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Abstract

Explorations of Sensorimotor Learning and Individuality
in Mathematical Models of Behavioral Data

By Baohua Zhou

One of the most obvious properties of a living organism is its
highly coordinated behavioral patterns. These patterns reflect
the orderly activities of the underlying nervous system that con-
trols the behavior, and also may contain information about this
organism’s individuality. This thesis is devoted to the studies
of behavior in diverse animal systems, and includes two distinct
themes: computational rules of sensorimotor control and species
classification. First, we try to build a full Bayesian theory of sen-
sorimotor learning by investigating the singing behavior of song-
birds and its response to imposed perturbations. Unlike previ-
ous models, our normative Bayesian filter model with multiple
temporal scales and non-Gaussian sensory feedback can describe
the dynamics of the entire probability distribution of the pitch of
the song produced by the animals. We will show that our model
not only accounts for salient features of the adaptation dynam-
ics, such as the non-monotonic dependence of the behavioral
compensation on the perturbation size, but also makes predic-
tions about the behavioral patterns in the classical three-phase
perturbation experiments, about the effects of pharmacological
silencing of certain nuclei in the bird brain, and about the neural
dynamics that is required to implement the model. After this,
we move from a single behavior to the whole behavioral reper-
toire, which is automatically extracted from naturally moving
flies. We can show that this behavioral repertoire contains in-
formation about the individuality of young flies, and that it
can be used to classify fly species in high accuracy. This result
suggests that animal behavior patterns might be used to study
evolution without the need of any genetic information.
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Chapter 1 Introduction

An animal uses its behaviors to strategically respond to the challenges and op-

portunities imposed by the surrounding environment, and the adaptation of these

strategies is crucial for its survival. Through billions of years of evolution, animals

are able to perform diverse and complex behaviors. Just to name a few of them, a

moth needs to properly track a fluctuating flower in order to get food [82]; the noctur-

nal predator barn owl can reliably turn its head to the location of a sound source with

the help of an internal mapping between the sound signal and the encoded spatial

information [51]; Tiger Woods has to rely on his arm swing patterns to perform well

in a golf contest, and in fact, he has changed these patterns three times throughout

his career to achieve better performance [23]. On the one hand, behaviors are direct

consequences of the upstream motor commands generated by the nervous system,

and the features of the observed behaviors must be embedded in some way in the

activities of this nervous system; on the other hand, behavioral patterns may also

carry information about the organism’s individual features since different organisms

behave differently. In this thesis, two distinct topics are discussed: (1) behavioral

dynamics can be used to infer general computational rules of the sensorimotor learn-

ing systems; (2) a whole behavioral repertoire can be used to distinguish individual

animals.

One of the biggest problems in neuroscience is to understand how the nervous

system controls behavior. According to Marr [64], there are three levels in this prob-

lem: behavior, algorithm and neural implementation. As technology advances, neural

recordings can yield much more high-fidelity data than before, and thus, many people

are applying various techniques and models to analyze data, hoping that algorithms

used by the nervous systems to control the behavior can emerge from the analysis
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of the neural activities. However, it has been argued that this bottom-up approach

might not be very effective without careful behavioral studies. Unlike the neural ac-

tivities that are well characterized by the spiking patterns, behaviors are usually hard

to define. Part of the reason is that many behaviors are analog and have too many

degrees of freedom, and thus it is not easy to determine what to measure. Despite

this difficulty, many experimental paradigms and computational models have been

developed to study behaviors, many of which have yielded fruitful results. In general,

in order to build mathematical models of behavioral data, one needs to define macro-

scopic variables and their associated dynamics that are related to the behavior under

study. If a model agrees well with behavioral observations, it might capture something

that is truly embedded in the nervous system—the algorithm. These experimentally

tested mathematical models (or algorithms) can then be used as guidance to study

neural recordings.

The nervous system controls the behavior by sending motor commands to instruct

the activities of relevant muscles, and the consequences of the motor commands are

sent back to the nervous system in the forms of sensory feedback [8, 11, 56, 104]. The

sensory feedback is then processed by the nervous system to generate an instructive

teaching/error signal, which is used for adaptation of the motor commands [91, 93].

This sensorimotor learning loop has been extensively studied across different behav-

iors and animal species. A typical approach is to add perturbations to the sensory

consequences of the motor command and to observe how the behavior responds to

these perturbations. Many computational models have been proposed to explain the

observed phenomena. One of the most famous ones is the two-rate model [92], which is

formulated to explain the observations in the arm-reaching experiments. This model

assumes that two states or memories, φt and ψt, are present in the motor system, and

each state learns from the same error with different learning rates. Specifically, it is
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formulated as

φt+1 = Aφφt +Bφδt (1.1)

ψt+1 = Aψψt +Bψδt (1.2)

δt = r − (φt + ψt) (1.3)

Bφ > Bψ, Aφ < Aψ, (1.4)

where Aφ and Aψ are constant retention factors, Bφ and Bψ are constant learning

rates, and r is the preset target output value, which the system is trying to learn [92].

This model can explain the phenomenon of savings where a spontaneous recovery of

previous learned behavior is observed after an adaptation-extinction training episode

[92]. The two-rate model suggests a specific algorithm that the nervous system might

use to control the behavior, and how this algorithm is implemented in the level of

neurons and neural circuits needs further investigation.

While this two-rate model and many other sensorimotor learning models have

successfully explained a large amount of experimental observations, they only focus

on the dynamics of average behaviors. However, many experiments have shown that

motor output is highly variable, and that a large portion of this variability is not

random biological noise, but can actually be controlled by the animal itself [19, 44,

45]. For example, the song of a male Bengalese finch is usually very variable if there

is no female finch nearby (undirected song); however, the male finch can produce

highly accurate songs in front of a female finch (directed song) [45]. This controlled

variability provides the animal opportunities to explore more of the motor command

space in order to respond more quickly and adapt better to sudden environmental

changes. In fact, it has been shown in some experiments that the initial learning rate is

positively correlated with the task-relevant motor variability [105]. In addition, none

of the previous sensorimotor learning models can account for the fact that animals

adapt to small perturbations faster and better than to large perturbations. This type
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of behaviors has been observed in many animals, such as barn owls adapting to prism-

induced visual perturbations [50], Bengalese finches adapting to headphone-induced

auditory shifts [94], and human beings adapting to visual disturbances [102].

In Chapter 2 and Chapter 3, we propose a new sensorimotor learning model. The

model has the classical form of a Bayesian filter, which has long been suggested to

account for learning and information integration in the brain in face of fluctuating

internal and external environments [3, 24, 25, 49, 54, 79, 101]. We test our model

on the singing behavior data of Bengalese finches. The distributions of the recorded

song pitches show non-Gaussian tails, and thus, we incorporated various non-Gaussian

terms in our Bayesian theory. Surprisingly, this turns out to account for the nega-

tive correlation between the perturbation sizes and adaptations. In addition, with

the hypothesis that there are more than one interacting dynamical processes in the

motor system [92], we show that our model can describe the dynamics of the whole

distributions of the singing behaviors.

After discussing sensorimotor learning models of a single behavior, we switch

the topic and focus on a group of behaviors. In Chapter 4, we demonstrate that

automatically defined behavioral map of a fly has information about its individuality,

and that the map can be used to classify fly species with high accuracy.
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Chapter 2 Sensorimotor learning as a 1d
Bayesian filter

2.1 Introduction

1 Learned behaviors — reaching for an object, talking, and hundreds of others —

allow the organism to interact with the ever-changing surrounding world. To learn

and execute skilled behaviors, it is vital for such behaviors to fluctuate from iteration

to iteration. Such variability is not limited to inevitable biological noise [65, 91],

but rather a significant part of it is controlled by animals themselves and is used for

exploration during learning [45, 71]. Furthermore, learned behaviors rely heavily on

sensory feedback. The feedback is needed, first, to guide the initial acquisition of the

behaviors, and then to maintain the needed motor output in the face of changes in

the motor periphery and fluctuations in the environment. Within such sensorimotor

feedback loops, the brain computes how to use the inherently noisy sensory signals

to change patterns of activation of inherently noisy muscles to produce the desired

behavior. This transformation from sensory feedback to motor output is both robust

and flexible, as demonstrated in many species in which systematic perturbations of

the feedback dramatically reshape behaviors [51, 60, 91–93].

Since many complex behaviors are characterized by both tightly controlled motor

variability and by robust sensorimotor learning, we propose that, during learning, the

brain controls the distribution of behaviors. In contrast, most prior theories of animal

learning have assumed that there is a single optimal motor command that the animal

tries to produce, and that, after learning, deviations from the optimal behavior result

from the unavoidable (Gaussian) downstream motor noise. Such prior models include

1This chapter is adapted from the published paper: B Zhou, D Hofmann, I Pinkoviezky, SJ Sober,
I Nemenman Proceedings of the National Academy of Sciences 115 (36), E8538-E8546
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the classic Rescorla-Wagner (RW) model [80], as well as more modern approaches

belonging to the family of reinforcement learning [42, 59, 96], Kalman filters [53, 103],

or dynamical Bayesian filter models [32, 34]. In many of these theories, the variability

of the behavior is intrinsic to motor exploration and deliberately controlled, but the

distribution of this variability is not itself shaped by the animal’s experience [21, 26,

27]. Such theories have addressed many important experimental questions, such as

evaluating the optimality of the learning process [2, 20, 53, 99, 102], accounting for

multiple temporal scales in learning [48, 53, 92, 101], identifying the complexity of

behaviors that can be learned [33], and pointing out how the necessary computations

could be performed using networks of spiking neurons [18, 29, 59, 72, 87, 89].

However, despite these successes, most prior models that assume that the brain

aims to achieve a single optimal output have been unable to explain some commonly

observed experimental results. For example, since such theories assume that errors

between the target and the realized behavior drive changes in future motor com-

mands, they typically predict large behavioral changes in response to large errors. In

contrast, experiments in multiple species report a decrease in both the speed and the

magnitude of learning with an increase in the experienced sensory error [51, 81, 94,

102]. One can rescue traditional theories by allowing the animal to reject large errors

as “irrelevant”—unlikely to have come from its own actions [37, 102]. However, such

rejection models have not yet explained why the same animals that cannot compen-

sate for large errors can correct for even larger ones, as long as their magnitude grows

gradually with time [51, 94].

Here we present a theory (Fig. 2.1) of a classic model system for sensorimotor

learning — vocal adaptation in a songbird — in which the brain controls a probability

distribution of motor commands and updates this distribution by a recursive Bayesian

inference procedure. The distribution of the song pitch is empirically heavy tailed

(Fig. 2.2C), and the pitch variability is much smaller in a song directed at a female vs
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Figure 2.1: The dynamical Bayesian model (Bayesian filter). (A) A Bayesian fil-
ter consists of the recursive application of two general steps [43]: i) an observation
update, which corresponds to novel sensory input and updates the underlying proba-
bility distribution of plausible motor commands using the Bayes’ formula; ii) a time
evolution update, which denotes the temporal propagation and corresponds to un-
certainty increasing with time (see main text); here the probability distribution is
updated by convolution with a propagator. These two steps are repeated for each
new sensory data in a recursive loop. (B) Example distributions for the entire proce-
dure in two scenarios: Gaussian (top) and heavy-tailed (bottom) distributions. The
x-axis, φt, represents the motor command which results in a specific pitch sung by
the bird. The outcome of this motor command is then measured by two different
sensory modalities, represented by {s(i)t }i=1,2, with corresponding likelihood functions
L1(φt; ∆) and L2(φt; 0), respectively. The −∆ shift for modality 1 is induced by the
experimentalist, which results in animal compensating its pitch towards +∆. Dashed
brown lines represent the individual likelihood functions from the individual modali-
ties, and the solid lines represent their product, which signals how likely it is that the
correct motor command corresponds to φt. Heavy-tailed distributions can produce
a bimodal likelihood, which, multiplied by the prior, suppresses large-error signals.
In contrast, Gaussian likelihoods are unimodal and result in greater compensatory
changes in behavior.
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the undirected song, suggesting that the variability and hence its non-Gaussian tails

are deliberately controlled. Thus our model does not make the customary Gaussian

assumptions. The focus on learning and controlling (non-Gaussian) distributions of

behavior allows us to capture successfully all of the above-described nonlinearities in

learning dynamics and, furthermore, to account for previously unnoticed learning-

dependent changes in the shape of the distribution of the behavior.

2.2 Experimental data

Vocal control in songbirds is a powerful model system for examining sensorimotor

learning of complex tasks [10]. The phenomenology we are trying to explain arises

from experimental approaches to inducing song plasticity [94]. Songbirds sing spon-

taneously and prolifically and use auditory feedback to shape their songs towards

a “template” learned from an adult bird tutor during development. When sensory

feedback is perturbed (see below) using headphones to shift the pitch (fundamental

frequency) of auditory feedback [94], birds compensate by changing the pitch of their

songs so that the pitch they hear is closer to the unperturbed one. As shown in

Fig. 2.2A, the speed of the compensation and its maximum value, which is measured

as a fraction of the pitch shift and referred to as the magnitude of learning hereafter,

decrease with the increasing shift magnitude, so that a shift of 3 semitones results in

near-zero fractional compensation. Crucially, the small compensation for large per-

turbation does not reflect the limited plasticity of the adult brain since imposing the

perturbation gradually, rather than instantaneously, results in a large compensation

(Fig. 2.2B).

