shortest path must

take the edge that connects s to vertex σn−1 and then must take every negative edge

that connects the vertices in reverse σ ordering. However, because the algorithm

relaxes edges in σ order, it will always find the best path edge to relax last. Once it

finds the path edge and its associated path vertex, every vertex that has an earlier

position in σ will receive a distance label update and be forced to relax again. Ignore

the first round of relaxation to make the computation simpler. After this point, the

edges of s and σn−1 have achieved their correct distance labels. At this point, n− 2

vertices still need to have their edges correctly updated. Within each round, k · z

edges need to be relaxed, where k is the number of vertices still on Q at the start of

the round. Because the graph is complete, z = Θ(n). Finally, completing one round

of relaxation properly updates one vertex and removes it from consideration as it will

stop receiving distance label updates. Therefore, the total number of relaxes needed

can be lower-bounded by the following:

Θ(n) ·
n−2∑
k=1

k = Ω(n3)

This step completes the proof.

Notably, this approach offers two new results beyond being an alternative con-

struction of the generalization to Eppstein’s argument. Firstly, this algorithm requires

that all edges outgoing from a vertex are relaxed before moving on, whereas Eppstein

allows for a more arbitrary edge ordering. The consequence is that the use of the

LazyRelax procedure as implemented in 4 saves not only relax operations but also

runtime, as a violation of parent-checking causes the algorithm to skip n− 1 relaxes.

In the case of Eppstein’s algorithm, LazyRelax replaces relax operations with another

constant time operation. Although this change does not improve running time, it is
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still sufficient to minimize relax operations, which is Eppstein’s cost function.

Secondly, since the summation in the above lower bound is essentially the sum of

the first k numbers, it has a constant factor of 1/2. The constant factor of 1/2 creates

a tighter upper bound than Eppstein’s constant factor of 1/6. This improvement in the

tightness of the bound occurs because the algorithm proposed in this section is more

restrictive than Eppstein’s algorithm when it comes to the choice of the relaxation

sequence σ.

Remark. The labeling scheme shown in Figure 4.1 forces poor behavior for a general

relaxation-based algorithm, not just the queue-based one presented by Meyer et al.

The only requirements for the lower bound to hold are that σ is fixed and that the

algorithm relaxes every edge outgoing from a vertex before moving onto the next

vertex in σ. If these conditions are met, then the above proof is written generally

enough to show that a Θ(n3) lower bound applies.

4.1.2 Eppstein

To adjust Eppstein’s approach [3] to the weakly adaptive case, consider the following

labelling scheme. Recall that for Eppstein, G is a complete directed graph.

1. Every vertex has a label ranging from n to 1. The label reflects its reversed

order in the path. For instance, since s is the first vertex in the path, its label is

n. The final vertex in the path would have label 1, and so on.

2. Each path edge has weight 0.

3. All other edges have weight equal to their parent vertex’s label. For example,

all non-path edges outgoing from s would have weight n.

Figure 4.2 below shows the result of this scheme applied to a graph where |V | = 4.
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Figure 4.2: The relabeling scheme applied to a graph of 4 vertices.

Trivially, no negative cycles can be created as there are no negative weights.

However, the gradual reduction in weight magnitude as vertices deeper into the path

are discovered does correct the problem with Eppstein’s original approach. Now, when

a new path vertex q is discovered, relaxing its edges will always provide a distance

label update to every other vertex later in the path and enable more relaxes. In the

best case for the algorithm, G’s other edges will be earlier in σ than q’s edges. If this

situation is the case, then the other vertices still will not have received distance label

updates when their edges are being queried, and thus, all these edges will be skipped.

However, this scheme still updates the labels so that relaxes are possible the next

time these edges are visited. Note that Eppstein computes the number of relaxations

between finding two path edges to be

si − si−2 ≥ (n− i+ 1) + 2 ·
(
n− i+ 1

2

)
= (n− i+ 1)2

This term is Θ(n2). Therefore, although this labelling heuristic only enables every

edge to be relaxed in between finding every two path edges in the worst case, requiring
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Θ(n2) ∗ n/2 = Ω(n3) relaxes to guarantee a correct solution is still sufficient to show

that the addition of the parent-checking heuristic and weakly adaptive behavior does

not improve the asymptotic performance of relaxation-based shortest path algorithms

on complete graphs, further generalizing Eppstein’s result.

4.2 New Results

4.2.1 Problem Statement

Suppose we are given the following gadget:

si xj

x1

xc

ti

Figure 4.3: The primary gadget. The graphs in this section will be formed by repeating

this structure l times.

