Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis in whole or in part in all forms of media, now or hereafter now, including display on the World Wide Web. I understand that I may select some access restrictions as part of the online submission of this thesis. I retain all ownership rights to the copyright of the thesis. I also retain the right to use in future works (such as articles or books) all or part of this thesis.

Danielle Carrol

March 24, 2020

Antimicrobial Activity of Ethnobotanically Selected Plant Extracts Against *Porphyromonas* gingivalis

by

Danielle Carrol

Dr. Cassandra Quave

Adviser

Neuroscience and Behavioral Biology

Dr. Cassandra Quave

Adviser

Dr. Paul Lennard

Committee Member

Dr. Jennifer Felger

Committee Member

2020

Antimicrobial Activity of Ethnobotanically Selected Plant Extracts Against *Porphyromonas* gingivalis

Ву

Danielle Carrol

Dr. Cassandra Quave

Adviser

An abstract of a thesis submitted to the Faculty of Emory College of Arts and Sciences of Emory University in partial fulfillment of the requirements of the degree of Bachelor of Science with Honors

Neuroscience and Behavioral Biology

2020

Abstract

Antimicrobial Activity of Ethnobotanically Selected Plant Extracts Against Porphyromonas gingivalis

By Danielle Carrol

Porphyromonas gingivalis is the keystone pathogen of periodontitis, a chronic inflammatory disease which causes tooth loss and deterioration of gingiva, alveolar bone, and periodontal ligaments. This bacteria has been linked to a number of peripheral and neurological diseases, including cardiovascular disease, diabetes mellitus, respiratory infection, rheumatoid arthritis, osteoporosis, obesity, pre-term birth, depression, and Alzheimer's disease. P. gingivalis interacts with the brain directly via secreted proteases which enter the brain, induce inflammation, and directly affect β -Amyloid and tau proteins. Given how widespread periodontal disease is (greater than 70% of adults over 65 are affected), its range of damaging properties, and growing resistance to many antibiotics, finding new methods of inhibiting P. gingivalis growth is paramount. The ethnobotanical approach to drug discovery offers a promising method of discovering new compounds to combat P. gingivalis while also addressing the growing problem of antibiotic resistance. In this study, a review of plant medicines used for oral hygiene or symptoms of periodontitis was conducted. From the resulting database of 513 plants, 30 plants were tested against P. gingivalis, and 11 of these plants demonstrated high growth inhibition, verifying their traditional medicinal uses. Minimum inhibitory concentration as well as cytotoxicity against human keratinocytes was determined for each of these plant extracts. Promising therapeutic indices for these 11 plants supports further testing including biofilm eradication and bioactivity guided fractionation and potential development as antibiotic pharmaceuticals or additives to oral hygiene products.

Antimicrobial Activity of Ethnobotanically Selected Plant Extracts Against *Porphyromonas* gingivalis

Βу

Danielle Carrol

Dr. Cassandra Quave

Adviser

A thesis submitted to the Faculty of Emory College of Arts and Sciences of Emory University in partial fulfillment of the requirements of the degree of Bachelor of Science with Honors

Neuroscience and Behavioral Biology

2020

Acknowledgements

Dr. Cassandra Quave for advising and mentoring

Francois Chassagne and **Micah Dettweiler** for training, helping me with every question along the way, helping me review and interpret my data, and advising me on presenting

The Quave Research Group for plant collection and storage, and for support, advice, and birthday parties

Dr. Lou Cornacchione for advice on growing P. gingivalis

Dr. Sarah Satola for help identifying the bacterial colonies

To my committee: Dr. Cassandra Quave, Dr. Paul Lennard, and Dr. Jennifer Felger for advising

Table of Contents

Chapter 1: Introduction: Overview 1	L
Porpyromonas gingivalis – mechanisms of infection and evading host immune response	L
Antibiotic Resistance and the Search for New Antimicrobials	L
Ethnobotanical Approach to Drug Discovery2	<u>)</u>
Specific Research Question and Project Aims	3
Chapter 2: Introduction: Porphyromonas gingivalis and the Brain	ŀ
The inflammatory connection to AD	1
P. gingivalis causes increased inflammatory load and interacts directly with key AD pathologies 5	5
Chapter 3: Materials and Methods6	5
Literature Review of Oral Health Related Plants	5
Bacterial Strains and Growth Conditions	5
Colony Counting to determine CFU/mL	7
Single Concentration Screens	7
Minimum Inhibitory Concentration Assays	3
Cytotoxicity Assay	3
Chapter 4: Results 10)
Literature Review of Oral Health Related Plants10)
Single Concentration Screens11	L
MIC Assay14	ļ
Cytotoxicity Assay14	ļ
Chapter 5: Discussion 18	3
Supplementary Materials)
Protocol Design)
Oral Health Related Plants Review	3
Single Concentration Screen Full Results84	ļ

List of Figures and Tables

Fig 3.1: P. gingivalis colonies on supplemented blood agar	7
Table 4.1: Extract IDs	10
Fig 4.1: Distribution of % Inhibition for 109 Extracts at 256 μg/mL. 64 μg/mL and 32 μg/mL	12
Table 4.2: Single Concentration Screens at 256 µg/mL, 64 µg/mL, and 32 µg/mL	13
Fig. 4.2: MIC and Cytotoxicity Dose Response Curves	15
Table 4.3: MIC ₉₀ and Cytotoxicity Data from Selected Extracts	16
Table 5.1: Comparison of Tested Extracts and Traditional Use	21
Tables S1-9: Oral Health Plant Review Tables	36
Table S10: Full Screen Results at 256µg/mL, 64µg/mL, and 32µg/mL	84

Chapter 1: Introduction – Overview

1. Porpyromonas gingivalis – mechanisms of infection and evading host immune response

Periodontitis, a chronic inflammatory disease which causes tooth loss and deterioration of gingiva, alveolar bone, and periodontal ligaments, is caused by several microbes including the keystone pathogen *Porphyromonas gingivalis* [1, 2]. Periodontitis is a slow-developing infection; if gingivitis, which is irritation and inflammation of the gums, is left untreated over long periods of time, pockets can develop between the gums and teeth which provide the breeding ground for *P. gingivalis* to thrive. These deep pockets of bacterial growth eventually lead to the loss of alveolar bone and teeth. Because periodontitis is slow-developing, and can advance if the host is immune compromised, the disease is associated with aging, affecting 47.2% of adults over 30 and 70.1% of adults over 65 [3].

The keystone pathogen of periodontitis, *P. gingivalis,* is a gram negative, rod-shaped, obligate anaerobe which infects periodontal tissues as a secondary infection through interactions with commensal streptococci [2, 4, 5]. *P. gingivalis* has evolved complex mechanisms of evading host antibacterial immune response. The bacteria develops a biofilm, an extracellular matrix composed of various polymeric substances, which protects the pathogen from host immune cells and supports the continued virulence of other infections [4, 6]. *P. gingivalis* also invades host cells without causes apoptosis, replicates within host cells, and travels from cell to cell, thus allowing it to evade immune surveillance [7-9]. The virulent lipopolysaccharide (LPS) of *P. gingivalis* includes a dynamic subunit, Lipid A, with the capacity to change structure, assisting the bacteria in avoiding detection by immune cells [1]. In addition, *P. gingivalis* degrades several components of the complement immune pathway and antimicrobial peptides, including defensins and key pro-inflammatory cytokines [6, 8, 10]. These bacteria also bind to blood cells via complement protein C3, which serves as a transport mechanism and a strategy to avoid detection by phagocytes [1, 11]. Transportation through binding to blood cells has been termed the "haematogenous route."

Because of its ability to evade host immune response and travel from cell to cell as well as via the haematogenous route, *P. gingivalis* can cause and maintain high levels of chronic inflammation in various peripheral organs. Infection with *P. gingivalis* has been linked to cardiovascular disease, diabetes mellitus, respiratory infection, rheumatoid arthritis, osteoporosis, obesity, and pre-term birth [12]. More recently, the link between inflammation and the CNS has been receiving increasing attention, and many studies have begun to investigate the link between *P. gingivalis*, inflammation, and the brain. An increasing volume of clinical and experimental evidence has associated *P. gingivalis* to Alzheimer's disease (AD), dementia, and other forms of cognitive decline. (see Chapter 2 for more detail on the neuro-immune response and the role of *P. gingivalis*)

2. Antibiotic Resistance and the Search for New Antimicrobials

Because of the link between *P. gingivalis* and various diseases, and the pathogen's range of evasive mechanisms for surviving host immune response, identifying new ways of counteracting the bacteria will be important in combating infection and related diseases. Currently, periodontitis is treated with systemic and local antibiotics and occasionally surgery to reach deep-pocket inflammation. In the search for antimicrobial remedies, it is important to consider the rising risk of antibiotic resistance, which is considered by the World Health Organization considers to be a pressing threat to global public health [13]. *P. gingivalis* strains show resistance levels as high as 21.56% to metronidazole, 25.49% to

amoxicillin, and 23.52% to clindamycin [14]. Significant levels of resistance have also been recorded for penicillin, erythromycin, azithromycin, and tetracycline [15].

While antibiotic resistance is rising, new antimicrobials are increasingly necessary, but in recent years there has in fact been a decrease in the discovery of new antibiotics [16]. Natural products, defined as "any FDA-approved, unmodified natural material or compound, semisynthetic derivatives, or synthetic structures which were conceptually derived from a natural product," are a promising source of new antimicrobials [17]. As opposed to single-compound antibiotics, natural products contain up to thousands of chemical compounds, and thus may have many mechanisms of antimicrobial activity. Use of natural products has been found to result in less development of antibiotic resistance [16, 18]. Therefore, one of the ways of combating antibiotic resistance is to employ the ethnobotanical approach to drug discovery. A look into the ethnobotanical approach follows:

3. Ethnobotanical Approach to Drug Discovery

The ethnobotanical approach to drug discovery means employing the traditional uses of plants as a tool for discovery of new molecules for pharmaceutical use; ethnobotanical information guides the selection of plant extracts to test in high-throughput screening. There is a vast wealth of recorded ethnobotanical information about the medicinal uses of thousands of plants; traditional medicinal systems all over the world have employed and documented plant-derived drugs for millennia. The earliest documented use of plant medicine, from Mesopotamia circa 2600 BCE, includes records of about 1000 medicinal substances [19]. Some of the most famous examples of other vast ethnobotanical records include the Egyptian Eber's Papyrus, which dates from 1500 BCE and documents more than 700 drugs, multiple Traditional Chinese Medicine documents from 1100 BCE to 659 AD which in total include over 1000 drugs, and, more recently, the Canon of Medicine by Ibn Sina, circa 1037 CE, which compiles over 1000 drugs from Greek and Eastern medicines [19, 20]. The World Health Organization estimates that today, 65% of the global population still relies, for primary healthcare, on traditional medicines principally employing botanically-derived natural products [19].

During the 1990s and early 2000s, high-throughput screening technologies made it possible for compounds created by combinatorial chemistry to be tested rapidly for antimicrobial activity. As a result, there was a decline in testing of natural products, and many pharmaceutical companies even retired their screening libraries of plant extracts [21]. However, combinatorial chemistry as a source of new chemical entities has not been as successful as predicted in the 1990s – in fact, this approach produced only one FDA-approved new chemical entity (sorafendib) from that time until 2014 [21, 22].

Although combinatorial chemistry and the creation of synthetic molecules have become central to the field of pharmaceutical development, the ethnobotanical approach remains one of the most important contributors to new drug discovery. For example, the antimalarial drug quinine was first isolated from the bark of *Cinchona* species, which was used by indigenous populations of the Amazon to treat fevers [19, 23]. Reserpine, used to treat hypertension, comes from the Ayurvedic medicinal plant *Rauvolfia serpentine* [19, 24]. Vinblastine and vincristine, important chemotherapy drugs, were isolated from *Catharanthus roseus*, and Paclitaxel, another key anticancer pharmaceutical, was isolated from the Pacific yew tree, *Taxus brevifolia* [19]. Bark of the willow tree was used for millennia in the Mesopotamian region, Egypt, and China as an analgesic, and led to the development of a common household pharmaceutical – aspirin [25].

These examples are only a small selection of the many contributions to pharmacology from the natural world. In fact, 75% of the new small molecules approved for cancer treatment from the 1940s to 2014 were derived from natural products or were synthetic molecules mimicking a natural products [19, 26]. A review of pharmaceuticals from 1981 to 2010 found that 69% of anti-infective drugs were either derived from natural products or based on the structure of natural products [19, 26].

Screening for small molecules with a basis in the ethnobotanical approach is much more likely to yield new active molecules than random screening; the National Cancer Institute found a hit rate of 10.4% for screening random samples, compared to 19.9% when using ethnobotanical information to guide screening [27]. A survey of natural products in current use as pharmaceuticals found that 80% "were used for the same or related ethnomedical purposes" as the plants' original uses in their respective traditional medicinal systems [19]. The ethnobotanical approach to drug discovery is also brimming with untapped potential for discovery of many new medicinal molecules; for example, some researchers estimate that current knowledge of molecules derived from rainforest plants represent only one eighth of the potential molecules of pharmaceutical significance the rainforests contain [28].

4. Specific Research Question and Project Aims

The aims of this research project were to perform an ethnobotanically-guided screen of plant extracts against the bacteria *Porphyromonas gingivalis*, to determine the extracts' ability to inhibit growth of the bacteria, and to determine the therapeutic index of each extract by testing for cytotoxicity against human cells. An ethnobotanical review was completed to gather data on plants from traditional medicinal systems across the globe which have been used to treat periodontitis or the symptoms of periodontitis. The plant extracts investigated in this project were selected from the matches between this ethnobotanical search and the Quave Natural Product Library. It was hypothesized that the traditional uses of these plants would be verified by results demonstrating their ability to inhibit *P. gingivalis*, and it was further hypothesized that each plant extract would have low toxicity to human cells, given that these plants have been used to treat oral pain or infection in various medicinal systems.

Chapter 2: Introduction – Porphyromonas gingivalis and the Brain

A growing body of evidence links *P. gingivalis* to the development of Alzheimer's disease (AD), dementia, and other forms of cognitive decline. In addition, chronic infection with *P. gingivalis* has been linked to anhedonia [29] and dysphoria [30] in depression, and periodontitis has been found to have links with Schizophrenia [31-33]. Although not linked to *P. gingivalis* specifically, a range of other psychiatric disorders have been found to be associated with levels of pro-inflammatory cytokines [34] and microglial activation [35], both of which are increased when infected with *P. gingivalis*. Alzheimer's disease is currently the most well-studied neuropsychiatric disease associated with *P. gingivalis*, with the largest volume of clinical and experimental evidence [36].

Periodontal infection with the *P. gingivalis* is a risk factor for developing AD [33, 36-41]. There are two main groups of mechanisms by which *P. gingivalis* interacts with brain health – inducing inflammation, and direct interaction via excretion of toxic proteases.

1. The inflammatory connection to AD

The onset of AD has been found to be related to inflammation and immune response [42, 43]. The three major inflammatory pathways of the innate immune response – the classical pathway, the alternative pathway, and the complement pathway – are not only involved in peripheral inflammation, but nearly all components of these pathways have also been detected in the brain [44]. Microglia and astrocytes produce complement proteins and contain many complement receptors [44]. The mRNAs for the proteins of all three inflammatory pathways are significantly upregulated in areas of the brain affected by AD [44]. Inflammation in the AD brain is particularly high at the sites of $A\beta$ plaques and neurofibrillary tangles, where complement fragments and clusters of microglia and astrocytes are all found at significantly heightened levels [44].

Levels of inflammation are associated with severity of AD symptoms. For example, the brains of asymptomatic patients which at autopsy contained enough $A\beta$ and neurofibrillary tangles to qualify for diagnoses with AD contained significantly less inflammatory markers than the brains of symptomatic AD patients [44].