We use experimental data collected in our previous work [93, 94] to develop our

mathematical model of learning. As detailed in Ref. [58], we used a virtual auditory

feedback system [39, 93] to evoke sensorimotor learning in adult songbirds. For this,

miniature headphones were custom-fitted to each bird and used to provide online au-
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Figure 2.2: Experimental data and model fitting. The same six parameters of the
model are used to simultaneously fit all data. (A) The dots with error bars are four
groups of experimental data, with different colors and symbols indicating different
shift sizes (red-brown circle, 0.5 semitone shift; blue square, 1 semitone shift; green
diamond, 1.5 semitones shift; cyan upper triangle, 3 semitones shift). The error bars
indicate the standard error of the group mean, accounting for variances across indi-
vidual birds and within one bird, see Materials and Methods). For each group, the
data are combined from three to eight different birds, and the sign of the experimen-
tal perturbation (lowering or raising pitch) is always defined so that adaptive (i. e.,
error-correcting) vocal changes are positive. Data points without error bars only had
a single bird, and they are not used for the fitting, which we denote by hollow symbols.
The mean pitch sung on day 0 by each bird is defined as the zero semitone compen-
sation (φ = 0). The solid lines with one standard deviation bands (see Materials and
Methods) are results of the model fits, with the same color convention as in experi-
mental data. The inset shows learning curves in absolute units, without rescaling by
the shift size, and without model error bands. (B) The lower triangles with error bars
show the data from staircase-shift experiment, with the same plotting conventions as
in (A). The data are combined from three birds. During the experiment, every six
days, the shift size is increased by 0.35 semitone, as shown by the dotted horizontal
line segments. On the last day of the experiment, the experienced pitch shift is 2.8
semitones. The magenta solid line with one standard deviation band is the model fit.
The combined combined quality of fit for the five curves collectively (4 step perturba-
tions and a staircase perturbation) is χ2 per degree of freedom ≈ 1.47 (compared to
χ2 per degree of freedom of ≈ 28.4 for the null model of the non-adaptive, zero pitch
compensation line). Note, however, that such Gaussian statistics of the fit quality
should be taken with a grain of salt for non-normally distributed data. (C) Dots
represent the distribution of pitch on day 0, before the pitch shift perturbation (the
baseline distribution), where the data are from 23 different experiments (all pitch
shifts combined). The gray parabola is a Gaussian fit to the data within the ±1 semi-
tone range. The empirical distribution has long, non-exponential tails. The brown
solid line with one standard deviation band is the model fit. Deviance of the model
fit relative to the perfect fit (the latter estimated as the NSB entropy of the data [69,
70]) is 0.057 per sample point.
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ditory feedback in which the pitch (fundamental frequency) of the bird’s vocalizations

could be manipulated in real time, with a loop delay of roughly 10 ms. In addition to

providing pitch-shifted feedback, the headphones largely blocked the airborne trans-

mission of the bird’s song from reaching the ear canals, thereby effectively replacing

the bird’s natural airborne auditory feedback with the manipulated version. Pitch

shifts were introduced after a baseline period of at least 3 days in which birds sang

while wearing headphones but without pitch shifts. All pitch shifts were implemented

relative to the bird’s current vocal pitch and were therefore “correctable” in the sense

that if the bird changed its vocal pitch to fully compensate for the imposed pitch

shift, the pitch of auditory feedback heard through the headphones would be equal to

its baseline value. All data were collected during undirected singing (i. e., no female

bird was present).

2.3 Mathematical model

2.3.1 1d Bayesian filter

To describe the data, we introduce a dynamical Bayesian filter model, Fig. 2.1A.

We focus on just one variable learned by the animal during repeated singing — the

pitch of the song syllables. Even though the animal learns the motor command and

not the pitch directly, we do not distinguish between the produced pitch φ and the mo-

tor command leading to it because the latter is not known in behavioral experiments.

We set the mean “baseline” pitch sung by the animal as φ = 0, representing the

“template” of the tutor’s song, or the scalar target memorized during development,

and nonzero values of φ denote deviations of the sung pitch from the target.

However, while an instantaneous output of the motor circuit in our model is a

scalar value of the pitch, the state of the motor learning system at each time step is

a probability distribution over motor commands that the animal expects can lead to

the target motor behavior. This is in contrast to the more common assumption that
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the state of the learning system is a scalar, usually the mean behavior, which is then

corrupted by the downstream noise [37]. Thus at time t, the animal has access to the

prior distribution over plausible motor commands, pprior(φt). We remain deliberately

vague about how this distribution is stored and updated in the animal memory (e. g.,

as a set of moments, or values, or samples, or yet something else), and focus instead

not on how the neural computation is performed, but on modeling which computation

is performed by the animal. We assume that the bird randomly selects and produces

the pitch from this distribution of plausibly correct motor commands. In other words,

we suggest that the experimentally observed variability of sung pitches is dominated

by the deliberate exploration of plausible motor commands, rather than by noise in

the motor system. This is supported by the experimental finding that the variance of

pitch during singing directed at a female (performance) is significantly smaller than

the variance during undirected singing (practice) [45, 77].

After producing a vocalization, the bird then senses the pitch of the produced

song syllable through various sensory pathways. Besides the normal airborne audi-

tory feedback reaching the ears, which we can pitch-shift, information about the sung

pitch may be available through other, unmanipulated pathways. For example, effer-

ence copy may form an internal short term memory of the produced specific motor

command [74]. Additionally, proprioceptive sensing presumably also provides un-

shifted information [95]. Finally, unshifted acoustic vibrations might be transmitted

through body tissue in addition to the air, as is thought to be the case in studies that

use pitch shifts to perturb human vocal production [61, 86].

We denote all feedback signals as s
(i)
t where the index i denotes different sensory

modalities. Because sensing is noisy, feedback is not absolutely accurate. We posit

that the animal interprets it using the Bayes’ formula. That is, the posterior proba-

bility of which motor commands would lead to the target with no error is changed by

the observed sensory signals, ppost(φt) ∝ plikelihood({s(i)t }|φt)pprior(φt), where plikelihood
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represents the probability of observing a certain sensory feedback value given the

produced motor command φt was the correct one. In its turn, the motor command

is chosen from the prior distribution, pprior, which represents the a priori probability

of the command to result in no sensory error. In other words, if the sensory feedback

indicates that the pitch was likely too high, then the posterior is shifted towards mo-

tor commands that have a higher probability of producing a lower pitch, and hence

no sensory error – similar to how an error would be corrected in a control-theoretic

approach to the same problem. We discuss this in more detail below.

Finally, the animal expects that the motor command needed to produce the target

pitch with no error may change with time because of slow random changes in the mo-

tor plant. In other words, in the absence of new sensory information, the animal must

increase its uncertainty about which command to produce with time (this is a direct

analogue of increase in uncertainty of the Kalman filter without new measurements).

Such increase in uncertainty is given by pprop(φt+δt|φt), the propagator of statistical

field theories [107]. Overall, this results in the distribution of motor outputs after one

cycle of the model

pprior(φt+δt) =
1

Z

∫
pprop(φt+δt|φt)

× plikelihood({s(i)t }|φt)pprior(φt)dφt, (2.1)

where Z is the normalization constant.

We choose δt to be one day in our implementation of the model and lump all

vocalizations (which we record) and all sensory feedback (which are unknown) in

one time period together. That is, we look at timescales of changes across days,

rather than faster fluctuations on timescales of minutes or hours. This matches the

temporal dynamics of the learning curves (Fig. 2.2A, B). Since the bird sings hundreds

of song bouts daily, we now use the law of large numbers and replace the unknown

sensory feedback for individual vocalizations by its expectation value s
(i)
t → s

(i)
t .

For simplicity, we focus on just two sensory modalities, the first affected by the
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headphones, and the second one not, and we remain agnostic about the exact nature

of this second modality among the possibilities noted above. Thus the expectation

values of the feedbacks are the shifted and the unshifted versions of the expected value

of the sung pitch, s
(1)
t = φt−∆ and s

(2)
t = φt, where −∆ is the experimentally induced

shift (see more on the − sign below). Note that since φt is the motor command that

the animal expects to produce the target pitch, the term plikelihood(s
(i)
t |φt) should

be viewed as the probability of generating the feedback s
(i)
t given that φt was the

correct motor command, or as a likelihood of φt being the correct command given the

observed s
(i)
t . This introduces a negative sign, the compensation, into the analysis

— for a positive s
(i)
t , the most likely φt to lead to the target is negative, and vice

versa. While potentially confusing, this is the same convention that is used in all

filtering application — a positive sensory signal mean the need to compensate and

to lower the motor command, and the negative signal leads to the opposite. In

other words, the bird uses the sensory feedback to determine what it should have

sung, and not only what it sang. With that, we refer to the conditional probability

distributions plikelihood(s
(i)
t |φt) for each sensory modality i as the likelihood functions

Li(φt) for a certain motor command being the target given the observed sensory

feedback. Thus assuming that both sensory inputs are independent measurements of

the motor output, we rewrite (2.1) as

pprior(φt+δt) =
1

Z

∫
pprop(φt+δt|φt)

× L1(φt; ∆)L2(φt; 0)pprior(φt)dφt, (2.2)

where 0 and ∆ represent the centers of the likelihoods (or the maximum likelihoods).

This explains our choice of denoting the experimental shift −∆, so that the compen-

sation by the animal is instead +∆, and L is centered on +∆ as well. Notice that

the likelihoods for the shifted and unshifted modalities are centered around ∆ and

0, respectively, and bias the learning of what should be sung towards these centers

irrespectively of the current value of φt. We emphasize again that, in this formalism,
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we do not distinguish the motor noise and the sensory noise, and assume that both

are smaller than the deliberate exploratory variance (which is supported by the sub-

stantial variance reduction in directed vs. undirected song). This is consistent with

not distinguishing individual vocalizations and focusing on time steps of one day in

the Bayesian update equation above.

2.3.2 Non-Gaussian statistics

As illustrated in Fig. 2.1B, such Bayesian filtering behaves differently for Gaus-

sian and heavy-tailed likelihoods and propagators. Indeed, if the two likelihoods are

Gaussians, their product is also a Gaussian centered between them. In this case, the

learning speed of an animal is linear in the error ∆, no matter how large this error

is, which conflicts with the experimental results in songbirds and other species [10,

60, 93, 102]. Similarly, if the two likelihoods have long tails, then when the error

is small, their product is also a single-peaked distribution as in the Gaussian case.

However, when the error size ∆ is large, the product of such long-tailed likelihoods is

bimodal, with evidence peaks at the shifted and the unshifted values, with a valley

in the middle. Since the prior expectations of the animal are developed before the

sensory perturbation is turned on, they peak near the unshifted value. Multiplying

the prior by the likelihood then leads to suppression of the shifted peak and hence of

large error signals in animal learning.

In (2.2), there are three distributions to be defined: L1(φt; ∆), L2(φt; 0), and

pprop(φt+δt|φt), corresponding to the evidence term from the shifted channel, the evi-

dence term from the unshifted channel, and the time propagation kernel, respectively.

The prior at the start of the experiment t = 0, pprior(φ0), is not an independent de-

gree of freedom: it is the steady state of the recurrent application of (2.2) with no

perturbation, ∆ = 0. We have verified numerically that a wide variety of shapes of

L1, L2 and pprop result in learning dynamics that can approximate the experimental
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data (see Materials and Methods). To constrain the selection of specific functional

forms of the distributions, we point out that the error in sensory feedback obtained

by the animal is a combination of many noisy processes, including both sensing itself

and the neural computation that extracts the pitch from the auditory input and then

compares it to the target pitch. By the well-known generalized central limit theorem,

the sum of these processes is expected to converge to what are known as Lévy alpha-

stable distributions, often simply called stable distribution [75] (see Materials and

Methods). If the individual noise sources have finite variances, the stable distribution

will be a Gaussian. However, if the individual sources have heavy tails and infinite

variances, then their stable distribution will be heavy-tailed as well (Cauchy distri-

bution is one example). Most stable distributions cannot be expressed in a closed

form, but they can be evaluated numerically (see Materials and Methods). Here we

assume symmetric stable distributions, truncated at ±8 semitones (see Materials and

Methods). Such distributions are characterized by three parameters: the stability

parameter α (measuring the proportion of the probability in the tails), the scale or

width parameter γ, and the location or the center parameter µ (the latter can be

predetermined to be 0, ∆, or the previous time step value in our case). For three

distributions L1(φt; ∆), L2(φt; 0), and pprop, this results in the total of six unknown

parameters.

