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Abstract 
 

Evaluating Agreement Among Observers or Methods of  
Measurement for Quantitative Data 

 
By Jeffrey Wiener 

Agreement measures are used to compare measurements of a specific variable 

made by different observers or methods, and to evaluate whether a substantial difference 

exists between these sources of measurement.  Assessing agreement is applicable to 

method comparison or observer reliability studies in both the biomedical and 

psychosocial sciences.  Frequently, a reference method or gold standard exists which is 

considered to be the most accurate of those available. 

First, we explore and evaluate multiple unscaled measures of agreement between 

quantitative measurements by two observers with and without replications.  Two scaled 

coefficients of agreement based on a general disagreement function which makes no 

distributional assumptions are described, one for the case of no applicable reference 

method, and the second for the case where one observer is considered a reference.  We 

develop methods of inference for these coefficients, evaluating them against previously 

developed methods, and also define the asymptotic distribution of the coefficients and 

assess the robustness of the estimation methods.  Next, we extend the described 

coefficients of agreement to the case where a set of two or more observers are selected at 

random from a pool of potential observers.   

Finally, we model agreement using a disagreement function as our outcome 

variable.  The effects of subject-specific covariates are examined.  We apply these 

methods to a behavioral intervention study on medication adherence in HIV-positive 

children and to a carotid stenosis screening method comparison study.
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Chapter 1 

 

Introduction 

 

 Agreement measures are used to compare measurements of a specific variable 

made by different observers or methods, and to evaluate whether a substantial difference 

exists between these sources of measurement.  Assessing agreement is applicable to 

method comparison or observer reliability studies in both the biomedical and 

psychosocial sciences, where performance and consistency of instruments or assays can 

be evaluated.  Since measurement errors exist for all methods of measurement, it is 

necessary to evaluate how reliable a method is before recommending it for use in the 

field.  Frequently, a reference method of measurement known as a gold standard exists 

which is considered to be the most proven and accurate of those available.  One can then 

evaluate the validity of an alternative method by assessing its agreement with the 

reference method.  We use the term observer agreement to represent agreement between 

measurements made by different persons, or by different methods of measurement. 

 An extensive body of research exists on assessing agreement in categorical 

measurements, most notably with the development of the Kappa statistic by Cohen 

(1960) and the weighted kappa statistic (Cohen, 1968).  We focus our investigation on the 

case where measurements are continuous.  Bland and Altman (1986) developed a widely 

used graphical approach to examine agreement between continuous measurements.  

Multiple articles by Lin (1989, 1992, 1997, 2000), Lin and Torbeck (1998), and Lin et al. 
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(2002, 2007) constructed several numerical measures for evaluating agreement between 

continuous measurements.  These numerical measures can be unscaled, measuring 

absolute differences between measurements, or scaled to attain values only between –1 

and 1 for ease of interpretation.  We concentrate our research on evaluating scaled and 

unscaled numerical measures and using them as a basis for developing measures for use 

in the case where agreement between observers is evaluated, with or without replications, 

and where one observer may or may not be considered a reference. 

 Specifically, we plan to focus on the following topics: 

I. Describing a general approach to evaluating agreement between two 

fixed observers with replicated measurements, and developing methods 

of inference for this approach. 

II. Developing methods to extend a general approach to evaluating 

agreement between two observers with replicated measurements to the 

case where observers are selected randomly. 

III. Developing general models for estimating unscaled measures of 

agreement and modeling them as a function of covariates.  

                 

 Chapter 2 concentrates on describing existing statistical methods for evaluating 

agreement between two observers, with no replicated measurements.  Here, we describe 

previously developed measures for assessing agreement between a single observer and a 

second observer which may or may not be considered a reference.  Through simulation 

studies, we evaluate multiple ways of computing point and variance estimates for these 

measures for use in more advanced methods developed in later chapters. 
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 In Chapter 3, we focus on developing methods of inference for a general approach 

to evaluating agreement between two observers with replicated measurements, thereby 

addressing topic I.  We accomplish this by comparing multiple interval estimates for 

these measures, and describing the behavior of these measures through simulation studies 

and application to a real data set. 

 Chapter 4 focuses on extending the general approach to evaluating agreement 

developed in Chapter 3, to the case where observers are selected at random from a pool 

of potential observers.  Methods of inference are developed and evaluated through a 

simulation study. 

 Chapter 5 focuses on addressing topic III, by developing statistical models for 

estimating measures of agreement in data with a single measurement, and describing its 

behavior with real data sets.  We also propose a model which expresses observer 

agreement as a function of covariates. 

 The data sets to be used in this dissertation to illustrate the methods developed 

and evaluated are as follows: 

 Systolic Blood Pressure Data (Bland and Altman (1999)): 

 Systolic blood pressure was measured on 85 subjects by two human observers 

using a sphygmomanometer and by a semi-automatic blood pressure monitor.  Three 

replications were made in quick succession with each of the three methods on each 

subject. 

 Carotid Stenosis Data (Barnhart and Williamson (2001)): 

 This data was collected in a carotid stenosis screening study funded by the 

National Institutes of Health (NIH).  The goal of the study was to compare two different 



4 

methods using magnetic resonance angiography (MRA) for non-invasive screening of 

carotid artery stenosis with the current gold standard, an invasive intra-arterial angiogram 

(IA).  Stenosis measurements using both methods and the gold standard were conducted 

on 55 patients separately on the left and right carotid arteries by each of three 

radiologists. 

 Pediatric Impact Adherence Data (Lee et al. (2006)): 

 The Pediatric Impact study is a behavioral intervention to improve adherence to 

antiretroviral medications in HIV-positive children ages 5-12, funded by the Centers for 

Disease Control and Prevention (CDC).  The study collected multiple measures of 

adherence over the course of the intervention.  Our interest is in baseline 1-month 

adherence measures collected before the start of the intervention.  At baseline, the 

caregiver for each child and a member of the clinic’s care team were separately asked to 

estimate the percent of prescribed medication doses taken over the past month.  These 

two adherence measures can then be compared to the percent of medication doses taken 

over the same month as measured by the Medication Event Monitoring System (MEMS) 

caps, considered to be the gold standard for measuring adherence. 
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Chapter 2 

 

Approaches for Evaluating Agreement Between Two 

Observers 

 

2.1 Introduction and notation 

 In this chapter we review measures of agreement between quantitative 

measurements by two observers without replications.  The values of the measurements 

for the two observers are denoted by (X) and by (Y).  The data therefore consist of n pairs 

of measurements (X,Y) where n is the number of subjects evaluated by the observers.  

The differences between the measurements in a pair are denoted by XYD −= .  In some 

cases, one of the two observers may be considered a reference method, or “gold 

standard”.  In these cases, (X) will denote measurements using the reference method.  We 

assume X and Y have continuous distributions, with means xμ and yμ , 

variances and , and covariance2
xσ

2
yσ xyσ .  Even when X is a gold standard, we assume 

that it is measured with error. 

 Bland and Altman (1986) describe a graphical method for evaluating the 

agreement between X and Y.  This approach involves constructing a Bland and Altman 

plot by plotting the difference D against the mean of each measurement pair, 2/)( YX + .  

One can assess agreement between the two observers by determining an interval which 

includes a given (high) proportion of the difference D.  Although this approach is quite 

helpful in uncovering systematic biases in the data and spotting outliers, it can be difficult 
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to make a firm decision on whether the level of agreement is suitable enough to validate 

an alternative method. 

 We devote this chapter to examining the numerical agreement measures 

developed and described by Lin (1989, 1992, 1997, 2000), Lin and Torbeck (1998), Lin 

et al. (2002), and Barnhart, Haber, and Lin (2007), as they are most appropriate for 

extending to replicated measurements explored in later chapters. 

 

 

2.2 Existing methods 

2.2.1 Mean Squared Deviation (MSD) 

 The mean squared deviation (MSD) is defined as 

   .      (2.1) )( 22 DEMSD =ε=

This statistic evaluates the squared deviation from the identity line, and can be expressed 

in terms of the distribution moments as 

   .    (2.2) yxxyxy σ−σ+σ+μ−μ=ε 2)( 2222

Using this definition, we can most obviously estimate the MSD by plugging in the 

common sample estimates for means and variances where 

   yxxyA sssxye 2)( 2222 −++−= .    (2.3) 

Lin (2000) demonstrates that when X and Y are normally distributed,  has an 

asymptotic normal distribution with a mean of , and, as indicated in Lin et al. 

(2002), a variance of  

)ln( 2
AeW =

)ln( 2ew =
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2

]/)(1[2 44
2

1 −

−−
=

n
yx

A

εμμ
σ .     (2.4) 

The denominator of this variance estimate is altered from the previous article to reduce 

bias when the sample size is small, as Lin (2000) uses 

   
1

]/)(1[2 44
2

2 −

−−
=

n
yx

A

εμμ
σ .     (2.5) 

Both variance estimates will be evaluated through a simulation study. 

An alternative point estimate suggested by Lin et al. (2002) to reduce bias when 

estimating w , is 

  ∑
=

−
−

=
n

i
iiB xy

n
e

1

22 )(
1

1 .     (2.6) 

It is not clear why the use of n –1 as the denominator for this estimate is appropriate, as a 

more intuitive estimate would simply divide by n: 

   ∑
=

−=
n

i
iiC xy

n
e

1

22 )(1 .     (2.7) 

Hutson et al. (1998) also uses the equation in (2.7) to estimate MSD when developing a 

more complex measure based on this estimate. 

 

 

2.2.2 Intraclass Correlation Coefficient (ICC) 

 The intraclass correlation coefficient (ICC) has traditionally been used to evaluate 

agreement between continuous measurements.  The ICC was first defined by Galton 

(1889) as a correlation between measurements of the same class, and was later defined by 

Fisher (1925) as the ratio of between sample variance and total (between + within 
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sample) variance under an analysis of variance (ANOVA) model.  It is commonly used in 

the psychosocial sciences to measure observer reliability under classical test theory (Lord 

and Novick, 1968).  

 When comparing agreement between replications by a single observer, one can 

define the ICC using a one-way random effects model (Fleiss, 1986), defined as: 

   ikiikY εαμ ++=       (2.8) 

where  and .  Here, i represents the subject, k represents the 

replication, and 

),0(~ 2
ασα Ni

ik

),0(~ 2
εσε Nijk

ε  represents the measurement error.  Each observer is assumed to take 

K measurements on each subject, and K=1 indicates no replication.  The ICC for this 

model is 

   22

2

1
εα

α

σσ
σ
+

=ICC  .     (2.9) 

When comparing replicated measurements by the same observer, this coefficient is 

known as the reliability coefficient. 

 For the case where two or more observers are being compared, the ICC can be 

defined using a two-way random effects model or mixed model (Fleiss, 1986; McGraw 

and Wong, 1996), identified as: 

    ikjiijkY εβαμ +++=      (2.10) 

where  represents the fixed or randomly selected observer, , and 

the rest of the notation is the same as for (2.8).  The ICC for agreement for this model is  

Jj ,...,1= ),0(~ 2
βσβ Nj

   222

2

2
εβα

α

σσσ
σ

++
=ICC            .    (2.11) 



9 

If the observer is treated as a fixed effect in this model, is defined as 

.    

2
βσ

∑ =
−=

J

j j J
1

22 )1/(βσ β

When it is appropriate to model observer-subject interaction, the two-way model 

can be defined as: 

   ikijjiijkY εγβαμ ++++=      (2.12) 

where , and k once again represents the replicated measurement by 

observer j on subject i.  Now when the observer is considered a random effect, the ICC 

will be calculated as 

),0(~ 2
γσγ Nij

   2222

2

3
εγβα

α

σσσσ
σ

+++
=ICC  .    (2.13) 

If the observer is treated as a fixed effect, is defined as 2
βσ ∑ =

−=
J

j j J
1

22 )1/(βσ β , and the 

ICC is calculated as 

   2222

22

3

)1/(

εγβα

γα

σσσσ
σσ

+++

−−
=

J
ICC  .    (2.14) 

 The ICC is defined under the assumption that variances of measurements are the 

same over multiple observers.  This assumption is not always reasonable, and if not met, 

can underestimate agreement. The ICC is also quite sensitive to between-subject 

variation.  Haber and Barnhart (2006) present the concept of observer relational 

agreement, which derives the ICC’s without making the restrictive ANOVA assumptions.  

We only consider the ICC’s developed to measure observer agreement, as defined in 

McGraw and Wong (1996). 
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2.2.3 Concordance Correlation Coefficient (CCC) 

 The concordance correlation coefficient (CCC), denoted by cρ , was introduced 

by Lin (1989) for fixed observers, and is computed by standardizing the MSD as 

   2222

2

)(
2

0|
1

yxyx

xy
c μμσσ

σ
ρε
ερ

−++
=

=
−= ,   (2.15) 

where ρ  is the Pearson correlation coefficient.  The CCC scales the MSD along the 45° 

degree line, therefore measuring the degree of variation from this line, effectively 

converting the MSD into a correlation coefficient.  It ranges from -1 to 1, with a value of 

1 indicating perfect agreement, a value of 0 indicating no agreement, and a value of -1 

indicating perfect reverse agreement. 

 The CCC can be expressed as the product of an accuracy component and a 

precision component.  The accuracy component measures how close the best fit line is to 

the 45° line, and the precision component measures how close the data points are to the 

45° line.  The precision component is equivalent to the Pearson correlation coefficient 

( ρ ), and the accuracy component is defined as  

   

xy

xy

y

x

x

y
a

σσ
μμ

σ
σ

σ
σ

χ 2)(
2

−
++

= .     (2.16) 

Then ac χρρ ⋅= .  The CCC can be estimated by plugging in common sample estimates 

for means, variances, and the Pearson correlation coefficient as 

   222 )(
2

xyss
srs

r
xy

xy
c −++
= .     (2.17) 
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 Lin et al. (2002) recommends the CCC over the ICC when assessing agreement 

between continuous variables, since the ICC does not have meaningful components of 

accuracy and precision.  However, similar to the ICC, the CCC is also sensitive to 

between-subject variation.  Barnhart and Williamson (2001) developed a generalized 

estimating equations (GEE) approach to model CCC, which can effectively adjust the 

agreement measure for covariates.  If there are no replicated observations, Carrasco and 

Jover (2003) showed that the ICC defined in (2.11) is equal to the CCC even when the 

ANOVA model assumptions are not correct. 

 To yield the best normal approximation, one uses Fisher’s Z-transformation to 

define a measure as a function of the CCC estimate in (2.17),  

   )
1
1log(

2
1

c

c
XY r

rZ
−
+

=    .      (2.18) 

Lin (1989) shows this measure to have an asymptotic normal distribution with a mean of 

 and a variance of 2/)]1/()1log[( cc ρ−ρ+

  ]
)1(2)1(

)1(2
)1(
)1(

[
2

1
222

44

22

32

22

22
2

ρρ
ρυ

ρρ
ρρυ

ρρ
ρρ

σ
c

c

c

cc

c

c
Z n −

−
−
−

+
−
−

−
=   (2.19) 

where 

   
xy

xy

σσ

μ−μ
=υ

2
2 )(

  ,      (2.20) 

assuming that  is the sample concordance correlation coefficient of paired samples 

from a bivariate normal distribution. 

cr

 

 

2.2.4 Total Deviation Index (TDI) 
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 The total deviation index (TDI) developed by Lin (2000) is defined as the 

cutpoint, κ, where a set proportion, π, of the absolute values of D fall below this cutpoint.  