The increased inflammation found near sites of AD-associated cell damage is not only a byproduct of the cellular damage; $A\beta$ specifically activates the complement and alternative pathways, which brings in a flood of inflammatory cells capable of causing neuronal damage if they are not properly regulated [45]. In fact, four key genetic defects associated with AD encode components of the complement cascade: sub-component 1s, complement receptor 1, complement component 9, and clusterin [46]. The resulting dysregulation of the complement cascade leads to sustained complement activation [47], which causes neuronal damage and altered glial function [45]. Since the ability to stop the activation of the inflammatory pathways is dysregulated in the AD brain, any activation point could result in a vicious cycle leading to a state in which the inflammation itself becomes a source of neural damage regardless of the original source of activation [44].

Indeed, there is evidence that an acute inflammatory event such as an infection can increase the inflammatory load in AD and result in an increased rate of cognitive decline [48]. In addition, $A\beta$ itself, often thought to be only a pathological by-product, has been found to play a physiological role as an

antimicrobial peptide [49]. Therefore, microbial products entering the brain cause an increase in *AB*, which in turn activates the dysregulated inflammatory cascade.

2. P. gingivalis causes increased inflammatory load and interacts directly with key AD pathologies

P. gingivalis components can directly infiltrate the brain, thus affecting the pathway of increasing *AB*, activating an inflammatory response, and beginning a feedback cycle in which the inflammatory response is not shut off. LPS from *P. gingivalis* was found in postmortem AD brains while absent in control samples [50], toxic proteases from *P. gingivalis* were highly elevated in AD brains [51], and antibodies against periodontal bacteria were elevated in AD brains [52]. In addition, cerebrospinal fluid from living AD patients contained *P. gingivalis* DNA [51]. The brains of mice orally infected with *P. gingivalis* contained *P. gingivalis* genomic DNA, which also caused microglia activation, complement activation, and bystander neuronal damage [51, 53]. Interestingly, brain infection and activation of the complement pathway was not found for other oral bacteria [53].

While the mechanism of *P. gingivalis* accessing the brain is not currently known, there are several pieces of evidence which support a hypothesized mechanism. *P. gingivalis* binds to erythrocytes, which allows the bacteria to circulate [11]. Bacterial components can then enter the brain via the circumventricular organs, structures around the third and fourth ventricles not subject to the blood-brain-barrier, where infectious particles and inflammatory mediators access the brain [37]. In addition, *P. gingivalis* can also damage the endothelial cells of the blood-brain-barrier in order to access the brain [51]. Once in the brain, *P. gingivalis* may be able to spread slowly via neuron to neuron transmission, since *P. gingivalis* has been shown to spread from cell-to-cell peripherally [51, 54].

P. gingivalis excretes toxic proteases called gingipains. These proteases have been shown to cleave tau, there is a high correlation between gingipain load and tau load in postmortem brain tissue, and gingipains specifically co-localize with tau tangles [51]. Fragmentation of tau is thought to be a major cause of the formation of tau tangles, so the link between gingipains and tau cleavage suggests that *P. gingivalis* not only causes increased inflammation, but directly interacts with a key AD-specific pathology. Oral infection of *P. gingivalis* also leads to increased production of A β_{1-42} in mice [51], which further suggests direct interaction with AD pathology.

Chapter 3: Materials and Methods

1. Literature Review of Oral Health Related Plants

For full tables of ethnobotanical review, see supplementary tables 1-9.

A review of plants used for oral health in various traditional medicinal systems across the globe was conducted. Plants selected for inclusion were those that have been used for oral hygiene, plants used for periodontitis, and plants used for any of the symptoms of periodontitis including toothache, sore mouth, mouth sores/abscesses, loose teeth, and halitosis. Family, genus, and species names were recorded along with information on part of plant used, medicinal system, application (how the plant is processed and used traditionally), and whether the plant has been previously tested against periodontitis microbes. All plants were then cross-checked to determine most recent accepted genus and species names. Next, the database created from this review was cross-checked with the extracts contained in the Quave Natural Product Library (QNPL). Matches were sorted according to priority level. Priority levels were defined as follows:

- 1 genus, species, and plant part match
- 2 genus and species match, but different plant part
- 3 genus and part match
- 4 genus, species, and part match but the plant is part of a multi-ingredient medicine
- 2. Bacterial Strains and Growth Conditions

For protocol design process, see supplementary materials.

Freeze dried *P. gingivalis* strain ATCC 33277 was rehydrated in Brain Heart Infusion (BHI) media supplemented with 5 μ g/mL Hemin and 1 μ g/mL menadione. Bacteria were grown on supplemented BHI (sBHI) agar plates (5 μ g/mL Hemin, 1 μ g/mL menadione) and supplemented blood agar plates (5% defibrinated sheep's blood, 5 μ g/mL Hemin, 1 μ g/mL menadione, 2 g/L yeast extract) [5, 55-60]. Hemin stock was prepared by dissolving 250 mg Hemin in 5 mL of 1M NaOH and 495 mL ddH20 for a final concentration of 0.5 mg/mL. Menadione stock was prepared by dissolving 25 mg menadione in 20 mL 100% EtOH for a final concentration of 1.25 mg/mL. Each stock was filter sterilized, wrapped in tin foil, and stored at 4°C.

Identification of *P. gingivalis* was determined by pigmentation of colonies on supplemented agar (see Fig 3.1) and confirmed by MALDI-TOF.

Α

Fig 3.1: P. gingivalis colonies on supplemented blood agar

P. gingivalis develops a highly characteristic black-pigmented colony after incorporating protoheme from blood. **A)** after 10 days of incubation and **B)** after 15 days of incubation in anaerobic chamber at 37°C. White colony seen on the left side of the plate is a growth of yeast, likely from the yeast extract used in the blood agar media.

3. Colony Counting to Standardize CFU/mL

To determine the average number of colony forming units (CFU) per mL, bacterial culture was first incubated in sBHI for 48 hours in anaerobic conditions at 37°C (GasPak container system). A 96-well flatbottom non-tissue culture treated plate were prepared with 90 μ L of sBHI. 10 μ L of bacterial culture was added to four wells, and each of these wells was then serial diluted at 10 μ L for a total of 8 10-fold dilutions. An 8-channel pipette was then used to transfer 5 μ L from each well to an sBHI agar plate. Once droplets were dry, the plate was incubated for 5 in anaerobic conditions at 37°C. The number of colonies were counted in each of the four 10⁻³ droplets. The calculation was as follows:

$$\frac{average \ \# \ colonies \ per \ droplet}{10^{-3} \ \ast \ 0.005 \ mL} = \ CFU$$

3. Single Concentration Screens To Select High Activity Extracts

109 extracts from the 21 high priority plants were screened for growth inhibition against *P. gingivalis* at a single concentration (256 μ g/mL). All extracts which had higher than 90% inhibition at 256 μ g/mL were defined as hits. The hits from this screen, 38 extracts from 17 plants, were then screened at 64 μ g/mL and 32 μ g/mL. In order to minimize the total time during which *P. ginginvalis* were exposed to open air conditions, the following protocol was designed:

256 μ g/mL screen: sBHI media was pre-reduced overnight in an anaerobic chamber, and *P. gingivalis* was then incubated in pre-reduced media for 48 hours in anaerobic conditions at 37°C. Additional sBHI was pre-incubated 24 hours before the screen. On the day of the screen, 94.88 μ L of pre-reduced sBHI and 5.12 μ L of extract were added to each well of a 96-well non-tissue culture treated flat bottom plate.

All extracts were dissolved in DMSO at 10 mg/mL. Next, 100 μ L *P. gingivalis* culture were added to each well. The culture was standardized for a final concentration of 10⁶ CFU per well. Untreated control, vehicle (DMSO) control, and antibiotic control (tetracycline 64 μ g/mL) were included. Plates were then incubated in anaerobic conditions at 37°C for 72 hours.

64 and 32 μg/mL screens:

The same protocol was repeated with the following changes: 2.56 μ L of extracts were added to 197.44 μ L sBHI media and completed with 200 μ L *P. gingivalis* in sBHI media for a final concentration of 10⁶ CFU. Wells were then serial diluted once to achieve 32 μ g/mL of extract.

Growth inhibition was determined by change in ocular density (OD) from the start of incubation to the final timepoint. Optical density (OD600) was measured using a BioTek Cytation3 plate reader. Growth inhibition was calculated with the following formula:

$$\left(1 - \left(\frac{\Delta ODtest}{\Delta ODvehicle}\right)\right) * 100 = \% growth inhibition$$

The 21 hits (>90% growth inhibition) from the 64 μ g/mL screen were selected for minimum inhibitory concentration assays (MIC).

4. Minimum Inhibitory Concentration Assays

P. gingivalis was incubated in 5 mL sBHI for 48 hours in an anaerobic GasPak container at 37°C. Working culture was created by standardizing to a concentration of 10⁶ CFU using BioTek Cytation3. 96-well flatbottom non-tissue culture treated plates were used as in the single concentration screens. All extracts which had greater than 90% growth inhibition at 64 μ g/mL (table 1) were prepared for serial dilution with a starting concentration of 256 μ g/mL. All extracts which had greater than 90% growth inhibition at $32 \,\mu\text{g/mL}$ (table 1) were prepared for serial dilution with a starting concentration of 128 $\mu\text{g/mL}$. For those extracts starting at 256 μ g/mL, starting wells were prepared with 189.76 μ L of sBHI and 10.24 μ L extract, and for those starting at 128 µg/mL, starting wells were prepared with with 194.88 µL of sBHI and 5.12 µL of extract. All extracts were dissolved in DMSO at 10 mg/mL. Untreated control, vehicle (DMSO) control, and antibiotic control (tetracycline 64 μ g/mL) were included. 200 μ L of working culture of P. gingivalis was added to complete starting wells to 400 uL. A total of 8 2-fold serial dilutions were completed for a final concentration of 2 μ g/mL (256 μ g/mL starting concentration) or 1 μ g/mL (128 µg/mL starting concentration). Plates were incubated in anaerobic conditions at 37°C for 72 hours. Optical density was measured using BioTek Cytation3 at the starting point and after 72 hours of incubation. MIC tests were duplicated on a separate day to confirm accuracy. Growth inhibition was calculated using the formula defined above. MIC₉₀ was defined as the lowest concentration at which 90% of growth was inhibited compared with vehicle control, and IC₅₀ was defined as the lowest concentration at with 50% of growth was inhibited.

5. Cytotoxicity Assays

All extracts which underwent MIC assays were tested for toxicity against human cells. The human immortalized keratinocytes (HaCaT) were grown in Dulbecco's modified Eagle's medium with L-glutamine and 4.5 g/L glucose (Corning, Corning, NY) supplemented with 10% heat-inactivated fetal bovine serum (Seradigm, Randor, PA) and 1X solution of 100 IU Penicillin and 100 µg/mL Streptomycin (Corning, Corning, NY). Cells were incubated in 10 mL of supplemented DMEM in 75 cm² flasks (Greiner

Bio-One) at 37°C, 5% CO₂. Upon reaching 80% confluence, cells were passaged by detaching from the flask bottom with 0.25% trypsin, centrifuging at 1500 rpm for 3 minutes, and resuspending in 10 mL of fresh supplemented DMEM. Cells were passaged every 2-3 days.

Toxicity was tested using the LDH cytotoxicity assay. Cell culture was standardized to a concentration of 4×10^4 cells/mL and 200 µL were added to each well of a 96-well tissue culture treated flat bottom microtiter plate (Falcon 35-3075). Plates were incubated for 48 hours at 37°C, 5% CO₂. Media was gently aspirated and 200 µL fresh supplemented DMEM was added to each well. Extracts were added and serial diluted 512-4 µg/mL or 128-1 µg/mL (table 4.3). Cells were then processed after 24 hours of incubation at 37°C, 5% CO₂. Lactate dehydrogenase (LDH) assay was performed following manufacturer's instructions (LDH assay kit, G-Biosciences, St. Louis, MO). Briefly, the assay tests levels of LDH, a cytosolic enzyme which is released upon cell lysis. The assay solution undergoes a coupled enzymatic reaction with LDH to ultimately reduce a tetrazolium salt to a red formazan; the intensity of color is correlated to proportion of cells which underwent lysis due to extract toxicity. Positive control of maximum cytotoxicity was achieved by adding 20 µL of lysis buffer to six wells untreated with extracts, and negative control of level of spontaneous lysis was determined by leaving 6 wells untreated with extracts, using the following formula:

 $\frac{(OD \ test \ - \ OD \ spontaneous)}{(OD \ maximum)} * 100 = \% \ cytotoxicity$

IC₅₀ was defined as the lowest concentration at which 50% of the maximum lysis was measured. Therapeutic index was defined as the following:

 $\frac{IC_{50} \text{ of extracts against human keratinocytes}}{IC_{50} \text{ of extracts against P. gingivalis}}$

Chapter 4: Results

1. Literature Review of Oral Health Related Plants

In total, 513 plants were recorded and inputted into a database (for all plant information, see tables S1-9). When cross-checked with the extracts contained in the QNPL, 30 matches were identified. Of the 30 matches, 21 plants were determined to be high priority (priority levels 1 and 2) and were selected for screening. All QNPL extracts from various parts of these plants and various extract solvents were selected, totaling 109 extracts. Since 21 of the 109 extracts were determined to have high activity (see Results part 2) and were selected for further analysis, Table 4.1 contains identification information for each of these 21 extracts. The extracts are ordered alphabetically by family name, then genus name. This order will be followed for reporting of all other data, and plants will be referred to by extract number. See Table S10 for plant IDs of all 109 extracts screened for selection.

Extract Number	Family	Species	Part	Extract Solvent
1288	Anacardiaceae	Pistacia lentiscus L.	leaves	dH2O
1300	Anacardiaceae	Pistacia lentiscus L.	woody parts	95% Ethanol
1892	Anacardiaceae	Pistacia lentiscus L.	fruits	95% Ethanol
66	Fabaceae	Vicia faba L.	Leaves Flowers Whole Plant Roots Stems	EtOH
350	Fabaceae	Vicia faba L.		MeOH
638	Juglandaceae	<i>Carya tomentosa</i> (Poir.) Nutt.	Woody Parts	МеОН
640	Juglandaceae	<i>Carya tomentosa</i> (Poir.) Nutt.	Fruits	МеОН
126	Juglandaceae	Juglans regia L.	Immature Fruits	EtOH
195	Juglandaceae	Juglans regia L.	Woody Parts	EtOH

Table 4.1: Extract IDs

276	Juglandaceae	Juglans regia L.	Immature Fruits	MeOH
1511	Juglandaceae	Juglans r.	woody stems	95% EtOH
1512	Juglandaceae	Juglans r.	woody stems	MeOH
1795	Lauraceae	<i>Sassafras albidum</i> (Nutt.) Nees	stems	80% Ethanol
1161	Meliaceae	<i>Azadirachta indica</i> A.Juss.	Leaves Woody Stem	95% Ethanol
747	Myricaceae	Myrica cerifera L.	Leaves Flowers	MeOH
294	Oleaceae	Olea europaea L.	Leaves	MeOH
124	Rubiaceae	Vitis vinifera var.aglianico L.	Leaves	EtOH
336	Rubiaceae	Vitis vinifera var.aglianico L.	Leaves	MeOH
337	Rubiaceae	Vitis vinifera var.aglianico L.	Stems	MeOH
1111	Rutaceae	<i>Citrus sinensis</i> (L.) Osbeck	Woody Parts	MeOH
1290	Rutaceae	Zanthoxylum armatum DC.	fruits, seeds	95% Ethanol

Table 4.1: Extract IDs

Each extract number is paired with plant family, genus and species, part of plant, and extract solvent.