2.3.3 Fits and predictions

We fit the set of six parameters of our model simultaneously to all the data shown

in Fig. 2.2. Our dataset consists of twenty-three individual experiments across five

experimental conditions: four constant pitch shift learning curves and one gradual,

staircase shift learning curve (see Material and Methods for details). As mentioned

previously, birds learn the best (larger and faster compensation) for smaller perturba-

tions, here 0.5-semitone, panel (A). In contrast, for a large 3-semitone perturbation,
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the birds do not compensate at all within the 14 days of the experiment. However,

the birds are able to learn and compensate large perturbations when the perturba-

tion increases gradually, as in the staircase experiment in panel (B). Importantly,

the baseline distribution (panel C) has a robust non-Gaussian tail, supporting our

model. We note that our six-parameter model fits are able to simultaneously describe

all of these data with a surprising precision, including their most salient features:

dependence of the speed and the magnitude of the compensation on the perturbation

size for the constant and the staircase experiments, as well as the heavy tails in the

baseline distribution.

Mathematical models are useful to the extent that they can predict experimental

results not used to fit them. Quantitative predictions of qualitatively new results are

particularly important for arguing that the model captures the system’s behavior. To

test the predictive power of our model, we used it to predict the dynamics of higher-

order statistics of pitches during learning, rather than using it to simply predict the

mean behavior. We first use the model to predict time-dependent measures of the

variability (standard deviation in this case) of the pitch. As shown in Figure 2.3A-E,

our model correctly predicted time-dependent behaviors in the standard deviation in

both single-shift (Figure 2.3A-D) and staircase-shift experiments (Figure 2.3E) with

surprising accuracy. We stress again that no new parameter fits were done for these

curves. Potentially even more interestingly, Fig. 2.3F shows that our model is capable

of predicting unexpected features of the probability distribution of pitches, such as the

asymmetric and bimodal structure of the pitch distribution at the end of the staircase-

shift experiment. This bimodal structure is predicted by our theory, since the theory

posits that the (bimodal) likelihood distribution (Fig. 2.1B, bottom) will iteratively

propagate into the observable pitch distribution (the prior). The existence of the

bimodal pitch distribution in the data therefore provides strong evidence in support

of our theory. Importantly, this phenomenon can never be reproduced by models
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Figure 2.3: Predictions of our model using the parameter values obtained from fitting
the data shown in Fig. 2.2. The dots with error bars (A-E) and the histogram (F)
represent experimental data with colors, symbols, error bars (from bootstrapping),
and other plotting conventions as in Fig. 2.2. The dotted lines with one standard devi-
ation bands represent model predictions. Our model correctly predicts the behaviors
of the standard deviations of the pitch distributions. Specifically, the best-fit model
lines predict increases in the standard deviation in panels (B,C,E), which correspond
to 1 semitone, 1.5 semitones, and the staircase shift, respectively. At the same time,
the data says that the standard deviation increases for these panels (p-value for a
positive dependence of the standard deviation when regressed on time is 4 × 10−4,
5×10−5 and < 10−6 for these panels). (F) Our model predicts that, at the end of the
staircase experiment (mean and standard deviation shown in Figs. 2.2B and 2.3E,
respectively), the pitch distribution should be bimodal, while it is unimodal initially
(cf. Fig. 2.2C). This is also supported by the data. Specifically, a fit with a mixture
of two Gaussian peaks has the AIC score higher than a fit to a single Gaussian by 50
(in decimal log units), which is highly statistically significant (the data here is from
day 47 from the single bird who was exposed to the staircase shift for the longest
time, and the amount of data is insufficient to fit more complex distributions). Fur-
ther, the two peaks are centered far from each other (0.59 ± 0.04 of a semitone and
2.17 ± 0.62 semitones, with error bars obtained by bootstrapping), illustrating the
true bimodality. Neither the data nor the models show unambiguous bimodality in
other learning cases.
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based on animals learning a single motor command with Gaussian noise around it,

rather than a heavy-tailed distribution of motor commands.

2.4 Discussion

We introduced a novel mathematical framework within the class of observation-

evolution models [43] for understanding sensorimotor learning: a dynamical Bayesian

filter with non-Gaussian (heavy-tailed) distributions. Our model describes the dy-

namics of the whole probability distribution of the motor commands, rather than just

its mean value. We posit that this distribution controls the animal’s deliberate ex-

ploration of plausible motor commands. The model reproduces the learning curves

observed in a range of songbird vocal adaptation experiments, which classical behav-

ioral theories have not been able to do to date. Further, also unlike the previous

models, our approach predicts learning-dependent changes in the width and shape of

the distribution of the produced behaviors.

To further increase the confidence in our model, we show analytically (see Mate-

rials and Methods) that traditional linear models with Gaussian statistics [53] cannot

explain the different levels of compensation for different perturbation sizes. While we

cannot exclude that birds would continue adapting if exposed to perturbations for

longer time periods and would ultimately saturate at the same level of adaptation

magnitude, the Gaussian models are also argued against by the shape of the pitch dis-

tribution, which shows heavy tails (Fig. 2.2C and 2.3F) and by our ability to predict

not just the mean pitch, but the whole pitch distribution dynamics during learning.

An important aspect of our dynamical model is its ability to reproduce multiple

different time scales of adaptation (Fig. 2.2A, B) using a nonlinear dynamical equation

with just a single time scale of the update (1 day). As with other key aspects of

the model, this phenomenon results from the non-Gaussianity of the distributions

employed, and specifically the many time scales built into a single long-tailed kernel
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of uncertainty increase over time. This is in contrast to other multiscale models that

require explicit incorporation of many time scales [53, 92]. While multiple time scales

could be needed to account for other features of the adaptation, our model clearly

avoids this for the present data. In the future, we hope that an extension of our

model to include multiple explicit time scales will account for individual differences

across animals, for the dynamics of acquisition of the song during development, and

for the slight shift of the peak of the empirical distribution in Fig. 2.3F from φ = 0.

Previous analyses of the speed and magnitude of learning in the Bengalese finch

have noted that both depend on the overlap of the distribution of the natural vari-

ability at the baseline and at the shifted means [48, 58]: small overlaps result in

slower and smaller learning, so that different overlaps lead to different time scales.

However, these prior studies have not provided a computational mechanism, or a

learning-theoretic explanation of why or how such overlap might determine the dy-

namics of learning. Our dynamical inference model provides such a computational

mechanism.
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Figure 2.4: Objective function as a function of the two parameters (stability and
scale) for (A) the first (shifted) likelihood, (B) the second (unshifted) likelihood,
and (C) the propagation kernel, while the respective other four parameters are held
fixed. The gray shades represent the decimal logarithm of the objective function
(effectively, logarithms of the negative log-likelihood), and lighter colors mean a better
fit. Because of the logarithmic scaling, small changes in the color represent large
changes in the quality of the fit. The black crosses show the parameter values for
the deepest local minimum in this range of parameters. Note that, even though the
minimum in (C) is close to the Gaussian kernel (αk = 2), a Gaussian kernel cannot
fit the data well. Specifically, it cannot reproduce a non-Gaussian distribution of the
baseline pitch, instead essentially matching the parabola in Fig. 2.2(C).

We have chosen the family of so-called Lévy alpha-stable distributions to pro-
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vide the central ingredient of our model: the heavy tails of the involved probability

distributions. In general, a symmetric alpha-stable distribution has a relatively nar-

row peak in the center and two long fat tails, and this might provide some valuable

qualitative insights into how the nervous system processes sensory inputs. For exam-

ple, a narrow peak in the middle of the likelihood function suggests that the brain

puts a high belief in the sensory feedback. However, the heavy tails say that it also

puts certain weight (nearly constant) on the probability of very large errors outside

of the narrow central region. We have verified that the actual choice of the stable

distributions is not crucial for our modeling. For example, one could instead take

each likelihood as a power law distribution, or as a sum of two Gaussians with equal

means, but different variances. The latter might correspond to mixture of high (nar-

row Gaussian) and low (wide Gaussian) levels of certainty about sensory feedback,

potentially arising from variations in environmental or sensory noise or from variations

in attention. As shown in Materials and Methods, different choices of the underlying

distributions result in essentially the same fits and predictions. This suggests that

the heavy tails themselves, rather than their detailed shape, are crucial for the model.

Another extension of this work would be to use this frame- work to account for

interindividual differences in behavior and neural activity [36, 66], which are not eas-

ily addressable given current experimental limitations. Like in many other behavioral

modeling studies [37, 53], the present version of our model can fit only an average

animal (because of our need to aggregate large datasets to accurately estimate behav-

ioral distributions), making our results semiquantitative with respect to the statistics

of any particular individual. Nevertheless, our framework represents a class of model

that can explain a broader range of qualitative results than previous efforts, including,

in particular, the shape of the distribution of exploratory behaviors.

Finally, while we used Bengalese finches as the subject of this study, nothing in the

model relies on the specifics of the songbird system. Our approach might, therefore,
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also be applied to studies of sensorimotor learning in other model systems, and we

predict that any animal with heavy-tailed distribution of motor outputs should exhibit

similar phenomenology in its sensorimotor learning. Exploring whether the model

allows for such cross-species generalizations is an important topic for future research,

as are questions of how networks of neurons might implement such computations [14,

30, 46, 78].

2.5 Materials and methods

2.5.1 Experiments

The data used are taken from the experiments in Ref. [94] and is described in

detail there. Briefly, subjects were nine male adult Bengalese finches (females do not

produce song) aged over 190 days. Lightweight headphones and microphones were

used to shift the perceived pitches of birds’ own songs by different amounts, and the

pitch of the produced song was recorded. For each day, only data from 10 am to 12

pm is used. The same birds were used in multiple (but not all) pitch shift experiments

separated by at least 32 days. Changes in vocal pitch were measured in semitones,

which is a relative unit of the fundamental frequency (pitch) of each song syllable:

pitch in semitone ≈ 1.2 log2

syllable frequency

mean of baseline syllable frequency
.

The error bars reported for the group means in Fig. 2.2 indicate the error of the

mean that accounts for variances both across individual birds and within one bird.

Specifically, if yµi represents the pitch of the ith vocalization from the µth bird on a

specific day (i = 1, . . . n, µ = 1, . . . ,m), then the mean pitch for the day for each bird

is yµ = 1
n

∑
i y

µ
i , and the global mean pitch is y = 1

m

∑
µ y

µ. With these, we define

the error of the mean used in Fig. 2.2 as

δy =

√√√√∑µ (yµ − y)2

(m− 1)2
+

1

m

∑
µ

[∑
i (y

µ
i − yµ)2

(n− 1)2

]
, (2.3)
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where the first term in the square root represents the variance across birds, and the

second term is the variance within one bird, averaged over the birds.

2.5.2 Stable distributions

A probability distribution is said to be stable if a linear combination of two vari-

ables distributed according to the distribution has the same distribution up to location

and scale [75]. By the generalized central limit theorem, the probability distribution

of sums of a large number of i. i. d. random variables with infinite variances tend to

be stable distributions [75]. A general stable distribution does not have a closed form

expression, except for three special cases: Lévy, Cauchy and Gaussian. A symmet-

ric stable variable x can be written in the form x = γy + µ, where y is called the

standardized symmetric stable variable and follows the following distribution [75]:

f(y;α) =
1

2π

∫ ∞
−∞

du e−|u|
α

cos (yu) . (2.4)

Thus any symmetric stable distribution is characterized by three parameters: the

type, or the tail weight, parameter α; the scale parameter γ; and the center µ. α

takes the range (0, 2] [75]. If α = 2, the corresponding distribution is the Gaussian,

and if α = 1, it is the Cauchy distribution. γ can be any positive real number, and

µ can be any real number. The above integral is difficult to compute numerically.

However, due to the common occurrence of stable distributions in various fields, such

as finance [67], communication systems [73], and brain imaging [84], there are many

algorithms to compute it approximately. We used the method of Ref. [4]. In this

method, the central and tail parts of the distribution are calculated using different

algorithms: the central part is approximated by 96-points Laguerre quadrature and

the tail part is approximated by Bergstrom expansion [5].

Note that even though we take the propagator and the likelihood distributions

as stable distributions in our model, their iterative application (effectively, a product

of many likelihood distributions iterated with a convolution with the kernel), as well
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as truncation, result in finite variance predictions, allowing us to compare predicted

variances of the behavior with experimentally measured ones.

2.5.3 Fitting

Our model consists of three truncated stable distributions, one for each of the two

likelihood functions resembling the feedback modalities and a third for the propaga-

tion kernel. We use truncation to ensure biological plausibility: neither extremely

large errors nor extremely large pitch changes are physiologically possible. We trun-

cate the distributions to the range [−8, 8] semitones — much larger than imposed

pitch shifts and slightly larger than the largest observed pitch fluctuations in our

data, 7 semitones. This leaves us with 9 parameters of which we need to fit 6 from

data, namely the type parameters α and the scale parameters γ, while the center pa-

rameters µ are predetermined: the two likelihoods are at 0 and ∆ respectively, while

the propagation kernel is centered around the previous time step value (see (2.1)).