  The TDI can be estimated simply by taking the (100 · π)th percentile of the 

absolute values of D.  If we assume the distribution of D to be normal, Lin (2000) shows 

that the TDI can be computed as the inverse of a cumulative noncentral chi-squared 

distribution, but contends that inference based on this estimate is intractable.   Lin et al. 

(2002) suggests approximating the TDI with the following estimate: 

   ||)
2

11(1 επκπ
−

−Φ= −      (2.21) 

where ·) is the inverse cumulative normal distribution and (1−Φ ε  is estimated by 

replacement with an appropriate estimate of MSD described in section 2.2.1.  Inference 

on this estimate can then be performed using the method proposed for the MSD.  Lin lists 

a series of boundaries for 22 σμ  (computed for D) based on differing values of π under 

which this approximation is valid.  These boundaries seem somewhat limiting, and will 

restrict how often this estimate can be used.  Choudhary and Nagaraja (2007) proposed 

an exact test for inference on the TDI for data with a small sample size and a bootstrap 

test for data with a moderate sample size. 

 

 

2.2.5 Coverage Probability (CP) 

 The Coverage Probability (CP), proposed by Lin et al. (2002), does the reverse of 

the TDI and computes a value of π for a given value of κ.  Therefore, the CP is 

represented as 
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   )|(| κ<−=κ XYPCP .     (2.22) 

 Again assuming the distribution of D to be normal, Lin suggests estimating the 

CP with 

   ]
ˆ

[]
ˆ

[
d

d

d

d
k ss

p μκμκ −−
Φ−

−
Φ= ,    (2.23) 

where xyd −=μ̂  and )2(
3

222
yxxyd sss

n
ns −+
−

= .  The variance of the estimate in 

(2.21) can then be computed using 

 22 )]()({[
3

1

d

d

d

d
p n σ

μκ
σ

μκ
σ

−
Φ−

−−
Φ

−
=  

  )1(})]()([
2
1

2
2

n
O

d

d

d

d

d

d

d

d +
−−

Φ
+

+
−

Φ
−

+
σ

μκ
σ
μκ

σ
μκ

σ
μκ

,  (2.24) 

which is estimated by plugging in dμ̂  and  for 2
ds dμ  and , respectively.   The logit 

transformation of (2.23) is recommended for inference, since CP is a probability bounded 

by 0 and 1. 

2
dσ

 The CP can also be estimated by computing the simple relative frequency of 

values of D  in the sample falling below a specified κ.  This method removes the 

assumption of normality, which may restrict usage of (2.23) in practice. 

 

 

2.3 Evaluation of existing methods 

 We performed a simulation study by generating 1,000 samples of sizes 25, 50, 

and 100 from each of two bivariate normal distributions and a scenario where both X and 

Y were exponentially distributed.  Estimates of MSD were computed for (2.3), (2.6), and 
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(2.7) and averaged over all simulations.  Variance estimates using both (2.4) and (2.5) 

were computed and used to compute standard normal 95% confidence intervals, which 

were then used to compute overall coverage probabilities.   

The results of these simulations are presented in Tables 2.1 and 2.2.   The MSD 

estimates are comparable with larger sample sizes, but the bias is lowest using 
 
when n 

= 25, suggesting this estimate performs best with small sample sizes.  Using e
 
as our 

estimate, the coverage probabilities are closer to 0.95 using the variance estimate in (2.5) 

(especially evident with the latter two distributions), implying this is the best combination 

to use for inference on the MSD. 

2
Ce

2
C

 Using the same simulations used to evaluate estimates of the MSD, we calculated 

averages over simulations for both the simple percentile estimate and Lin’s normal 

approximation estimate (2.21) for the TDI over three different values of π, and used a 

large sample percentile for comparison.  The results of these simulations are presented in 

Table 2.3.  The percentile estimate performs well for both normal and non-normal data, 

but is less accurate in small samples with larger values of π.  The normal approximation 

estimate performs well for normal data and with better precision than the percentile 

estimate, but is not appropriate when the data is not normal.  This will limit its usage if 

the normality assumption is violated.   

Figure 2.1 shows the range of TDI percentile estimates over all values of π for 

each of the three simulated distributions where n = 100.  For each simulation, the TDI 

estimate increases gradually over increasing values of π, with a sharp spike upward after 

π = 0.90.  This indicates that the TDI estimates for values of π greater than 0.90 are 

highly variable. 
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 Once again, the same three simulated distributions were used to compute 

estimates of CP for differing values of κ using Lin’s normal distribution estimate for CP 

(2.21) and the simple relative frequency estimate, and averaged over all 1,000 

simulations.   Variances for each estimate were also calculated, using the equation in 

(2.22) for Lin’s estimate and the binomial variance formula for the relative frequency 

estimate.  The results of the simulations are presented in Tables 2.4 and 2.5.  When 

comparing against a large sample relative frequency, the relative frequency estimate 

performs well over all distributions and values of n and κ.   The estimate in (2.21) 

performs quite poorly for small sample sizes, even with normally distributed data, and as 

expected, is not useful for non-normal data.  Using coverage probabilities computed from 

standard normal 95% confidence intervals, we conclude that both the variance in (2.22) 

and the binomial variance are too small when n is small, but are appropriate with larger 

sample sizes.  There also seem to be problems computing variances when the value of κ 

is high since the coverage probabilities are often very low. 

 Figure 2.2 plots relative frequency estimates of CP across multiple values of κ for 

each of the three simulated distributions when n = 100.  CP increases more slowly with 

higher values of κ when the correlation between X and Y is lower, which is appropriate 

given that we expect larger values of D.  This demonstrates that the strategy for choosing 

κ will depend greatly on the data itself, and prior calculations of correlation or agreement 

may be necessary. 

 

 

2.4 Discussion 
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 Each of the agreement measures examined in this chapter may be useful 

depending on the needs of a study.   

 As described by Lin et al. (2002), the asymptotic power (i.e. the asymptotic 

statistical power to conclude that good agreement exists using a given measure) of CCC 

is inferior to that of MSD and TDI, and is dependent on between-subjects variation, but 

can be much easier to interpret and compare across studies given the range is always the 

same.   CP and TDI are preferable over CCC for making statistical inferences using a 

measure of agreement, given their higher power.  The CCC also can be separated into 

measures of accuracy and precision, which are helpful in determining the reasons for lack 

of agreement.  This measure has been featured quite heavily in recent statistical literature, 

with numerous extensions of it beyond the single-pair agreement case. 

 The MSD is more difficult to interpret, given it depends heavily on the range of 

the data, but will be more useful in developing more general measures later in this 

dissertation since one can easily compare two MSD’s measured on the same scale.  Two 

similar alternative measures to the MSD were introduced in Haber and Barnhart (2008).  

These include the mean absolute difference (MAD), defined as , and 

the mean relative difference (MRD), defined as

|| XYEMAD −=

)/| XX(| YEMRD −= . The TDI is 

intuitive and much easier to interpret, but inferential methods will be difficult with data 

that is not normally distributed given the difficulty in working theoretically with 

percentiles.  The CP, although intuitively clear, will require early examination of the data 

to select an appropriate κ, and estimation is much less accurate for small sample sizes and 

non-normal distributions.



 

 
Table 2.1:  Simulation results for MSD estimates based on 1000 samples. 

e   2
A e2

B e2
C 

Distribution n MSD Mean Bias MSE Mean Bias MSE Mean Bias MSE 
Bivariate Normal 25 0.842 0.870 0.028 0.061 0.873 0.031 0.061 0.838 -0.004 0.056 

mean = (0.15,0)  ρ = 0.60 50  0.848 0.006 0.028 0.849 0.007 0.028 0.832 -0.010 0.027 
variance = (1.15, 1/1.15) 100  0.845 0.003 0.015 0.845 0.003 0.015 0.837 -0.005 0.014 

Bivariate Normal 25 0.142 0.147 0.005 0.002 0.148 0.006 0.002 0.142    0.0003 0.002 
mean = (0.15,0)  ρ = 0.95 50  0.143 0.001 0.001 0.143 0.001 0.001 0.141 -0.001 0.001 
variance = (1.15, 1/1.15) 100  0.143 0.001   0.0003 0.143 0.001   0.0004 0.141 -0.001   0.0003 

X ~ Exp(0.15) 25 0.131 0.134 0.003 0.013 0.135 0.004 0.014 0.130 -0.002 0.013 
Y|X ~ Exp(x + 0.15) 50  0.132 0.001 0.007 0.133 0.001 0.006 0.130 -0.001 0.006 

 100  0.135 0.004 0.004 0.135 0.004 0.004 0.134 0.003 0.004 
 
 
 
 
 
Table 2.2:  Simulation results for MSD coverage probabilities based on 1000 samples.  Coverage probabilities computed for 95% confidence intervals 
using indicated s2 estimate of σ2

W. 
    e e2

A e2
B 2

C 
Distribution n σ2

A1 σ2
A2 Var(w) Cover. 

Prob. 1 
Cover. 
Prob. 2 

Var(w) Cover. 
Prob. 1 

Cover. 
Prob. 2 

Var(w) Cover. 
Prob. 1 

Cover. 
Prob. 2 

Bivariate Normal 25 0.087 0.083 0.083 0.954 0.951 0.084 0.954 0.951 0.084 0.955 0.944 
mean = (0.15,0)  ρ = 0.60 50 0.042 0.041 0.041 0.947 0.947 0.041 0.947 0.947 0.041 0.943 0.941 
variance = (1.15, 1/1.15) 100 0.020 0.020 0.021 0.949 0.949 0.021 0.949 0.949 0.021 0.946 0.944 

Bivariate Normal 25 0.085 0.081 0.081 0.951 0.949 0.081 0.952 0.949 0.081 0.754 0.944 
mean = (0.15,0)  ρ = 0.95 50 0.041 0.040 0.039 0.949 0.947 0.039 0.949 0.947 0.039 0.677 0.943 
variance = (1.15, 1/1.15) 100 0.020 0.020 0.020 0.951 0.951 0.020 0.954 0.952 0.020 0.634 0.948 

X ~ Exp(0.15) 25 0.084 0.081 0.416 0.604 0.598 0.416 0.609 0.601 0.416 0.528 0.578 
Y|X ~ Exp(x + 0.15) 50 0.040 0.040 0.243 0.549 0.545 0.243 0.553 0.547 0.243 0.457 0.532 

 100 0.020 0.020 0.149 0.513 0.511 0.149 0.514 0.513 0.149 0.421 0.508 
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Table 2.3:  Simulation results for TDIπ based on 1,000 samples. 

  π = 0.80 π = 0.85 π = 0.90 
Distribution n Large 

Sample 
TDIπ 

percentile* 

Mean (se) 
TDIπ 

percentile 

Mean 
(se) κπ 

Large 
Sample 
TDIπ 

percentile 

Mean (se) 
TDIπ 

percentile 

Mean 
(se) κπ 

Large 
Sample 
TDIπ 

percentile 

Mean (se) 
TDIπ 

percentile 

Mean 
(se) κπ 

Bivariate Normal 
mean = (0.15,0)  ρ = 0.60 

25 1.173 1.144 
(0.200) 

1.161 
(0.164) 

1.321 1.272 
(0.217) 

1.305 
(0.185) 

1.507 1.433 
(0.234) 

1.491 
(0.211) 

variance = (1.15, 1/1.15) 50  1.154 
(0.142) 

1.163 
(0.116) 

 1.292 
(0.153) 

1.307 
(0.131) 

 1.466 
(0.177) 

1.493 
(0.149) 

 100  1.160 
(0.102) 

1.169 
(0.084) 

 1.298 
(0.115) 

1.313 
(0.095) 

 1.480 
(0.129) 

1.501 
(0.108) 

Bivariate Normal 
mean = (0.15,0)  ρ = 0.95 

25 0.485 0.472 
(0.082) 

0.479 
(0.067) 

0.544 0.526 
(0.089) 

0.538 
(0.075) 

0.620 0.591 
(0.097) 

0.615 
(0.086) 

variance = (1.15, 1/1.15) 50  0.475 
(0.059) 

0.478 
(0.047) 

 0.532 
(0.064) 

0.537 
(0.052) 

 0.602 
(0.070) 

0.614 
(0.060) 

 100  0.480 
(0.042) 

0.481 
(0.034) 

 0.537 
(0.045) 

0.540 
(0.038) 

 0.609 
(0.053) 

0.617 
(0.044) 

X ~ Exp(0.15) 
Y|X ~ Exp(x + 0.15) 

25 0.336 0.326 
(0.095) 

0.434 
(0.155) 

0.409 0.394 
(0.117) 

0.488 
(0.174) 

0.524 0.493 
(0.154) 

0.558 
(0.199) 

 50  0.330 
(0.068) 

0.446 
(0.119) 

 0.398 
(0.083) 

0.502 
(0.134) 

 0.501 
(0.113) 

0.573 
(0.153) 

 100  0.333 
(0.050) 

0.459 
(0.094) 

 0.405 
(0.061) 

0.516 
(0.105) 

 0.515 
(0.085) 

0.589 
(0.120) 

* Large sample percentiles based on simulated sample of n=100,000. 
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Figure 2.1:  TDI percentile estimates averaged over 1000 simulations with n=100, for multiple values of π. 
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Table 2.4:  Simulation results for CPκ based on 1,000 samples. 
  κ = 0.25 κ = 0.50 κ = 1.00 

Distribution n Large 
Sample 

CPκ  
rel. freq. 

Mean 
CPκ  

rel. freq. 

Mean  
pκ 

Large 
Sample 

CPκ  
rel. freq.  

Mean 
CPκ  

rel. freq. 

Mean  
pκ 

Large 
Sample 

CPκ  
rel. freq.  

Mean 
CPκ  

rel. freq. 

Mean  
pκ 

Bivariate Normal 25 0.213 0.215 0.205 0.415 0.412 0.395 0.725 0.727 0.696 
mean = (0.15,0)  ρ = 0.60 50  0.216 0.211  0.417 0.406  0.726 0.712 
variance = (1.15, 1/1.15) 100  0.215 0.213  0.414 0.411  0.727 0.718 

Bivariate Normal 25 0.491 0.488 0.468 0.813 0.815 0.787 0.993 0.992 0.985 
mean = (0.15,0)  ρ = 0.95 50  0.492 0.482  0.816 0.804  0.993 0.990 
variance = (1.15, 1/1.15) 100  0.492 0.486  0.815 0.809  0.993 0.991 

X ~ Exp(0.15) 25 0.714 0.719 0.538 0.892 0.894 0.834 0.975 0.977 0.981 
Y|X ~ Exp(x + 0.15) 50  0.717 0.528  0.895 0.836  0.976 0.987 

 100  0.716 0.516  0.893 0.831  0.975 0.989 
 
 
 
Table 2.5:  Simulation results for CPκ coverage probabilities for 95% confidence intervals based on 1,000 samples. 