2. Single Concentration Screens: Selection of Extracts for Analysis

Screening all 109 extracts from 21 plants which were priority levels 1 and 2 at 256 μ g/mL yielded 38 extracts from 17 plants which were chosen for further testing at 64 μ g/mL and 32 μ g/mL (fig4.1, table 4.2). Extracts were chosen if they demonstrated greater than 90% growth inhibition, standard deviations which included 90% growth inhibition, or high standard deviations (>15). Because MIC₉₀ is the value of interest, and the exact percent of inhibition at 256 μ g/mL was not a value of interest, extracts with high standard deviations were included in further tests rather than repeating the 256 μ g/mL test. It was expected that testing at these lower concentrations would narrow down the list of extracts with very high anti- *P. gingivalis* activity, which would be promising targets for MIC testing.

Screening at these 64 μ g/mL and 32 μ g/mL yielded 21 extracts from 11 plants that were considered hits (>90% growth inhibition at 64 μ g/mL). Ten of these extracts, from 7 plants, also had greater than 90% growth inhibition at 32 μ g/mL (fig4.1, table 4.2). These 21 hits were then selected for MIC.

Single concentration screens data is reported in table 4.2 for the 21 extracts selected for MIC testing. For single concentration screen data from all 109 extracts screened, see table S10.

Fig 4.1: Distribution of % Inhibition for 109 Extracts at 256 μ g/mL, 64 μ g/mL and 32 μ g/mL The extracts are arranged by extract number (x-axis) and % of inhibition (y-axis), demonstrating the range of extract activity. Red lines represent 90% growth inhibition. (A) Distribution of inhibitory activity at 256 μ g/mL. The 38 extracts which had greater than 90% inhibition, standard deviations crossing 90% inhibition, or high standard deviations, were chosen for the next screens. (B) Distribution of inhibitory activity at 64 μ g/mL. All extracts with greater than or equal to 90% inhibition (red line) were chosen for further study (21 extracts). (C) Distribution of inhibitory activity at 32 μ g/mL; 7 extracts had greater than 90% inhibition.

Extract Number	Species	Average % Inhibition at 265 μg/mL	Average % Inhibition at 64 µg/mL	Average % Inhibition at 32 μg/mL
1288	Pistacia lentiscus	98.2 ± 0.6	97.36 ± 1.51	(-)105.21 ± 6.69
1300	Pistacia lentiscus	102.2 ± 6.07	92.55 ± 3.50	97.05 ± 2.02
1892	Pistacia lentiscus	90.09 ± 1.59	99.72 ± 0.96	98.41 ± 0.88
66	Vicia faba	97.75 ± 5.31	98.12 ± 0.55	41.00 ± 10.53
350	Vicia faba	108.11 ± 2.62	98.05 ± 0.24	97.76 ± 0.13
638	Carya tomentosa	273.47 ± 17.82	131.04 ± 6.17	107.09 ± 1.97
640	Carya tomentosa	359.06 ± 65.04	195.76 ± 9.93	154.45 ± 11.86
126	Juglans regia	91.79 ± 3.04	96.17 ± 1.26	86.98 ± 2.93
195	Juglans regia	90.19 ± 1.51	96.87 ± 0.36	97.25 ± 0.13
276	Juglans regia	89.89 ± 0.97	94.92 ± 1.97	94.36 ± 0.57
1511	Juglans regia	96.3 ± 3.31	94.99 ± 1.04	61.60 ± 9.02
1512	Juglans regia	92.19 ± 0.6	99.93 ± 0.32	32.61 ± 7.22
1795	Sassafras albidum	90.89 ± 1.25	99.93 ± 0.24	7.52 ± 0.98
1161	Azadirachta indica	90.29 ± 1.39	96.66 ± 1.37	10.85 ± 16.34
747	Myrica cerifera	25.13 ± 61.23*	53.5 ± 44.18*	5.53 ± 2.47

Table 4.2: Single Concentration Screens at 256 $\mu g/mL$, 64 $\mu g/mL$, and 32 $\mu g/mL$

Olea europaea	106.61 ± 6.36	96.38 ± 1.05	36.37 ± 10.77
Vitis vinifera var.aglianico	93.99 ± 2.97	94.05 ± 0.15	6.22 ± 1.48
Vitis vinifera var.aglianico	98.1 ± 6.13	97.22 ± 0.48	(-)2.75 ± 5.57
Vitis vinifera var.aglianico	136.04 ± 14.59	100.77 ± 0.43	97.98 ± 0.63
Citrus sinensis	98.2 ± 0.79	96.78 ± 0.32	94.79 ± 0.57
Zanthoxylum armatum	117.12 ± 1.97	98.82 ± 0.84	96.6 ± 0.33
	Vitis vinifera var.aglianico Vitis vinifera var.aglianico Vitis vinifera var.aglianico Citrus sinensis	Vitis vinifera var.aglianico93.99 ± 2.97Vitis vinifera var.aglianico98.1 ± 6.13Vitis vinifera var.aglianico136.04 ± 14.59Vitis vinifera var.aglianico98.2 ± 0.79	Vitis vinifera 93.99 ± 2.97 94.05 ± 0.15 var.aglianico 98.1 ± 6.13 97.22 ± 0.48 Vitis vinifera 98.1 ± 6.13 97.22 ± 0.48 var.aglianico 136.04 ± 14.59 100.77 ± 0.43 Vitis vinifera 98.2 ± 0.79 96.78 ± 0.32

Table 4.2: Single Concentration Screens at 256 μ g/mL, 64 μ g/mL, and 32 μ g/mL

Percent of growth inhibition is reported as averages with standard deviation (n=3). At 256 μ g/mL, extracts with >90% growth inhibition, standard deviations allowing for >90% growth inhibition, or high standard deviations, were chosen for further study. Extracts with >90% growth inhibition at 64 μ g/mL or 32 μ g/mL were chosen for MIC. *Extract 747 was included in MIC; further tests were necessary to determine accurate anti-*P. gingivalis* activity due to high standard deviation in the single-concentration screens.

3. MIC

The 21 selected high-activity extracts were tested for growth inhibition against *P. gingivalis,* and MIC_{90} was determined for each extract (fig 4.2, table 4.3). MIC_{90} values ranged from 128 µg/mL (747) to 8 µg/mL (1892).

4. Cytotoxicity

All 21 high-activity extracts were tested for cytotoxic effects on human keratinocytes (fig 4.2, table 4.3). Extracts were tested at starting concentrations of 512 µg/mL (512-4 µg/mL) with the exception of samples 350 and 337, which were tested at starting concentrations of 128 µg/mL (128-1 µg/mL) due to low supply of extract in the QNPL. When IC₅₀ was undetectable at the highest concentration testable, IC₅₀ was reported as >512 µg/mL. None of the plant extracts tested had high cytotoxicity; IC₅₀ ranged from 256 µg/mL to greater than 512 µg/mL. Sixteen samples had IC₅₀ values higher than the possibility of testing, two had IC₅₀ values of 512 µg/mL, one had an IC₅₀ value of 256 µg/mL, and both samples tested at 128 µg/mL had undetectable toxicity. When IC₅₀ was undetectable, therapeutic index was calculated using the highest concentration of extract tested, and reported as greater than the resulting value (table 4.3). Therapeutic indices ranged from 4 (1795) to greater than 256 (1892).

Fig. 4.2: MIC and Cytotoxicity Dose Response Curves

(A-K) 21 extracts from 11 plants are shown, representing different plant parts and extract solvents. Error bars represent SEM (n=3). Extract number with suffix C denotes cytotoxicity against HaCat cells. When error bars are not present, they are too small to be visible beyond the data point. Values are cutoff at 100% inhibition for visibility. (L) Tetracycline dose response curve is shown in relation to *Citrus sinensis* as an example of the scale of dose-response for a single-compound antibiotic compared to crude plant extracts.

Extract Number	Species	MIC ₉₀ P. gingivalis (μg/mL)	IC ₅₀ P. gingivalis (μg/mL)	IC₅o HaCaT (µg/mL)	% toxicity at IC_{50} , or at highest concentration tested	Therapeutic Index
1288	Pistacia lentiscus	64	64	>512	47.51 ± 4.02	>8
1300	Pistacia Ientiscus	32	16	>512	25.93 ± 20.02*	>32
1892	Pistacia Ientiscus	8	2	>512	48.23 ± 2.62	>256
66	Vicia faba	32	32	>512	33.95 ± 5.84	>16
350	Vicia faba	32	32	>128**	9.28 ± 6.38	>4
638	Carya tomentosa	32	32	>512	33.76 ± 2.44	>16
640	Carya tomentosa	32	16	>512	41.04 ± 6.80	>16
126	Juglans regia	64	32	>512	48.06 ± 2.59	>16
195	Juglans regia	32	16	>512	7.37 ± 6.93	>32
276	Juglans regia	32	16	>512	34.72 ± 4.27	>32
1511	Juglans regia	64	32	>512	46.91 ± 2.16	>16
1512	Juglans regia	64	32	>512	44.53 ± 2.36	>16
1795	Sassafras albidum	64	64	256	50.44 ± 3.69	4
1161	Azadirachta Indica	64	64	512	54.49 ± 4.41	8

Table 4.3: MIC₉₀ and Cytotoxicity Data from Selected Extracts

747	Myrica cerifera	128	64	>512	48.43 ± 2.14	>8
294	Olea europaea	64	32	>512	16.43 ± 4.93	>16
124	Vitis vinifera var.aglianico	64	64	>512	28.77 ± 3.65	>8
336	Vitis vinifera var.aglianico	32	64	>512	38.08 ± 7.74	>8
337	Vitis vinifera var.aglianico	32	32	>128**	1.3 ± 2.03	>4
1111	Citrus sinensis	32	16	512	58.08 ± 5.47	32
1290	Zanthoxylum armatum	16	16	>512	43.02 ± 3.77	>32

** highest concentration tested due to low supply of extract

Table 4.3: MIC₉₀ and Cytotoxicity Data from Selected Extracts

Extract number is shown with MIC_{90} and IC_{50} against *P. gingivalis,* IC_{50} against human keratinocytes, percent of toxicity at the IC_{50} or the highest concentration tested if no IC_{50} was detectable, and therapeutic index. Error is standard deviation (n=3). MIC_{90} 's and IC_{50} 's are integer proportions with no relevant statistical error.

Chapter 5: Discussion

From a larger review of 513 plants that have been used for oral health across various traditional medicines, 109 extracts from 30 plants were tested, and 21 extracts from 11 plants were found to have high activity against *P. gingivalis*. A brief overview of each of these 11 plants follows:

1. Pistacia lentiscus:

From the Anacardiaceae family, this plant is a relative of the common pistachio, *Pistacia vera*. The resin from *P. lentiscus*, known as mastic, has been used medicinally in traditional medicinal systems widely in the middle east area [61] as well as other areas including Japan, where it is recorded in Kampo, the traditional medicinal system [62]. The mastic is recorded as being used for tooth disease, toothache, or gum inflammation [61, 62]. Crude extract from the fruits of *P. lentiscus* (sample 1892) had the lowest MIC_{90} in this study ($MIC_{90} 8 \mu g/mL$). While the fruits are not the part of the plant typically used for oral health, the fruits have been shown to have hepatoprotective and antidiabetic properties [63].

While the resin has been tested against *P. gingivalis* [64] [65] [66], there were no results in the literature for testing extracts of the fruits, which was the extract with the highest MIC₉₀ in this study (1892). The chemistries of the resin [64], the fruits [63, 67], and the aerial parts [62] have been explored, which is a good starting point for bioactivity guided fractionation. Oleanolic acid (MIC₉₀ 9.8) and 24Zisomasticadienolic acid (MIC₉₀ 2.4), from the resin had comparable MIC values to the crude extract of the fruits [64], so it would be fruitful to test whether the activity in the fruits may be due to these compounds by bioactivity guided fractionation, or if the activity is due to a different compounds present only or in much higher quantities in the fruits, which may be the case as other studies have not reported either compound in the fruits [63, 67].

2. Vicia faba

Vicia faba is the common fava bean. The ground dried beans have been used for sore mouth in North American traditional medicines [28]. The plant has also been used for prostate disorders and cancer in the Palestinian area [68], as a depilatory and diuretic in Bozüyük (Bilecik–Turkey) [69], for colitis and to get thorns out of skin in Italy [70], and for kidney problems in Turkey, [71], and for hemorrhoids, inflammation, and fever in 10th century Cairo [72]. Crude whole-plant extract from *V. faba* had MIC₉₀ as low as 32 µg/mL, highly promising for further study and pharmaceutical development, and this plant has not been tested against *P. gingivalis* before.

3. Carya Tomentosa

Carya tomentosa (more recently known as *Carya alba*), native to the southeastern United States, is a relative of the walnut often called mocker nut. The Cherokee used the inner bark of this plant to heal a sore mouth [73], and the plant is known as "wanéí" [74].

C. tomentosa (MIC₉₀ 32 μ g/mL) has not been previously tested against *P. gingivalis*; in fact nothing could be found in the literature about its chemical composition, although other *Carya* species like pecan have been tested for antitumor effects [75], antioxidant capacities [76], and mitigating effects of high fat diet [77].

4. Juglans regia

Juglans regia (best MIC₉₀ 32 µg/mL) is commonly known as the Persian Walnut. In Pakistan and India, the stems and bark have been used for teeth cleaning as chewing sticks [28, 78]. Although the plant has not been previously tested against *P. gingivalis*, the compound juglone, known to be in Juglans regia [79], has activity against *P. gingivalis* [80] and has been shown to reduce periodontal biofilms of other bacteria [81]. These results in the literature make *J. regia* a promising target of further research, and much work has been done on its chemistry [82], which could help guide bioactivity guided fractionation.

5. Sassafras albidum

Commonly known as sassafras, *Sassafras albidum* (MIC₉₀ 64 μ g/mL) has been used as a chewing stick for teeth cleansing in the North America, particularly in the Appalachia and Ozarks regions [28, 78]. In addition to oral hygiene, the plant has been used for blood pressure, arthritis, insomnia, and to "clean the kidneys" by native inhabitants of the Appalachian region [83], and for diabetes symptoms by the Iroquois and Ojibwa [84]. The plant has not been tested against *P. gingivalis* but has activity against *Streptococcus* species [85-87].

6. Azadirachta indica

Azadirachta indica (MIC₉₀ 64 μ g/mL), is commonly called neem. It has been used as a chewing stick in Pakistan [88] and the Arabian Peninsula [89] [90]. In Karnataka, India, the powder of the inner bark is held in the mouth for half an hour for toothache [91]. It has also been used for a wide variety of other traditional uses; *A. indica* is recorded in Ayurveda for use in skin diseases, inflammation, and fevers, which have been verified in modern studies [92]. It is also known to be efficacious as an insect repellant [92].

A. indica has been found to have efficacy in vitro against periodontitis; a chip with the oil was placed in the pockets in gums, and *P.gingivalis* growth was reduced over time [93]. One study was found which previously tested for MIC *A. indica* against *P. gingivalis*, but the results (MIC 500 μ g/mL) were unreliable due to lack of vehicle control as use of gentamycin, which is known to have no activity against *P. gingivalis*, as the antibiotic control [94].

The chemistry of *A. indica* has been previously explored, showing abundance of limonoids and phenolics [92].

7. Myrica cerifera

Myrica cerifera (MIC₉₀ 128 μ g/mL), also known as *Morella cerifera*, is commonly called the bayberry tree. Its root bark is made into a decoction for oral hygiene in the Southern U.S. [28]. The bark has also been used as a powder and decoction to prevent dental decay in the Florida area [90].

In addition to its uses for oral health, it has been used widely by Native Americans for other uses: Louisiana Choctaws used the boiled leaves and stems as a fever remedy, the Houma boiled the leaves as an antihelmintic, the Koasati used the plant for stomachache, the Micmac used the roots for headache and topically for inflammation [95] and the Nahua termed it Ahuaxochitl and used it for heart ailments [96]. It was also shown by modern science to have antithrombin activity [95].

No previous studies were found testing M. cerifera against P. gingivalis.