The central column of vertices has c nodes. The node xj represents an arbitrary

vertex in the range 1 ≤ j ≤ c. Each node has one incoming edge from vertex s and

one outgoing edge to vertex t. Suppose we form a graph G(V,E) by linking together l

of these gadgets such that vertex ti−1 in gadget i− 1 is vertex si in gadget i. Suppose

that a relaxation-based shortest path algorithm is used to find the shortest path from

s1 to tl and meets the following criteria:

1. The algorithm knows G(V,E) and s1, but may not directly observe any edge

weights.

2. The algorithm does know whether or not a relaxation is successful, and will only

perform a relaxation on an outgoing edge of vertex v if the distance label d(v)
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was updated since the time of the last relaxation. If a vertex is in this state, its

edges are called eligible.

3. The algorithm will relax every edge outgoing from a vertex v before moving on.

For all v, the order of these relaxations will be fixed, i.e. if vertex si is relaxed

at two separate points in the algorithm, its edges will be relaxed in the same

order. The precise ordering is arbitrary.

4. If vi is the current vertex being relaxed, then vi+1 will be set as the first eligible

vertex encountered while relaxing the edges of vi in accordance with the fixed

sequence specified in assumption 3.

5. If no eligible vertices are reachable from the current vertex, the algorithm will

return to the eligible vertex closest to si. This behavior actually ends up forcing

the best-case scenario for this algorithm, as any other relaxes would be extra

work since every distance label will be updated once the algorithm returns to s1.

Lemma 4.2.1. This greedy algorithm performs at least as well as Bellman-Ford on a

G composed of several of the gadgets shown in Figure 4.3.

Note that although this algorithm is not Bellman-Ford, it performs similarly to

Bellman-Ford on the proposed gadget and therefore is an acceptable analogy. Observe

that Bellman-Ford always finds the shortest path in O(nm) time. This statement is

true because Bellman-Ford relaxes every edge in the graph in one round of relaxation,

which means that after every round, at least 1 edge in the shortest path must be

correctly labelled. The greedy approach proposed above performs similarly on the

gadget presented in Figure 1. In the context of this algorithm, a round of relaxation is

defined as the time it takes for the algorithm to correctly label one gadget. Suppose

the algorithm is currently in gadget i processing vertex si. Assuming the graph is

labelled correctly behind gadget i, relaxing si will immediately find the edge in the
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shortest path, as all edges outgoing from si always have weight 0. To find the correct

outgoing edge from column ci, the algorithm will have to examine every vertex in ci

in the worst case. There are l gadgets in G, so at most lc rounds of relaxation are

needed. Now, examine the behavior of the algorithm during one round of relaxation.

In one gadget, the algorithm relaxes the c edges outgoing from si and then the single

edge outgoing from xj. There are at most l gadgets being examined in one round,

which means at most cl + l relaxes occur. Therefore, this algorithm requires O((cl)2)

relaxes on G. If n = |V | and m = |E|, then for this G, n = cl + l + 1 and m = 2cl.

Applying the assumption that c ∼ l, it follows that the algorithm requires O(nm)

relaxes, the same running time as Bellman-Ford.

The greedy algorithm I propose is therefore comparable to Bellman-Ford, at least

for the G I have presented. I chose to use it because the structure of the algorithm

makes computations easier than the original Bellman-Ford algorithm. Although the

greedy approach performs like Bellman-Ford, it is important to note that neither the

greedy algorithm nor Bellman-Ford are optimal for solving the SSSP problem in this

G. If the algorithm knew the structure of G ahead of time, finding the shortest paths

could be accomplished in linear time by computing a topological sort of the vertices

because G is a DAG. However, considering this structure is still relevant in the general

case where the topology of G is not directly known and therefore G is not guaranteed

to be a DAG.

4.2.2 Deterministic Weakly Adaptive Algorithms

I will show that relaxation algorithms of this class must use at least Ω(mn) relaxation

operations in order to guarantee a correct shortest path.

Lemma 4.2.2. In a graph composed of l of the gadgets shown in Figure 1, the s node

of each gadget will be relaxed c times for every s node that appears prior to it in the

structure.
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Suppose all the outgoing edges from a node si have weight 1. After the algorithm

has relaxed an s node, it will randomly choose an edge (si, xj) to an eligible xj to

continue its relaxation. Within each gadget, the weights of the xj nodes should

be assigned adversarially such that the algorithm is forced to relax these nodes in

descending order. In other words, in the gadget above, if (x2, s2), (x1, s2), (x3, s2) is a

sub-sequence of the algorithm’s relaxation order, then w(x2, s2) = −1, w(x1, s2) = −2,

and w(x3, s2) = −3. At the start of the algorithm, only vertex s1 is eligible. Relaxing

it causes vertices x1 through xc to become eligible. One of these vertices is picked

at random, at the process continues forward until the end of the path is reached.