  κ = 0.25 κ = 0.50 κ = 1.00 
Distribution n Cover. Prob. 

CPκ ± 1.96  
(CPκ* (1- CPκ))/n 

Cover. Prob. 
2pκ ± 1.96 ˆ κσ  

Cover. Prob. 
CPκ ± 1.96  

(CPκ* (1- CPκ))/n 

Cover. Prob. 
2pκ ± 1.96 ˆ κσ  

Cover. Prob. 
CPκ ± 1.96  

(CPκ* (1- CPκ))/n 

Cover. Prob. 
2pκ ± 1.96 ˆ κσ  

Bivariate Normal 25 0.914 0.843 0.905 0.959 0.916 0.967 
mean = (0.15,0)  ρ = 0.60 50 0.927 0.933 0.941 0.969 0.932 0.975 
variance = (1.15, 1/1.15) 100 0.950 0.973 0.942 0.982 0.950 0.980 

Bivariate Normal 25 0.930 0.945 0.844 0.975 0.185 0.995 
mean = (0.15,0)  ρ = 0.95 50 0.954 0.961 0.910 0.991 0.312 0.999 
variance = (1.15, 1/1.15) 100 0.950 0.973 0.917 0.987 0.514 1.000 

X ~ Exp(0.15) 25 0.934 0.445 0.936 0.702 0.452 0.386 
Y|X ~ Exp(x + 0.15) 50 0.952 0.246 0.907 0.624 0.689 0.339 

 100 0.947 0.059 0.911 0.547 0.914 0.271 
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Figure 2.2:  CP relative frequency estimates averaged over 1000 simulations with n=100, for multiple values of κ. 
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Chapter 3 

 

A General Approach for Evaluating Agreement Between Two 

Observers with Replicated Measurements 

 

3.1 Introduction and notation 

 The previous chapter described several unscaled coefficients of agreement, such 

as the MSD and the TDI, and several scaled coefficients of agreement, such as different 

versions of the ICC and the CCC.  Here, we seek to describe a general approach to 

developing a scaled measure of agreement which can be used on agreement data recorded 

by two observers with replications.  The ICC’s are usually determined by an ANOVA 

model which makes restrictive assumptions, such as equal error variance for all observers 

compared.  The CCC compares the MSD between observers to that expected under 

“chance agreement”, or independence between observers.  Haber and Barnhart (2006) 

show that independence or a lack of correlation between observers does not always imply 

a lack of agreement.  This chapter concentrates on the general inter-observer coefficient 

developed by Haber and Barnhart (2008), which is not bound by the assumption of 

normality, and can be used when one observer is considered a reference, or when neither 

observer is considered a reference. 

 We once again denote the two observers by (X) and (Y), with (X) referring to the 

reference method if it exists.  The data will consist of multiple replications of both (X) 
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and (Y) for n subjects, with replications denoted as  etc. and pairs of 

measurements comparing any two unmatched replications as . 

,,, 321 XXX

( ), XX ′

 

 

3.2 Coefficients of Individual Agreement 

The objective is to describe a coefficient of agreement which lies close to one 

when the two methods are in good agreement, and lies close to zero when the two 

methods are in poor agreement.  Barnhart et al. (2007) and Haber and Barnhart (2007) 

developed two such methods based on the concept of a disagreement function.  This 

concept is closely linked to the concept of individual bioequivalence in bioequivalence 

studies (Anderson and Hauck, 1990).  One coefficient applies to the case of no applicable 

reference method, and the second to the case when one observer is considered a 

reference. 

The disagreement function is defined as , where X and Y are 

measurements made by two observers on the same subject, and it must satisfy the 

following two conditions: 

),( YXG

1)  0),( ≥YXG

2)  increases as the disagreement between X and Y increases. ),( YXG

We denote by  the disagreement between two replicated measurements made 

by the same observer on the same subject.  Previously described unscaled measures of 

agreement such as the MSD and TDI qualify as appropriate disagreement functions. 

),( XXG ′

 The proposed coefficients of agreement seek to compare the disagreement 

between measurements made by the same observer with the disagreement between 
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measurements made by different observers.  Two different observers with a disagreement 

function similar to that between replicated measurements by the same observer should 

have good agreement, and a coefficient of agreement close to one. 

 For the case that neither of the two observers are considered a reference, the 

coefficient of individual agreement is defined as 

   
),(

2/)],(),([
YXG

YYGXXGN ′+′
=ψ .    (3.1) 

Here, at least two replications for each observer are necessary to define Nψ . 

 For the case that one observer is considered a reference, the coefficient of 

individual agreement is defined as 

   
),(
),(

YXG
XXGR ′

=ψ .      (3.2) 

Replicated measurements are only required for the reference observer to define Rψ .  The 

values of Nψ  and Rψ should usually fall between 0 and 1, although values above 1 are 

possible in certain cases.  The coefficient is interpreted as representing poor agreement 

between observers when it is closest to 0, and agreement gets better as the coefficient 

increases.  A value close to or exceeding 1 indicates that agreement between observers is 

very good, since the disagreement between observers is similar to the disagreement 

between replicated measurements by the same observer. 

 To estimate Nψ  and Rψ , one must only plug in appropriate estimates for the 

chosen disagreement function, such as those defined for MSD and TDI in Chapter 2.  For 

example, to estimate Nψ using the MSD as the disagreement function one can use 
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),(ˆ

2/)],(ˆ),(ˆ[ˆ
YXDSM

YYDSMXXDSMN ′+′
=ψ      ,                                (3.3)  

where can be calculated using the estimate, e2, defined in (2.7). DSM ˆ

 As discussed in Chapter 2, the log estimate of the MSD, , has 

an asymptotic normal distribution with the variance estimate specified in (2.5), assuming 

an underlying bivariate normal distribution.  The log of the MSD estimates in (3.3) will 

be jointly asymptotically normal, and their variance estimates taken from the previous 

chapter can be denoted as: 

)),(ˆln( YXDSMw =

              
1

]),(/)(1[2
))),(ˆ(ln(

44

−

−−
=

n
YXMSD

YXDSMVar yx μμ
   ,               (3.4) 

              
1

]),(/)(1[2
))),(ˆ(ln(

44

−
′−−

=′ ′

n
XXMSD

XXDSMVar xx μμ
  . 

The last expression reduces to 
1

]),(/1[2))),(ˆ(ln(
4

−
′

=′
n

XXMSDXXDSMVar  since 

xx ′= μμ . 

 Using the delta method, we can extend the asymptotic properties of the estimate 

in (3.3) to show that is also asymptotically normal with a mean of . )ˆln( Nψ )ln( Nψ

  

Theorem 3.1.  As , ∞→n ))ln()ˆ(ln( NNn ψψ −  is asymptotically normal with mean 0 

and a variance of  

))],(ˆ(ln([)
),(),(

),(())ˆ(ln( 2 XXDSMVar
YYMSDXXMSD

XXMSDVar N ′
′+′

′
=ψ  

))),(ˆ(ln())],(ˆ(ln([)
),(),(

),(( 2 YXDSMVarYYDSMVar
YYMSDXXMSD

YYMSD
+′

′+′
′

+  
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))),(ˆln()),,(ˆ(ln()
),(),(

1))(,())(,((2 2 YYDSMXXDSMCov
YYMSDXXMSD

YYMSDXXMSD ′′
′+′

′′+

)))],(ˆln()),,(ˆ(ln()[
),(),(

),(2( XXDSMYXDSMCov
YYMSDXXMSD

XXMSD ′
′+′

′
−  

)))],(ˆln()),,(ˆ(ln()
),(),(

),(2( YYDSMYXDSMCov
YYMSDXXMSD

YYMSD ′
′+′

′
−                       (3.5) 

Theorem 3.2.  As , ∞→n ))ln()ˆ(ln( RRn ψψ −  is asymptotically normal with mean 0 

and a variance of 

  ))),(ˆ(ln())),(ˆ(ln())ˆ(ln( YXDSMVarXXDSMVarVar R +′=ψ

                        .                                (3.6) ))),(ˆln()),,(ˆ(ln(2 YXDSMXXDSMCov ′−

 

Proof:   

 The asymptotic distribution of where MSD is used as the disagreement 

function, 

)ˆln( Rψ

                       
),(ˆ
),(ˆ

ˆ
YXDSM
XXDSMR ′

=ψ     ,                                                              (3.7) 

is much simpler to specify.  Once again using the delta method, is asymptotically 

normal with mean of and the variance specified in (3.6). 

)ˆln( Rψ

)ln( Rψ

 To estimate the variances in (3.5) and (3.6), the estimated variances 

, , and can be calculated 

using the equations in (3.4).  The covariance Cov is 

assumed to be 0, since we can assume intraobserver disagreement is independent between 

observers.  The covariance  is more complicated to 

compute.  We use a technique similar to that used by Hutson et al. (1998) when defining 

))),(ˆ(ln( YXDSMVar ))),(ˆ(ln( XXDSMVar ′

,(ˆ(ln( YXDSMCov

))),(ˆ(ln( YYDSMVar ′

ln()),,(ˆ(ln( MXXDSM ′

))),(ˆln( XXDSM ′

))),(ˆ YYDS ′

)),
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the asymptotic distribution of a measure of relative agreement.  First, we define our 

estimates in the form: 

  )2ln(),,,,()),(ˆln( 42154321 zzzzzzzzgYXDSM −+==

              , )2ln(),,,,()),(ˆln( 53254321 zzzzzzzzgXXDSM −+==′

where )1,1,1,1,1(),,,,( 222
54321 ∑∑∑∑∑ ′′== iiiiiii YX

n
YX

n
X

n
X

n
Y

n
zzzzzz . 

We use the theory of functions of asymptotically normal vectors (Serfling (1980)), to 

define ),,,,()( 101110002020200 μμμμμ ′′′′=zE , where rstμ′  represents the trivariate moment 

∫ ∫ ∫
∞

∞−

∞

∞−

∞

∞−
′=′ dFxxy tsr

rstμ .  The partial derivatives of our estimates with respect to z are   

 ))()],(ˆ[ln(),...,()],(ˆ[ln((
51

zzzzd E
z

YXDSME
z

YXDSM
=

∂
∂

=
∂

∂
=  

  )0,
2

2,0,
2

1,
2

1(
110020200110020200110020200 μμμμμμμμμ ′−′+′

−
′−′+′′−′+′

=  

and  ))()],(ˆ[ln(),...,()],(ˆ[ln((
51

zzzzh E
z

XXDSME
z

XXDSM
=

∂
′∂

=
∂

′∂
=  

  )
2

2,0,
2

1,
2

1,0(
101002020101002020101002020 μμμμμμμμμ ′−′+′

−
′−′+′′−′+′

= . 

We can define the variance-covariance matrix of z as 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′−′
′′−′′−′
′′−′′′−′′−′
′′−′′′−′′′−′′−′
′′−′′′−′′′−′′′−′′−′

=Σ

2
101202

101110211
2

110220

101002103002110112
2

002004

101020121020110130002020022
2

020040

101200301110200310002200202020200220
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200400

μμ
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Now, the covariance can be calculated as 
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)())),(ˆln()),,(ˆ(ln( 5154143132121111 σσσσσ hhhhhdXXDSMYXDSMCov ++++=′Σ=′ hd  

                                 )( 5254243232221212 σσσσσ hhhhhd +++++  

                                 )( 5354343332321313 σσσσσ hhhhhd +++++  

                                 )( 5454443432421414 σσσσσ hhhhhd +++++  

                                 )( 5554543532521515 σσσσσ hhhhhd +++++        , 

where ijσ  is the corresponding element of Σ . 

 

 

3.3     Methods of Inference for the Coefficients of Individual Agreement 

using the MSD 

  We now introduce three methods for estimating the standard errors of the 

estimated s'ψ . 

 

3.3.1    Method A (Existing method 1)  – assuming independence between estimated   

            mean square errors 

 The most commonly used disagreement function is the mean squared deviation 

(MSD), defined in (2.1).  Using MSDG = , we will estimate the standard errors of the 

estimates of both Nψ  and Rψ using multiple approaches. 

 In the first approach, developed by Haber (personal communication), we do not 

make any distributional assumptions about  and , except that the first two moments 

exist.  We define  as the number of replications for X, and  as the number of 

replications for Y.  Define 

iX iY

1K 2K
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    2
)( 2

ii
i

YXT −=  ,    (3.8) 

    )1(

)(

1

2

1 −

−
=
∑

K

XX
U k

iik

i   ,  (3.9) 

and    )1(

)(

2

2

2 −

−
=
∑

K

YY
U k

iik

i   ,  (3.10) 

where  and  are the estimated mean square errors for  and , respectively.  We 

assume that U  and  are independent, and that each of the subject-specific means 

over replications, 

1iU 2iU

1i

iX iY

2iU

iX  and iY , are independent of the estimated mean square errors.   If 

∑i iT=T )( N/   and ∑=
i ijj NUU /)(  where j = 1,2, then T , 1U , and 2U  are all 

independent. 

 Given the definition of MSD in (2.2), we can use estimates defined by Haber et al 

(2005) to define the two coefficients of agreement as 

   
2

2
1

1

21

)11()11(2
ˆ

UKUKT
UUN

−+−+

+
=ψ    (3.11) 

and    
2

2
1

1

1

)11()11(2
2ˆ

UKUKT
UR

−+−+

⋅
=ψ .   (3.12) 

To estimate the variances of Nψ̂  and Rψ̂ , we need to approximate the variance of 

a ratio as 

 ]),(2)()([)()( 22
2

AB
BACov

B
BVar

A
AVar

B
A

B
AVar −+≈  . (3.13) 

 

For Nψ̂ , 21 UUA +=  , 2
2

1
1

)11()11(2 UKUKTB −+−+= , 
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 We can now substitute the appropriate expressions into (3.13) to estimate the two 

variances.   The sampling variance of a statistic is defined here as . )(2 ⋅S

 

 

3.3.2 Method B (Existing method 2) – general method using subject-specific 

estimates 

 The next approach to estimate the standard errors of Nψ  and Rψ , generalizes the 

previous approach so it is not restricted to the case where the MSD is the disagreement 

function.  This approach is similar to the “U-statistics” method described by King and 

Chinchilli (2001a) and was proposed by Barnhart et al. (2007).   It can use any 

disagreement function.  This method of estimation does not require the same number of 

replications per subject, as with Method A. 
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 Here, we define , , and .  If the 

subject-specific estimates of the disagreement function are defined as , then 

),()1( XXGG ′= ),()2( YYGG ′= ),()3( YXGG =

iĜ

∑
=

=
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i
i NGG

1

/)ˆ( .   