8. Olea europaea

Olea europaea (MIC₉₀ 64 μ g/mL) is the common olive. It has been used as a chewing stick in the middle east area [28], and the chewing stick from this plant is called "zaitoon" in Pakistan [88]. In addition to its uses in oral hygiene, in southern Africa, the leaves are used to make an eye lotion, to treat colds and throat problems, and as a styptic [97].

O. europaea extracts from both the leaves and oil have been tested against *P. gingivalis* [64]. The whole leaf crude extract was not reported, but individual compounds were tested, with the best compound being maslinic acid (MIC 4.9 μ g/mL) [64]. This study provides as basis of comparison for the bioactivity guided fractionation of the crude leaf extract tested.

9. Vitis vinifera

The grape vine, *Vitis vinifera* (best MIC₉₀ 32 μg/mL), has been used in oral hygiene as a toothpaste made from the ashes of burnt branches [28]. In addition, many parts of the plant have been recorded in Islamic scriptures as a treatment for a wide variety of ailments [98], and it has been used in Turkey as a tea for respiratory and intestinal ailments [99].

While the seeds and fruits have been tested against *P. gingivalis* [100], the stems and leaves, which were tested in this study, have not. One study showed extracts from seeds had inhibitory and antibiofilm activity against *P. gingivalis* only at very high concentrations (2000 µg/mL), so the values of 32 and 64 µg/mL from the leaves and stems in this study might indicate that the leaves/stems are a better source for pharmaceutical search [101]. The chemistry of the stalks has been evaluated [102, 103], which provides good background for beginning bioactivity guided fractionation.

10. Citrus sinensis

The orange tree, *Citrus sinensis* (MIC₉₀ 32 μ g/mL) has been used as a chewing stick in west Africa [78, 104], and in Malaya as a decoction made from the leaves for sore mouth [28].

No previous studies were found testing *Citrus sinensis* leaves or stems against *P. gingivalis*. One study found poor results testing a water extract of the fruit peel [105], and another found efficacy of a 4% ethanolic extract of the peel against gingival inflammation [106]. The chemistry of stems has been explored, and extracts have been tested against other oral pathogens [107].

11. Zanthoxylum armatum

Finally, *Zanthoxylum armatum* (MIC₉₀ 16 μ g/mL) is used as a chewing stick in India [28, 108]. Its common name is the winged prickly ash. Native Americans crush the bark and apply to gums for relief, and it is known as the toothache tree [109]. The fruits and bark have also been used in India for cancer and digestive ailments [108].

The chemistry of the plant has been explored, and it has been found to have strong inhibitory properties against many bacteria, but has not been tested against *P. gingivalis* [109].

These 11 plants represent a promising collection of natural products which could be further explored for use as pharmaceuticals. Each of these plants was used in various traditional medicinal systems as every-

day oral hygiene care or as treatments for symptoms related to periodontitis; therefore, the traditional uses of these plants were verified by this study.

Future directions based on this research include biofilm testing and bioactivity guided fractionation. When the extracts are fractioned into component compounds, we expect to see even lower values for MIC and higher therapeutic indices. One likely product of these results could be a development of a mouthwash which includes the tested extracts and/or fractions from these extracts. Because they were found to have high growth inhibitory properties, and *P. gingivalis* is a slow-developing bacteria which can take years to start flourishing in the oral cavity, long-term growth inhibition as part of a daily oral hygiene routine could be highly effective. Periodontal infections affect 47.2% of adults over 30 and 70.1% of adults over 65, so developing long-term preventatives could have far-reaching impact, especially given that *P. gingivalis* has been linked to so many diseases, including cardiovascular disease, diabetes mellitus, respiratory infection, rheumatoid arthritis, osteoporosis, obesity, pre-term birth, and Alzheimer's disease [3].

QNPL Ext	ract ID			Traditional Use				
Extract Number	Family	Species	Part	Part Used	Medicinal System/ Area	Application	Citation	
1288	Anacardiaceae	Pistacia lentiscus	leaves	resin	Turkey	mastic	[28]	
1300	Anacardiaceae	Pistacia lentiscus	woody parts	resin	Kampo: "Yo- Nyuko olibanum	chewing gums with oil extracts	[62]	
1892	Anacardiaceae	Pistacia Ientiscus	fruits					
66	Fabaceae	Vicia faba	Leaves Flowers Whole Plant Roots Stems	bean	North America	ground dried beans for sore mouth	[28]	
350	Fabaceae	Vicia faba						
638	Juglandaceae	Carya tomentos	Woody Parts	inner bark	Cherokee	doctor chews inner bark and	[73]	
640	Juglandaceae	Carya tomentos	Fruits			blows into mouth for sore mouth		

Table 5.1: Comparison of Tested Extracts and Traditional Uses

126	Juglandaceae	Juglans regia	Immature Fruits	stem, bark	Pakistan, India	Chewing Sticks	[78], [28]
				_			
195	Juglandaceae	Juglans regia	Woody Parts				
276	Juglandaceae	Juglans regia	Immature Fruits				
1511	Juglandaceae	Juglans regia	woody stems				
1512	Juglandaceae	Juglans regia	woody stems	_			
1795	Lauraceae	Sassafras albidum	stems	twig	United States; particularly Appalachia and Ozarks	Chewing Sticks	[78], [28]
1161	Meliaceae	Azadirachta indica	Leaves Woody Stem	bark	Karnataka, India	powdered inner bark held in mouth for half and hour for toothache	[91]
				twig	Indian Subcontinent (called "datun")	Cleaning Sticks	[78], [93]
747	Myricaceae	Myrica cerifera	Leaves Flowers	root bark	Southern U.S.	decoction	[28]
294	Oleaceae	Olea europaea	Leaves	twig	Middle East	Chewing Sticks	[28]
124	Rubiaceae	Vitis vinifera var.aglianico	Leaves	ashes of burnt branches	England	Toothpaste	[28]
336	Rubiaceae	Vitis vinifera var.aglianico	Leaves				
337	Rubiaceae	Vitis vinifera var.aglianico	Stems	-			

1111	Rutaceae	Citrus sinensis	Woody Parts	twig, branch	W. Africa	Chewing Sticks	[78]
1290	Rutaceae	Zanthoxylum armatum	fruits, seeds	wood, bark	India	Chewing Sticks	[28]

Table 5.1: Comparison of Tested Extracts and Traditional Uses

(Left Column) Each sample tested is reported with family name, genus and species name, and part of plant. (Right Column) The part of each plant which is used in traditional medicine, the medicinal system or area of the world from which the medicinal use is documented, and the method of use for each plant. The part of each plant tested against *P. gingivalis* (left column) can be compared to the part of plant traditionally used for periodontitis symptoms (right column).

References

- 1. Singhrao, S., et al., *Porphyromonas gingivals Periodontal Infection and it Putative Links with Alzheimer's Disease*. Mediators Inflamm, 2015. **137357**.
- 2. Neville, B., et al., *Periodontal Pathology*. Color Atlas of Oral and Mixillofacial Diseases, 2019: p. 93-107.
- 3. Eke, P., et al., *Prevalence of Periodontitis in Adults in the United States: 2009 and 2010.* J Dental Res, 2012. **91**(10): p. 914-20.
- 4. Sakanaka, A., et al., *Dual lifestyle of Porphyromonas gingivalis in biofilm and gingival cells.* Microbial Pathogenesis, 2016. **94**: p. 42-47.
- 5. Ramji, N., et al., *Phenolic antibacterials from Piper betle in the prevention of halitosis*. Journal of Ethnopharmacology, 2002. **83**(1-2): p. 3.
- 6. Slaney, J., et al., *Mechanisms of Resistance of Porphyromonas gingivalis to killing by serum complement.* Infect Immun, 2006. **74**(9): p. 5352-61.
- 7. Nakhjiri, S., et al., *Inhibition of epithelial cell apoptosis by Porphyromonas gingivalis*. FEMS Microbiol. Lett., 2001. **200**(2): p. 145-9.
- 8. Bostanci, N. and G. Belibasakis, *Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen.* FEMS Microbiology Letters, 2012. **333**(1): p. 1-9.
- 9. Yilmaz, O., L. Yao, and M. K, *ATP scavenging by the intracellular pathogen Porphyromonas gingivalis inhibits P2X7-mediated host-cell apoptosis.* Cell Microbiol, 2008. **10**(4): p. 863-875.
- 10. Carlisle, M., R. Srikantha, and K. Brogden, *Degradation of human alpha- and beta-defensins by culture supernatants of Porphyromonas gingivalis strain 381.* J Innate Immun. , 2009. **1**(1): p. 118-22.
- 11. Belstrøm, D., et al., *The atherogenic bacterium Porphyromonas gingivalis evades circulating phagocytes by adhering to erythrocytes*. Infect Immun, 2011. **78**(4): p. 1559-65.
- 12. Kim, J. and S. Amar, *Periodontal disease and systemic conditions: a bidirectional relationship.* Odontology, 2008. **94**(1): p. 10-21.
- 13. WHO. Antimicrobial Resistance. 2016; Available from: http://www.who.int/mediacentre/factsheets/fs194/en/.
- 14. Ardila, C., M. Lopez, and I. Guzman, *High resistance against clindamycin, metronidazole and amoxicillin in Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans isolates of periodontal disease.* Med Oral Ptol Oral Cir Bucal, 2010. **15**(6): p. e947-51.
- 15. Winkelhoff, A.J.V., et al., *Antimicrobial resistance in the subgingival microflora in patients with adult periodontitis.* Journal of Clinical Periodontology, 2001. **27**(2): p. 79-86.
- Cheesman, M., et al., Developing New Antimicrobial Therapies: Are Synergistic Combinations of Plant Extracts/Compounds with Conventional Antibiotics the Solution? Pharmacogn Rev, 2017. 11(22): p. 57-72.
- 17. Patridge, E., et al., *An Analysis of FDA-Approved Drugs: Natural Products and Their Derivates.* Drug Discovery Today, 2016. **21**(2): p. 3.
- 18. Srivastava, J., et al., *Antimicrobial resistance (AMR) and plant-derived antimicrobials (PDAms) as an alternative drug line to control infections.* 3 Biotech, 2014. **4**(5): p. 451-460.
- 19. Cragg, G.M. and D. Newman, *Natural Products: A Continuing Source of Novel Drug Leads.* Biochem Biophys Acta., 2013. **1830**(6): p. 3670-3695.
- 20. Hosseinzadeh, H. and M. Nassiri-Asl, *Avicenna's (Ibn Sina) the Canon of Medicine and Saffron (Crocus saticus): A Reivew.* Phytotherapy Research, 2012. **27**(4): p. 8.
- 21. Dias, D., S. Urban, and U. Roessner, *A Historical Overview of Natural Products in Drug Discovery.* Metabolites, 2012. **2**: p. 33.

- 22. Newman, D. and G.M. Cragg, *Natural Products as Sources of New Drugs from 1981 to 2014*. J Nat Prod., 2016. **79**(3): p. 32.
- 23. Achan, J., et al., *Quinine, an Old Antimalarial Drug in a Modern World: Role in the Treatment of Malaria.* Malaria Journal, 2011. **10**(1): p. 12.
- 24. Jerie, P., *Milestones of Cardiovascular Therapy, IV: Reserpine.* Casopis Lekaru Ceskych, 2007. **146**(7): p. 4.
- 25. Mahdi, J.G., A.J. Mahdi, and I.D. Bowen, *The Historical Analysis of Aspirin Discovery, Its Relation to the Willow Tree and Antiproliferative and Anticancer Potential.* Cell Proliferation, 2006. **39**(2): p. 8.
- 26. Newman, D. and G.M. Cragg, *Natural Products as Sources of New Drugs Over the 30 Years from 1981 to 2010.* J Nat Prod., 2012. **75**(3): p. 24.
- 27. Harvey, A., *Chapter 2: Natural Products for High-Throughput Screening*, in *Advances in Phytomedicine*, M. Iwu and J. Wootton, Editors. 2002, Elsevier. p. 5.
- 28. Lewis, W. and M. Elvin-Lewis, *Oral Hygeine*, in *Medical Botany*. 2003, John Wiley & Sons: Hoboken, New Jersey.
- 29. Postolache, T., et al., *P. gingivalis and Cardinal Symptoms of Depression*. Biological Psychiatry, 2019. **85**(10): p. S332.
- 30. Hsu, C., et al., *Association of Periodontitis and Subsequent Depression: A Nationwide Population-Based Study.* Medicine (Baltimore), 2015. **94**(51): p. e2347.
- 31. Friedlander, A. and S. Marder, *The psychopathology, medical management and dental implications of schizophrenia.* J Am Dental Assoc, 2002. **133**(5): p. 603-10.
- 32. Shetty, S. and A. Bose, *Schizophrenia and periodontal disease: An oro-neural connection? A cross-sectional epidemiological study.* J Indian Soc Periodontol, 2014. **18**(1): p. 69-73.
- 33. Gatz, M., et al., *Potentially modifiable risk factors for dementia in identical twins*. Alzheimer's Dement., 2006. **2**(2): p. 110-117.
- 34. Gadad, B., et al., *Exploring the Association of BDNF, GDNF, IL-6 and IL-16 From Periphery to CNS: Relevance to Psychiatric Disorders.* Biological Psychiatry, 2019. **85**(10): p. S332.
- 35. Doorduin, J., et al., *Neuroinflammation in schizophrenia-related psychosis: a PET study*. J Nucl Med, 2009. **50**(11): p. 1801-7.
- 36. Hashioka, S., et al., *The Possible Causal Link of Periodontitis to Neuropsychiatric Disorders: More Than Psychosocial Mechanisms.* Int J Mol Sci, 2019. **20**(15): p. 3723.
- 37. Singhrao, S.K., et al., Oral Inflammation, Tooth Loss, Risk Factors, and Association with Progression of Alzheimer's Disease J Alzheimers Dis, 2014. **42**(3): p. 723-737.
- 38. Stein, P.S., et al., *Tooth loss, dementia and neuropathology in the Nun study.* J. Am. Dent. Assoc., 2007. **138**(10): p. 1314-1322.
- 39. EK, K., et al., *Tooth loss and periodontal disease predict poor cognitive function in older men.* J Am Geriatr Soc, 2010. **58**(4): p. 713-8.
- 40. Noble, J.M., et al., *Periodontitis is associated with cognitive impairment among older adults: Analysis of NHANES-III.* J. Neurol. Neurosurg. Psychiatry, 2009. **80**(11): p. 1201-1211.
- 41. Kamer, A.R., et al., *Periodontal disease associates with higher brain amyloid load in normal elderly.* Neurobiol. Aging, 2015. **36**(2): p. 627-633.
- 42. JC, L. and e. al, *Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease*. Nat Genet, 2009. **41**(10): p. 1094-9.
- 43. Harold, D. and e. al, *Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease*. Nat Genet, 2009. **41**(10): p. 1088-93.
- 44. Akiyama, H., et al., *Inflammation and Alzheimer's disease*. Neurobiol. Aging, 2014. **21**(3): p. 383-421.