The algorithm now returns to vertex s1 to select one of its c − 1 eligible neighbors

to continue relaxation. Due to the invariant defined above, the weight of the edge

connecting to s2 will be one less than the previous edge, which causes the distance

label at s2 to be updated. Based on the topology of the graph, this cascades into the

graph and causes s2 and every vertex after it to become eligible again. Since there

are c vertices in the central construct after s1, this cascade will occur c times, forcing

every s node after the first to be relaxed c times. Therefore, to generalize, each s node

is relaxed c times for every other s node behind it.

Theorem 4.2.3. There exist graphs such that relaxation-based algorithms that use

the parent-checking heuristic must use Ω(mn) relaxes to ensure every distance label is

correct.

Thinking of the graph from the end first, the edges of sl are relaxed (l − 1)c times

because for each start node si where i < l, c eligible paths are explored until the

algorithm moves on to the node si+1 and there are l − 1 s nodes behind sl. Likewise,

the nodes of sl−1 are relaxed (l − 2)c times, and so on. Every time an s node is fully

relaxed, it means c relaxations have occurred. Note that the start node s1 is unique

since there are no s nodes before it. This node is only relaxed once, for a total of c

relaxes. Therefore, if i is the number of s nodes preceding the current node and τ is
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the total number of relaxations used by the algorithm, then

τ ≥ c+ c2
l−1∑
i=1

i = Θ(c2l2)

Now note that for the original graph, there are lc central nodes, l start nodes, and

1 destination node, so n = lc + l + 1 = Θ(lc). Additionally, m = 2lc = Θ(lc). By

substitution, it follows that τ ≥ Θ(mn), so this algorithm will need at least Ω(mn)

relaxations to solve this problem.

4.2.3 Removing Assumptions

Suppose we go back to the deterministic case and remove assumption 5. Now, when

there are no eligible vertices in the neighborhood of the most recently relaxed vertex,

the algorithm will randomly select any column with eligible vertices and will relax

the next vertex using the sequencing requirement established in assumption 3. The

requirement stipulates that if the algorithm returns to the same column several times,

it will always test for eligible vertices in the same order. I will show that easing this

assumption cannot improve the result found in Theorem 2.

Lemma 4.2.4. Relaxing an s node causes every vertex deeper in the structure to

become eligible, even when Assumption 5 is removed.

If ci is the column that would be selected by the approach used by assumption 5,

suppose instead that the algorithm chooses some other column cj with eligible vertices,

where j ≥ i. Since the eligible vertices of this column will always be explored in the

same order, an adversary can assign edge weights such that every edge in the column

causes an improvement to its associated s vertex, but the edges are discovered in the

least-helpful order possible. To do this, assign a weight of -1 to the first edge explored

by the vertex, -2 to the second, and so on. Therefore, the algorithm will need to

go through all c edges in order to find the optimal distance label at sj+1. This step
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ensures that there is no possible unlucky selection of cj. Since the algorithm always

explores eligible vertices within a column in the same order, exploring the columns

in a random order still allows the adversary to optimize the edge weights to achieve

worst-case performance. Therefore, no selection of cj will allow the algorithm to skip

edges or learn which edge is optimal. Now, note that by the topology of the graph,

improving a distance label at any s vertex necessarily improves the distance labels at

every vertex deeper in the graph. The consequence is that every vertex beyond the

relaxed s node will become eligible again.

Corollary 4.2.5. Assumption 5 only makes computations easier and is not required

to show the Ω(mn) lower bound shown in Theorem 4.2.2.

The intuition here is enough to show that the algorithm is either using the behavior

established in assumption 5 or it is wasting time. If j = i, then the algorithm is

relaxing eligible vertices in the deepest (closest to s1) column, which is the behavior

of assumption 5. If j > i, note that eventually, the algorithm will have to relax

an edge in column ci once it runs out of all other eligible vertices. Even if there

is only 1 edge remaining in ci, its weight can be assigned in an adversarial manner

such that it is more negative than any other edge in that column. This step forces a

distance label improvement at node si+1, which cascades into the graph and reduces

every other distance label as well, resetting the problem and requiring that every

edge relaxed by the algorithm when it was processing column cj be relaxed again.