The prior (and accordingly the posterior) is a discrete distribution with a resolu-

tion of 1600 bins covering equidistantly the entire support of the distribution ([−8, 8]

semitones). The value within each bin is computed by the Bayes formalism given

in (2.2). As described earlier in the Mathematical Model subsection, the initial prior

is given as the steady state distribution after repeatedly applying (2.2) to a uniform

distribution. In other words, the prior is not an independent variable in the model,

but it is determined self-consistently by the likelihoods and the kernel. The resulting

prior distribution is compared with the empirical distribution to compute the quality

of fit according to the objective functions described below. Furthermore we point out

that it is essential to have a non-Gaussian kernel: with a Gaussian kernel the baseline

(t = 0 prior distribution) is, essentially, Gaussian and would thus not match the data

in Fig. 2.2(D). Similarly, the likelihood functions must be long-tailed otherwise the

combined likelihood would not be bimodal as found to be empirically in Fig. 2.3(F),
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and large perturbations would not be rejected - even if the prior was long-tailed (for

example due to a long-tailed kernel).

We construct an objective function that is a sum of terms representing the quality

of fit for each of the three data sets to our disposition: the χ2 for four adaptations

of the means to the respective constant shifts (Fig. 2.2A), the χ2 for the adaptation

of the mean to the staircase shifts (Fig. 2.2B), and the log-likelihood of the observed

baseline pitch probability distribution (Fig. 2.2C). Using (2.3) to define the error of

the mean, we calculate χ2 as

χ2 =
1

T

T∑
t=1

(
φt − yt

)2
δy(t)2

, (2.5)

where t ∈ [1, T ] represents the days for a specific experiment with total duration of T

days, while φt, yt and δy(t) represent the theoretical result, the mean, and standard

error of the experimental data on day t, respectively. To make sure that all three

terms contribute on about the same scale to the objective function, we multiply the

baseline fit term by 10. We use this objective function because the data we fit is

heterogeneous: for learning with a sensory perturbation, we use only the means and

the error bars of the produced pitch curves, while for the baseline distribution, we

use the whole distribution. We choose to do it this way because it is computationally

intensive to calculate likelihoods for distributions of vocalizations for every day, and

to do it repeatedly for parameter sweeps. Given that we are fitting only a handful of

parameters, while the data sets are very constraining, we do not think that we loose

in accuracy by fitting the summary statistics instead of performing a full maximum

likelihood estimation.

The objective function landscape is not trivial in this case, and there is not a

single best set of parameters. Figure 2.4 illustrates this by showing the quality of fit

as a function of each pair of (α, γ), while keeping the other four parameters fixed.

There is a large subspace (a plateau or a long nonlinear valley, depending on the

projection used) that provides similar fit values. In other words, the effective number
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of important parameters is less than six. Thus choosing the maximum of the objective

function and characterizing the error ellipsoid, or linear sensitivity to the parameters,

to get the best-fit parameter values and their uncertainties is not appropriate. As

suggested in the literature on Sloppy Models [35, 98], where such nontrivial likelihood

landscapes are discussed, instead we focus on values and uncertainties of the fits and

predictions themselves. For this, we sweep through the entire parameter space and,

for each set of parameters ~θ = {α1, γ1, α2, γ2, αk, γk}, we calculate the value of the

objective function L(~θ) and the corresponding fitted or predicted curve f(~θ). Then

for the mean fits/predictions (lines in Fig. 2.2, Fig. 2.3, and Fig. 2.5), we have

〈
f(~θ)

〉
=

∑
~θ e
−L(~θ)f(~θ)∑
~θ e
−L(~θ)

. (2.6)

For the SDs, denoted by shaded regions in Fig. 2.2, Fig. 2.3, and Fig. 2.5, we have

σ2
f =

〈
f(~θ)2

〉
−
〈
f(~θ)

〉2
. (2.7)

There are many ways of doing the sweep over the parameters. Here we choose first

to find a local minimum (however shallow it is). Then for each parameter, we choose

six data points on each side of the minimum, distributed uniformly in the log space

between the local minimum and the extremal parameter values ((0.2, 1.9] for each α

and [0.01, 8] for each γ). The extremal values avoid α = 0, 2 and γ = 0, which are

singular and dramatically slow down computations. Thus there are total of 13 grid

points for each parameter, and the total of 136 ≈ 4.8 · 106 total parameter samples.

2.5.4 Choice of the shape of distributions

For Fig. 2.2 and Fig. 2.3 in the main text, we have chosen stable distributions for

L1, L2 and pprop. To investigate effects of this choice, we repeated the fitting and the

predictions for different distribution choices. We consider a family of power law dis-

tributions ∝ 1/ (1 + (φ/γ)2α) and a family of mixtures of Gaussians of different width

ρN(0, γ2) + (1 − ρ)N(0, δ2). Distributions in either family produce very similar fits
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Figure 2.5: Fits and predictions with the power law family of heavy tailed distri-
butions instead of the stable distribution family. (A-C) Equivalent to the panels in
Figs. 2.2 A-C. (D-F) Equivalent to the panels in 2.3 C, E and F. The shaded areas
around the theoretical curves represent confidence intervals for one standard devia-
tion. The quality of all of the five fitted mean compensation curves combined is χ2

per degree of freedom ≈ 1.56, so that the truncated stable distributions used in the
main text provide for (slightly) better fits. At the same time, the deviance of the
fitted baseline distribution in (C) relative to the perfect fit, estimated as the NSB
entropy of the data [69, 70], is 0.022 per sample point, slightly better than for the
truncated stable distribution model, Fig. 2.2.

to the stable distribution model. For example, Fig. 2.5 shows the fits and predictions

for the power law distribution model, and the power law family fits the means of the

pitch compensation data slightly worse, but the baseline pitch distribution slightly

better than the truncated stable distribution model, Fig. 2.2. The detailed shape of

the distributions seems less important than the existence of the heavy tails.

2.5.5 Linear dependence on pitch shift in a Kalman filter with
multiple time scales

We emphasized that traditional learning models cannot account for the nonlinear

dependence of the speed and the magnitude of learning on the error signal. Here we

show this for one such common model, originally proposed by Körding et al. [53].

This Kalman filter model belongs to the family of Bayes filters, which are dynamical
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models describing the temporal evolution of the probability distribution of a hidden

state variable (can be a vector or a scalar) and its update using the Bayes formula for

integrating information provided by observations, which are conditionally dependent

on the current state of the hidden variable. The specific attributes of a Kalman filer

within the general class of Bayes filters [43] are the linearity of the temporal evolution

of the hidden state (the pitch φ for the birds, but referred to as disturbances d in

Ref. [53] and hereon), the linear relation between the measurements (observations)

and the hidden variable, and the Gaussian form of the measurement noise and the

distribution of disturbances.

One can argue that Kalman filter models with multiple time scales may be able to

account for the diversity of learning speeds in our pitch shift experiments. We explore

this in the context of an experimentally induced constant shift ∆ to one disturbance

d in the Kalman filter model with multiple time scales from Ref. [53]. If there is a

constant shift ∆, Eq. (3) in Ref. [53] takes the form

Ot = ∆ +H · dt +Wt. (2.8)

The first step in the Kalman filter dynamics is the prediction:

〈d〉t+1|t = A〈d〉t|t, (2.9)

where 〈d〉s|t is the mean disturbance vector at time s given measurements up to time

t and A = diag(1− τ−1i ) with τi being the relaxation timescale of di. We assume

that the shift occurs when the disturbances have relaxed to the steady state: 〈d〉 =

0. Therefore, we approximate the standard Kalman filter equation describing the

observation update of the expectation value of the disturbance after a measurement

at time t+ 1 as (see [43] for a detailed formal description)

〈d〉t+1|t+1 = 〈d〉t+1|t +
Σt+1|tH

T

HΣt+1|tHT +R
(∆−H · 〈d〉t+1|t), (2.10)

where R is the covariance matrix of the measurement noise, and Σ is the covariance

matrix of the hidden variables. Σ does not depend on the measurement and is thus
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not affected by the shift ∆. Thus the steady state prediction variance Σs is given by

a solution to the equation

Σs = A

(
Σs −

ΣsH
THΣs

HΣsHT +R

)
AT +Q, (2.11)

whereA is the matrix determining the temporal evolution of the mean disturbances, (2.9),

and Q is the covariance matrix of the intrinsic (temporal evolution) noise.

From (2.11) we see that Σs is constant if the perturbation occurs when the system

was at the steady state. We now wish to find the new steady-state given the con-

stant perturbation ∆. Consider, for simplicity, two disturbances, each with its own

temporal scale n = 2. The components of the steady state covariance are

Σs =

[
Σ11 Σ12

Σ12 Σ22

]
, (2.12)

and we define

f1 =
Σ11 + Σ12

Σ11 + 2Σ12 + Σ22

,

f2 =
Σ12 + Σ22

Σ11 + 2Σ12 + Σ22

. (2.13)

Substituting (2.9) in (2.10) we get[
〈d1〉t+1|t+1

〈d2〉t+1|t+1

]
=

[
1− τ−11 0

0 1− τ−12

] [
〈d1〉t|t
〈d2〉t|t

]
+

[
f1
f2

]
(∆− (1− τ−11 )〈d1〉t|t − (1− τ−12 )〈d2〉t|t). (2.14)

In the steady state, 〈d〉t+1|t+1 = 〈d〉t|t = ds, we get

d(1)s = ∆
f1τ1

1 + f1(τ1 − 1) + f2(τ2 − 1)
(2.15)

d(2)s = ∆
f2τ2

1 + f1(τ1 − 1) + f2(τ2 − 1)
(2.16)

Thus we find that the sum of the disturbances is proportional to ∆ independent of

the size of ∆ even for systems with multiple time scales.
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Generalizing the result to n disturbances with different time scales, we get the

following equations at steady state:

τ−1i dis = fi∆− fi
n∑
j=1

(1− τ−1j )djs (2.17)

These equations are solved by

dis = ∆
fiτi

1 +
∑n

j=1 fj(τj − 1)
(2.18)

which generalizes the linear dependence of learning on ∆ for arbitrary n. Thus this

(and similar) Kalman filter based model cannot explain the experimental results stud-

ied here.
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Chapter 3 Sensorimotor learning as a 2d
Bayesian filter

3.1 Introduction

An animal continuously interacts with the ever-changing environment, and in-

corporates its past experiences into its current beliefs about the world [22]. For

motor control, these beliefs encapsulate expectations about which motor commands

are likely to result in the desired motor output [104, 106], and the beliefs are updated

based on the sensory feedback following execution of motor behaviors. Understanding

the computation performed by the animal to update its beliefs and the neurophys-

ioogical mechanisms involved in this computation are the central questions in the

field of sensorimotor learning.

Experimental studies of sensorimotor learning usually proceed by imposing per-

turbations on the sensory feedback or on the motor plant. The ensuing adaptation

to the perturbation then reveals information about the function and the structure of

the sensorimotor learning system. However, in essentially all analyses of sensorimo-

tor learning in different animal systems, the adaptation has been monitored – and

modeled – as a mean change of some behavioral characteristic, averaged over multiple

renditions of the behavior in a single animal, and over multiple animals [53, 92, 106].

Where variance of the behavior is analyzed, it is usually not a dynamical variable.

And yet, recent work has shown that the shape of the entire distribution of behavior

– the mean, the variance, and maybe even higher moments – is crucial for animal

performance and dynamically changes over time [19, 37, 48, 106]. Our goal in this

paper is to present a theory that is capable of explaining the dynamics of the entire

probability distribution of animal behavior during learning, focusing on pitch adap-
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tation in the Bengalese finch as a model system. We build the theory based on the

Bayesian filter model with non-Gaussian likelihood terms that are recently introduced

[106]. The previously-introduced model has been able to account for many salient

features of the songbird sensorimotor adaptation, including: (i) the non-monotonic

dependence of the speed and the magnitude of adaptation on the perturbation size

(small perturbations are compensated proportionally, while large ones are neglected),

(ii) the ability of the animal to compensate even very large perturbations provided

they were introduced gradually, and (iii) the observed dynamics of the behavioral

variance during the adaptation (for some perturbations, the variance increased, and

for some it stayed constant). Crucially, the model has not been powerful enough to

model the entire probability distribution of the behavior, and hence only the mean

adaptive behavioral dynamics were fitted by the model. Since the non-Gaussian tails

are so important to the model success, the ability to account for the dynamics of the

entire probability distribution is an essential test of the validity of the approach.

The situation is, in fact, even more dramatic: currently, there are no known models

– whether developed by us or by other groups – that are able to track and predict

complex, dynamic probability distributions of animal behaviors, while at the same

time many models rely on the probabilistic nature of the behavior as a mechanism

for learning. The goal of our contribution is to rectify this problem.