- 45. Bradt, B., W. Kolb, and N. Cooper, *Complement-dependent proinflammatory properties of the Alzheimer's disease beta-peptide*. J Exp Med, 1998. **188**(3): p. 431-8.
- 46. Olsen, I. and S. Singhrao, *Is there a link between genetic defects in the complement cascade and Porphyromonas gingivalis in Alzheimer's disease?* Journal of Oral Microbiology, 2019. **12**(1).
- 47. McGeer, P. and E. McGeer, *Local neuroinflammation and the progression of Alzheimer's disease.* Journal of NeuroVirology, 2002. **8**: p. 529-538.
- 48. Holmes, C., et al., *Systemic inflammation and disease progression in Alzheimer disease*. Neurology, 2009. **73**(10): p. 768-774.
- 49. Soscia, S., et al., *The Alzheimer's disease-associated amyloid beta-protein is an antimicrobial peptide*. PLoS One, 2010. **5**(3): p. e9505.
- 50. Poole, S., et al., *Determining the presence of periodontopathic virulence factors in short-term postmortem Alzheimer's disease brain tissue.* J Alzheimers Dis, 2013. **36**(4): p. 665-77.
- 51. Dominy, S.S., et al., *Porphyromonas gingivalis in Alzheimer's disease brains: Evidence for disease causation and treatment with small-molecule inhibitors.* Sci Adv, 2019. **5**(1).
- 52. Kamer, A., et al., *TNF-alpha and antibodies to periodontal bacteria discriminate between Alzheimer's disease patients and normal subjects.* J Neuroimmunol, 2009. **216**(1-2): p. 92-7.
- 53. Poole, S., et al., Active invasion of Porphyromonas gingivalis and infection-induced complement activation in ApoE-/- mice brains. J Alzheimers Dis, 2015. **43**(1): p. 67-80.
- 54. Li, L., et al., *Intracellular survival and vascular cell-to-cell transmission of Porphyromonas gingivalis.* BMC Microbiology, 2008. **8**: p. 26.
- 55. La, V.D., A. Howell, and D. Grenier, *Anti-Porphyromonas gingivalis and Anti-Inflammatory Activities of A-type Cranberry Proanthocyanidins.* Antimicrobial Agents and Chemotherapy, 2010. **54**(5): p. 6.
- 56. Minami, M., et al., *Hainosan (painongsan) suppresses the biofilm formation of Porphyromonas gingivalis and Prevotella intermedia in vitro.* Traditional and Kampo Medicine, 2019.
- 57. Ocheng, F., et al., *Antibacetrial activities of extracts from Ugandan medicinal plants used for oral care.* Journal of Ethnopharmacology, 2014. **155**(1): p. 3.
- 58. Rosas-Pinon, Y., et al., *Ethnobotanical survey and antibacterial activity of plants used in the Altiplane region of Mexico for the treatment of oral cavity infections.* Journal of Ethnopharmacology, 2012. **141**(3): p. 5.
- 59. Sánchez, M.C., et al., *Antimicrobial activity of red wine and oenological extracts against periodontal pathogens in a validated oral biofilm model.* BMC Complementary and Alternative Medicine, 2019. **19**(1): p. 145.
- 60. Yamanaka, A., et al., *Inhibitory effect of cranberry polyphenol on biofilm formation and cysteine proteases of Porphyromonas gingivalis.* Journal of Periodontal Research, 2007. **42**(6).
- 61. Bozorgi, M., et al., *Five Pistacia species (P. vera, P. atlantica, P. terebinthus, P. khinjuk, and P. lentiscus): A Review of Their Traditional Uses, Phytochemistry, and Pharmacology.* Scientific World Journal, 2013: p. 219815.
- 62. Watanabe, S., et al., *Kampo Therapies and the Use of Herbal Medicines in the Dentistry in Japan.* Medicines, 2019. **6**(1): p. 31.
- 63. Mehenni, h., et al., *Hepatoprotective and antidiabetic effects of Pistacia lentiscus leaf and fruit extracts*. Journal of Food and Drug Analysis, 2016. **24**(3): p. 653-669.
- 64. Karygianni, L., et al., *Compounds from Olea europaea and Pistacia lentiscus inhibit oral microbial growth.* BMC Complementary and Alternative Medicine, 2019. **19**: p. 51.
- 65. S, K., et al., *Antimicrobial Effects of Mastic Extract Against Oral and Periodontal Pathogens.* J Periodontol, 2017. **88**(5): p. 511-17.
- 66. Sakagami, H., et al., *Selective antibacterial and apoptosis-modulating activities of mastic.* In Vivo, 2009. **23**(2): p. 215-23.

- 67. F, M., et al., *Diversity of Sterol Composition in Tunisian Pistacia lentiscus Seed Oil.* Chem Biodivers, 2016. **13**(5): p. 544-8.
- Ali-Shtayeh, M.S., Z. Yaniv, and J. Mahajna, *Ethnobotanical survey in the Palestinian area: a classification of the healing potential of medicinal plants*. Journal of Ethnopharmacology, 2000.
 73(1-2): p. 221-232.
- 69. Güler, B., E. Manav, and E. Uğurlu, *Medicinal plants used by traditional healers in Bozüyük* (*Bilecik–Turkey*). Journal of Ethnopharmacology, 2015. **173**: p. 39-47.
- Guarrera, P.M., G. Forti, and S. Marignoli, *Ethnobotanical and ethnomedicinal uses of plants in the district of Acquapendente (Latium, Central Italy).* Journal of Ethnopharmacology, 2005.
 96(3): p. 429-444.
- 71. Sezik, E., et al., *Traditional medicine in Turkey X. Folk medicine in Central Anatolia*. Journal of Ethnopharmacology, 2001. **75**(2-3): p. 95-115.
- 72. Lev, E. and Z. Amar, *"Fossils" of practical medical knowledge from medieval Cairo.* Journal of Ethnopharmacology, 2008. **119**(1): p. 24-40.
- 73. Taylor, L.A., *Plants Used as Curatives by Certain Southeastern Tribes*. 1940, Boston, Massachussetts: Botanical Museum of Harvard University.
- 74. Cozzo, D.N., *Ethnobotanical classification system and medical ethnobotany of the Eastern Band of the Cherokee Indians*, in *Ph.D Dissertation*. 2004: University of Georgia, Athens.
- 75. Wu, W., et al., *New antitumor compounds from Carya cathayensis*. Bioorganic & Medicinal Chemistry Letters, 2012. **22**(5): p. 1895-1989.
- 76. Villarreal-Lozoya, J.E., L. Lombardini, and L. Cisneros-Zevallos, *Phytochemical constituents and antioxidant capacity of different pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivars.* Food Chemistry, 2007. **102**(4): p. 1241-1249.
- 77. Domínguez-Avila, J.A., et al., *The pecan nut (Carya illinoinensis) and its oil and polyphenolic fractions differentially modulate lipid metabolism and the antioxidant enzyme activities in rats fed high-fat diets.* Food Chemistry, 2015. **168**: p. 529-537.
- 78. Wu, C.D., I.A. Darout, and N. Skaug, *Chewing Sticks: timeless natural toothbrushes for oral cleansing.* Journal of Periodontal Research, 2001. **36**: p. 9.
- 79. Thakur, A., *Juglone: A therapeutic phytochemical from Juglans regia L.* Journal of Medicinal Plants Research, 2011. **5**(22): p. 5324-5330.
- 80. Cai, L., et al., *Namibian chewing stick, Diospyros lycioides, contains antibacterial compounds against oral pathogens.* J Agric Food Chem, 2000. **48**(3): p. 909-14.
- 81. FARAZ, N., et al., ANTIBIOFILM FORMING ACTIVITY OF NATURALLY OCCURRING COMPOUND Biomedica, 2012. **28**: p. 171-5.
- 82. Hayes, D., et al., *Walnuts (Juglans regia) Chemical Composition and Research in Human Health.* Critical Reviews in Food Science and Nutrition, 2016. **56**(8): p. 1231-1241.
- 83. A.Cavender, *Folk medical uses of plant foods in southern Appalachia, United States.* Journal of Ethnopharmacology, 2006. **108**(1): p. 74-8.
- 84. McCune, L.M. and T. Johns, *Antioxidant activity in medicinal plants associated with the symptoms of diabetes mellitus used by the Indigenous Peoples of the North American boreal forest.* Journal of Ethnopharmacology, 2002. **82**(2-3): p. 197-205.
- 85. Palombo, E.A., *Traditional Medicinal Plant Extracts and Natural Products with Activity against Oral Bacteria: Potential Application in the Prevention and Treatment of Oral Diseases.* Evidence-Based Complementary and Alternative Medicine, 2011. **2011**: p. 680354.
- 86. Kabra, P., et al., *Medicinal Plants in the Treatment of Dental Caries*

Asian Journal of Oral Health & Allied Sciences, 2012. 2(1): p. 12-16.

- 87. Devi, B.P. and R. Ramasubramaniaraja, *Dental Caries and Medicinal Plants An Overview*. Journal of Pharmacy Rese, 2009. **2**(11): p. 1669-1675.
- Almas, K., *The antimicrobial effects of seven different types of Asian chewing sticks*.
 Odontostomatol Trop, 2001. 24(96): p. 17-20.
- 89. Lebling, R. and D. Pepperdine, *Natural Remedies of Arabia*. 2006: Medina Publishing.
- Halberstein, R.A., *Botanical Medicines for Oral Health*. Natural Product Communications 2008.
 3(11): p. 1813-1824.
- 91. Hebbar, S., et al., *Ethnomedicine of Dharwad district in Karnataka, India--plants used in oral health care.* J Ethnopharmacol, 2004. **94**(2-3): p. 261-6.
- 92. Nat, J.M.v.d., et al., *Ethnopharmacognostical survey of Azadirachta indica A. Juss (Meliaceae)*. Journal of Ethnopharmacology, 1991. **35**(1): p. 1-24.
- 93. Vennila, K., S. Elanchezhiyan, and S. Ilavarasu, *Efficacy of 10% whole Azadirachta indica (neem)* chip as an adjunct to scaling and root planning in chronic periodontitis: A clinical and microbiological study. Indian Journal of Dental Research, 2016. **27**(1): p. 6.
- 94. Alvaro, M.R., H.H. Alejandra, and D.C. Antonio, *In vitro Antibacterial Activity of Maclura tinctoria and Azadirachta indica against Streptococcus mutans and Porphyromonas gingivalis*. British Journal of Pharmaceutical Research, 2015. **7**(4): p. 291-298.
- 95. Chistokhodova, N., et al., *Antithrombin activity of medicinal plants from central Florida*. Journal of Ethnopharmacology, 2002. **81**(2): p. 277-280.
- 96. Andrade-Cetto, A., *Ethnobotanical study of the medicinal plants from Tlanchinol, Hidalgo, México.* Journal of Ethnopharmacology, 2009. **122**(1): p. 163-171.
- 97. Long, H.S., P.M. Tilney, and B.-E.V. Wyk, *The ethnobotany and pharmacognosy of Olea europaea subsp. africana (Oleaceae).* South African Journal of Botany, 2010. **76**(2): p. 3.
- 98. El-Seedi, H.R., et al., *Plants mentioned in the Islamic Scriptures (Holy Qur'ân and Ahadith): Traditional uses and medicinal importance in contemporary times.* Journal of Ethnopharmacology, 2019. **243**: p. 112007.
- 99. Sargin, S.A., S. Selvi, and V. López, *Ethnomedicinal plants of Sarigöl district (Manisa), Turkey.* Journal of Ethnopharmacology, 2015. **171**: p. 64-84.
- 100. Rivero-Cruz, J.F., et al., *Antimicrobial constituents of Thompson seedless raisins (Vitis vinifera) against selected oral pathogens.* Phytochemistry Letters, 2008. **1**(3): p. 151-154.
- 101. Furiga, A., A. Lonvaud-Funel, and C. Badet, *In vitro study of antioxidant capacity and antibacterial activity on oral anaerobes*

of a grape seed extract. Food Chemistry, 2008. 113: p. 1037-1040.

- 102. Prozil, S., D.V. Evtuguin, and L. Cruz-Lopes, *Chemical composition of grape stalks of Vitis vinifera L. from red grape pomaces.* Industrial Crops and Products, 2012. **35**(1): p. 178-184.
- 103. Billet, K., et al., *Field-Based Metabolomics of Vitis vinifera L. Stems Provides New Insights for Genotype Discrimination and Polyphenol Metabolism Structuring.* Front Plant Sci, 2018. **9**: p. 798.
- 104. ADU-TUTU, M., et al., *Chewing Stick Usage in Southern Ghana* Economic Botany, 1979. **33**(3): p. 320-328.
- 105. Hussain, K.A., et al., ANTIMICROBIAL EFFECTS OF CITRUS SINENSIS PEEL EXTRACTS AGAINST PERIODONTOPATHIC BACTERIA: AN IN VITRO STUDY. Rocz Panstw Zakl Hig 2015. **66**(2): p. 173-178.
- Mandal, A., et al., A Comparative Evaluation of Anti-Inflammatory and Antiplaque Efficacy of Citrus Sinesis Mouthwash and Chlorhexidine Mouthwash. J Nepal Soc Perio Oral Implantol, 2018.
 2(1): p. 9-13.
- 107. Nata'ala, M.K., et al., *Phytochemical Screening and Antibacterial Activity of Citrus sinensis* (L.)Osbeck [Orange] and Citrus aurantifolia(Cristm.) Swingle[Lime]Stem from Bacteria Associated with Dental Caries. Journal of Advances in Microbiology, 2018. **8**(4): p. JAMB.39134.
- 108. Khan, M.F., et al., Antibacterial Properties of Medicinal Plants From Pakistan Against Multidrug-Resistant ESKAPE Pathogens. Front Pharmacol, 2018. **9**: p. 815.
- 109. Singh, T.P. and O.M. Singh, *Phytochemical and Pharmacological Profile of Zanthoxylum armatum DC. -- An Overview.* Indian Journal of Natural Products and Resources, 2010. **2**(3): p. 275-285.
- 110. Homer, K.A., F. Manji, and D. Beighton, *Inhibition of protease activities of periodontopathic bacteria by extracts of plants used in Kenya as chewing sticks (miswak)*. Archives of Oral Biology, 1990. **35**(6): p. 3.
- 111. Rotimi, V.O., et al., *Activities of Nigerian Chewing Stick Extracts against Bacteroides gingivalis and Bacteroides melaninogenicus*. Antimicrobial Agents and Chemotherapy, 1988. **32**(4): p. 12.
- 112. Sofrata, A., et al., *Strong Antibacterial Effects of Miswak Against Oral Microorganisms Associated With Periodontitis and Caries.* Journal of Periodontaology, 2008. **79**(8).
- Sukkarwalla, A., et al., *Efficacy of Miswak on Oral Pathogens*. Dental Research Journal, 2013.
 10(3): p. 6.
- 114. Shemluck, M., *Medicinal and Other Uses of the Compositae by Indian in the United States and Canada.* Journal of Ethnopharmacology, 1982. **5**: p. 55.
- 115. Romero, J.B. and H.-H.-S.o. Tawee, *The Botanical Lore of the California Indians*. 1954, New York: Vantage Press, Inc. 85.
- Bairy, I., et al., Evaluation of antibacterial activity of Mangifera indica on anaerobic dental microglora based on in vivo studies. Indian Journal of Pathological Microbiology, 2002. 45(3): p. 3.
- 117. Wu, C.D. and L. Cai, *Compounds from Syzygium aromaticum possessing growth inhibitory activity against oral pathogens.* Journal of Natural Products, 1996. **59**(10): p. 3.
- 118. Minami, M., et al., *In Vitro Effect of the Traditional Medicine Hainosan (Painongsan) on Porphyromonas gingivalis.* Medicines, 2019. **6**(2): p. 11.

Supplementary Materials:

Protocol Design Process: Culturing Porphyromonas Gingivalis

Several methods were tested to optimize *P. gingivalis* growth. The protocol design process is detailed in the following sample protocols and final protocol:

Method 1: P. gingivalis initial growth from freeze-dried

Preparation of Broth

Materials Required

TSB BHI Hemin Menadione K2HPO4 DI water

A) Preparation of Hemin Stock solution

1. Prepare solution with 0.5g hemin and 1.74g K2HPO4 in 100mL DI water. Boil for 5 minutes while stirring on hot plate.

*work in dark room since hemin is light sensitive

*wrap glass bottle in aluminum foil

B) Preparation of TSB supplemented broth (TSBhm)

1. Add 100 μ L hemin stock, 100 μ g menadione, and 3g TSB to 100mL DI water.

*work in dark room since hemin and menadione are light sensitive

*pre-wrap glass bottle with aluminum foil

*weigh menadione in the dark

*to get 100 μ g menadione, create stock solution by adding 10mg to 10mL of DI water, and add 100 μ L of this solution to the media

2. Autoclave 121ºC for 15 mins

C) Preparation of BHI supplemented broth (BHIhm)

- 1. Add 100µL hemin stock, 100 µg menadione, and 3.7g BHI to 100mL DI water.
- 2. Autoclave 121ºC for 15 mins

Preparation of Agar

Materials Required

TSB BHI agar Hemin Stock Menadione Agar Yeast Extract L-cysteine hydrochloride

A) Prepare TSB agar

- 1. Add 100µL hemin stock, 100 µg menadione, 1.5g agar, and 3g TSB to 100mL DI water.
 - *work in dark room since hemin and menadione are light sensitive
 - *pre-wrap glass bottle with aluminum foil
 - *weigh menadione in the dark
- 2. Autoclave 121ºC for 15 mins
- 3. Pour agar into 5 plates, 20 mL each.
- 4. Store plates in opaque box.