 Now, the estimates of Nψ  and Rψ  are defined as  

   
),(

2/)],(),([ˆ
YXG

YYGXXGN ′+′
=ψ     (3.14) 

and   
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),(ˆ

YXG
XXGR ′

=ψ     .      (3.15) 

 We once again use the expression in (3.13) to approximate the variance of a ratio.  

The appropriate substitutions for Nψ̂  and Rψ̂  are as follows. 

For Nψ̂ , 2/)( )2()1( GGA += , )3(GB =  

NGGCovGSGSAVar 4/)],(2)()([)( )2()1()2(2)1(2 ++= , , NGSBVar /)()( )3(2=

and . NGGCovGGCovBACov 2/)],(),([),( )3()2()3()1( +=

For Rψ̂ , )1(GA = , )3(GB = , , NGSAVar /)()( )1(2=

NGSBVar /)()( )3(2= , and . NGGCovBACov /),(),( )3()1(=

The expressions for the above sampling variances and covariances are given in Barnhart 

et al. (2007). 

 

 

3.3.3 Method C (New method) – estimation and inference using variance 

components 
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 For our last approach to estimate the standard errors of Nψ̂  and Rψ̂ , we can use a 

2-way random effects model to estimate these coefficients with variance components, 

assuming the data are normally distributed. 

 We define the model as 

   ijkijjiijkY ε+γ+β+α+μ= ,    (3.16) 

where i = subject , j = observer , and k = replication.  The appropriate variance 

components are define as , ,   , and  

.  The overall error variance is defined as  mean of . 

2)( ασ=α iVar 2)( βσβ =iVar 2)( γσ=γ ijVar

=2
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2)( jijkVar εσε = 22 ,...,
1 Jεε σσ

 Since we are comparing two methods, we can define 1YX =  and . 2YY =
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 Substituting in the appropriate variance components expressions into the 

definitions of Nψ  and Rψ  allows us to compute the same estimates from Method A and 

Method B using the random effects model as 
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 To approximate the variance of  Nψ̂  , we can use the delta method.  The partial 

derivatives of the three variance components are defined as 
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 The expression for the variance of Nψ̂  is then 
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 The variances and covariances for the variance components of random effects can 

be determined using the observed inverse Fisher information matrix, as shown in Searle 

(1992), where 
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 The variance components and variance-covariance matrix needed to calculate 

(3.19) and (3.20) can easily be computed using SAS’s PROC MIXED.  The estimation 

for Rψ  is more difficult, but can be achieved by fitting two models, one with all 

observations in the data set and one with only the observations using the reference 

method. 

 

 

3.4 Simulation study – performance and comparison of estimates 

To examine the behavior of the estimated standard errors developed in the 

previous section, we conducted a simulation study.  Data was simulated from 3 different 

scenarios using a simple latent class model.  Initial values (or true values), denoted T, 

were drawn from either a standard normal or exponential distribution (  or 

).  The T values were then used to generate values for X and Y using the 

conditional distributions , and .  

Two replications were generated each for X and Y.  Three different sample sizes were 

used with each model. 

)1,0(~ NT

)(, 2htgdt +

)1(~ ExpT
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 The results of 1,000 simulations for Nψ  are presented in Table 3.1, and the results 

of 1,000 simulations for Rψ  are presented in Table 3.2.  For each table, the appropriate 

MSD values are estimated using (2.7), and then used to estimate the coefficients for each 

simulated data set.  It is easy to show (Haber and Barnhart, 2008) that the true values for 

the MSD’s can be calculated from , 

, and 

)(242( 2222
TTT fefeXMSD σμμ +++=

( 22
TT σμ +

), X ′

)242),( 22 hghgYYMSD ++=′ Tμ

)]()[(]))([(2)(),( 22222222
TTT hfdbghefdbcagecaYXMSD σμμ +++−+++−−+++−=

 

Standard errors were estimated using Method A, Method B, and Method C, and simple 

bootstrap resampling.  The asymptotic variance described in (3.5) and (3.6) was also 

included in order to test the validity of this estimate.  Coverage probabilities are 

computed using each estimated standard error.  Two-sided 95% confidence intervals were 

used to compute the coverage probabilities. 

 Overall, the bias and MSE were low for each scenario.   A large-sample estimate 

for the standard error was used to approximate the true value.  For both Nψ and Rψ , 

Method A tends to overestimate the standard error and Method B tends to underestimate 

the standard error.  Method B was very close to that estimated by the bootstrap.  Method 

C for inference on Nψ was more variable than the other two methods, performing best 

with non-normal data.  Coverage probabilities were consistently closer to 95% when 

using Method A and with larger values of n.  The asymptotic standard errors for  

and  perform similarly to Method B and the bootstrap when drawing initial values 

from a normal distribution, but the coverage probabilities are lower when values are 

drawn for an exponential distribution.  This was expected given the performance of the 

)ˆ Nψln(

)ˆln( Rψ
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variance estimates for log(MSD) shown in Table 2.2.  The performance of the asymptotic 

standard errors improves consistently with the increase of sample size. 

 

 

3.5 Sample size estimation 

 Estimating the necessary sample size to assess agreement using Nψ or Rψ  could 

be of interest to investigators planning a study to compare two observers.  We derived an 

expression for this sample size using a 2-sided confidence interval, and Method B for 

estimating the standard error.  Method B was chosen since it can use any disagreement 

function and performed well in the simulation study.  This method for estimating sample 

size assumes that the number of replications per subject is fixed. 

 For Nψ  the expression for the width of a 2-sided confidence interval is 
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The corresponding expression for Rψ  is 
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3.6 Examples 

3.6.1 Bland and Altman Blood Pressure (SBP) Data 

 To demonstrate the methods developed in this chapter, we use the systolic blood 

pressure data set from Bland and Altman described earlier.  Table 3.3 gives estimates of 

Nψ and Rψ , accompanied by standard error estimates using both Method A, Method B, 

and Method C with 2-sided 95% confidence intervals.  The human observers are used as 

the reference observer in calculating Rψ . 

 The agreement between the two human observers is very high, at Nψ = 1.449.  

The standard error estimates are both small, indicating agreement between the human 

observers was consistently high.   

 Both Nψ and Rψ  are very low when comparing the semi-automatic blood pressure 

monitor to the human observers, with all coefficients below 0.2.  The Rψ estimates are 

lower then the Nψ estimates for both observers, showing that agreement decreases when 

a reference observer is assigned.  This happened because the within-method error of the 
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reference method is smaller than that of the other method.  All confidence intervals do 

not contain 1, indicating significantly poor agreement between the human observers and 

the monitor.  Standard error estimates using Method A and Method B are very close to 

one another, and lead to the same conclusions, but those using Method C for Nψ  are 

somewhat higher leading to decreased precision. 

 

 

3.6.2 Carotid Stenosis Data 

 Table 3.4 demonstrates the same methods applied to the previously described 

carotid stenosis data.  Here, the angiogram is assumed to be the reference method when 

computing Rψ , since it was used as the gold standard for comparing the two MRA 

methods.  Results are presented separately for the left and right carotid arteries.  

 Once again, the Rψ estimates are consistently lower than those for Nψ , showing 

lower agreement when one method is assumed to be a reference.  Agreement is highest 

between the two MRA methods.  Overall, the MRA-2D method agrees better with the 

established gold standard.  However, since the confidence intervals for MRA-2D and 

MRA-3D comparisons against the angiogram overlap substantially, we may not have 

enough evidence to show that one definitely performs better than the other. 

 

 

3.7 Robustness of estimates and standard errors 

 In the simulation study, estimates of Nψ and Rψ were shown to have very low 

bias.  Outlying measurements may increase this bias, and also lead to inflated estimates 
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of the standard errors.  To examine the effects of outliers on these coefficients, we 

consider two scenarios. 

 In scenario 1, the outlying measurement is abnormally high or low for a single 

replicated measurement on a subject.  Here, the true value of the measurement for this 

subject is not extreme, only the single measurement, meaning one observer has given a 

highly dissimilar value for this subject compared to other observers or a gold standard.  In 

scenario 2, the true value of a subject’s measurement is abnormally high or low.  For this 

scenario, observer agreement can still be high, since extreme values should be observed 

for all measurements on this subject. 

 We adapted the previous simulation study to examine the effects of outliers, by 

repeating the same simulations for Nψ and Rψ and replacing one measurement with an 

abnormally high value.  For scenario 1, an extreme value was only included in the first 

replicate of Y, by adding 100 to the simulated measurement.  For scenario 2, an extreme 

value was included for all replicates of X and Y on a single subject, by adding a random 

value from a normal distribution with µ=100. 

 The results of these simulations are presented in Table 3.5 for Nψ , and in Table 

3.6 for Rψ .  For scenario 1, the estimates are more biased for Nψ  than in previous 

simulations, and are extremely biased for Rψ .  The poorer estimates for Rψ are due to Y 

values only being used to estimate the denominator of the coefficient.  The coverage 

probabilities indicate that standard errors estimated using Methods A and B are heavily 

affected by the outlying measurement.  Standard errors estimated using Method C or 

bootstrap resampling are more resistant to the effects of the outlying measurement.  For 
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scenario 2, little effect is seen by including an outlier in all measurements on a subject, as 

bias and coverage probabilities are very similar to those presented in Tables 3.1 and 3.2. 

 These simulation results show that care must be taken when analyzing data with 

outlying measurements when only one of the measurements is abnormally high or low.  

Outliers of this type lead to large biases in estimation, since differences between 

replicates and observers will be very high.  Using bootstrap resampling to estimate the 

standard error is preferred if these outliers are included in the analysis, or Method C can 

be used for Nψ  since estimation of the variance components is more resistant to outliers 

than estimation methods using subject-specific estimates.  The estimates perform very 

well when outlying subjects are present, since the differences between replicates and 

observers will remain low. 

 Since the MSD is based on the mean of squared differences between 

measurements, single outlying measurements will inflate the estimated disagreement 

function.  When such measurements are found to exist, one can consider replacing the 

MSD with a disagreement function based on ranks such as the TDI or the median of 

absolute differences.  In this case the standard errors can still be estimated with Method 

B, since this method is not restricted to use with the MSD.  One may also extend the 

MSD by replacing the squared distance function with alternative distance functions 

described in King and Chinchilli (2001b). 

 

 

3.8 Extension to J ≥ 2 observers 
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 If we assume there are J fixed observers, the expressions for Nψ  and Rψ in (3.1) 

and (3.2) can easily be modified.  Now, we denote all observations by Y, where  is the 

k-th replicate observation on subject i by observer j where

ijkY

Jj ,...,1= .  The expanded 

expressions are 
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For Rψ , observer J is considered the reference observer. 

 For inference, we can modify Method A for J fixed observers.  We redefine  

and  as defined in (3.8), (3.9), and (3.10) as 
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 Using the approximation in (3.13), for Nψ  we now have: 
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 Method B is more difficult to modify for more than 2 observers, since this would 

entail defining a G variable for each of J functions for comparing replicated observations, 

and for each of functions for comparing observations between observers.   ))1(/(2 −JJ

 

 

3.9 Discussion 

 We presented multiple approaches for inference on Nψ  and Rψ , two inter-

observer agreement coefficients evaluated using a disagreement function.  These 

coefficients are quite flexible since one can specify the disagreement function depending 

on how they wish to interpret the data. 

 Three methods were presented for deriving the standard error of estimates of Nψ  

and Rψ .  Overall, Method B seems preferable, since one does not have to specify a 
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N

specific disagreement function to use the estimate.  Method A performed well in 

simulations, but would need to be developed for other disagreement functions for it to be 

a versatile method of inference.  It also needs several independence assumptions in order 

for the method to be valid, including that the estimated mean square errors are 

independent of each other and of the subject-specific means over replications. 

 Using variance components from a random effects model is a convenient method 

for estimating the standard error of ψ̂ , due to software being readily available for fitting 

these models and computing an accompanying variance-covariance matrix.  However, 

more assumptions need to be made when using such a model.  The model parameters are 

assumed to be mutually independent, and the random method parameters are assumed to 

be normally distributed.  This may make this approach too restrictive compared to the 

more versatile one developed here. 



 

 
Table 3.1:  Simulation results for ψN estimates based on 1000 samples. Coverage probabilities computed for 2-sided 95% confidence  
intervals using the indicated s.e. 

  True Nψ̂  

Distribution of T n MSD(X,X’) MSD(Y,Y’) MSD(X,Y) Nψ  Mean Bias MSE 

No  rmal:         
a=0   b=1.1  c=0.5  d=1.5 50 4.420 9.000 7.120 0.942 0.962 0.019 0.033 
e=1   f=1.1  g=1.5  h=1.5 100     0.949 0.007 0.020 

 200     0.951 0.008 0.009 
a=0   b=1.1  c=1.5  d=2.5 50 4.420 25.00 18.92 0.777 0.793 0.016 0.033 
e=1   f=1.1  g=2.5  h=2.5 100     0.779 0.002 0.016 

 200     0.778 0.001 0.009 
Exponential:         
a=0   b=1.1  c=0.5  d=1.5 50 11.24 22.50 17.84 0.946 0.946 0.000 0.033 
e=1   f=1.1  g=1.5  h=1.5 100     0.944   - 0.001 0.018 

 200     0.951 0.005 0.010 
 

  True*
)ˆ(.. N

Aes ψ  )ˆ(.. N
Bes ψ  )ˆ(.. N

Ces ψ  ))ˆ.(ln(. N
Asymptotices ψ
 

)ˆ.(. N
Bootstrapes ψ  

Distribution of T n ).(. Nes ψ
 

Mean Coverage 
Prob. 

Mean Coverage 
Prob. 

Mean Coverage 
Prob. 

Coverage Prob. Mean Coverage 
Prob. 

Normal:            
a=0   b=1.1  c=0.5  d=1.5 50 0.186 0.257 0.980 0.161 0.887 0.122 0.801 0.889 0.161 0.888 
e=1   f=1.1  g=1.5  h=1.5 100 0.134 0.189 0.985 0.124 0.891 0.096 0.840 0.892 0.123 0.895 

 200 0.096 0.137 0.990 0.091 0.919 0.070 0.847 0.912 0.091 0.918 
a=0   b=1.1  c=1.5  d=2.5 50 0.181 0.238 0.976 0.158 0.883 0.205 0.974 0.890 0.159 0.892 
e=1   f=1.1  g=2.5  h=2.5 100 0.131 0.175 0.973 0.121 0.920 0.190 0.996 0.919 0.120 0.921 

 200 0.094 0.128 0.980 0.089 0.932 0.188 0.999 0.929 0.089 0.931 
Exponential:            
a=0   b=1.1  c=0.5  d=1.5 50 0.179 0.239 0.978 0.149 0.857 0.203 0.974 0.802 0.149 0.864 
e=1   f=1.1  g=1.5  h=1.5 100 0.132 0.181 0.988 0.119 0.900 0.132 0.951 0.824 0.118 0.897 

 200 0.097 0.136 0.990 0.090 0.906 0.107 0.969 0.857 0.089 0.905 
*  Estimated from 100,000 simulations 
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Table 3.2:  Simulation results for ψR estimates based on 1000 samples. Coverage probabilities computed for 2-sided 95% confidence 
intervals using the indicated s.e. 