To endow the Bayesian filter theory with the ability to account for the dynamics

of distributions, we note that experiments on different model systems, and within

different behavioral paradigms, have observed that sensorimotor adaptation happens

on multiple time scales. For example, relearning of a perturbation is usually faster

than the initial learning [16, 52, 92]. Similar effects have been observed on even

longer time scales, showing that animals exposed to relevant learning experiences as

juveniles tend to learn better in the adulthood than adults without the experience

[51]. Additionally, many studies focusing on adaptation back to the baseline following
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removal of a perturbation consistently report that this so called washout involves at

least two distinct time scales: a fast immediate decrease of the adapted response is

usually followed by a slow, prolonged tail [40, 93, 100].

A simple one-dimensional dynamical system with a single timescale cannot gen-

erate these phenomena, arguing for the need of more complex, multiscale models of

sensorimotor learning. In fact, there is evidence that even individual neurons and

neural networks operate on diverse timescales [7, 13, 68, 83]. Correspondingly, many

computational models have been proposed to study how multiple timescales can give

rise to the above experimental observations. These models have been successful at

explaining phenomena such as the faster relearning and the long decay tails [53, 92],

but they usually assume a linear relation between the learning and error size, where

a smaller (larger) error induces less (more) learning.

However, as has been shown by many experiments, biology does exactly the op-

posite: a smaller (larger) error generally induces more (less) learning [81, 94, 102].

Moreover, it has been suggested that the motor variability contains meaningful biolog-

ical information that is crucial for learning, conflicting with the common thought that

the observed variance in motor outputs is due to biological noises [38]. For example,

the motor variability has been found to be positively correlated with animal’s ability

to learn in a new environment [105]. This feature echoes the exploration-exploitation

trade-off in the reinforcement learning algorithms, where proper amount of uncer-

tainty in action selection helps the convergence of the value function to the global

ground state [97]. Another example is that the variance of the motor outputs can

be voluntarily decreased or increased by the animal itself, which means that the mo-

tor variability is a well-controlled biological feature [45, 71]. However, most previous

models only focus on the dynamics of the mean behavior without considering how the

motor variability changes [53, 92]. Modeling the dynamics of higher moments or even

the whole distributions can provide more perspective to understand the sensorimotor
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system and its neural-behavior mappings.

Here, we introduce a full Bayesian model of sensorimotor learning with multiple

timescales and test it on the vocal learning system of a songbird. The model assumes

that there are many interacting hidden components that learn from the observed

error, and that their linear weighted sum is the final output motor command. The

model also assumes that the animal controls and updates the whole (non-Gaussian)

distribution of motor commands [106]. Our model can explain the temporal evolution

of the song distributions observed in experiments including both pitch shift data and

washout data. In addition, the model makes various predictions that can be verified

by future experiments.

3.2 Mathematical model

3.2.1 2d Bayesian filter

Let’s first look at a physical system that shows the main idea of our model (Fig.

3.2A). There are two boxes with different masses on two frictionless surfaces. The box

ψ has a larger mass, and the box φ has a smaller mass. We assume that the whole

system does not have inertia, and the boxes only move when there are net forces acting

on them. The two boxes are connected by a massless asymmetric nonlinear string

(orange), which means that the string exerts different forces on ψ and φ, represented

by s(φ) and s(ψ), respectively. Each of the boxes has another massless nonlinear string

(pink) attached to it, and a group of common external forces s(i), where i = 1, 2, ..., are

exerted on both of them. The over-damped surface guarantees that the movements

of the two boxes have to be driven by the forces from the strings. Since the mass of

the φ is smaller, the external forces s(i) will move it much faster than ψ. However, at

the same time, the orange strings will try to pull the two boxes together.

In our model, at any time point t, we assume that the plausible motor commands

are represented as a joint distribution of two interacting dynamical variables ψt and



34

Figure 3.1: A physical analogy of the model. Suppose there are two boxes on two
frictionless surfaces: one box with a large mass and denoted by ψ, and the other box
with a small mass and denoted by φ. Imagine that the whole system is in liquid with
low Reynolds number, and so there is no inertia. The movements of the boxes must be
generated by forces. The external forces {s(i)}, where i = 1, 2, ..., act on both boxes
through massless nonlinear springs (pink), and the lighter box φ will move faster than
the heavier box ψ. The two boxes interact with each other through an asymmetric
massless nonlinear spring (orange), where the force on ψ is generated by s(φ) and the
force on φ is generated by s(ψ).
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Figure 3.2: The dynamical Bayesian filter model. At each time step, a prior p(ψt, φt) is
kept in memory by an animal. For each instance of motor performance, a sample pair
(ψt, φt) is extracted from the prior p(ψt, φt), and their weighted sum aψt + (1− a)φt
is the motor output. This motor output is then measured by various sensory or non-
sensory modalities, which form the feedback signals s

(i)
t , i = 1, 2, ... that are used in

the Bayesian updating. At the same time, the two variables also send signals directly
to each other: s

(ψ)
t and s

(φ)
t . All these signals are integrated with the prior using

Bayes’ Theorem, and we have the posterior p(ψt, φt|s(ψ)t , s
(φ)
t , s

(i)
t ). This posterior is

convolved with a kernel p(ψt+δt, φt+δt|ψt, φt) to get the new prior p(ψt+δt, φt+δt) at the
next time step.
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φt, each with its own timescale. The weighted sum of the two variables gives the final

output of a motor command aψt + (1− a)φt, where the parameter a ∈ [0, 1] controls

how much each variable contributes to the motor output. The joint distribution is

denoted by p(ψt, φi), and serves as the animal’s prior belief about the probability for

each motor command to generate the desired sensory consequences. For applicable

reasons, we assume that the two variables talk to each other by sending signals s
(ψ)
t

(from ψt to φt) and s
(φ)
t (from φt to ψt). This assumption is not justified yet in

experiments, but it is very important for our model to work, since it serves as some

regularization to constrain the values of ψt and φt. The weight a is assumed to

be a constant here for simplicity, but more complicated models can have a weight

that is updated every time step. The linear additivity of the two variables has been

suggested by several experimental and computational studies of neuronal activities

[47, 62]. A more complicated model with nonlinear summations is also possible, and

we leave that for future investigations. As in our previous work [106], we take the

motor command to be equivalent to the song pitches recorded in experiments, which

means we don’t distinguish between the motor command and its resulted behavior.

As shown in Fig. (3.2), at each time step, the motor system will sample a pair

(ψt, φt) from the prior distribution, and send the motor command aψt + (1 − a)φt

to initiate a singing event (recorded as a song pitch). Then, this motor command

or the song pitch can be measured by various sensory/non-sensory modalities [106],

which generate a list of feedback signals s
(i)
t (i = 1, 2, ...). These feedback signals are

sent back to the motor system to instruct the adaptation of the prior p(ψt, φi) in the

form of likelihoods p({s(i)t }|aψt + (1− a)φt). Besides, the interacting signals s
(ψ)
t and

s
(φ)
t are also received by the two variables, respectively, and can be incorporated into

the prior as two likelihood terms p(s
(φ)
t |ψt) and p(s

(ψ)
t |φt). Thus, combining these
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likelihoods with the prior using Bayes’ Theorem, we have the posterior:

p(ψt, φt|s(φ)t , s
(ψ)
t , {s(i)t }) ∝ p(s

(φ)
t |ψt)p(s

(ψ)
t |φt)p({s

(i)
t }|aψt + (1− a)φt)p(ψt, φt).

(3.1)

which is the updated memory of the two hidden variables based on the feedback data

obtained from the current trial of the motor output. The posterior p(ψt, φt|s(φ)t , s
(ψ)
t , {s(i)t })

can be seen at the same time step as the current prior p(ψt, φt), which means that the

time gap between the initiation of the song production and the Bayesian integration

of the feedback is assumed to be much smaller than the time gap between two con-

secutive song productions. When there are no feedback inputs, an animal is assumed

to become less certain about its belief of the world, and thus, the updated posterior

should become wider and wider until the next sing event [106]. This increase of uncer-

tainty can be modeled by a convolution kernel p(ψt+δt, φt+δt|ψt, φt), which propagates

the posterior to the new prior in the next time step. Thus, one complete iteration of

the Bayesian filter is as follows:

p(ψt+δt, φt+δt) =
1

Z

∫∫
p(ψt+δt, φt+δt|ψt, φt)p(s(φ)t |ψt)p(s

(ψ)
t |φt)

× p({s(i)t }|aψt + (1− a)φt)p(ψt, φt)dψtdφt, (3.2)

where Z is the normalization constant.

The convolution kernel can be constructed in many different forms depending

on specific questions one is asking. As shown in Fig. 3.2, the two variables ψt

and φt can evolve either independently or non-independently. We will talk about

the non-independent case later in the discussion section, and for now let’s look at

the independent case first, which means p(ψt+δt, φt+δt|ψt, φt) = p(ψt+δt|ψt)p(φt+δt|φt).

With this, the Eq. (3.2) becomes:

p(ψt+δt, φt+δt) =
1

Z

∫∫
p(ψt+δt|ψt)p(φt+δt|φt)p(s(φ)t |ψt)

× p(s(ψ)t |φt)p({s
(i)
t }|aψt + (1− a)φt)p(ψt, φt)dψtdφt (3.3)
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If we take δt to be one day, and since during one day, the bird will sing thousands of

song bouts, we need some averaging operation on those data received during a day

[106]. Thus, we only consider averaged sensory signals: s
(φ)
t → s

(φ)
t , s

(ψ)
t → s

(ψ)
t , and

s
(i)
t → s

(i)
t . The signals that the two variables send to each other are nothing but

themselves, and thus, the average signals are actually the average values of the two

variables: s
(φ)
t = φt and s

(ψ)
t = ψt. For simplicity, we assume that there are only

two feedback channels, s
(1)
t (channel 1, affected by headphones) and s

(2)
t (channel 2,

not affected by headphones) [106]. Thus, these two averaged feedback terms can be

written as s
(1)
t = aψt + (1− a)φt −∆ and s

(2)
t = aψt + (1− a)φt, respectively, where

−∆ is the perturbation imposed through the headphones. The bird is learning to

control its own song production, and the feedback signals reflect the performance

of the last motor command produced by itself. Thus, for a proper control model,

a minus sign is implied any feedback term; that is, if the feedback s(i) is above

(below) zero, then the corresponding likelihood term should drive the next plausible

motor command down (up) [106]. We rewrite the four likelihood terms, p(s
(φ)
t |ψt),

p(s
(ψ)
t |φt), p({s

(1)
t }|aψt+(1−a)φt), and p({s(2)t }|aψt+(1−a)φt) as L(ψt;φt), L(φt;ψt),

L(aψt + (1− a)φt; ∆), and L(aψt + (1− a)φt; 0), and the model shown in Eq. 3.3 can

be rewritten as

p(ψt+1, φt+1) =
1

Z

∫∫
p(ψt+1|ψt)p(φt+1|φt)L(ψt;φt)L(φt;ψt)

× L(aψt + (1− a)φt; ∆)L(aψt + (1− a)φt; 0)p(ψt, φt)dψtdφt, (3.4)

where φt, ψt, ∆, and 0 represent the centers of the likelihoods. The likelihood L(ψt;φt)

means that ψt should get closer to φt; the likelihood L(φt;ψt) means that φt should

get closer to ψt; the likelihood L(aψt + (1 − a)φt; ∆) means that the motor output

aψt + (1 − a)φt should be at ∆ since there is a −∆ perturbation imposed on the

feedback channel 1; the likelihood L(aψt + (1− a)φt; 0) means that the motor output

aψt + (1 − a)φt should be at 0 since the feedback channel 2 can genuinely measure

the song pitches.
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3.2.2 Fits and predictions

In the model described by Eq. 3.4, there are six distributions to be determined,

the two kernels and the four likelihoods. The prior distribution does not contribute

new degrees of freedom, which is simply the steady state of the Eq. 3.4 when the

shift size ∆ is 0. As we have pointed out previously [106], many distribution families

work similarly well as long as they are heavy-tailed. Here, we use powerlaw-like

distributions for the sake of convenience (Methods). For each of these distributions,

there are three parameters, the exponent α, the scale γ and the mean µ. All the

means for the six distributions have been fixed by the model itself, since for the

kernels, the means are the variables in the previous step, and for the likelihoods, the

means are φt, ψt, ∆, and 0. Thus, including the parameter a that is used to control

how much each variable contribute to the motor output and the cut-off point L of

each distribution in the tail, we have 14 free parameters in total. The cut-off point L

is fixed at 10 semitones, which includes all the song pitches in the current data set.

We fit the rest of the 14 free parameters in our model to more than 150 distribu-

tions (one distribution for each day) simultaneously using maximum likelihood, and

the results are shown in Fig. 3.3. The pitch perturbation experiments end on day

14, and day 15 is the start of the washout period during which the perturbation is

lifted. When the perturbation is on, the distributions of the song pitch (thin lines)

on each day deviates gradually from the baseline data (gray shade), and after the

pitch shift is lifted (washout period), the distribution gradually comes back to align

with the baseline data (Fig. 3.3A). The staircase shift experiments last longer (in

total 47 days), and the deviations from the baseline data are even more obvious.