B) Prepare BHI agar

- 1. Add 100µL hemin stock, 100 µg menadione, 5.2g BHI agar to 100mL DI water.
- 2. Repeat 2-4 from part A.

B) Prepare ATCC recommended agar

1. Add 100μL hemin stock, 100 μg menadione, 1.5g agar, 3g TSB, 0.5g yeast extract, and 0.05g l-cysteine hydrochloride to 100mL DI water.

2. Repeat 2-4 from part A.

Reviving Freeze-Dried P. gingivalis

Materials Required

TSB BHI agar Hemin Stock Menadione Agar Yeast Extract L-cysteine hydrochloride

1. Rehydrate bacteria pellet in 1 mL of TSBhm

*work in dark room since hemin and menadione are light sensitive

- 2. Streak plates from the 1 mL solution:
 - 2 TSBhm plates
 - 2 BHIhm plates
 - 2 ATCC recommended plates
- 3. Incubate 1 of each plate in 37°C and 1 of each plate in anaerobic chamber.
- 4. Prepare 3 tubes of 6mL TSBhm and 3 tubes of 6mL BHIhm.
- 5. Add 150 μ L of bacteria solution to each tube.
- 6. Incubate 1 from each broth type in 37°C, 1 in anaerobic chamber, and 1 in CO2 incubator.
- 7. Check for growth after 24 hours.

Method 1 Results:

After incubating for 48 hours, there was no growth. The likely explanation was that the hemin and menadione, necessary for *P. gingivalis* survival, were degraded in the autoclave. Therefore, 5µg/mL hemin and 1µg/mL menadione were added to the two 6mL tubes in the anaerobic chamber containing the bacteria. At 72 hours post addition of extra supplements, growth was visible in the tubes. Freezer stocks were made from these tubes.

Test for Method 1: sBHI v.s. sTSB growth on 96-well plates, Ampicillin vs. Tetracycline

sBHI was chosen as the best media for *P. gingivalis* growth, and tetracycline was selected as the positive control for future experiments. Further protocol design was developed with sBHI only.

Method 2: P. gingivalis media and agar

Preparation of Hemin Stock Solution

Materials Required

Hemin powder 1M NaOH ddH2O

- 1. Dissolve 250mg of hemin powder in 5mL of 1M NaOH
- 2. Add the dissolved hemin in NaOH to 495mL ddH2O.
- 3. Sterilize with a bottle-cap filter.
- 4. Wrap the bottle of stock solution in tin foil (hemin is light sensitive) and store at 4°C.

Note: the final concentration of hemin will be 0.5mg/mL

Preparation of Menadione Stock Solution

Materials Required

Menadione powder 100% EtOH

1. Dissolve 50mg of menadione powder in 25mL of 100% EtOH.

- 2. Sterilize with a bottle-cap filter.
- 3. Wrap the bottle of stock solution in tin foil (menadione is light sensitive) and store at 4°C.

Note: the final concentration of hemin will be 2mg/mL

Preparation of sBHI Broth

Materials Required

BHI Hemin Stock Menadione Stock

1. Make BHI as per standard BHI protocol.

2. After autoclaving, add appropriate amounts of menadione stock and hemin stock. Final concentration of menadione should be **1µg/mL** and final concentration of hemin should be **5µg/mL**.

See table for reference:

Volume	500mL	400mL	300mL	200mL	100mL	50mL	25mL	10mL	5mL
Broth									
Volume	5mL	4mL	3mL	2mL	1mL	500uL	250uL	100uL	50uL
Hemin									
Stock									
Volume	250uL	200uL	150uL	100uL	50uL	25uL	12.5uL	5uL	2.5uL
Menadione									
Stock									

Note: Add hemin and menadione directly to culture media instead of making a large stock. For example, when starting MIC and culturing 5mL of bacteria in a 14mL tube, add 50µL of hemin stock and 2.5µL of menadione stock directly to the 14mL tube.

Preparation of sBHI Agar

Materials Required

- BHI agar powder Hemin Stock Menadione Stock Yeast Extract L-cysteine ddH2O
- 1. Prepare BHI agar mix as per standard protocol.
- 2. Add 1g/L yeast extract
- 3. Autoclave at 121°C for 15 minutes.
- 4. Keep the agar mix stirring while it is cooling.

5. When the agar mix is cool enough to comfortably touch the glass, add 0.5g/L-cysteine, 500μ L/L menadione stock, and 10mL/L hemin stock.

6. Pour 20mL of sBHI agar mix into each petri dish.

7. Store the dishes in an opaque cardboard box at 4°C.

Preparation of sBlood Agar

Materials Required

TSA powder Yeast Extract Hemin Stock Menadione Stock 5% defibrinated Sheep's Blood

1. Prepare TSA agar mix as per standard protocol.

- 2. Add 2g/L yeast extract.
- 3. Autoclave at 121°C for 15 minutes.

4. Keep the agar mix stirring while it is cooling.

5. When the agar mix is cool enough to comfortably touch the glass, add 50mL/L defibrinated sheep's blood (*for final proportion of 5% sheep's blood*), 500µL/L menadione stock, and 10mL/L hemin stock.

6. Pour 20mL of sBlood agar mix into each petri dish.

7. Store the dishes in an opaque cardboard box at 4°C.

Tables S1-9: Oral Health Plants Review

(Willd.) Drake

			0				
Family	Species (reported name)	Species (accepted name)	Part Used	Medicinal System	Application	Tested on P. gingivalis?	Citation
Amaranthaceae	Achyranthes aspera L.		branch	Arabia, Panama	Chewing Sticks	?	[28]
Amaranthaceae	Achyranthes aspera L.		stem	India	Chewing Sticks		[91]
Amaranthaceae	<i>Aerva tomentosa</i> Forssk.	<i>Aerva javanica</i> var. <i>bovei</i> Webb	root	Red sea area	Chewing Sticks	?	[28]
Anacardiaceae	<i>Rhus natalensis</i> Bernh. ex C.Krauss	<i>Searsia natalensis</i> (Bernh. ex C.Krauss) F.A. Barkley		Kenya	Chewing Sticks	Y	[110] [110], [78]
Anacardiaceae	<i>Sorindeia warneckei</i> Engl.	<i>Sorindeia grandifolia</i> Engl.		Nigerian	Chewing Sticks	Y, ATCC33277	[111]
Apocynaceae	<i>Funtumia elastica</i> (Preuss) Stapf			Ghana	Chewing Sticks	?	[28]
Apocynaceae	<i>Landolphia owariensis</i> P.Beauv.			Tropical Africa	Chewing Sticks	?	[28]
Arecaceae	Cocos nucifera L.		peduncle	Middle East	Chewing Sticks	?	[28]
Asclepiadaceae	<i>Gongronema latifolium</i> Benth.		stem	Sierra Leone	Chewing Sticks	?	[28]
Asteraceae	<i>Vernonia amygdalina</i> Delile		roasted root, stem	W. Africa	Chewing Sticks	?	[28]
Asteraceae	<i>Vernonia amygdalina</i> Delile		Root and stem	Nigerian	Chewing Sticks	Y, ATCC33277	[111]
Asteraceae	Vernonia colorata	Gymnanthemum	roasted root, stem	W. Africa	Chewing Sticks	?	[28]

Table S1: Chewing Sticks

coloratum (Willd.) H.Rob & B.Kahn

Betulaceae	<i>Alnus glutinosa</i> (L.) Gaertn.		inner bark	England	Chewing Sticks	N, active against gram+ bacteria and myrobacterium	[28]
Betulaceae	Betula lenta L.			United States; particularly Appalachia and ozarks	Chewing Sticks	N, active against gram+ bacteria and myrobacterium	[78], [28]
Betulaceae	<i>Betula lutea</i> (Britton) Rehder	<i>Betula alleghaniensis</i> Britton		United States; particularly Appalachia and ozarks	Chewing Sticks	N, active against gram+ bacteria and myrobacterium	[78], [28]
Bignoniaceae	Newbouldia laevis (P.Beauv.) Seem.		twig	Nigerian	Chewing Sticks	?	[28]
Bignoniaceae	<i>Stereospermum</i> <i>kunthianum</i> Cham.		stem	W. Africa	Chewing Sticks	?	[28]
Boraginaceae	<i>Cordia gharaf</i> Ehrenb. ex Asch.	<i>Cordia sinensis</i> Lam.	twig	Middle East	Chewing Sticks	?	[28]
Boraginaceae	<i>Ehretia thonningiana</i> R.Br. ex Fresen.	<i>Ehretia cymose</i> Thonn.	stem	Tropical Africa	Chewing Sticks	?	[28]
Capparidaceae	<i>Maerua crassifolia</i> Forssk.		twig	W. Africa	Chewing Sticks	?	[28]
Clusiaceae	Allanblackia floribunda Oliv.		Root; Twig	W. Africa	Chewing Sticks	?	[28]
Clusiaceae	Allanblackia parviflora A.Chev.		Root; Twig	W. Africa	Chewing Sticks	?	[28]
Clusiaceae	<i>Garcinia afzelii</i> Engl.		Twig; root; twig; root, stem	W. Africa	Chewing Sticks	?	[28]
Clusiaceae	Garcinia kola Heckel		Twig; root; twig; root, stem	W. Africa	Chewing Sticks	?	[28]
Clusiaceae	Garcinia mangostana L.		Twig; root; twig; root, stem	W. Africa	Chewing Sticks	?	[28]
Clusiaceae	Garcinia mannii Oliv.		Twig; root; twig; root, stem	W. Africa	Chewing Sticks	?	[28]
Clusiaceae	<i>Pentadesma butyracea</i> Sabine		Root	W. Africa	Chewing Sticks	?	[28]

Combretaceae	Anogeissus leiocarpus (DC.) Guill. & Perr.	Anogeissus leiocarpa (DC.) Guill. & Perr.		Nigerian	Chewing Sticks	Y, ATCC33277	[111] <i>,</i> [28]
Combretaceae	<i>Guiera senegalensis</i> J.F.Gmel		root, stem	W. Africa	Chewing Sticks	?	[28]
Combretaceae	<i>Terminalia glaucescens</i> Planch. ex Benth.		root	W. Africa	Chewing Sticks	?	[28]
Combretaceae	Terminalia glaucescens			Nigerian	Chewing Sticks	Y, ATCC33277	[111]
Connaraceae	<i>Agelaea obliqua</i> (P.Beauv.) Baker	<i>Agelaea pentagyna</i> (Lam.) Baill.	Fruit	W. Africa	Chewing Sticks	?	[28]
Connaraceae	<i>Agelaea trifolia</i> (Lam.) Baill.	<i>Agelaea pentagyna</i> (Lam.) Baill.	stem	Nigerian	Chewing Sticks	?	[28]
Connaraceae	Castanola paradoxa Schellenb.	<i>Agelaea paradoxa</i> Gilg	Stem	W. Africa	Chewing Sticks	?	[28]
Connaraceae	<i>Manotes expansa</i> Sol. ex Planch.		stem	Liberia	Chewing Sticks	?	[28]
Cornaceae	Cornus florida L.		Twig	United States	Chewing Sticks	?	[28]
Dichapetalaceae	Dichapetalum guineense (DC.) Keay	Dichapetalum madagascariense Poir.	Stem	W. Africa	Chewing Sticks	?	[28]
Ebenaceae	<i>Diospyros barteri</i> Hiern		stem	Ghana	Chewing Sticks	?	[28]
Ebenaceae	<i>Diospyros elliotii</i> (Hiern) F.White		twig, stem	W. Africa	Chewing Sticks	?	[28]
Ebenaceae	<i>Diospyros heudelotii</i> Hiern		twig	Seirra Leone	Chewing Sticks	?	[28]
Ebenaceae	<i>Diospyros loureiroana</i> G.Don			S. Africa	Chewing Sticks	?	[28]
Ebenaceae	<i>Diospyros lycioides</i> Desf.		root	Namibia, Zambia	Chewing Sticks	Ν	[78], [28]

Ebenaceae	<i>Diospyros tricolor</i> (Schumach. & Thonn.) Hiern		twig, stem	W. Africa	Chewing Sticks	?	[28]
Ebenaceae	<i>Euclea divinorum</i> Hiern			Kenya	Chewing Sticks	Y	[110], [78], [28]
Ebenaceae	<i>Euclea fructuosa</i> Hiern	<i>Euclea natalensis</i> subsp. <i>obovata</i> F.White		Kenya	Chewing Sticks	Y	[110], [78], [28]
Ebenaceae	<i>Euclea multiflora</i> Hiern	<i>Euclea natalensis</i> subsp. <i>obovata</i> F.White		Kenya	Chewing Sticks	Y	[110], [78], [28]
Ericaceae	Gaultheria procumbens L.		root	United States; particularly Appalachia and ozarks	Chewing Sticks	?	[78], [28]
Euphorbiaceae	<i>Acalypha fruticosa</i> Forssk.		twig	E. Africa	Chewing Sticks	?	[28]
Euphorbiaceae	<i>Alchornea cordifolia</i> (Schumach. & Thonn.) Mull.Arg		Root, stem	W. Africa	Chewing Sticks	?	[28]
Euphorbiaceae	<i>Antidesma venosum</i> E.Mey. ex Tul.		twig	Nigerian	Chewing Sticks	?	[28]
Euphorbiaceae	<i>Cleidion gabonicum</i> Baill.		twig	Ghana	Chewing Sticks	?	[28]
Euphorbiaceae	Drypetes floribunda (Mull.Arg) Hutch.		Stem	W. Africa	Chewing Sticks	?	[28]
Euphorbiaceae	Jatropha curcas L.		stem	India	Chewing Sticks	?	[28]
Euphorbiaceae	<i>Mallotus oppositifolius</i> (Geiseler) Mull.Arg			W. Africa	Chewing Sticks	?	[28]
Euphorbiaceae	Phyllanthus engleri Pax		fruit	Tanzania	Chewing Sticks	?	[28]

Euphorbiaceae	Phyllanthus muellerianus (Kuntze) Exell		twig, bark strips	Nigerian	Chewing Sticks	?	[28]
Euphorbiaceae	<i>Phyllanthus reticulatus</i> Poir.		twig	S. Africa	Chewing Sticks	?	[28]
Euphorbiaceae	<i>Tetrorchidium didymostemon</i> (Baill.) Pax & K.Hoffm.		stem	S. Africa	Chewing Sticks	?	[28]
Fabaceae	Abrus schimperi Baker		stem	E. Africa	Chewing Sticks	?	[28]
Fabaceae	<i>Acacia arabica</i> (Lam.) Willd.	<i>Acacia nilotica</i> (L.) Delile	twig	Tropical Africa	Chewing Sticks	?	[28]
Fabaceae	<i>Acacia kamerunensis</i> Gand.		pounded root	Ghana	Chewing Sticks	?	[28]
Fabaceae	Acacia modesta Wall.		twig	Pakistan	Chewing Sticks	?	[28]
Fabaceae	<i>Acacia nilotica</i> (L.) Delile			Tropical Africa	Chewing Sticks	?	[28]
Fabaceae	<i>Acacia pennata</i> (L.) Willd.			Tropical Africa	Chewing Sticks	?	[28]
Fabaceae	<i>Acacia pentagona</i> (Shum. & Thonn.) Hook.f.		twig	Tropical Africa	Chewing Sticks	?	[28]
Fabaceae	<i>Baphia nitida</i> Lodd.		stem	W. Africa	Chewing Sticks	?	[28]
Fabaceae	Burkea africana Hook.		twig	Nigerian	Chewing Sticks	?	[28]
Fabaceae	Cassia auriculata L.	<i>Senna auriculata</i> (L.) Roxb.	twig	India	Chewing Sticks	?	[28]
Fabaceae	Cassia sieberiana DC.		root	Seirra Leone	Chewing Sticks	?	[28]
Fabaceae	<i>Daniellia oliveri</i> (Rolfe) Hutch. & Dalziel		twig	Ghana	Chewing Sticks	?	[28]
Fabaceae	<i>Delonix elata</i> (L.) Gamble		twig	E. Africa	Chewing Sticks	?	[28]