  True Rψ̂  

Distribution of T n MSD(X,X’) MSD(Y,Y’) MSD(X,Y) Rψ  Mean Bias MSE 

No  rmal:         
a=0   b=1.1  c=0.5  d=1.5 50 4.420 9.000 7.120 0.621 0.640 0.020 0.041 
e=1   f=1.1  g=1.5  h=1.5 100     0.630 0.010 0.021 

 200     0.628 0.007 0.011 
a=0   b=1.1  c=1.5  d=2.5 50 4.420 25.00 18.92 0.234 0.245 0.012 0.008 
e=1   f=1.1  g=2.5  h=2.5 100     0.236 0.003 0.004 

 200     0.233   - 0.001 0.002 
Exponential:         
a=0   b=1.1  c=0.5  d=1.5 50 11.24 22.50 17.84 0.630 0.630 0.004 0.038 
e=1   f=1.1  g=1.5  h=1.5 100     0.633 0.003 0.023 

 200     0.636 0.006 0.012 
 

  True*
)ˆ(.. R

Aes ψ  )ˆ(.. R
Bes ψ  ))ˆ.(ln(. R

Asymptotices ψ
 

)ˆ.(. R
Bootstrapes ψ  

Distribution of T n ).(. Res ψ
 

Mean Coverage 
Prob. 

Mean Coverage 
Prob. 

Coverage Prob. Mean Coverage 
Prob. 

Nor  mal:          
a=0   b=1.1  c=0.5  d=1.5 50 0.204 0.212 0.921 0.179 0.887 0.889 0.182 0.894 
e=1   f=1.1  g=1.5  h=1.5 100 0.146 0.157 0.944 0.134 0.907 0.910 0.135 0.906 

 200 0.103 0.113 0.962 0.098 0.918 0.922 0.098 0.922 
a=0   b=1.1  c=1.5  d=2.5 50 0.088 0.091 0.918 0.076 0.878 0.888 0.079 0.896 
e=1   f=1.1  g=2.5  h=2.5 100 0.061 0.065 0.944 0.056 0.909 0.911 0.057 0.914 

 200 0.043 0.047 0.944 0.040 0.912 0.915 0.040 0.918 
Exponential:          
a=0   b=1.1  c=0.5  d=1.5 50 0.203 0.197 0.906 0.166 0.872 0.826 0.168 0.882 
e=1   f=1.1  g=1.5  h=1.5 100 0.146 0.151 0.930 0.129 0.891 0.847 0.129 0.896 

 200 0.105 0.115 0.954 0.099 0.919 0.880 0.099 0.921 
*  Estimated from 100,000 simulations 
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Table 3.3: Estimation of ψN and ψR for Bland and Altman SBP data. 
Comparison MSD(X,X’) MSD(Y,Y’) MSD(X,Y) 
Observer1 
vs. Machine 

 
74.8 

 
166 

 
679 

Observer2 
vs. Machine 

 
76.0 

 
166 

 
676 

Observer1vs. 
Observer2 

 
74.8 

 
76.0 

 
52.0 

 
Comparison Nψ̂  )ˆ(.. N

Aes ψ
 

95% CI 
(2-sided) 

)ˆ(.. N
Bes ψ

 

95% CI 
(2-sided) 

)ˆ(.. N
Ces ψ

 

95% CI 
(2-sided) 

)ˆ.(. N
Bootstrapes ψ
 

95% CI 
(2-sided) 

Observer1 
vs. Machine 

 
0.178 

 
0.053 

(0.075, 
0.281) 

 
0.047 

(0.086, 
0.270) 

 
0.092 

(-0.003, 
0.358) 

 
0.050 

(0.079, 
0.276) 

Observer2 
vs. Machine 

 
0.179 

 
0.053 

(0.074, 
0.284) 

 
0.048 

(0.084, 
0.274) 

 
0.094 

(-0.006, 
0.364) 

 
0.052 

(0.077, 
0.281) 

Observer1vs. 
Observer2 

 
1.449 

 
0.099 

(1.256, 
1.642) 

 
0.010 

(1.429, 
1.468) 

- * -  
0.010 

(1.430, 
1.468) 

 
Comparison Rψ̂  )ˆ(.. R

Aes ψ
 

95% CI 
(2-sided) 

)ˆ(.. R
Bes ψ

 

95% CI 
(2-sided) 

)ˆ.(. N
Bootstrapes ψ
 

95% CI 
(2-sided) 

Observer1 
vs. Machine 

 
0.110 

 
0.031 

(0.049, 
0.172) 

 
0.033 

(0.046, 
0.174) 

 
0.037 

(0.038, 
0.182) 

Observer2 
vs. Machine 

 
0.112 

 
0.032 

(0.050, 
0.175) 

 
0.034 

(0.046, 
0.179) 

 
0.039 

(0.037, 
0.188) 

* Random effects model cannot be fit (G matrix is not positive definite) 
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Table 3.4: Estimation of ψN and ψR for carotid stenosis data. 
Comparison MSD(X,X’) MSD(Y,Y’) MSD(X,Y) Rψ̂  )ˆ(.. R

Aes ψ  95% CI 
(2-sided) 

)ˆ(.. R
Bes ψ  95% CI 

(2-sided) 
)ˆ.(. R

Bootstrapes ψ
 

95% CI 
(2-sided) 

Left Side:           
Angiogram 
vs. MRA-2D 

 
279 

 
1153 

 
1211 

 
0.231 

 
0.103 

(0.028, 
0.433) 

 
0.100 

(0.035, 
0.427) 

 
0.095 

(0.044, 
0.418) 

Angiogram 
vs. MRA-3D 

 
279 

 
1040 

 
1461 

 
0.191 

 
0.087 

(0.021, 
0.361) 

 
0.084 

(0.026, 
0.357) 

 
0.081 

(0.032, 
0.351) 

MRA-2D vs. 
MRA-3D 

 
1153 

 
1040 

 
1245 

 
- 

      

Right Side:           
Angiogram 
vs. MRA-2D 

 
176 

 
1137 

 
959 

 
0.183 

 
0.051 

(0.084, 
0.283) 

 
0.051 

(0.083, 
0.284) 

 
0.053 

(0.079, 
0.288) 

Angiogram 
vs. MRA-3D 

 
176 

 
1100 

 
1093 

 
0.161 

 
0.050 

(0.063, 
0.260) 

 
0.051 

(0.060, 
0.262) 

 
0.054 

(0.056, 
0.266) 

MRA-2D vs. 
MRA-3D 

 
1137 

 
1100 

 
1219 

 
- 

      

 
Comparison Nψ̂  )ˆ(.. N

Aes ψ
 

95% CI 
(2-sided) 

)ˆ(.. N
Bes ψ

 

95% CI 
(2-sided) 

)ˆ(.. N
Ces ψ

 

95% CI 
(2-sided) 

)ˆ.(. N
Bootstrapes ψ
 

95% CI 
(2-sided) 

Left Side:          
Angiogram 
vs. MRA-2D 

 
0.592 

 
0.138 

(0.322, 
0.861) 

 
0.124 

(0.348, 
0.835) 

 
0.075 

(0.446, 
0.738) 

 
0.124 

(0.349, 
0.835) 

Angiogram 
vs. MRA-3D 

 
0.452 

 
0.114 

(0.228, 
0.676) 

 
0.107 

(0.242, 
0.661) 

 
0.077 

(0.300, 
0.603) 

 
0.104 

(0.248, 
0.655) 

MRA-2D vs. 
MRA-3D 

 
0.881 

 
0.133 

(0.621, 
1.141) 

 
0.099 

(0.688, 
1.075) 

 
0.078 

(0.728, 
1.035) 

 
0.099 

(0.688, 
1.075) 

Right Side:          
Angiogram 
vs. MRA-2D 

 
0.684 

 
0.121 

(0.447, 
0.922) 

 
0.063 

(0.562, 
0.807) 

 
0.160 

(0.370, 
0.998) 

 
0.063 

(0.560, 
0.809) 

Angiogram 
vs. MRA-3D 

 
0.584 

 
0.138 

(0.314, 
0.854) 

 
0.109 

(0.370, 
0.798) 

 
0.102 

(0.384, 
0.784) 

 
0.109 

(0.371, 
0.797) 

MRA-2D vs. 
MRA-3D 

 
0.917 

 
0.131 

(0.661, 
1.174) 

 
0.096 

(0.729, 
1.106) 

 
0.076 

(0.769, 
1.066) 

 
0.096 

(0.729, 
1.106) 
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Table 3.5:  Simulation results for ψN estimates based on 1000 samples. Coverage probabilities computed for 2-sided 95% confidence  
intervals using the indicated s.e.  In outlier scenario 1, one additional outlying observation is added to the first replicate of Y.  In outlier  
scenario 2, one additional outlying observation is added to all replicates of X and Y for the same subject. 

Outlier Scenario 1 
 True Nψ̂ )ˆ(.. Nes )ˆ(.. Nes (..es A ψ B ψ  )ˆ N

C ψ )ˆ.(. N
Bootstrapes ψ  

Distribution of T n Nψ  Mean Bias Coverage 
Prob. 

Coverage 
Prob. 

Coverage 
Prob. 

Coverage Prob. 

Normal:         
a=0   b=1.1  c=0.5  d=1.5 50 0.942 0.987 0.045 1.000 0.244 0.773 0.996 
e=1   f=1.1  g=1.5  h=1.5 100  0.983 0.041 1.000 0.416 0.798 0.994 

 200  0.983 0.040 1.000 0.546 0.802 0.985 
a=0   b=1.1  c=1.5  d=2.5 50 0.777 0.941 0.163 1.000 0.185 0.833 0.865 
e=1   f=1.1  g=2.5  h=2.5 100  0.917 0.140 1.000 0.341 0.847 0.806 

 200  0.891 0.113 1.000 0.562 0.856 0.789 
 

Outlier Scenario 2 
 True Nψ̂  )ˆ(.. N

Aes ψ )ˆ(.. N
Bes ψ  )ˆ(.. N

Ces ψ )ˆ.(. N
Bootstrapes ψ  

Distribution of T n Nψ  Mean Bias Coverage 
Prob. 

Coverage 
Prob. 

Coverage 
Prob. 

Coverage Prob. 

Normal:         
a=0   b=1.1  c=0.5  d=1.5 50 0.942 0.952 0.009 0.979 0.880 0.803 0.889 
e=1   f=1.1  g=1.5  h=1.5 100  0.941 -0.001 0.985 0.980 0.838 0.913 

 200  0.943 0.001 0.988 0.919 0.851 0.920 
a=0   b=1.1  c=1.5  d=2.5 50 0.777 0.790 0.012 0.967 0.868 0.979 0.880 
e=1   f=1.1  g=2.5  h=2.5 100  0.783 0.006 0.977 0.901 0.998 0.911 

 200  0.780 0.003 0.984 0.932 0.998 0.929 
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Table 3.6:  Simulation results for ψR estimates based on 1000 samples. Coverage probabilities computed for 2-sided 95% confidence  
intervals using the indicated s.e.  In outlier scenario 1, one additional outlying observation is added to the first replicate of Y.  In outlier  
scenario 2, one additional outlying observation is added to all replicates of X and Y for the same subject. 

Outlier Scenario 1 
 True Rψ̂ )ˆ(.. Res )ˆ(.. Res .(.es A ψ B ψ  )ˆ R

Bootstrapψ  

Distribution of T n Rψ  Mean Bias Coverage 
Prob. 

Coverage 
Prob. 

Coverage Prob. 

Normal:        
a=0   b=1.1  c=0.5  d=1.5 50 0.621 0.041 -0.580 0.000 0.000 0.588 
e=1   f=1.1  g=1.5  h=1.5 100  0.077 -0.544 0.001 0.001 0.551 

 200  0.136 -0.485 0.000 0.001 0.584 
a=0   b=1.1  c=1.5  d=2.5 50 0.234 0.037 -0.197 0.002 0.002 0.630 
e=1   f=1.1  g=2.5  h=2.5 100  0.063 -0.171 0.008 0.040 0.607 

 200  0.098 -0.136 0.066 0.267 0.666 
 

Outlier Scenario 2 
 True Rψ̂  )ˆ(.. R

Aes ψ )ˆ(.. R
Bes ψ  )ˆ.(. R

Bootstrapes ψ  

Distribution of T n Rψ  Mean Bias Coverage 
Prob. 

Coverage 
Prob. 

Coverage Prob. 

Normal:        
a=0   b=1.1  c=0.5  d=1.5 50 0.621 0.639 0.018 0.911 0.880 0.890 
e=1   f=1.1  g=1.5  h=1.5 100  0.626 0.005 0.943 0.913 0.912 

 200  0.626 0.005 0.962 0.929 0.928 
a=0   b=1.1  c=1.5  d=2.5 50 0.234 0.244 0.010 0.922 0.885 0.896 
e=1   f=1.1  g=2.5  h=2.5 100  0.238 0.005 0.946 0.914 0.922 

 200  0.236 0.003 0.946 0.922 0.923 
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Chapter 4 

 

A General Approach for Evaluating Agreement Between 

Observers Selected at Random 

 

4.1 Introduction and notation 

Chapter 3 described a general approach for evaluating agreement in the form of 

the coefficients of individual agreement, Nψ and Rψ .  The methods developed apply to 

the case when two or more observers make measurements on a sample of randomly 

selected subjects with replications, and one observer may or may not be considered a 

reference observer.  We assumed that the observers were a fixed set.  Now, we seek to 

extend the previously described methods to be used where a set of two or more observers 

make measurements on a sample of subjects, and these observers are selected at random 

from a pool of potential observers.  This situation is common in practice, where a large 

group of medical staff are trained to administer and interpret a diagnostic test, but only a 

small subset will actually make the measurement on a given subject. 

 We assume that there are J observers selected at random from a larger population, 

and I subjects.  We previously denoted measurements made by two observers as (X) and 

(Y).  Since we consider the case where we have two or more observers, we denote all 

observations by Y, where  is the k-th replicate observation on subject i by observer j 

where .  If one observer in the set is considered a reference observer, observer J 

will be the reference observer and measurements by observers 1,…,J – 1 will be 

compared to measurements by a fixed observer J.   

ijkY

Jj ,...,1=
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4.2 Coefficients of Individual Agreement for random observers 

We use the expressions of Nψ and Rψ  defined in (3.23) and (3.24), where . 

Using pairwise disagreement functions we have 

2≥J

  
))]1(/()],(2[

/)],([

1

1 1

1

−

′

=

∑ ∑

∑
−

= +=′
′

=

JJYYG

JYYG

J

j

J

jj
jj

J

j
jj

Nψ  ,  (4.1)  

and   
)1/(),(

),(
1

1
−

′
=

∑
−

=

JYYG

YYG
J

j
Jj

JJRψ    .  (4.2) 

The disagreement function, G, can once again be defined by one of many chosen 

measures of pairwise agreement, although we will primarily use the MSD for deriving 

estimators.   