Our model (thick lines) can describe the dynamics of the distributions surprisingly

well, and the quality of the fits can be justified by calculating the Jensen-Shannon

divergence (JSD) between the data and the theoretical curves as shown in Fig. 3.4.

The JSDs between the data and the theoretical curves are very close to zero (Fig.
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Figure 3.3: Experimental data and model fits. For each small panel, the gray-shaded
region is the baseline data distribution obtained by collecting all the baseline data
from all the birds. The thin line shows the data on a specific day, and the thick
line shows the results of the model on the same day. The distributions from data are
obtained by adaptive binning. (A) From top to bottom, the perturbation sizes are 0.5
semitone, 1.0 semitone, 1.5 semitone and 3.0 semitone. The first three columns show
the results of perturbation periods, which end on Day 14. The last three columns show
the results of washout periods (perturbation lifted), which starts on Day 15. There are
no data from the 3.0-semitone group on Day 28. (B) In staircase experiments, there is
no washout period, and the perturbation size is gradually increased by 0.35 semitone
for every 6 days. Note that the following color code is used throughout the paper:
red, 0.5-semitone constant perturbation; blue, 1.0-semitone constant perturbation;
green, 1.5-semitone constant perturbation; cyan, 3.0-semitone constant perturbation;
magenta, staircase perturbation.
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Figure 3.4: Jensen-Shannon divergence (JSD). (A) & (B) The dots represent the JSDs
between the data and the model on the same day, which indicate the quality of the
fits in Fig. 3.3. The error bars represent the standard deviation obtained from the
bootstrapped sampling of the data, including both cross-bird and within-bird variabil-
ity. Note that the symbols used here apply to the whole paper: circles, 0.5-semitone
constant perturbation; squares, 1.0-semitone constant perturbation; diamonds, 1.5-
semitone constant perturbation; up triangles, 3.0-semitone constant perturbation;
down triangles, staircase perturbation; hollow symbols, the data on that day are not
used for the fitting in Fig. 3.3. The mean of all dots here is 0.0161+/-0.0155. (C)
& (D) The dots represent the JSDs between the baseline data and the data on a
specific day, and the error bars represent the standard deviation obtained from the
bootstrapped sampling of the data, including both cross-bird and within-bird vari-
ability. The solid lines represent the JSDs between the baseline data and the model
on a specific day.
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BA

Figure 3.5: Medians. (A) The dots show the normalized medians of the distributions
in Fig. 3.3A, and the error bars represent the standard deviation obtained from
the bootstrapped sampling of the data, including both cross-bird and within-bird
variability. The normalized medians are calculated by dividing the medians by the
corresponding perturbation size and times 100, which indicate the percentage of the
perturbation been learned. The solid lines represent the normalized medians from
the model. (B) The dots show the medians of the distributions in Fig. 3.3B, and the
error bars have the same meaning as in (A). The solid lines represent the medians
from the model. The dotted lines in show the gradually increased perturbation size.

3.4A and 3.4B), indicating that our model has a very good description of the data.

Fig. 3.4C and 3.4D shows the JSDs between the data and the baseline (dots with

errorbars) and the JSDs between the model and the baseline (solid lines) for each day

of the experiments. It can been seen that at the end of the shift experiments (day

14), both data and model deviates from the baseline significantly where the JSDs

reach around 0.1 for both 1-semitone and 1.5-semitone experiments. This effect is

even more obvious in the staircase experiment, where the JSD can reach above 0.4.

In Fig. 3.5, we plot the medians of the data and the model. After washout period

starts (on day 15), there are prolonged decaying tails for 0.5-semitone, 1.0-semitone

and 1.5-semitone shift sizes. One can argue that an exponential model with a very

long timescale can also have similar tails, and thus, an one-timescale model should

be enough. However, we fit our previous one-timescale model to all the distributions,
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Figure 3.6: Model predictions for two three-phase experiments [92]. The parameters
used in this figure are the same ones used in Fig. 3.3. (A) As shown by the dotted grey
line in the upper panel, the perturbation is imposed as follows: -0.5 semitone for the
first 14 days (phase 1), 0.5 semitone for the next 10 days (phase 2), and -0.5 semitone
again for another 14 days (phase 3). The behavior, or the song pitch, is predicted by
the black solid curve in the lower panel. The solid orange curve represents φt, and
the dashed orange curve represents ψt. The solid grey curve between day 24 and day
38 is the horizontal translation of the solid black curve between day 0 and day 14.
(B) The perturbation (upper panel) has a similar structure as in (A), and the only
difference is that in the phase 3, the perturbation is 0 semitone. Line types and colors
are the same as in (A).

and it turns out that it just cannot fit the fine structures of the tails nicely (3.13).

Besides, it cannot fit the entire data set very well. For a comparison, the Bayesian

information criteria (BIC) for the fit of the two-timescale model shown in Fig. 3.3

is around 4063463, and the BIC for the best fit of the one-timescale model [106] is

around 4069086, which is 5622 higher. More
com-
ments
are
needed
here.

With the fitted parameters, we are interested to see what type of predictions our

model can make for new types of perturbation paradigms. A classical experimental

design is the three-phase perturbations as shown in the upper two panels in the Fig.
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Figure 3.7: One possible biological interpretation of the model. (A) Schematic dia-
gram of a songbird’s vocal system. The pink arrow shows the projection from LMAN
to RA, and it has been suggested that this projection carries two effect of LMAN
on RA: motor command bias and motor variability (B) The diagram shows one of
the ways in which our model can be interpreted in the context of the songbird vocal
system. Rather than a single motor command generator RA, we have two interacting
components, ψ and φ, and their linear sum is the final motor output. The orange ar-
rows represent the interactions between the two variables by exchanging information
s(ψ) and s(φ), which results in the synchronization of their activities. The pink arrow
carries the bias p({s(i)}|aψ+ (1− a)φ) and variability plman(ψ

′
, φ

′|ψ, φ) from LMAN,
and projects them to both of the two motor components.

3.6. It can be seen in Fig. 3.6A that the relearning rate of the same perturbation size

is obviously faster than the original learning. This is due to the fact that although

at the end of the phase 2 the overall adaptation is already around 0 (solid black

curve), the slower variable ψt is still way above 0, which will accelerate the relearning

process. The non-zero slow process at the end of phase 2 is also the reason of the

spontaneous rebound if in the phase 3 the perturbation is set to 0. This spontaneous

rebound has been observed in arm-reaching experiments [92]. Here, we expect that

the faster relearning and spontaneous rebound can also be observed in songbird’s

pitch-perturbation experiments.

3.2.3 Biological interpretations

It should be noted that we want to keep our model as general as possible, and

thus the model should not rely on any specific neural circuit structures. However, it
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is still interesting to have a discussion on the possible interpretations of our model

in the case of songbird vocal system. Let’s first look at the main pathways that

are involved in the songbird vocal executing and learning (Fig. 3.7A). HVC controls

the temporal and sequential patterns of the song, i.e., the start and end points of

each song syllable, and initiates singing behaviors [28]. At any singing event, HVC

sends signals carrying temporal information of the syllables to robust nucleus of the

arcopallium (RA). Then, RA fills in specific properties for each syllable, such as the

pitch, and send them to downstream organs. RA also gets inputs from LMAN (the

pink arrow), which is suggested to contribute to motor variability and learning [9, 12,

77, 85]. There are two phenomena observed if the projection from LMAN is blocked:

(1) the distribution of the song bouts becomes very narrow [45, 77] and (2) the bird

stops learning and does not adapt to new situations [9, 12]. Thus, it seems that

LMAN contributes two effects: variability and a teaching signal (bias).

In our model (Fig. 3.7B), we assume that in the motor system, there are two

components, ψ and φ, that can store past experience and contribute to the final

motor command, and they tend to synchronize by sending signals (s(ψ) and s(φ)) to

each other. The linear sum of the two components generates the motor command.

However, the specific neural basis of this two components is not clear, and they might

correspond to two separate subregions somewhere in the motor system, such as the

robust nucleus of the arcopallium (RA). These subregions should have axon projec-

tions to each other to exchange information, which results in the synchronization

between the behavior-relevant activities of the two subregions. We hope that future

experiments could be done to justify these assumptions, and to reveal how they are

implemented in the neuron and circuit levels [55].

Both of the two components receive signals from LMAN, and to compare our
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model with experimental results, we rewrite the model in Eq. 3.2 as follows:

p(ψt+δt, φt+δt) =
1

Z

∫∫ [∫∫
p(ψt+δt, φt+δt|ψ

′

t, φ
′

t)plman(ψ
′

t, φ
′

t|ψt, φt)dψ
′

tdφ
′

t

]
× p(s(φ)t |ψt)p(s

(ψ)
t |φt)p({s

(i)
t }|aψt + (1− a)φt)p(ψt, φt)dψtdφt. (3.5)

Thus, as suggested by experiments, we assume that there are two types of signals:

teaching signals indicated by the likelihood terms p({s(i)t }|aψt + (1 − a)φt), which

represent the processed sensory feedback (bias), and part of the convolution kernel

plman(ψ
′
t, φ

′
t|ψt, φt), which provides the motor variability that is associated with the

exploration. It should be noted that the kernel models more than the variability from

the LMAN, and it also contains other variance sources, such as the intrinsic noises in

the motor pathway. Whether these two types of signals are sent together or separately

is not clear [28], but some deafening studies show that LMAN still affects the song

production even without auditory feedback [76]. This might suggest that the singals

from LMAN to RA could be rather diverse, and different information could be sent

separately. However, more experiments should be done in order to clarify the true

nature of the LMAN-RA projections [28].

In Fig. 3.8, we show what our model predicts if the LMAN-RA projections are

blocked, which means in Eq. 3.5 that the term p({s(i)t }|aψt + (1 − a)φt) is deleted

and the term plman(ψ
′
t, φ

′
t|ψt, φt) is set to be a delta function, δ(ψ

′
t − ψt, φ

′
t − φt). For

any specific day, we change our model in this manner for the previous day, and see its

effect on learning, as shown by the red dots in Fig. 3.8A. Our model predicts a drop

from the one in the normal condition (grey dots connected by grey lines). This effect

is qualitatively comparable to the experimental results shown in Fig. 3.8B, where

they tested how much the LMAN contributes to learning on a daily basis in a white

noise experiment [1].

In our Bayesian framework, the two dynamical variables, ψt and φt, represent

certain neural states with their own specific timescales. The biological interpretation

of our model shown in Fig. 3.8 assumes that both of the two variables are related
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Figure 3.8: Model-predicted LMAN contribution to learning in 1 day. Grey dots and
lines are the same as in Fig. 3.5 when the LMAN is intact, and red dots represent
what will happen if in Eq. 3.5 plman is set to be a delta function (no variability from

LMAN) and p({s(i)t }|aψt + (1− a)φt) is deleted (no teaching signals) in the previous
day.

to RA or other relevant regions involved in the motor pathway. Thus, the activity

of LMAN is not explicitly represented by any dynamical variable, and the LMAN’s

contributions are modeled as part of the convolutional kernel, which is static, and

as the sensory-related likelihood terms, which have the timescale as the feedback

data. This means that our model does not have the intrinsic timescale of the neural

activities in LMAN. However, an alternative interpretation is to assume that the

activity of LMAN is explicitly represented by the fast variable φt. This variable

receives feedback information directly from sensory modalities (likelihood terms).

However, the problem is how the slow variable ψt learns. If we assume that the motor

pathway or RA only learns through LMAN, then the slow variable ψt should be only

affected by the fast variable, but not by the sensory likelihoods. In this case, the

motor output should not explicitly depend on ψt, since the feedback information of

the motor output is only integrated into the LMAN activity φt. Thus, it seems that

our model is hard to be interpreted in the alternative way, and a proper LMAN-
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specific Bayesian model is needed.

3.3 Discussion

Learning from the past experience is essential for animals to shape and improve

their skills to deal with the complicated environments that are changing dynamically.

Thus, how the nervous system represents previously accumulated data and how to

integrate new ones are important and interesting questions to answer in order to

understand why our brain can perform its functions successfully. Behavioral studies

have their advantage in that the quantities measured are usually the ones that interact

with the environment directly, and the generative models developed based on them

may captures the relevant features of the true neural algorithms. Here, we use song-

bird’s song pitch data collected from pitch perturbation experiments to investigate

the general computational rules that underlie motor representation and learning. To

capture the rich dynamics shown by the data, we introduced a mathematical model

under the general Bayesian framework. With various hypotheses made about the

motor system and only 14 parameters, our model can simultaneously describe in high

precision the dynamics of more than 150 distributions of the song pitches.

In our model, we assume that multiple components in the motor system are learn-

ing from the experience at different speeds. At the same time, they also send signals

to each other, and these interactions resulted in a synchronization of their activities.