Fabaceae	Dialium guineense Willd.		twig	W. Africa	Chewing Sticks	?	[28]
Fabaceae	Distemonanthus benthamianus Baill.			Nigerian	Chewing Sticks	Y, ATCC33277	[111]
Fabaceae	<i>Eriosema griseum</i> Baker		stem	W. Africa	Chewing Sticks	?	[28]
Fabaceae	<i>Griffonia simplicifolia</i> (DC.) Baill.		stem	W. Africa	Chewing Sticks	?	[28]
Fabaceae	<i>Humboldtia laurifolia</i> M. Vahl		twig	Ceylon	Chewing Sticks	?	[28]
Fabaceae	<i>Hymenostegia afzelii</i> (Oliv.) Harms		twig	W. Africa	Chewing Sticks	?	[28]
Fabaceae	Lonchocarpus spp.			W. Africa	Chewing Sticks	?	[28]
Fabaceae	Mezoneuron spp.	Caesalpinia spp.	twig	Liberia	Chewing Sticks	?	[28]
Fabaceae	<i>Millettia thonningii</i> (Schum. & Thonn.) Baker		stem, peeled bark	Nigerian	Chewing Sticks	?	[28]
Fabaceae	Piliostigma reticulatum (DC.) Hochst.	Bauhinia reticulata (DC.)	root, twig	Tropical Africa	Chewing Sticks	?	[28]
Fabaceae	Piliostigma thonningii (Schum.) Milne-Redh.	<i>Bauhinia thonningii</i> Schum.	root, twig	Tropical Africa	Chewing Sticks	?	[28]
Fabaceae	<i>Pongamia pinnata</i> (L.) Pierre		twig	Ceylon	Chewing Sticks	?	[28]
Fabaceae	<i>Pterocarpus marsupium</i> (Roxb.)		twig	India	Chewing Sticks	?	[28]
Fabaceae	Tamarindus indica (L.)		twig	W. Africa	Chewing Sticks	?	[28]
Flacourtiaceae	Casearia barteri Mast.		Stem	W. Africa	Chewing Sticks	?	[28]
Hamamelidaceae	Liquidambar styraciflua L.			United States; particularly Appalachia and ozarks; Eastern U.S., Mexico	Chewing Sticks	?	[78], [28]

LamiaceaeOcimum gratissimum L.twigGhanaChewing Sticks?[28]LamiaceaeVitex simplicifolia Oliv.Vitex madiensis Oliv.stemNigerianChewing Sticks?[28]LamiaceaeVitex simplicifolia Oliv.Vitex madiensis Oliv.stemNigerianChewing Sticks?[28]LauraceaeLindera benzoin (L.) BlumeVitex madiensis Oliv.stemNigerianChewing Sticks?[78], [28]LauraceaeLindera benzoin (L.) BlumeVitex madiensis Oliv.twigUnited States; particularly Appalachia and ozarksChewing Sticks?[78], [28]LauraceaeSassafras albidum (Nutt.) NeestwigUnited States; particularly Appalachia and ozarksChewing Sticks?[78], [28]LecthidaceaeNapoleonaea vogelii Hook. & Planch.twig, bark stripsW. AfricaChewing Sticks?[28]LoganiaceaeStrychnos afzelii GilgstemW. AfricaChewing Sticks?[28]								
(F.Michx.) G.Donparticularly Appalachia and ozarksJuglandaceaeCarya paliida (Ashe) Engelm. & Graebn.twigUnited States; particularly Appalachia and ozarksChewing Sticks?[28]JuglandaceaeJuglans regia L.stem, barkPakistanChewing Sticks?[28]LamiaceaeOcimum gratissimum L.twigGhanaChewing Sticks?[28]LamiaceaeVitex simplicifolia Oliv.Vitex madiensis Oliv.stemNigerianChewing Sticks?[28]LamiaceaeVitex simplicifolia Oliv.Vitex madiensis Oliv.stemNigerianChewing Sticks?[28]LauraceaeVitex simplicifolia Oliv.Vitex madiensis Oliv.stemNigerianChewing Sticks?[28]LauraceaeSossofras albidum (Nutt.) NeesVitex madiensis Oliv.stemNigerianChewing Sticks?[78], [28]LauraceaeSossofras albidum (Nutt.) NeesSossofras albidum (Nutt.) NeestwigUnited States; particularly Appalachia and ozarks?[28]LauraceaeNapoleonaea vogelii Hook. & Pianch. <th< td=""><td>Juglandaceae</td><td>, , ,</td><td></td><td>twig</td><td>particularly Appalachia and</td><td>Chewing Sticks</td><td>?</td><td>[28]</td></th<>	Juglandaceae	, , ,		twig	particularly Appalachia and	Chewing Sticks	?	[28]
Engelm. & Graebn.Engelm. & Graebn.particularly Appalachia and ozarksJuglandaceaeJuglans regia L.stem, barkPakistanChewing SticksN[78], [28]LamiaceaeOcimum gratissimum L.twigGhanaChewing Sticks?[28]LamiaceaeVitex simplicifolia Oliv.Vitex madiensis Oliv.stemNigerianChewing Sticks?[28]LamiaceaeVitex simplicifolia Oliv.Vitex madiensis Oliv.stemNigerianChewing Sticks?[28]LauraceaeLindera benzoin (L.) BlumeVitex madiensis Oliv.stemNigerianChewing Sticks?[78], [28]LauraceaeLindera benzoin (L.) 	Juglandaceae	•		twig	particularly Appalachia and	Chewing Sticks	?	[28]
LamiaceaeOcimum gratissimum L.twigGhanaChewing Sticks?[28]LamiaceaeVitex simplicifolia Oliv.Vitex madiensis Oliv.stemNigerianChewing Sticks?[28]LamiaceaeVitex simplicifolia Oliv.Vitex madiensis Oliv.stemNigerianChewing Sticks?[28]LauraceaeLindera benzoin (L.) BlumeUnited states; particularly Appalachia and 	Juglandaceae			twig	particularly Appalachia and	Chewing Sticks	?	[28]
LamiaceaeVitex simplicifolia Oliv.Vitex madiensis Oliv.stemNigerianChewing Sticks?[28]LamiaceaeVitex simplicifolia Oliv.Vitex madiensis Oliv.stemNigerianChewing Sticks?[28]LauraceaeLindera benzoin (L.) BlumeVitex madiensis Oliv.stemNigerianChewing Sticks?[78], [28]LauraceaeLindera benzoin (L.) BlumeVitex madiensis Oliv.twigUnited States; particularly 	Juglandaceae	Juglans regia L.		stem, bark	Pakistan	Chewing Sticks	Ν	[78], [28]
LamiaceaeVitex simplicifolia Oliv.Vitex madiensis Oliv.stemNigerianChewing Sticks?[28]LauraceaeLindera benzoin (L.) BlumeBlumeUnited States; particularly Appalachia and ozarksChewing Sticks?[78], [28]LauraceaeSassofras albidum (Nutt.) NeestwigUnited States; particularly Appalachia and ozarksChewing Sticks?[78], [28]LecthidaceaeNapoleonaea vogelii Hook. & Planch.twig, bark stripsW. AfricaChewing Sticks?[28]MeliaceaeAzadirachta indica A.Juss.twigIndian Subcontinent;Cleaning SticksN[78], [93]	Lamiaceae	Ocimum gratissimum L.		twig	Ghana	Chewing Sticks	?	[28]
LauraceaeLindera benzoin (L.) BlumeUnited States; particularly Appalachia and ozarksChewing Sticks?[78], [28]LauraceaeSassafras albidum (Nutt.) NeestwigUnited States; particularly Appalachia and ozarksChewing Sticks?[78], [28]LecthidaceaeNapoleonaea vogelii Hook. & Planch.twigUnited States; particularly Appalachia and ozarksChewing Sticks?[78], [28]LecthidaceaeNapoleonaea vogelii Hook. & Planch.twig, bark stripsW. AfricaChewing Sticks?[28]MeliaceaeAzadirachta indica A.Juss.twigIndian Subcontinent;Cleaning SticksN[78], [93]	Lamiaceae	Vitex simplicifolia Oliv.	Vitex madiensis Oliv.	stem	Nigerian	Chewing Sticks	?	[28]
Blumeparticularly Appalachia and ozarksLauraceaeSassafras albidum (Nutt.) NeestwigUnited States; particularly Appalachia and ozarksChewing Sticks?[78], [28]LecthidaceaeNapoleonaea vogelii Hook. & Planch.twig, bark stripsW. AfricaChewing Sticks?[78], [28]LoganiaceaeStrychnos afzelii GilgstemW. AfricaChewing Sticks?[28]MeliaceaeAzadirachta indica A.Juss.twigIndian Subcontinent;Cleaning SticksN[78], [93]	Lamiaceae	Vitex simplicifolia Oliv.	Vitex madiensis Oliv.	stem	Nigerian	Chewing Sticks	?	[28]
(Nutt.) Neesparticularly Appalachia and ozarksLecthidaceaeNapoleonaea vogelii Hook. & Planch.twig, bark stripsW. AfricaChewing Sticks?[28]LoganiaceaeStrychnos afzelii GilgstemW. AfricaChewing Sticks?[28]MeliaceaeAzadirachta indica A.Juss.twigIndian Subcontinent;Cleaning SticksN[78], [93]	Lauraceae				particularly Appalachia and	Chewing Sticks	?	[78], [28]
Hook. & Planch. Hook. & Planch. Loganiaceae Strychnos afzelii Gilg stem W. Africa Chewing Sticks ? [28] Meliaceae Azadirachta indica A.Juss. twig Indian Subcontinent; Cleaning Sticks N [78], [93]	Lauraceae	-		twig	particularly Appalachia and	Chewing Sticks	?	[78], [28]
MeliaceaeAzadirachta indicatwigIndianCleaning SticksN[78], [93]A.Juss.Subcontinent;	Lecthidaceae			twig, bark strips	W. Africa	Chewing Sticks	?	[28]
A.Juss. Subcontinent;	Loganiaceae	Strychnos afzelii Gilg		stem	W. Africa	Chewing Sticks	?	[28]
	Meliaceae			twig	Subcontinent;	Cleaning Sticks	Ν	[78], [93]

Page | 42

Meliaceae	Carapa procera DC.		twig	W. Africa	Chewing Sticks	?	[28]
Meliaceae	Khaya senegalensis (Desv.) A.Juss.		peeled stem	Nigerian	Chewing Sticks	?	[28]
Menispermaceae	Penianthus zenkeri (Engl). Diels		Twig, root	W. Africa	Chewing Sticks	?	[28]
Menispermaceae	Sphenocentrum jollyanum Pierre		Root	W. Africa	Chewing Sticks	?	[28]
Menispermaceae	<i>Tiliacora dielsiana</i> Hutch. & Dalziel		stem	W. Africa	Chewing Sticks	?	[28]
Musaceae	Musa sapientum L.	Musa paradisiaca L.	pounded peduncle	Ghana	Chewing Sticks	?	[28]
Nyssacea	<i>Nyssa sylvatica</i> Marshall		twig	United States	Chewing Sticks	?	[28]
Olacaceae	<i>Coula edulis</i> Baill.			W. Africa	Chewing Sticks	?	[28]
Olacaceae	<i>Olax gambecola</i> Baill.		Twig	W. Africa	Chewing Sticks	?	[28]
Olacaceae	<i>Olax subscorpioides</i> Oliv.		Twig	W. Africa	Chewing Sticks	?	[28]
Oleaceae	<i>Ligustrum medium</i> Franch. & Sav.	<i>Ligustrum ovalifolium</i> Hassk.	stem	Japan	Chewing Sticks	?	[28]
Oleaceae	Olea europaea L.		twig	Middle East	Chewing Sticks	?	[28]
Pandanaceae	Pandanus spp.		pedicel	Oceania	Chewing Sticks	?	[28]
Passifloraceae	Androsiphonia adenostegia Stapf.		twig	Liberia	Chewing Sticks	?	[28]
Passifloraceae	Smeathmannia pubescens Sol. ex R.Br.		twig	Liberia	Chewing Sticks	?	[28]
Poaceae	<i>Bothriochloa saccharoides</i> (Sw.) Rydb.			United States	Chewing Sticks	?	[28]
Poaceae	Saccharum officinarum L.		stem	United States	Chewing Sticks	?	[28]

Poaceae	Zizania aquatica L.		stem	United States	Chewing Sticks	?	[28]
Polygalaceae	<i>Carpolobia alba</i> G.Don		twig; stem	W. Africa	Chewing Sticks	?	[28]
Polygalaceae	<i>Carpolobia lutea</i> G.Don		twig; stem	W. Africa	Chewing Sticks	?	[28]
Rhamnaceae	<i>Gouania lupuloides</i> (L.) Urb.		stem	United States; Florida	Chewing Sticks	?	[28]
Rhamnaceae	<i>Gouania polygama</i> Lam.		twig	Honduras	Chewing Sticks	?	[28]
Rhamnaceae	Lasiodiscus mildbraedii Engl.		stem	W. Africa	Chewing Sticks	?	[28]
Rosaceae	<i>Parinari curatellifolia</i> Planch. ex Benth.		twig, bark strips	W. Africa	Chewing Sticks	?	[28]
Rosaceae	<i>Potentilla rubra</i> Haller f.	Comarum palustre L.	root	Mexico	Chewing Sticks	?	[28]
Rubiaceae	<i>Adina microcephala</i> (Delile) Hiern	<i>Breonadia salicina</i> (Vahl) Hepper & J.R.I.Wood	twig	Tropical Africa	Chewing Sticks	?	[28]
Rubiaceae	Aulacocalyx jasminiflora Hook.f.		twig	W. Africa	Chewing Sticks	?	[28]
Rubiaceae	Aulacocalyx jasminiflora Hook.f.			Tropical Africa	Chewing Sticks	?	[28]
Rubiaceae	<i>Coffea ebracteolata</i> (Hiern) Brenan		stem	W. Africa	Chewing Sticks	?	[28]
Rubiaceae	Craterispermum caudatum Hutch.		Stem	W. Africa	Chewing Sticks	?	[28]
Rubiaceae	Craterispermum Iaurinum (Poir.) Benth.		Stem	W. Africa	Chewing Sticks	?	[28]
Rubiaceae	<i>Massularia acuminata</i> (G.Don) Bullock ex Hoyle		stem	Nigerian	Chewing Sticks	Y, ATCC33277	[111], [28]
Rubiaceae	<i>Mussaenda afzelii</i> G.Don		calyx lobe	W. Africa	Chewing Sticks	?	[28]