Therefore, the assumption 5 behavior forces the best case scenario for this algorithm

because it prevents it from wasting time relaxing edges that do not make permanent

improvements to the distance labels.

4.2.4 Randomized Weakly Adaptive Algorithms

Similar to Eppstein, I will also test this graph structure on randomized algorithms.

To make the computation simpler, assume all outgoing edges of any vertex si have
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weight 1. All incoming edges are randomly assigned a weight in the range [−c,−1]

without replacement instead of having the weights assigned adversarially as above.

Suppose that instead of a fixed ordering of eligible vertex selection, the algorithm

randomly and uniformly selects the next vertex from all the eligible neighbors.

Lemma 4.2.6. When relaxing the vertices in the column of the gadget shown in Figure

2, the uniform selection scheme will relax, on average, the vertex at the midpoint of

the eligible vertices in the column.

Observe that the only time that this new property matters is when the algorithm

is selecting an eligible vertex after relaxing the first previously eligible s node. That

is because all distance label updates from a vertex v get propagated to every node

deeper than v in the structure of the graph. The result is that the only time the new

rule can cause the algorithm to skip relaxations is when it gets lucky on a si vertex

such that all sj where 1 < j ≤ i − 1 are not eligible. The way that the algorithm

could get lucky is by skipping ahead and selecting a lower edge weight first. This

would prevent the higher edge weights from triggering relaxation cascades via the

adaptivity of the algorithm. Suppose si is the current s node and x is the eligible

neighbor selected by the algorithm. If w(u, v) represents the weight of edge (u, v),

then w(si, x) is a random variable with expected value (−1/c)
∑c

j=1 j = −(c+ 1)/2

since every edge weight is equally likely.

Theorem 4.2.7. Relaxation-based algorithms that use the uniform selection scheme

require, on average, at least Ω(ml log c) to guarantee all distance labels are correct.

Since the expected value is the midpoint, on average half the neighbors of si will

have an edge weight greater than the currently selected edge weight. The adaptive

nature of the algorithm will then mark all of these vertices as ineligible because they

are guaranteed to not be in the shortest path. From here, the process of selecting the

next eligible vertex is identical, but the range of possible values of the random variable
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w(si, x) is cut in half. Because the algorithm is dividing by 2 every time, there will

be Θ(log c) meaningful relaxes. Each of these relaxes triggers c relaxes from every s

vertex ahead of si. Therefore,

E[τ ] = c+ c log c
l−1∑
i=1

= Θ(l2c log c)

Using the same substitution as above, in the more stochastic case, the algorithm

requires at least Ω(ml log c) relaxations to achieve correctness on average.



Chapter 5

Conclusion

This paper contributes to the study of shortest path algorithms in two ways. Firstly, it

generalizes Eppstein’s [3] results to a weakly adaptive setting. Secondly, it introduces

new lower bounds to other Bellman Ford-like algorithms that utilize the parent-

checking heuristic. These additions to the field move beyond the study of non-adaptive

algorithms.

However, there remain several open questions. Firstly, this paper only deals with

the weakly adaptive case. Can these approaches be generalized to moderately or even

strongly adaptive settings? Secondly, this paper attempts to produce a lower bound

in the sparse graph case. One concern with the approach taken here is that it requires

the use of the non-standard shortest path algorithm introduced in Section 4.2.1. This

algorithm performs well on the DAG introduced in this analysis; however, it is unclear

how well it performs on a general G. Although the assumptions made to generate this

paper’s sparse graph result, it should be noted that producing a lower bound in the

sparse case remains an open problem even for non-adaptive algorithms. Eppstein [3]

attempts to solve it but he only achieves an Ω(mn/ log n) result in the general case,

which remains off the anticipated Ω(mn) bound by logarithmic factors. There are two

approaches to take from here. The first would be to replicate this result in the weakly

33
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adaptive space. Specifically, the goal would be to find an Ω(mn/ log n) lower bound on

a general sparse graph for a general weakly adaptive relaxation algorithm. This result

could be found by applying some of the techniques used in this paper. For instance,

using the descending edge weights approach shown in Section 4.1.2 has potential to

generalize Eppstein’s result to the weakly adaptive case. Another approach is to find

a better lower bound, (specifically, removing the logarithmic factor), in the sparse

case for non-adaptive algorithms. Finding this result is significantly harder and might

require exploring techniques outside both the scope of this paper and Eppstein’s

analysis. Once this result has been computed, generalizing further to the weakly

adaptive case is a logical next step.
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