The weighted linear sum of these variables produces a motor command that is sent

to instruct muscle movements. We also assume that the representation of these vari-

ables is not a list of scalars, but rather a whole joint probability distribution of them

is stored in the motor system. The probability shows the animal’s confidence about

how likely these variables can produce the desired sensory feedback. Thus, our model

is able to trace the dynamics of the whole distribution of the motor output. This

provides a powerful tool to study how motor variability is gradual shaped by changes
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Figure 3.9: Relations between variability and learning. (A) & (B) The solid lines are
the same as the solid lines in Fig. 3.5, and the colored dotted lines are obtained by
turning off the LMAN on that day. (C) & (D) The transparency of the lines indicate
how much the variance is reduced, which is done by multiplying the scale parameters
in the two kernels in Eq. 3.4 by a fractional number r. For each color, the normal
curve has r = 1; the more transparent curve, r = 0.8; the most transparent curve,
r = 0.6.

in the environment. This is interesting, since it has been suggested that motor vari-

ability is an essential part of the exploration-exploitation trade off of any learning

agent. Indeed, many experimental results have already shown that variability in the

motor outputs is not useless noise but rather a well controlled biological signal [45,

71]. What’s more, a positive correlation between learning and variance has already

been shown in experiments [105]. In fact, in agreement with experiments, our model

predicts that learning is slower for smaller variance, if the variability is reduced (Fig.

3.9).

From data, we have shown that the distributions of song pitches illustrate a clear

non-Gaussian structure. Surprisingly, it is this non-Gaussian statistics that explains

the negative correlation between the error size and the learning speed/magnitude

[106]. It will be interesting to see whether this heavy-tailed distributions also exist in

other motor systems and animals.
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Figure 3.10: Predicted joint distributions from the model where the two variables, ψt
and φt, evolve non-independently with a kernel shown in Eq. 3.9. (A) The shift size
is 1.5 semitone. As in Fig. 3.3A, Day 1 is the first day of the shift experiment, Day
14 is the last day of the shift experiment, and Day 15 is the first day of the washout
period. (B) As in Fig. 3.3B, the shift size is increased by 0.35 semitone for every 6
days.

The nature of the two neural components assumed in our model is an interesting

topic for future experimental investigations. In the vocal system of songbird, whether

they are both part of the RA region or there exist new regions in the brain partici-

pating motor learning that has not been identified yet. Do other motor systems or

other animals have similar structures in the brain? Answering those questions might

give us more insights on the motor learning and further our understanding of brain

functions.

The construction of the convolution kernel is variable (Fig. 3.2), and besides the

independent kernel we have discussed, one alternative of the model is a kernel that

evolve the two variables non-independently, which has the form shown in Eq. 3.9.

The matrix Σ has three free parameters, which can be used to describe the covariance

between the two components. This model can fit the data equally well (Fig. 3.24).

The dynamics of the joint distributions is shown in Fig. 3.10. Behavioral observations

such as the song pitch are the final outputs of the motor system, and to obtain the
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information of the two hidden units, neuronal recordings might be used. Thus, what

the joint distributions reflect may be the neuronal activities in the motor pathway or

its latent representations [15].

Another alternative of the model is when the weight a = 0, which transforms Eq.

(3.3) into the following form

p(ψt+δt) =
1

Zψ

∫
p(ψt+δt|ψt)p(s(φ)t |ψt)p(ψt)dψt

p(φt+δt) =
1

Zφ

∫
p(φt+δt|φt)p(s(ψ)t |φt)p({s

(i)
t }|φt)p(φt)dφt (3.6)

This introduces a whole new model, where only one of the variables φt contributes

to the final motor output and learns from data. The other variable ψt can only get

access to data indirectly through φt. The dynamics of the two variables are shown

in Fig. 3.11. This architecture might be useful to model the memory consolidation.

during the initial learning of a new motor skill, two processes happens: the quick

acquisition of this motor skill in one brain region and the gradual consolidation or

transfer of the learned skill to other brain regions [31, 57, 90]. This also resembles

some recently developed AI algorithms [41].

In summary, the presented model provides a powerful framework that can be

potentially used to tackle a wide range of learning problems, not just in the case of

animal learning, but might also be useful for designing new AI algorithms.

3.4 Materials and methods

3.4.1 Experimental data

There are in total nine birds used across the five different groups of experiments,

and some birds have been used multiple times. Here, if a bird has been used in two

experiments, we count it as two effective birds, and in this way, there are in total

23 birds. They are distributed as follows: the 0.5-semitone group has three birds,

the 1.0-semitone group has eight birds, the 1.5-semitone group has six birds, the
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Figure 3.11: (Cascade model. (A) When a = 0, the feedback forces {s(i)} only act on
the variable φ. (B) & (C) The medians of the two variables are shown, by simulating
the cascade model Eq. 3.6. The solid lines are the medians of φt and the dashed lines
are the medians of ψt.
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FDB

EA C

Figure 3.12: The landscapes of the objective function for the model shown in Eq.
3.4. (A-F) Each panel shows how the objective (in log 10 scale) varies with respect
to a certain pair of parameters, while all the other parameters are fixed. Each pair
of parameters shown as the two axes for each panel represents a distribution used in
the model: α1 and γ1 represent p(ψt+δt|ψt), α2 and γ2 represent p(φt+δt|φt), α3 and γ3
represent L(ψt;φt), α4 and γ4 represent L(φt;ψt), α5 and γ5 represent L(aψt + (1 −
a)φt; ∆), α6 and γ6 represent L(aψt + (1− a)φt; 0).

3.0-semitone group has three birds, and the staircase group has three birds.

3.4.2 Data bootstrapping

We do bootstrapping in two steps: first, for each group, we bootstrap the birds;

second, for each bird, we bootstrap the recorded song pitches. In this way, we take

into account both across-bird and within-bird variations.

3.4.3 Simplification of representations

The complete forms of the prior and the posterior should be written as

prior : p(ψt, φt|s(φ)t−δt, ..., s
(φ)
0 ; s

(ψ)
t−δt, ..., s

(ψ)
0 ; {s(i)t−δt}, ..., {s

(i)
0 })

posterior : p(ψt, φt|s(φ)t , s
(φ)
t−δt, ..., s

(φ)
0 ; s

(ψ)
t , s

(ψ)
t−δt, ..., s

(ψ)
0 ; {s(i)t }, {s

(i)
t−δt}, ..., {s

(i)
0 }),



54

respectively. But here, for simplicity, we get rid of the data before the current step,

and only wirte the prior and the posterior in the simplified version:

prior : p(ψt, φt)

posterior : p(ψt, φt|s(φ)t , s
(ψ)
t , {s(i)t }).

3.4.4 Powerlaw-like distributions

The powerlaw-like distribution used in this paper has the following form:

f(y;α, γ, µ) ∝ 1

1 + |y−µ
γ
|α
, (3.7)

where α, γ, and µ are parameters. It should be noted that, when the exponent α

is smaller than 1, this distribution cannot be normalized. In this case, a truncation

point should be introduced. In fact, throughout the paper, we confine all of our

distributions to the interval [-10 semitones,10 semitones]. This also applies to the

2d case as shown below. The 2d kernel that allows the two variables evolve in a

correlated way is defined as:

Xt =

[
ψt
φt

]
, Σ =

[
γ11 γ12
γ21 γ22

]
, (3.8)

p(Xt+δt|Xt) ∝
1

1 + [(Xt+δt −Xt)
ᵀ Σ−1 (Xt+δt −Xt)]

α/2
, (3.9)

where Σ represents some correlation measure between the two variables, and γ12 =

γ21.

3.4.5 Model fitting and parameters

For each day t, we have a joint distribution p(ψt, φt), and the distribution of the

final motor output Ot = aψt + (1− a)φt) is

poutput(Ot) =

∫∫
p(ψt, φt)δ(Ot − aψt − (1− a)φt))dψtφt. (3.10)

In fact, this distribution of motor output is characterized by the model parameters

Θ, which means we can rewrite it as poutput(Ot; Θ). Here, the parameter Θ contains
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all the 14 parameters in our model. We calculate the negative log likelihood of the

parameters Θ, and summing over all experimental days to generate the objective

function H that is used for the fitting:

H = −
∑
t

log poutput(Dt; Θ), (3.11)

where Dt represents all the song pitches recorded on day t. The optimization problem

is solved in MatLab using the function fmincon. All the theoretical results shown in

main text are generated by a single group of parameters: 12 of them are indicated by

the 6 plus signs ′+′ in Fig. 3.12, and the weight a is 0.754. It can be seen that besides

the sets of parameters we choose, there are a large number of other combinations can

give reasonably good fits. In Fig. 3.25, we show the fitting results when a is 0. This

degeneracy shows that our model does not rely on fine tuning.

3.5 Additional figures
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Figure 3.13: This shows the dynamics of medians if we fit the one-timescale model
to all the distributions. It can be seen that the model shows very different average
behaviors compared with the ones in Fig. 2.2A, and it cannot capture the structures
of the decaying tails in washout period. All plot conventions are the same as in Fig.
3.5A
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Figure 3.14: This figure shows all distributions for the 0.5-semitone perturbation
experiments, which corresponds to the red curve in Fig. 3.5. The grey histograms
represent the baseline distribution of the song pitches; the colored histograms rep-
resents the distributions of the song pitches on the specific day; the colored curves
represent the results of the model.
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Figure 3.15: This figure shows all distributions in log scale for the 0.5-semitone per-
turbation experiments, which corresponds to the red curve in Fig. 3.5. The grey
shades represent the baseline distribution of the song pitches; the thin colored lines
represents the distributions of the song pitches on the specific day; the thick colored
curves represent the results of the model.
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Figure 3.16: This figure shows all distributions for the 1.0-semitone perturbation ex-
periments, which corresponds to the blue curve in Fig. 3.5. The grey histograms
represent the baseline distribution of the song pitches; the colored histograms rep-
resents the distributions of the song pitches on the specific day; the colored curves
represent the results of the model.
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Figure 3.17: This figure shows all distributions in log scale for the 1.0-semitone per-
turbation experiments, which corresponds to the blue curve in Fig. 3.5. The grey
shades represent the baseline distribution of the song pitches; the thin colored lines
represents the distributions of the song pitches on the specific day; the thick colored
curves represent the results of the model.
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Figure 3.18: This figure shows all distributions for the 1.5-semitone perturbation ex-
periments, which corresponds to the green curve in Fig. 3.5. The grey histograms
represent the baseline distribution of the song pitches; the colored histograms rep-
resents the distributions of the song pitches on the specific day; the colored curves
represent the results of the model.
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Figure 3.19: This figure shows all distributions in log scale for the 1.5-semitone per-
turbation experiments, which corresponds to the green curve in Fig. 3.5. The grey
shades represent the baseline distribution of the song pitches; the thin colored lines
represents the distributions of the song pitches on the specific day; the thick colored
curves represent the results of the model.
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Figure 3.20: This figure shows all distributions for the 3.0-semitone perturbation ex-
periments, which corresponds to the cyan curve in Fig. 3.5. The grey histograms
represent the baseline distribution of the song pitches; the colored histograms rep-
resents the distributions of the song pitches on the specific day; the colored curves
represent the results of the model.
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Figure 3.21: This figure shows all distributions in log scale for the 3.0-semitone per-
turbation experiments, which corresponds to the cyan curve in Fig. 3.5. The grey
shades represent the baseline distribution of the song pitches; the thin colored lines
represents the distributions of the song pitches on the specific day; the thick colored
curves represent the results of the model.
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Figure 3.22: This figure shows all distributions for the staircase perturbation exper-
iments, which corresponds to the magenta curve in Fig. 3.5. The grey histograms
represent the baseline distribution of the song pitches; the colored histograms rep-
resents the distributions of the song pitches on the specific day; the colored curves
represent the results of the model.
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Figure 3.23: This figure shows all distributions in log scale for the staircase pertur-
bation experiments, which corresponds to the magenta curve in Fig. 3.5. The grey
shades represent the baseline distribution of the song pitches; the thin colored lines
represents the distributions of the song pitches on the specific day; the thick colored
curves represent the results of the model.
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Figure 3.24: Fits of the model with a kernel as in Eq. 3.9. All symbols and colors
are the same as in Fig. 3.3 and Fig. 3.5.
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Figure 3.25: Fits of the model as in Eq. 3.6. All symbols and colors are the same as
in Fig. 3.3 and Fig. 3.5.
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Chapter 4 Behavioral map of a fly pre-
dicts species identity

4.1 Introduction

1 Through millions of years of evolution, fruit flies have differentiated into more

than 100 species, and their evolutionary relationships have been genetically identified

and mapped to a complicated phylogenentic tree [17, 88]. For simplicity, part of the

tree has been shown in Fig. 4.1A, where six species are included. From top to bottom,

they are D. melanogaster, D. mauritiana, D. simulans, D. sechelia, D. santomea, and

D. yakuba. From the root node to the leaves, we can see that these six species have

experienced four differentiations at different time points in history, and each of the

horizontal lines represent millions of years. Genetically, these differentiations have

been studied thoroughly [17, 88], while little work has been done to investigate this

evolutionary process in the behavioral space alone. If behaviors contain evolutionary

information, then genetically different individuals must show some discrepancy in

their behavioral patterns. Here, we will show that the behavioral patterns can be

used to distinguish different species of flies with high accuracy.