 Using the framework described by Haber et al. (2005), we now assume the model 

ijkijijkY εμ += , where 0)|( =ijE ijkε and .  The model represents the 

combination of the true value of the measurement by observer j on subject i (

2)|( ijijk ijVar σε =

ijμ ), and the 

intraobserver variability ( ).  If we let , this can be described as 

the interobserver variability for subject i, or .  Then , which 

is the expected interobserver variability.  A (

2
ijσ ))2

)i

((2
∗−= iijji E μμτ

|(2 Var ijji μτ = )( 2
iτ

2 Eτ =∗

∗ ) denotes the expectation associated with 

the corresponding index, and a (• ) denotes the arithmetic mean with respect to the 

corresponding index. 

 Assuming the MSD as our disagreement function, the subject-specific 

disagreement function between observers can be defined as 
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)]|([2))]1(/()(2[]|)[(),(
1

1 1

22 iYVarEJJiYYEYYG ijkj

J

j

J

jj
jiijjiijjjji +−−=−= ∑ ∑

−

= +=′
′•′•′ μμ  

           . 22

1

22 222)1/()(2 ∗
=

∗• +=+−−= ∑ ii

J

j
iiij J στσμμ

The overall disagreement function between observers can be determined by taking the 

expectation over all subjects: 

     . 22 22),( ∗∗∗′ += στjj YYG

Following a similar path to get the overall disagreement function between replicated 

observations for observers, the subject-specific function is 

        , 22 2)]|([2]|)[(),( ∗′ ==−=′ iijkjkijijkjjji iYVarEiYYEYYG σ

and the overall function is   .  Now 22),( ∗∗=′ σjj YYG Nψ can be defined for random 

observers in terms of the model:   

    22

2

∗∗∗

∗∗

+
=

στ
σ

ψ N   .   (4.3) 

For comparison, when the observers are fixed, Haber et al. (2005) shows that one just 

needs to use the arithmetic mean of the intraobserver variability over fixed observers 

instead of the expectation: 

    22

2

•∗∗

•∗

+
=

στ
σ

ψ N   .   (4.4) 

 To develop a corresponding expression for Rψ , we will need to define the 

expected interobserver variability and intraobserver variability when observer J is 

considered a fixed reference observer and J – 1 observers are selected at random.  We 

will call these terms,  and .  The interobserver variability can be defined as 2
R∗τ

2
R∗∗σ
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       , ))(( 22
iJijjiR E μμτ −=

where .  We assume that the variance within observers is constant for each 

of the J – 1 randomly selected observers, .  The intraobserver variability can be 

defined by taking the average of the variance for the randomly selected observers and the 

variance for the fixed reference observer: 

)( 22
iRR E ττ =∗

22 σσ ≡∗ j

       ,  where    . 2/)( 222
iJRi σσσ +=∗ )( 22

RiiR E ∗∗∗ = σσ

 Using the MSD, the subject-specific disagreement function between observers 

will be defined as 

2222 22)]|([2))((]|)[(),( RiiRijkjiJijiJijjJji iYVarEEiYYEYYG ∗•• +=+−=−= στμμ . 

Taking the expectation will give the overall disagreement between observers, 

     . 22 22),( RRJj YYG ∗∗∗ += στ

For the disagreement function between replicated observations for the reference observer 

we use 

  22 2)]|([2]|)[(),( iJiJkjkiJiJkjJJi iYVarEiYYEYYG σ==−=′ ′

and .  In terms of the model, 22),( JJJ YYG ∗=′ σ Rψ can now be defined as 

      22

2

RR

JR

∗∗∗

∗

+
=

στ
σ

ψ      (4.5) 

for random observers, and as 

      22

2

RR

JR

•∗∗

∗

+
=

στ
σ

ψ      (4.6) 

for fixed observers. 
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4.3 Estimation and inference 

4.3.1 Estimation and inference for Nψ  

 To estimate Nψ when observers are selected at random, we derive an 

estimator using the MSD as the disagreement function.  Following the structure of Haber 

et al. (2005) for fixed observers, we construct the following two variables: 

2≥J

   2)(
1

1 1

2∑ ∑
−

= +=′
•′• −=

J

j

J

jj
jiiji YYV      (4.7) 

   )1()(
1

2 −−= ∑
=

• KYYU
K

k
ijijkij   .   (4.8) 

Here,  is the observed interobserver variability for subject i.   For the fixed observers 

case, , , , and .   

iV

EY KV iii /)( 22
•+= στ KVE /)( 22

•∗∗• += στ 2)( ijijY UE σ= 2)( •∗=
••

σUE

Using , we can estimate KUV /ˆ2
•••∗ −=τ Nψ in this case from the constructed variables 

as 

   
•••

••

−+
=

UKV
UN

)11(
ψ̂   .   (4.9) 

When J = 2, the estimator reduces to that derived in (3.7). 

 Haber et al. (2005) goes on to show that Nψ can be estimated with (4.9) in the 

case of random observers as well as fixed observers.  This is true because 

  KJVE i
j

iijiY /)1()()( 22
•• +−−= ∑ σμμ   

for a fixed subject and a fixed sample of observers.  If we just fix the subject,  

  . KKVarVEE iiiijjiYj //)()]([ 222
∗∗ +=+= στσμ
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If we take a third expectation, this time over subjects, we have .  

Therefore, we can use (4.9) in both cases. 

KVE /)( 22
∗∗∗• += στ

  We assume that the  are independent from one another, and that  is 

independent of each of the .  To estimate the variance, we once again use the 

variance approximation for a ratio in (3.13), by plugging in  

sU j '•

sU j '•

iV

 , ••=UA ••• −+= UKVB )11(  , 

N
USAVar )()(

2
=     ,       N

USKKVSBVar )(]/)1[()()(
222 −+=          , and 

N
USKKBACov )(]/)1[(),(

22−= . 

 The method can also be extended to the case where each observer takes a different 

amount of replicates.  Here, , and the  can be written as JKK ,...,1 sU ij '

   )1()(
1

2 −−= ∑
=

• J

K

k
ijijkij KYYU

J

  .  (4.10) 

The same Nψ estimate, (4.9), can then be used.  The Kj’s can be included in the 

expressions for and by taking the average number of replications per 

observer. 

)(BVar ),( BACov

    

 

4.3.2 Estimation and inference for Rψ  

 To estimate Rψ  with random observers is slightly more complicated than Nψ , 

but can still follow the same framework used in the previous section.  Now can be ijU
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estimated in the same way, but  must be modified for the situation where the fixed 

observer J is considered a reference:      

iV

   )1()(
1

Yijk
2 −−= ∑

=
• KY

K

k
ijijU      (4.11) 

   2)(
1

1
ijY

(Y U

2∑
−

=
•• −=

J

j
iJiR YV   .   (4.12) 

iRV

VE(

 is the observed interobserver variability for subject i between the reference observer 

J and observers 1,…,J – 1.   For the fixed observers case, , 

, and .  We need to use 

KVE RiiRiRY /)( 22
•+= στ

KRRR /) 22
•∗∗• += στ 2) ijijE σ=
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to estimate Rψ in this case from the constructed variables as 
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When J = 2, the estimator reduces to that derived in (3.8). 

 We go on to show that Rψ can also be estimated with (4.13) in the case of random 

observers as well as fixed observers.  This is true because 

  KJVE Ri
j

iJij −μiRY /)1()()( 22
•+−= ∑ σμ   

for a fixed subject and a fixed sample of observers.  If we just fix the subject,  

  . KVEE RiiRiYj /)]([ 22
∗+= στ
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If we take a third expectation over subjects, we have .  Therefore, 

we can use (4.13) in both cases. 

KVE RRR /)( 22
∗∗∗• += στ

  We again assume that the  are independent from one another, and that  

is independent of each of the U .  To estimate the variance using the approximation in 

(3.13), we plug in  

sU j '•

s'

iRV

j•

  JUA •= 2 , ]
1

)[11(

1

1
J

J

j
j

R U
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∑
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N
USAVar J )(4)(

2

= ,

N
USKKUSKKVSBVar JrandomR )}(]/)1[()}(]/)1{[()({)(

22222 −+−+= , and   

NK
USKBACov J

⋅
−= )()1(2),(

2
   , 

where Urandom refers to all observations made by random observers not considered a 

reference. 

 The method can again be extended to the case where each observer takes a 

different amount of replicates.  Here, , and the  can be written as in (4.10). JKK ,...,1 sU ij '

The Kj’s can be included in the expressions for and by taking the 

average number of replications per random observer. 

)(BVar ),( BACov

 

 

4.3.3 Estimation and inference using variance components 

 Method C from the previous chapter defines a 2-way random effects model to 

estimate Nψ and Rψ .  Since this method treats observers as a random effect, it is 
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appropriate to use it in the case where J observers are selected at random.  It can also 

accommodate an unequal amount of replicates per observer. 

N The model for ψ is exactly the same as specified in section 3.3.3 where the 

variance of the estimator was approximated by using the delta method.  One can use the 

appropriate variance components in the estimate in (3.13). 

 Estimating Rψ is also similar.  The estimation is accomplished by fitting one 

random effects model for all observations with the fixed reference observer J, and 

another using all observations in the data set.  The estimated Rψ  will be 

   222

2

ˆˆˆ
ˆ

ˆ
εγβ

ε

σσσ
σ

ψ
++

= JR   .    (4.15) 

The estimation of can be accomplished by taking the estimated error variance 

component from the model restricted to measurements by observer J.   Inference can be 

conducted by using the simple bootstrap percentile method to compute standard errors 

and 95% confidence intervals. 

2
Jε

σ

 

 

4.4 Simulation study – performance and comparison of estimates 

 A simulation study was conducted to examine the behavior of the Nψ and 

Rψ estimates derived in this chapter and their estimated standard errors, for the case 

where a set of J observers are selected at random from a pool of potential observers.  

Data was simulated using a two-step approach.  First, using the simple latent class model 

described in section 3.4, values for Yijk were simulated for each of 100 observers, each 
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with slightly different parameters for the conditional distributions.  Initial values were 

drawn from either a standard normal or exponential distribution (  or 

).  The T values were then used to generate values for Yijk using the 

conditional distribution , where b varied over a set range of 

values for the 100 observers.  Next, a sample of 3 observers was selected from the pool of 

100, and 3 replications for each observer were simulated and used to compute estimates 

of 

)1,0(~ NT

)1(~ ExpT

N

))(,(~| 2ftebtaNtYijk ++

ψ .  In the case where one observer is considered to be a reference, observer 100 was 

used as the fixed reference for every simulation.  To compute estimates of Rψ , only 2 

observers (J – 1) were selected at random.  One-thousand simulations were run to 

demonstrate the methods described in sections 4.3.1, 4.3.2, and 4.3.3.  Biases, MSE’s, 

and coverage probabilities were computed to assess the performance of the estimates and 

standard errors.  The true values for Nψ and Rψ  were computed for each simulation 

using the formulae from (Haber and Barnhart, 2008) expressed in section 3.4. 

 The simulation results are presented in Table 4.1.  Overall, the bias and MSE 

were low for simulations where the underlying distribution was standard normal.  Bias 

increased when using an exponential distribution to simulate the initial data.  Both the 

inference method based on Method A and the method using a random effects model 

performed well, with coverage probabilities close to 0.95.  The random effects model 

consistently produced lower standard errors than the modified Method A.  Coverage 

probabilities using simple bootstrap resampling to estimate the standard error were 

somewhat lower than with the other methods, especially when interobserver variability 

was high.  The standard errors for Rψ̂  always higher than those for Nψ̂ . 
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4.5 Examples 

4.5.1 Bland and Altman Blood Pressure (SBP) Data  

 The systolic blood pressure data set used in the previous chapter is now used to 

demonstrate the methods developed for random observers.  Table 4.2 gives overall 

estimates of Nψ and Rψ  for all observers, rather than the pairwise estimates presented in 

Chapter 3, and they are estimated the same way for fixed and random observers.  The 

semi-automatic blood pressure monitor measurements are now used as the reference, to 

allow for an overall estimate of Rψ comparing human observers versus the machine.  The 

estimates of Nψ and Rψ  are low, with both coefficients below 0.25, indicating poor 

agreement between the 3 observers with and without one observer being considered a 

reference. 

 Standard error estimates for Nψ̂ and Rψ̂  are computed separately assuming both 

fixed observers using the method described in Section 3.8 and random observers using 

the modified Method A described in this chapter, and also for random observers using a 

random effects model.  The standard error is higher for Nψ̂  when observers are assumed 

to be fixed, and the standard error is higher for Rψ̂  when observers are assumed to be 

random.  Ninety-five percent confidence intervals using all methods do not contain 1, 

indicating the coefficients are significantly lower than the null. 

  

 

4.6.2 Carotid Stenosis Data 
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 Table 4.3 demonstrates the methods for random observers in the same way using 

the previously analyzed carotid stenosis data.  The angiogram is now considered the 

reference when estimating Rψ  , to allow for overall estimates of agreement between the 

MRA methods and the angiogram.  Results are presented separately for the left and right 

carotid arteries. 

 Once again, the standard error is consistently higher for Nψ̂  when observers are 

assumed to be fixed, and the standard error is consistently higher for Rψ̂  when observers 

are assumed to be random.  The random effects model gives more precise interval 

estimates than the modified Method A.  Estimates of Nψ are higher than those for Rψ  for 

both the left and right arteries, indicating that agreement is better when all three observers 

are compared to one another rather than two observers compared against a reference.  

This is due to the high agreement between MRA methods which does not contribute to 

the estimate of Rψ . 

 

 

4.6 Discussion 

 We derived two approaches each to allow inference on the two coefficients of 

individual agreement described in chapter 3 to be estimated when a set of 2 or more 

observers is selected randomly.  Both methods derived here are based on the MSD as a 

disagreement function, and can be used to estimate pairwise agreement between two 

observers or overall agreement between a group of J > 2 observers. 

 Method A described in Chapter 3 was modified for the random observers case, 

given it was more straightforward to adapt from the pairwise case to more than 2 
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observers than Method B, which used pairwise subject-specific estimates.  The main 

drawback here is that Method A requires the use of MSD for the disagreement function.  

This method performed quite well in simulations though, and would be useful in practice. 

 Estimating the coefficients of individual agreement using variance components 

from a random effects model is an alternative method which also easily estimates overall 

agreement in a group of J > 2 randomly selected observers.  The same drawbacks exist as 

discussed in Section 3.9, since the model parameters are once again assumed to be 

mutually independent, and the random method parameters are assumed to be normally 

distributed. 

 



 

Table 4.1:  Simulation results for ψN and ψR estimates assuming random observers based on 1000 samples.  Coverage probabilities computed for 2-
sided 95% confidence intervals using the indicated s.e. 