4.2 Behavior maps of fly

If you observe a newborn baby’s activity for a day, you will find that she/he will

show a large amount of moving patterns from different body parts. The baby may

blink the eyes, wave the arms and legs, or simply sleep without any movements.

It seems at first that there are infinite amount of possible behaviors an animal can

perform and there is no way to quantitatively study them. However, for simpler

1This chapter presents part of an ongoing work in collaboration with Catalina Rivera, Damián
G. Hernández, Jessica Cande, David L. Stern, and Gordon J. Berman.
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organisms like flies, people have established a method to quantify and enumerate

their large repertoire of behaviors [6]. In a transparent 2d chamber, a fly can move

freely on a surface, and the activities of the fly is recorded as a movie. In total, we

have 561 individual flies that belong to the 6 species shown in Fig. 4.1A. The analysis

of these 561 movies can give a 2d heat map as shown in Fig. 4.1B [6], which represents

the probability distribution of the time that is spent by flies in performing specific

moving patterns (or behaviors). Different regions in Fig. 4.1B represent different

behaviors, and the natures of the behaviors have been labeled according to either

movements in specific body parts (eg., left or right, wings or legs) or timescales of the

behaviors (eg., fast or slow). In fact, the 2d map shown in Fig. 4.1A is the average

of 561 individual maps. That is, for each fly, there is a heat map like Fig. 4.1A.

We expect that this heat map shows the individuality of each fly and has enough

information to distinguish different fly species.

The heat map shown in Fig. 4.1B is a 201 by 201 matrix, which is difficult to deal

with because of the large dimensionality. Thus, we grouped adjacent pixels into 134

regions representing more stereotyped behaviors (Fig. 4.1D). For clarity, we define

a variable pµi, where µ = 1, 2, ..., 561 representing fly identities and i = 1, 2, ..., 134

representing behavior types. Thus, the value of the variable pµi indicates the frequency

that the fly µ performs the behavior i. Besides pµi, we define another variable xµi,

which is a transformed version of the data matrix pµi. The transformation is done by

first taking a log for each element in the data matrix, and then center each column,

which means for each element:

xµi = log pµi −
1

561

∑
µ

log pµi. (4.1)

Each heat map in Fig. 4.1D is obtained by averaging xµi within each species. It

can be seen in Fig. 4.1D that each species has its own unique behavioral repertoires.

For example, the D. mauritania performs more fast locomotions than D. yakuba,

while D. santomea tends to be more idle than D. melanogaster.
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Figure 4.1: Phylogenetic tree and behavioral repertoire. A: Six species of flies are
used, and their evolutionary relations are shown in this phylogenetic tree. B: This
average behavioral map was obtained by taking the mean of the 561 individual maps,
and each individual map was generated from a video recording of a single fly’s behav-
ior. In principle, each pixel on the map represents a specific behavior, and its value
represents how frequent a fly performs that behavior. C: The average behavioral
maps for each species are shown. Here, the maps look different from the one shown in
B where adjacent pixels were clustered together to show a more coarse-grained map.
Each small region of those maps represents a stereotyped behavior, and the value of
that region is the centered log frequency.

4.3 Embedding by t-SNE

From the matrx pµi, we can define the distance matrix dµν of the 561 individuals by

calculating the Jensen–Shannon divergence (JSD) between their behavioral frequency

vectors:

dµν =
1

2

∑
i

pµi log
pµi
mµνi

+
1

2

∑
i

pνi log
pνi
mµνi

, (4.2)

where mµνi = (pµi + pνi)/2. Each element of this distance matrix is from 0 to 1, and

thus, it can be used to construct the similarity matrix used in t-SNE as 1− dµν [63].

With this similarity matrix, we can use t-SNE to project all the 561 individuals onto

a 2d plane (Fig. 4.2A). In Fig. 4.2A, B, different colors represent different species,

and different symbols with the same color represent different strains within the same

species. Although not perfectly, it is clear that dots with the same color and the
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Figure 4.2: Classification of fly species solely based on the behavioral repertoire. A:
In the left panel, the t-SNE embedding shows that different species roughly can be
separated from each other. Each dot represents one individual fly, with different colors
representing different species and different symbols with the same color representing
different strains within the same species. Each element in the distance matrix (561 by
561) is the Jensen-Shannon divergence between the behavioral density maps of two
individual flies. (red: D. melanogaster, orange: D. mauritiana, blue: D. simulans,
magenta: D. sechelia, cyan: D. santomea, yellow: D. yakuba, black/gray: misclassi-
fied flies). In the right panel, the black/gray dots represent mis-classified individuals
by logistic regression, with their transparency levels scaled linearly with the proba-
bility that they would be misclassified: the more transparent the dot is, the more
times that individual is mis-classified. C: Confusion matrix for the logistic regression
with each row normalized. All the values are averaged from 100 different trials. The
standard error is smaller than 0.01 for the diagonal elements, and smaller than 0.005
for the off-diagonal elements. (1: D. melanogaster, 2: D. mauritiana, 3: D. simulans,
4: D. sechelia, 5: D. santomea, 6: D. yakuba)

same symbol tend to form clusters in this 2d embedding space. This suggests that

behaviors do contain information that can be used to distinguish fly species and even

individual flies.

4.4 Classification by logistic regression

To have a more quantitative understanding of how well behaviors can be used

to characterize identities, we used logistic regression to perform a multi-class classi-

fication using the transformed feature matrix xµi. The result of the classification is

summarized in the confusion matrix shown in Fig. 4.2B, which illustrates the per-

formance of the multi-class logistic regression model on the test set. We obtained

an averaged test score of 0.89 on the test set (30% of the whole data set). The high
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test scores shown in the confusion matrix suggest that we can characterize the fly

identities reasonably well just using the behavior data.

4.5 Discussion

Biological information is mainly stored in the genome, and the properties of a

new born organism is largely determined by its genome. Thus, it should not be a

surprise that young flies have their own unique behavior patterns, since behaviors are

a reflection of the nervous system and the nervous system is developed according to

certain group of genes. Here, we show that behavior information indeed can be used

to identify species. This suggests that behavior maps developed in the previous work

[6] can be potentially used to study evolution as long as the associated evolutionary

dynamics is carefully defined. It would be interesting to see whether there are some

proper mathematical frameworks that can be constructed to model the large scale

dynamics of this behavioral repertoires through millions of years.
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Chapter 5 Conclusion

Carefully designed behavioral experiments can show insightful information about

the underlying nervous system that produces them. This approach requires mak-

ing thoughtful hypotheses about how the system might function at the macroscopic

scale, and it is assumed that these hypotheses should put meaningful constraints on

the nervous systems [55]. Here, we use male Bengalese finch, a type of songbird,

and its singing behavior as a model system to study the general computational rules

that govern the sensorimotor learning. The pitch perturbation on the bird’s audi-

tory feedback reveals rich dynamics that can be used to construct hypotheses about

the sensorimotor systems and to build physical models to test these ideas. For each

day, we have a whole heavy-tailed distribution of the song pitches with certain vari-

ability, which reflects the motor explorations of the animal. This distribution and

its mean show interesting dynamics in various experimental settings that cannot be

explained by previous sensorimotor learning models. Our Bayesian filter model with

non-Gaussian statistics and multiple timescales captures all the important features

of the song pitch data. Specifically, the non-Gaussian assumption on the likelihood

terms explains the fact that an animal adapts better if the perturbation is small,

and if the perturbation is too large, the animal cannot adapt at all, at least within

the time frame of the experiments. However, if the large perturbation is imposed

gradually, the animal can learn how to adapt to it very well [94]. As the two-rate

model discussed in the introduction, our model assumes that there are more than

one neural components in the motor system, and multiple motor memories are inte-

grating information from past experience with different timescales. The model can

explain the prolonged tails in the washout period, which is hard to describe with

one-timescale models. More importantly, our model can describe the dynamics of the
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whole distributions of the song pitches, which means that the model can explain how

the exploration strategy of the motor system evolves with time.

Our model can make various predictions about the songbird’s singing behavior

that can be tested in experiments. First, by carefully designing certain three-phase

pitch-perturbation paradigms as shown in Fig. 3.6, our model predicts that the

relearning of a perturbation can be faster than the learning when the animal encounter

the perturbation for the first time. Moreover, if the perturbation in the third phase

is set to 0, the model predicts a spontaneous rebound of the behavior toward the

adaptation direction. This rebound has been observed in arm-reaching experiments,

and it would be interesting if we can see the same effect in songbird’s singing behavior.

Second, our model shows that smaller variance in the motor system will lead to less

learning. This can be tested without any neural interventions, but it does need a

relatively large sample size. For the current study, there are only 9 birds, which

may not yield a clear positive correlation between motor variability and adaptation

as shown in other motor systems. Third, our model can also predict the retreat of

the learning when the LMAN-RA projections are blocked. This result is qualitatively

comparable with the observations made in experiments where the adaptation is white-

noise driven. Direct evidence in pitch-perturbation is needed. However, since the

effects of LMAN-blocking in experiments might appear immediately or in only several

hours, we may need to simulate the model in a hour-to-hour base, and night times

should be included where no singing event happens.

Motor system adaptation happens when the animal encounters either errors in

their behavior (usually continuous signals) or rewards/punishments (usually discrete

signals). We have only tested our model on the error-based learning, and it would be

interesting to see whether our model can be generalized to describe reward/punishment-

based learning. A typical punishment-based learning experiment in a songbird is done

by exposing the animal to aversive, loud, white noise signal when the pitch of its song
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falls outside of a prescribed window. The motivations behind the adaptations in

the perturbation-driven and punishment-driven cases are different. When facing a

perturbation in its song pitch, the bird wants to correct the perturbation in order

to perceive the pitch it prefers; when facing a punishment like white noise, the bird

wants to avoid this punishment by changing its song pitch, but at the same time it

may also want to push back this change since the song deviates the template. One

potential way to model this is to add a new likelihood term with the mean as a free

parameter that can be fit to the data. This mean can be either static or adaptive,

and represents how far the bird is willing to be away from the pitch that triggers the

white-noise punishment. This line of modeling is not very attractive, since we would

just keep adding complexity to our model. However, this might be less concerning if

we consider that the underlying processes that the white-noise experiments activate

are very complicated, since both punishment avoidance and template matching are

in play.

We have shown that our model can predict fast relearning and spontaneous re-

bound phenomena similar to those observed in arm-reaching experiments. Thus, it

is plausible that our model can be applied to the motor system that governs the

arm movement. For example, it would be interesting to check whether the distribu-

tion of arm-reaching data shows similar heavy tails as in songbird vocal behaviors.

If the answer is yes, then the same non-Gaussian assumption can be made for the

arm-reaching system as well, and we would like to see the same negative correlation

between the perturbation size and adaptation. More importantly, we expect that the

Bayesian filter model that we have established in songbirds is general and can be

potentially used in many other sensorimotor systems.

The central question we are asking is: how does the brain control behaviors? Thus,

the behavior studies are not just about the behavior itself; rather, the computational

models we built on the behavioral level should also serve as a guide for people who
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are interested in cellular or circuit level descriptions of the problem. Our results show

that in order to understand the behavior data, we have to accept certain hypotheses,

such as non-Gaussian statistics and multiple interacting neural components. We

argue that these hypotheses should be seen as constraints on the relevant nervous

systems, which means whatever the neuron activities are and however the networks

are connected, similar large scale structures as proposed here should emerge. This

is also why behavioral study should be the first step when we try to investigate the

relations between the brain and the behaviors. Building the theory bottom-up from

neurons and networks is usually hard or even impossible, and the large scale concepts

and mathematical models formulated by carefully studying the behavior itself usually

provide more insightful information about what exact the nervous system as a whole

is doing. We hope our results are helpful for neuroscientist and even can be tested

on neuron/circuit recordings in the near future.

One of the hot topics in artificial intelligence (AI) is how to build robots that

behave like humans, which means that the behaviors of robots should roughly follow

the same set of rules as humans’. Thus, what we achieved here might also be used

as some guidance to build new AI systems. One possibility lies at the cascade model

where only one variable φ can learn from the data, and the other variable ψ can only

learn from the first variable φ. This structure might be used to bring stability and

long-term memory to AI systems, since ψ can operate on a much longer timescale. In

addition, we can assume that a specific motor system consists of a group of modules

and different combinations of these modules would allow the motor system to perform

different types of tasks. In this way, for a robotic system, we can have one final output

module φ and a list of hidden modules or units ψi, i = 1, 2, 3, .... All the hidden units

can only learn from φ, and their different combinations should correspond to different

tasks. Thus, we might be able to build some AI systems that can be multi-tasking.

Beside building sensorimotor learning models from a single behavior, we have also
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investigated how a group of behaviors contains individuality information of flies. We

built a simple logistic regression model to show that fly species can be distinguished

in high accuracy by using the behavioral maps as features. This suggests a new way

to look at the evolution purely in the behavioral space without the need of any genetic

information.
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