  True (Mean) Nψ̂  
Rψ̂

Distribution of T n Nψ  Rψ  Mean Bias MSE Mean Bias MSE 

N  ormal:          
a=0   b=range(0.2 – 2) 50 0.876 0.780 0.878 0.002 0.015 0.778 -0.002 0.036 
e=1   f=1.1 100 0.875 0.784 0.875 0.001 0.011 0.785 0.001 0.024 

 200 0.874 0.783 0.873 -0.0002 0.008 0.784 0.001 0.018 
a=0   b=range(0.5 – 5) 50 0.579 0.409 0.583 0.003 0.046 0.411 0.002 0.046 
e=1   f=1.1 100 0.592 0.426 0.595 0.003 0.043 0.428 0.002 0.044 

 200 0.576 0.415 0.575 -0.001 0.040 0.416 0.001 0.039 
Exponential:          
a=0   b=range(0.5 – 5) 50 0.588 0.411 0.645 0.057 0.045 0.471 0.060 0.048 
e=1   f=1.1 100 0.589 0.432 0.643 0.054 0.039 0.486 0.054 0.047 

 200 0.592 0.431 0.643 0.051 0.039 0.486 0.055 0.045 
 

  Method A Random Effects 
Model (Method C) 

Bootstrap 

  )ˆ.(. Nes ψ  )ˆ.(. Res ψ  )ˆ.(. Nes ψ  )ˆ.(. Nes ψ  )ˆ.(. Res ψ
Distribution of T n Mean Coverage 

Prob. 
Mean Coverage 

Prob. 
Mean Coverage 

Prob. 
Mean Coverage 

Prob. 
Mean Coverage 

Prob. 
Nor  mal:            
a=0   b=range(0.2 – 2) 50 0.106 0.980 0.199 0.979 0.079 0.951 0.098 0.965 0.186 0.962 
e=1   f=1.1 100 0.078 0.988 0.146 0.977 0.064 0.943 0.071 0.965 0.133 0.959 

 200 0.056 0.980 0.106 0.985 0.045 0.947 0.051 0.973 0.095 0.962 
a=0   b=range(0.5 – 5) 50 0.083 0.955 0.148 0.965 0.079 0.942 0.074 0.915 0.089 0.914 
e=1   f=1.1 100 0.062 0.958 0.110 0.976 0.058 0.941 0.052 0.917 0.066 0.918 

 200 0.044 0.966 0.078 0.966 0.042 0.941 0.039 0.926 0.057 0.927 
Exponential:            
a=0   b=range(0.5 – 5) 50 0.105 0.870 0.165 0.953 0.099 0.867 0.086 0.857 0.122 0.921 
e=1   f=1.1 100 0.080 0.913 0.125 0.966 0.075 0.910 0.064 0.900 0.098 0.912 

 200 0.059 0.946 0.091 0.963 0.058 0.933 0.052 0.921 0.079 0.914 
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Table 4.2: Estimation of ψN and ψR for Bland and Altman SBP data, assuming random observers. (Y1=Observer1, Y2=Observer2, Y3=Machine) 

NMSD(Y1,Y’1) MSD(Y2,Y’2) MSD(Y3,Y’3) MSD(Y1,Y2) MSD(Y1,Y3) MSD(Y2,Y3) ψ̂ R ψ̂  

74.8 76.0 166 52.0 679 676 0.225 0.245 
 

 Method A Random Effects Model 
(Method C) 

Observers )ˆ.(. Nes ψ  95% CI 
(2-sided) 

)ˆ.(. Res ψ  95% CI 
(2-sided) 

)Nˆ.(.es ψ  95% CI 
(2-sided) 

Fixed 0.062 (0.104, 0.346) 0.076 (0.096, 0.395) - - 
Random 0.058 (0.111, 0.340) 0.081 (0.087, 0.403) 0.080 (0.068, 0.383) 

 
 
 
 
 
 
 
Table 4.3: Estimation of ψN and ψR for carotid stenosis data, assuming random observers. (Y1=MRA-2D, Y2=MRA-3D, Y3=Angiogram) 

N MSD(Y1,Y’1) MSD(Y2,Y’2) MSD(Y3,Y’3) MSD(Y1,Y2) MSD(Y1,Y3) MSD(Y2,Y3) ψ̂ R ψ̂  

Left Side 1153 1040 279 1245 1211 1461 0.632 0.209 
Right Side 1137 1100 176 1219 959 1093 0.738 0.172 

 
  Method A Random Effects Model 

(Method C) 
 Observers )ˆ.(. Nes ψ  95% CI 

(2-sided) 
)ˆ.(. Res ψ  95% CI 

(2-sided) 
)Nˆ.(.es ψ  95% CI 

(2-sided) 
Left Side Fixed 0.108 (0.421, 0.842) 0.072 (0.067, 0.351) - - 
 Random 0.090 (0.455, 0.808) 0.093 (0.026, 0.392) 0.060 (0.514, 0.749) 
Right Side Fixed 0.108 (0.526, 0.949) 0.034 (0.104, 0.239) - - 
 Random 0.089 (0.563, 0.912) 0.048 (0.077, 0.266) 0.077 (0.587, 0.889) 
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Chapter 5 

 

Modeling Measures of Agreement 

 

5.1 Introduction and notation 

 In this chapter, we model the measures for assessing agreement between two 

observers previously described in Chapter 2, as a function of additional variables 

measured in the study.  This can be very important to study investigators since observer 

agreement will often differ between subjects based on subject-specific characteristics.  

Knowledge of how these characteristics affect agreement can help determine in which 

types of subjects a method performs poorly compared to a reference method. 

 Barnhart and Williamson (2001) used generalized estimating equations (GEE) to 

model the CCC for comparing two observers as a function of covariates.  The CCC is 

dependent on between-subject variability though, and CCC estimates can decrease since 

this variability is often similar within subjects with similar covariate values.  One should 

verify that the between-subject variability is consistent across different ranges of the 

covariates when using this modeling approach. 

 Choudhary (2007) described a Bayesian semiparametric approach for modeling 

agreement between two methods.  This method models the TDI using tolerance bands, 

which estimate the range of differences between observers in a specified proportion, π, of 

the population as a function of a covariate.  The mean function of differences between 

observers is modeled using penalized spline regression.   
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 We seek to describe and demonstrate several models using a disagreement 

function, G, as our outcome variable.   We are primarily interested in modeling the MSD, 

as it has been the focus of our work.  As we will consider agreement for two observers, 

more than two observers, and cases where one observer can be considered a reference, we 

will continue to use the notation of chapter 4 where  is the observation on subject i by 

observer j.  Observer J will be considered the reference observer if there exists one.  In 

the case of H subject-specific covariates, they will be denoted by  

ijkY

.,...,1 Hzz

 
 
5.2 Pediatric Impact adherence data 

To demonstrate modeling methods, we have chosen to analyze data from the 

Pediatric Impact study, a behavioral intervention to improve medication adherence in 

HIV-positive children.  Medication adherence is evaluated at baseline over the past 1-

month, and is measured as the percent of prescribed medication taken over the month.  

There are 3 observers:  the child’s caregiver, the child’s clinic care team, and the 

electronic MEMS (Medication Event Monitoring System), denoted as , , and  

respectively.  The MEMS will be considered the reference observer where we consider 

one to exist. 

1Y 2Y 3Y

Figure 5.1 shows boxplots of the raw data for each of the three observers.  As is 

typical for adherence data, all observers are skewed, the caregiver and care team being 

heavily skewed with most of their data in the upper range.  Table 5.1 gives some basic 

summary statistics for the three observers, and gives the estimated MSD’s.  Observer 

agreement is worst between the caregiver and MEMS.  Not all subjects were evaluated by 
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each observer, so pairwise disagreement functions in all analyses can only be evaluated 

for those with available measurements from both observers in the pair. 

Subject-specific covariates collected with the data include:  caregiver relationship 

to child, caregiver primary language, child’s gender, if HIV-status has been disclosed to 

the child, yes/no side effects from HIV medications, age, ever had an undetectable viral 

load, and viral load closest to the assessment. 

 

 

5.3 Models 

5.3.1 Two observers with covariates – least squares method 

 We restrict the first constructed model to the case where J = 2 observers and we 

have H subject-specific covariates.  The outcome variable will be , which 

is the observed disagreement function, G, for subject i.  The natural logarithm of G is 

preferred for the modeling outcome, since when G = MSD, the distribution of squared 

differences is naturally skewed.  An alternative to the natural logarithm would be to 

model the mean absolute differences, which could be easier to model without a 

transformation if the data are normally distributed.  Also, since the Pediatric Impact data 

has numerous cases of , the natural logarithm can only be used if set to a trivially 

small amount.  We are using the MSD as our disagreement function, so .    

),( jiiji YYGG ′=

( iji YG −=

0=iG

2)jiY ′

 Least squares is the simplest method to fit the model, denoted as: 

     . (5.1) i

H

h
ihhi zG εβμ ++= ∑

=1

)log( ),0(~ 2σε Ni



68 

The results of the pairwise models for the data set are presented in Table 5.2.  

Most covariates were not statistically significant in the models.  R-squared values ranged 

from 0.153 – 0.050.  Whether or not HIV status had been disclosed was the strongest 

predictor of disagreement between the caregiver and the care team (p=0.006).  Viral load 

was close to significantly associated with higher disagreement between the MEMS and 

caregivers (p=0.07).  This is due to low medication adherence being a strong predictor of 

high viral load.  If a low viral load is known by an observer, they would be more likely to 

predict better adherence, and more likely to agree with the electronic monitor.   

Scatterplots of the outcome variables by log viral load are presented in Figure 5.2.  

Since the distribution of MSD’s is very skewed and the log transformation normalizes the 

outcome, observations with high disagreement (which are correlated with high viral 

loads) are less influential in the model.  An examination of model residuals showed no 

violations of the constant variance or normality assumptions for the error terms.  If the 

log transformation had not been used, error terms from the resulting models did not 

appear to be normally distributed, which justifies the choice of the log outcome. 

 

 

5.3.2 More than two observers, no reference – mixed model 

 Suppose we have observers, where none of them are regarded as a reference 

observer.  Here, the outcome is modified form the 2-observer case to the mean 

disagreement function of one observer compared to the other J – 1 observers, 

, and we model it using the following mixed model once 

again using the log transformation to account for the squared differences: 

3≥J

)1−/(),(
,1

= ∑
′≠=′

′ JYYGG
J

jjj
jjiij
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    .  (5.2) ij

H

h
ihhOjiij zG εββαμ ++++= ∑

=1

)log(

The observer effect in the model, Ojβ , represents the difference between observer j’s 

measurements and the mean over all observers.  This observer effect can be treated as 

either fixed or random, depending on the observer selection process.  We can also include 

interaction terms between the observer effect and covariate effects to describe how 

covariates affect disagreement differently for different observers.  This model can easily 

be fit using the SAS procedure MIXED: 

proc mixed method=reml; 
class id observer; 
model logmeandisagree = observer/ chisq outpm=out residual; 
random id; 
run; 

 Once again using MSD as our disagreement function, the results from this mixed 

model using the Pediatric Impact data are presented in Table 5.3.  Observer is treated as a 

fixed effect, since caregivers and care teams are not selected at random for a child.  Viral 

load is used as a single covariate, but it is not statistically significant (p=0.09).  No other 

covariates yielded p-values lesser than 0.1, so were not included in the model.  The 

parameters for caregivers and the care team are both negative compared with the MEMS, 

indicating that they have higher agreement with the other two observers.  This is 

consistent with the previously summarized data, since the caregiver and the care team are 

more likely to agree with each other than with the MEMS.  Studentized residuals 

appeared slightly skewed, indicating a possibility of non-normal error terms. 

 

 

5.3.3 More than two observers with a reference method – mixed model 
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 Now suppose we have observers, where observer J is considered a reference 

observer.  We can define the outcome for each of the J – 1 non-reference observers as 

, and fit the same mixed models in (5.2).  The observer effect in the 

model,

3≥J

),( Jjiij YYGG =

Ojβ , will now correspond to the disagreement between the indicated observer and 

the reference observer.  

 The results from this model using the Pediatric Impact data with the MEMS as the 

reference method and viral load as a single covariate are presented in Table 5.4.   

Observers are once again treated as a fixed effect.   Modeling the log MSD does not 

reveal a statistically significant difference between the caregiver and the care team for 

agreement with the reference method (p=0.15).  This indicates that the disagreement is 

similar between the caregiver and the MEMS compare to between the care team and the 

MEMS.  Studentized residuals were once again somewhat skewed, indicating a 

possibility of non-normal error terms. 

 

 

5.3.4 Penalized spline regression models 

 The last model we consider for the disagreement function is a semiparametric 

regression model with as the outcome.  This model is defined as  ),( jji YYGG ′=

   iii zfG εγβμ ++= ),,()log(   ,    (5.3) 

where the mean function f is modeled nonparametrically with penalized spline regression 

(Ruppert et al. (2003)).    This function is defined as a pth degree spline model: 

   ,  (5.4) ∑
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where K is the number of knots,  are the knot locations, β is the vector of 

regression coefficients for a subject-specific covariate , and

Kcc ,...,1

iz γ  is the vector of 

coefficients of the truncated polynomial basis functions .  This 

model does not assume that the covariate effects are linear. 

p
Ki

p
i czz )(,...,)( −− c1

 We want to fit this semiparametric model using the Pediatric Impact data to better 

describe the potential nonlinear relationships between viral load and pairwise 

disagreement depicted in Figure 5.2.  We first fit models for the pairwise outcomes using 

log viral load as the only nonparametric predictor in the pth degree spline model, and the 

intercept as the only parametric parameter.  The results of fitting these models to the data 

are presented in Figure 5.3, where we see a nonlinear relationship in every plot.  

Disagreement increases slowly (or sometimes decreases) for lower values of log viral 

load, but then increases rapidly for high values.  The knot locations are chosen as the 

⎟
⎠
⎞

⎜
⎝
⎛

+
+

2
1

K
k th sample location of the unique ’s, where iz Kk ,...,1=  and )20,

4
max(nK =  

(Wand et al. (2005)).  Log viral load is fit in each model with K = 18 knots.  We explored 

adding additional covariates available in the dataset as parametric parameters in addition 

to the described nonparametric relationship with log viral load.  The only covariate which 

added an additional significant effect was disclosure of HIV-status to the child which was 

related to the log disagreement between caregiver and care team.  The parameter was 

estimated as 1.861 with a p-value of 0.0189. 

 The model defined in (5.3) can also be used for the case of more than two 

observers, by using the outcome variable defined in Section 5.3.2, 

.   Now, the model is parameterized the same as (5.2) with )1/(),(
,1

−= ∑
′≠=′

′ JYYGG
J

jjj
jjiij
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the addition of the mean function f , fit through penalized splines.  Agreement for the 

caregiver and care team was once again found to be higher than the MEMS (p=0.01 and 

p<0.001 respectively).  This was expected since the parametric part of the model was fit 

the same as that described in Table 5.3. 

 

 

5.4 Carotid stenosis data 

 Disagreement in the carotid stenosis dataset previously used to demonstrate 

coefficients of agreement is also modeled with a list of possible covariates including: age 

in years, gender, diabetes, peripheral vascular disease, and previous anticoagulant 

therapy. 

 Table 5.5 fits a mixed model without a reference method using MSD as the 

disagreement function.  The observer effect is not significant when modeling log(MSD).  

Negative parameters for both MRA methods indicate better agreement with each other 

than the angiogram.  Subjects with diabetes had significantly higher disagreement than 

those without diabetes (p=0.026). 

 Table 5.6 fits a mixed model where the angiogram is considered to be a reference 

method.  Again, the observer effect is not significant.  For this model, that indicates that 

agreement between MRA-2D and the angiogram is not significantly greater than 

agreement between MRA-3D and the angriogram.  Once again, measurements from those 

subjects with diabetes had significantly higher disagreement with the reference 

(p=0.046). 
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 The effect of the continuous age variable on the pairwise log(MSD)’s is modeled 

nonparametrically in a semiparametric penalized spline regression model.  The results of 

fitting these models to the data are presented in Figure 5.4.  Disagreement increases 

linearly with age in all cases.  When fitting an observer effect in the semiparametric 

model similar to the mixed model with no reference observer, we find the same result as 

with Table 5.5.  Neither MRA method had significantly better agreement with other 

methods (both p=0.9). 

 

 

5.5 Discussion 

 We described four different methods for modeling a disagreement function for 

scenarios with 2 or more observers, and where one of the observers may or may not be 

considered a reference.  Each of the models is capable of assessing the effect of multiple 

covariates on observer agreement.  The described semiparametric model is more flexible 

in describing the effects of covariates since it is not fully parametric and the covariate 

effects do not have to be linear.   

The performance of the four models was examined through analysis on two data 

sets, which revealed similar conclusions for the effects of observers as previously 

examined comparison measures.   Some covariate effects were found to influence 

agreement between different observers.  This information is important, as it can describe 

the conditions that would cause an observer to give a less reliable measurement. 

The models are defined for the case where all covariates of interest are subject-

specific.  Although not present in our datasets, some covariates can be observation-
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specific, where they are measured separately with each replicated measurement by an 

observer.  There are multiple ways to handle these covariates in the models we describe.  

The mixed models can incorporate replications and an interaction with the observer effect 

and the observation-specific covariate.  It may also be possible to create a combined 

covariate incorporating information from both observers contributing to the pairwise 

disagreement function. 

The described models all use a log transformed disagreement function as an 

outcome.  It may also be possible to model the scaled coefficients, Nψ and Rψ although 

the distributions of the subject-specific coefficients are much more unpredictable than a 

disagreement function.  Modeling Nψ and Rψ  involves defining the coefficients, 

),(
2/)],(),([

YXG
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=ψ   and 
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(
G
G ),
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XXR ′
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separately for each subject.   These 

prove to be quite variable, often having values well above 1, and would need suitable 

transformations to prevent extreme outliers from overly influencing the results. 

  



 

 

 

Figure 5.1:  Box Plots for three observers – Pediatric Impact data set. 
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Table 5.1: Summary statistics and estimated MSD’s – Pediatric Impact dataset. 
Observer Y n Mean Median Std. Dev. Range 
Caregiver Y1 160 0.898 0.950 0.144 (0.25 – 1.0) 
Care Team Y2 119 0.829 0.900 0.160 (0.10 – 1.0) 
MEMS Y3 109 0.633 0.724 0.340 (0.0 – 1.0) 
 MSD(Y1,Y2) = 0.026      
 MSD(Y1,Y3) = 0.175      
 MSD(Y2,Y3) = 0.134      

 
 

 

 

Table 5.2: Least squares method – Pediatric Impact dataset results. 
 log(MSD(Y1,Y2)) log(MSD(Y1,Y3)) log(MSD(Y2,Y3)) 
 Estimate SE p-value Estimate SE p-value Estimate SE p-value 
Intercept -8.659 1.384 < 0.001 -5.443 1.702 0.002 -4.335 1.310 0.002 
log10 viral load  0.069 0.217 0.751  0.472 0.256 0.070  0.219 0.192 0.261 
Side effects (yes/no) 0.777 0.953 0.418 -0.184 1.258 0.884 -0.836 0.894 0.355 
Caregiver language is English (yes/no) 1.312 1.307 0.319 -0.055 1.561 0.972  0.236 1.264 0.852 
HIV disclosed (yes/no) 2.272 0.802 0.006 -0.741 0.958 0.443 -0.582 0.731 0.430 
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Figure 5.2:  Scatterplots for pairwise log(MSD)’s by viral load – Pediatric Impact dataset. 
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Table 5.3: Mixed model, no reference observer – Pediatric Impact dataset results. 
 Estimate SE p-value 95% CI 
log (MSDij):     
intercept -4.340 0.530 <0.001 (-5.405 , -3.274) 
observer:     
     Caregiver -0.223 0.082 0.008 (-0.386 , -0.060) 
     Care Team -0.301 0.082 <0.001 (-0.464 , -0.138) 
     MEMS 0 - - - 
log10 viral load 0.270 0.158 0.090 (-0.043 , 0.582) 

 
 
Table 5.4: Mixed model, with reference observer – Pediatric Impact dataset results. 

 Estimate SE p-value 95% CI 
log (MSDij):     
intercept -4.704 0.669 <0.001 (-6.041 , -3.367) 
observer:     
     Caregiver -0.526 0.356 0.146 (-1.241 , 0.189) 
     Care Team 0 - - - 
log10 viral load 0.291 0.184 0.120 (-0.079 , 0.660) 
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Figure 5.3:  Semiparametric fit with shaded standard error bands for pairwise log(MSD)’s by viral load using truncated polynomial basis functions – 
Pediatric Impact dataset. 
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Table 5.5: Mixed model, no reference observer – carotid stenosis dataset results. 
 Estimate SE p-value 95% CI 
log (MSDij):     
intercept 3.32 0.686 <0.001 (1.95 , 4.70) 
observer:     
     MRA-2D -0.032 0.571 0.955 (-1.16 , 1.09) 
     MRA-3D -0.051 0.571 0.929 (-1.18 , 1.07) 
     Angiogram 0 - - - 
diabetes (yes/no) 3.16 1.410 0.026 (0.388 , 5.94) 

 
 
 
Table 5.6: Mixed model, with reference observer – carotid stenosis dataset results. 

 Estimate SE p-value 95% CI 
log (MSDij):     
intercept -0.944 1.34 0.483 (-3.63 , 1.74) 
observer:     
     MRA-2D 0.256 0.70 0.715 (-1.13 , 1.64) 
     MRA-3D 0 - - - 
diabetes (yes/no) 2.87 1.42 0.046 (0.058 , 5.68) 
previous anticoagulant tx 3.87 1.42 0.007 (1.06 , 6.69) 
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Figure 5.4:  Semiparametric fit with shaded standard error bands for pairwise log(MSD)’s by age using truncated polynomial basis functions – carotid 
stenosis dataset.
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Chapter 6 

 

Summary 

 
 This research was focused on assessing agreement between observers or methods 

of measurement where measurements are continuous.  A general approach to evaluating 

agreement between two observers with replicated measurements, known as a coefficient 

of individual agreement, was described and demonstrated on actual data sets.  Several 

methods for inference were examined, both for the case when observers were considered 

fixed and when observers were selected randomly.  Our research offers multiple options 

for analysis, depending on the nature of the data set, which performed well enough in 

simulations to justify their use in practice. 

 Future areas of research on this topic include development of more flexible 

methods of inference on Nψ and Rψ  when observers are selected randomly.  Our methods 

here rely solely on using the mean squared deviation to measure agreement.  The MSD, 

while applicable in most cases, may be difficult to apply when the range of possible 

values for a method of measurement is limited. 

 Multiple useful models for describing agreement as a function of covariates were 

also described.  These models used an unscaled disagreement function as their outcome.  

It may be possible in future research to develop models which actually use the scaled 

coefficients, Nψ and Rψ , as outcomes in a model describing covariate effects. 



83 

Bibliography 

 

Anderson, S. and Hauck, W.W. (1990).  Consideration of individual bioequivalence.  
Journal of Pharmacokinetics and Biopharmaceutics. 18:259-273. 
 
Barnhart, H. X. and Williamson, J. M. (2001).  Modeling concordance correlation via 
GEE to evaluate reproducibility .  Biometrics. 57, 931-940. 
 
Barnhart H.X., Haber M., and Kosinski, A.S. (2007).  Assessing individual agreement.  
Journal of Biopharmaceutical Statistics. 17(4): 721-738. 
 
Barnhart H.X., Haber M.J., and Lin, L.I. (2007).  An overview on assessing agreement 
with continuous measurements.  Journal of Biopharmaceutical Statistics. 17:529-569. 
 
Bland, J. M. and Altman, D. G. (1986).  Statistical methods for assessing agreement 
between two methods of clinical measurement.  Lancet.  I, 307-310. 
 
Bland, J. M. and Altman, D. G. (1999).  Measuring agreement in method comparison 
studies.  Statistical Methods in Medical Research.  8, 135-160. 
 
Carrasco, J. L. and Jover, L. (2003).  Estimating the generalized concordance correlation 
coefficient through variance components.  Biometrics.  59, 849-858. 
 
Choudhary, P. K. and Nagaraja, H. N. (2005).  Selecting the instrument closest to a gold 
standard.  Journal of Statistical Planning and Inference. 129, 229-237. 
 
Choudhary, P.K. and Ng, H. K. T. (2006).  Assessment of agreement under nonstandard 
conditions using regression models for mean and variance.  Biometrics.  62, 288-296. 
 
Choudhary, P.K. (2007).  Semiparametric regression for assessing agreement using 
tolerance bands.  Computational Statistics and Data Analysis. 51, 6229-6241. 
 
Choudhary, P.K. and Nagaraja, H.N. (2007).  Tests for assessment of agreement using 
probability criteria.  Journal of Statistical Planning and Inference. 137:279-290. 
 
Cohen, J. (1960).  A coefficient of agreement for nominal scales.  Educational and 
Psychological Measurement.  20, 37-46. 
 
Dunn, O. J. and Clark, V. (1971).  Comparison of tests of the equality of dependent 
correlation coefficients.  Journal of the American Statistical Association.  66, 904-908. 
 
Efron, B. and Tibshirani, R. J. (1993).  An Introduction to the Bootstrap.  New York: 
Chapman and Hall. 
 



84 

Fisher, R. A. (1925).  Statistical Methods for Research Workers.  Edinburgh: Oliver and 
Reed. 
 
Fisher, R.A. (1935). The Design of Experiments. New York: Hafner. 
 
Galton, F. (1889).  Family likeness in stature.  Proceedings of the Royal Society. 40:42-
73. 
 
Haber M, Barnhart HX. (2006).  Coefficients of agreement for fixed observers.  
Statistical Methods in Medical Research. 15: 1-17. 
 
Haber M, Barnhart HX. (2007).  A general approach to evaluating agreement between 
two observers or methods of measurement from quantitative data with replicated 
measurements.  Statistical Methods in Medical Research. 1-19.  
 
Haber M, Barnhart HX, Song J, Gruden J. (2005).  Observer variability: a new approach 
in evaluating interobserver agreement.  Journal of Data Science. 3:69-83.  
 
Hawkins DM (2002).  Diagnostics for conformity of paired quantitative measurements.  
Statistics in Medicine. 21: 1913-1935. 
 
Hutson, A. D., Wilson, D. C. and Geiser, E. A. (1998).  Measuring relative agreement:  
Echocardiographer versus computer.  Journal of Agricultural, Biological, and 
Environmental Statistics.  3, 163-174. 
 
King, T. S., Chinchilli, V. M. (2001a).  A generalized concordance coefficient for 
continuous and categorical data.  Statistics in Medicine. 20, 2131-2147. 
 
King, T. S., Chinchilli, V. M. (2001b).   Robust estimators of the concordance correlation 
coefficient.  Journal of Biopharmaceutical Statistics. 11:83-105. 
 
Lee SS, Wiener J, Earp MJ, Simoni J, Demas P, Roa J, New M.  Assessment of 
adherence to antiretroviral medications in children with HIV using the Medication Event 
Monitoring System.  Presentation at the 2006 NIMH/IAPAC International Conference on 
HIV Treatment Adherence, Jersey City, NJ. 
 
Lin, L. I. (1989).  A concordance correlation coefficient to evaluate reproducibility.  
Biometrics.  45, 255-268. 
 
Lin, L. I. (1992).  Assay validation using the concordance correlation coefficient.  
Biometrics.  48, 599-604. 
 
Lin, L. I. (1997).  Rejoinder to the letter to the editor by Atkinson and Nevill.  
Biometrics.  53, 777-778. 
 



85 

Lin, L. I. (2000).  Total deviation index for measuring individual agreement: with 
application in lab performance and bioequivalence.  Statistics in Medicine.  19, 255-270. 
 
Lin, L. I., Hedayat, A. S., Sinha, B. and Yang, M. (2002).  Statistical methods in 
assessing agreement: models, issues, and tools.  Journal of the American Statistical 
Association.  97, 257-270. 
 
Lin, L. I., and Torbeck, L. D.  (1998).  Coefficient of accuracy and concordance 
correlation coefficient: new statistics for method comparison.  PDA Journal of 
Pharmaceutical Science and Technology.  52, 55-59. 
 
Lord, F. M. and Novick, M. R.  (1968).  Statistical Theories of Mental Test Scores.  
Reading, Massachusetts: Addison-Wesley. 
 
McGraw, K. O. and Wong, S. P. (1996).  Forming inferences about some intraclass 
correlation coefficients.  Psychological Methods.  1, 30-46. 
 
Ruppert, D., Wand, M. P., and Carroll, R. J. (2003).  Semiparametric Regression.  New 
York:  Cambridge University Press.  
 
Serfling, R. J. (1980).  Approximation Theorems of Mathematical Statistics.  New York:  
Wiley. 
 
St. Laurent, R. T.  (1998).  Evaluating agreement with a gold standard in method 
comparison studies.  Biometrics.  54, 537-545. 
 
Wand, M.P., Coull, B.A., French, J.L., Ganguli, B., Kammann, E.E., Staudenmayer, 
J. and Zanobetti, A. (2005). SemiPar 1.0. R package. http://cran.r-project.org 
 


	True*
	True*
	Outlier Scenario 1
	Outlier Scenario 2
	Outlier Scenario 1
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	Chapter 3 described a general approach for evaluating agreement in the form of the coefficients of individual agreement, and .  The methods developed apply to the case when two or more observers make measurements on a sample of randomly selected subjects with replications, and one observer may or may not be considered a reference observer.  We assumed that the observers were a fixed set.  Now, we seek to extend the previously described methods to be used where a set of two or more observers make measurements on a sample of subjects, and these observers are selected at random from a pool of potential observers.  This situation is common in practice, where a large group of medical staff are trained to administer and interpret a diagnostic test, but only a small subset will actually make the measurement on a given subject.