Rubiaceae	<i>Mussaenda erythrophylla</i> Schumach. & Thonn.		root	Tropical Africa	Chewing Sticks	?	[28]
Rubiaceae	<i>Nauclea latifolia</i> Sm.	<i>Neonauclea excelsa</i> (Sm.) E.A.Bruce	root	Nigerian, Ghana	Chewing Sticks	Y, ATCC33277	[111], [28]
Rubiaceae	Oxyanthus speciosus DC.		twig	Tropical Africa	Chewing Sticks	?	[28]
Rubiaceae	<i>Oxyanthus tenuis</i> Stapf	<i>Oxyanthus subpunctatus</i> (Hiern) Keay	twig	Tropical Africa	Chewing Sticks	?	[28]
Rubiaceae	<i>Psychotria subobliqua</i> Hiern			W. Africa	Chewing Sticks	?	[28]
Rubiaceae	<i>Psychotria vogeliana</i> Benth.			Tropical Africa	Chewing Sticks	?	[28]
Rubiaceae	Randia maculate DC.	<i>Rothmannia longiflora</i> Salisb.	stem	Ghana	Chewing Sticks	?	[28]
Rubiaceae	<i>Rothmannia longiflora</i> Salisb.			Tropical Africa	Chewing Sticks	?	[28]
Rubiaceae	<i>Sarcocephalus esculentus</i> Afzel. ex Sabine	<i>Sarcocephalus latifolius</i> (Sm.) E.A.Bruce	root	W. Africa	Chewing Sticks	?	[28]
Rubiaceae	<i>Uncaria talbotii</i> Wernham		stem	Ghana	Chewing Sticks	?	[28]
Rutaceae	<i>Aegle marmelos</i> (L.) Correa		twig	India	Chewing Sticks	?	[28]
Rutaceae	Cassia sleberlanba Oliv.			W. Africa	Chewing Sticks	Ν	[78]
Rutaceae	Citrus aurantiifolia (Christm.) Swingle			W. Africa	Chewing Sticks	Ν	[78]
Rutaceae	<i>Citrus sinensis</i> (L.) Osbeck		peeled twig	Ghana	Chewing Sticks	?	[28]
Rutaceae	<i>Clausena anisate</i> (Willd). Hook.f. ex Benth.		stem	W. Africa	Chewing Sticks	?	[28]

RutaceaeTecla verdoorniana Exel & MendoncaVepris verdoorniana (Exel & Mendonca)twigW. AfricaChewing Sticks?[28]RutaceaeZonthoxylum alatum Roxb. armatum DC.Zonthoxylum armatum DC.wood, barkIndiaChewing Sticks?[28]RutaceaeZonthoxylum armatum DC.twigS. AfricaChewing Sticks?[28]RutaceaeZonthoxylum armatum DC.twigS. AfricaChewing Sticks?[28]RutaceaeZonthoxylum deremense (Engl.) kokwarotwigS. AfricaChewing Sticks?[28]RutaceaeZonthoxylum deremense (Engl.) wolkermantwigS. AfricaChewing Sticks?[28]RutaceaeZonthoxylum deremense (Engl.) wolkermanStemW. AfricaChewing Sticks?[28]RutaceaeZonthoxylum deremense (Engl.) wolkermanStemW. AfricaChewing Sticks?[28]RutaceaeZonthoxylum anthoxyloides (Lam.) apathoxyloides (Lam.) apathoxyloides (Lam.) apathoxyloides (Lam.) apathoxyloides (Lam.) apathoxiaChewing Sticks?[28]SalicaceaeSalix lucida Muhl.twigUnited States; particularly Appalachia and ozarksChewing Sticks?[28]SalvadoraceaeSalvadora persica LRoots, twigs, P.Beavu.Greek, Roman, india, Middle East, AfricaChewing Sticks?[28]SapindaceaeP.Beavu.root, twigW. AfricaChewing Sticks?[Rutaceae	Glycosmis pentaphylla (Retz.) DC.		twig	India	Chewing Sticks	?	[28]
Roxb.armatum DC.RutaceaeZanthoxylum chalybeum Engl.twigS. AfricaChewing Sticks?[28]RutaceaeZonthoxylum deremense (Engl.) KokwarotwigS. AfricaChewing Sticks?[28]RutaceaeZonthoxylum virde 	Rutaceae		(Exell & Mendonca)	twig	W. Africa	Chewing Sticks	?	[28]
Chalybeum Engl.ConstructionConstructionRutaceaeZanthoxylum deremense (Engl.) kokwarotwigS. AfricaChewing Sticks?[28]RutaceaeZanthoxylum viride (A.Chev.) P.G. WatermanGhanaChewing Sticks?[28]RutaceaeZanthoxylum zanthoxyloides (Lam.) Zepern. & TimlerStemW. AfricaChewing Sticks?[28]SalicaceaePopulus spp.twigUnited States; particularly Appalachia and ozarksChewing Sticks?[78], [28]SalicaceaeSalix lucida Muhl.twigUnited States; particularly Appalachia and ozarksChewing Sticks?[28]SalicaceaeSalivadora persica L.Roots, twigs, stemsGreek, Roman, India, Middle East, AfricaChewing Sticks?[28]SapindaceaeAllophylus africanus P.Beauv.root, twigW. AfricaChewing Sticks?[28] <t< th=""><th>Rutaceae</th><th>-</th><th>-</th><th>wood, bark</th><th>India</th><th>Chewing Sticks</th><th>?</th><th>[28]</th></t<>	Rutaceae	-	-	wood, bark	India	Chewing Sticks	?	[28]
deremense (Engl.) Kokwaroderemense (Engl.) (Engl.)deremense (Engl.	Rutaceae			twig	S. Africa	Chewing Sticks	?	[28]
(A.Chev.) P.G. WatermanStemW. AfricaChewing Sticks?[28]RutaceaeZanthoxyloides (Lam.) Zepern. & TimlerStemW. AfricaChewing Sticks?[78], [28]SalicaceaePopulus spp.twigUnited States; particularly Appalachia and ozarksChewing Sticks?[78], [28]SalicaceaeSalix lucida Muhl.twigUnited States; particularly Appalachia and ozarksChewing Sticks?[28]SalicaceaeSalix lucida Muhl.twigUnited States; particularly Appalachia and ozarksChewing Sticks?[28]SalvadoraceaeSalvadora persica L.Roots, twigs, stemsGreek, Roman, India, Middle east, AfricaChewing Sticks?[28]SapindaceaeAllophylus africanus P.Beauv.root, twigW. AfricaChewing Sticks?[28]SapindaceaeLecaniodiscus cupanoides Planch. exstemW. AfricaChewing Sticks?[28]	Rutaceae	deremense (Engl.)		twig	S. Africa	Chewing Sticks	?	[28]
zanthoxyloides (Lam.) Zepern. & TimlerSalicaceaePopulus spp.twigUnited States; particularly Appalachia and ozarksChewing Sticks?[78], [28]SalicaceaeSalix lucida Muhl.twigUnited States; particularly Appalachia and ozarksChewing Sticks?[28]SalvadoraceaeSalvadora persica L.Roots, twigs, stemsGreek, Roman, India, Middle East, AfricaChewing SticksY, ATCC33277 [113][78], [112], [113]SapindaceaeAllophylus africanus P.Beauv.root, twigW. AfricaChewing Sticks?[28]SapindaceaeLecanidoiscus cupanoides Planch. exstemW. AfricaChewing Sticks?[28]	Rutaceae	(A.Chev.) P.G.			Ghana	Chewing Sticks	?	[28]
SalicaceaeSalix lucida Muhl.twigUnited States; particularly Appalachia and ozarksChewing Sticks?[28]SalvadoraceaeSalvadora persica L.Roots, twigs, stemsGreek, Roman, India, Middle East, AfricaChewing SticksY, ATCC33277[78], [112], [113]SapindaceaeAllophylus africanus P.Beauv.root, twigW. AfricaChewing Sticks?[28]SapindaceaeLecaniodiscus cupanoides Planch. exstemsW. AfricaChewing Sticks?[28]	Rutaceae	zanthoxyloides (Lam.)		stem	W. Africa	Chewing Sticks	?	[28]
SalvadoraceaeSalvadora persica L.Roots, twigs, stemsGreek, Roman, India, Middle East, AfricaChewing SticksY, ATCC33277[78], [112], [113]SapindaceaeAllophylus africanus P.Beauv.root, twigW. AfricaChewing Sticks?[28]SapindaceaeLecaniodiscus cupanoides Planch. exstemW. AfricaChewing Sticks?[28]	Salicaceae	Populus spp.		twig	particularly Appalachia and	Chewing Sticks	?	[78], [28]
stemsIndia, Middle East, Africa[112], [113]SapindaceaeAllophylus africanus P.Beauv.root, twigW. AfricaChewing Sticks ?[28] 	Salicaceae	<i>Salix lucida</i> Muhl.		twig	particularly Appalachia and	Chewing Sticks	?	[28]
P.Beauv. Sapindaceae Lecaniodiscus cupanoides Planch. ex Stem W. Africa Chewing Sticks ? [28]	Salvadoraceae	Salvadora persica L.			India, Middle	Chewing Sticks	Y, ATCC33277	[112],
cupanoides Planch. ex	Sapindaceae			root, twig	W. Africa	Chewing Sticks	?	[28]
	Sapindaceae	cupanoides Planch. ex		stem	W. Africa	Chewing Sticks	?	[28]

Sapindaceae	Paullinia pinnata L.		root	Tropical Africa	Chewing Sticks	?	[28]
Sapotaceae	Butyrospermum paradoxum (C.F. Gaertn.) Hepper	<i>Vitellaria paradoxa</i> C.F.Gaertn.		Nigerian	Chewing Sticks	Y, ATCC33277	[111]
Sapotaceae	<i>Synsepalum dulcificum</i> (Schumach. & Thonn.) Daniell		twig	W. Africa	Chewing Sticks	?	[28]
Smilacaceae	<i>Smilax prolifera</i> Roxb.	<i>Smilax perfoliata</i> Lour.	stem	Himalayas	Chewing Sticks	?	[28]
Sterculiaceae	<i>Cola laurifolia</i> Mast.		twig	W. Africa	Chewing Sticks	?	[28]
Sterculiaceae	<i>Nesogordonia papaverifera</i> (A. Chev.) Capuron ex N. Halle		twig	W. Africa	Chewing Sticks	?	[28]
Tiliaceae	Glyphaea brevis (Spreng.) Monach.		twig	W. Africa	Chewing Sticks	?	[28]
Tiliaceae	<i>Grewia mollis</i> Juss.		bark, leaf	W. Africa	Chewing Sticks	?	[28]
Velloziaceae	<i>Vellozia equisetoides</i> (Baker) Baker	Xerophyta equisetoides Baker	stem	Tanzania	Chewing Sticks	?	[28]
Verbenaceae	Lantana trifolia L.		twig	E. Africa	Chewing Sticks	?	[28]
Violaceae	Rinorea subintegrifolia (P.Beauv.) Kuntze		Stem	W. Africa	Chewing Sticks	?	[28]

Table S2: Native American Plants

Family	Species (reported name)	Species (accepted name)	Part Used	Medicinal System	Application	Tested on P. gingivalis?	Citation
Acoracae	<i>Acorus calamus</i> L.		root	Shinnecock	for halitosis	periodontitis symptoms	[28]
Anacardiaceae	Rhus copallinum L.		berries	Delaware	mouthwash for halitosis	periodontitis symptoms	[28]
Anacardiaceae	Rhus glabra L.		bark, leaves	Jemez, Sanpoil	chewed	used for periodontitis	[28]
Anacardiaceae	<i>Rhus hirta</i> (L.) Sudw.	Rhus typhina L.	gall-infected leaves	Ojibwa	infusion	periodontitis symptoms	[28]
Anacardiaceae	<i>Rhus trilobata</i> Nutt.		bark, leaves	Jemez, Sanpoil	chewed	used for periodontitis	[28]

Anacardiaceae	<i>Rhus virens</i> Lindh. ex A. Gray		bark, leaves	Jemez, Sanpoil	chewed	used for periodontitis	[28]
Apiaceae	Angelica tomentosa S.Watson		root	Pomo, Kashaya	chewed for halitosis	periodontitis symptoms	[28]
Aspelniaceae	Asplenium pseudofalcatum Hillebr.		leaf, but, fruit	Hawaiian	leaf ashes, nut juice, fruit milk mixed	periodontitis symptoms	[28]
Asteraceae	Achillea Ianulosa Nutt.	Achillea millefolium L.	leaf, stem	Crow, "paswat"	tea held in mouth for sore gums	?	[114] [115]
Asteraceae	Artemisia campestris L.		leaves	Blackfoot	chewed for halitosis	periodontitis symptoms	[28]
Asteraceae	<i>Artemisia tilesii</i> Ledeb.		aboveground parts	Tanana	for mouth sores	periodontitis symptoms	[28]
Asteraceae	Balsamorhiza sagittate (Nutt.) Nutt.		root	Cheyenne, Blackfoot	chewed for mouth sores	?	[114] [28]
Asteraceae	Chrysopsis graminifolia (Michx.) Elliott	Pityopsis graminifolia (Michx.) Elliott	entire plant	Choctaw	ashes rubed on gums to treat mouth sores	?	[114]
Asteraceae	Cirsium remotifolium (Hook.) DC.		root	Kwakiutl	infusion	periodontitis symptoms	[28]
Asteraceae	Echinacea angustifolia DC.		leaf, root	Cheyenne	tea or chewed for sore mouth and gums	?	[114]
Asteraceae	<i>Echinacea</i> <i>pallida</i> (Nutt.) Nutt.		root, leaves	Cheyenne	powdered	used for periodontitis	[28]
Asteraceae	Gnaphalium obtusifolium L.	<i>Pseudognaphalium obtusifolium</i> (L.) Hilliard & B.L.Burtt.		Cherokee	chewed for sore mouth	periodontitis symptoms	[28]
Asteraceae	Gutierrezia sarothrae		root	Shosone	sucked for mouth sores	?	[114]

	(Pursh) Britton & Rusby						
Asteraceae	Haplopappus spinulosus (Pursh) DC.	<i>Xanthisma spinulosum</i> (Pursh) D.R.Morgan & R.L.Hartm.	leaf, root	Navajo	rubbed on gums	?	[114]
Asteraceae	Pityopsis graminifolia (Michx.) Nutt.		whole plant	Choctaw	ashes	periodontitis symptoms	[28]
Asteraceae	Sanvitalia aberti A. Gray		whole plant	Navajo	mouthwash or chewed for sore mouth	periodontitis symptoms	[114] [28]
Asteraceae	Schkuhria multiflora Hook. & Arn.		whole plant	Navajo	chewed for mouth sores	?	[114]
Asteraceae	Solidago californica Nutt.		?	Miwok	Tea held in mouth for toothache	?	[114]
Asteraceae	<i>Solidago odora</i> Aiton		root	Cherokee	chewed	periodontitis symptoms	[28]
Asteraceae	Stenotus Ianuginosus (A.Gray) Greene		plant	Navajo		used for periodontitis	[28]
Asteraceae	Vernonia noveboracensis (L.) Michx.		root	Cherokee	Tea for soft gums	?	[114]
Asteraceae	Xanthium strumarium L.		burs	Paiute	rubbed on gums	used for periodontitis	[28]
Berberidaceae	Berberis vulgaris L.		root, bark	Micmac, penobscot	pounded	used for periodontitis	[28]
Berberidaceae			plant	Норі		used for periodontitis	[28]

	<i>Mahonia fremontii</i> (Torr.) Fedde					
Berberidaceae	Mahonia spp.	bark	Cowlitz	mouthwash for sore mouth	periodontitis symptoms	[28]
Betulaceae	<i>Alnus incana</i> (L.) Moench	bark	Malecite	for mouth ulcers	periodontitis symptoms	[28]
Caprifoliaceae	<i>Lonicera involucrata</i> (Richarson) Banks ex Spreng.	leaves	Quinault	chewed for sore mouth	periodontitis symptoms	[28]
Crassulaceae	<i>Sedum integrifolium</i> (Raf.) A.Nelson	roots	Eskimo	chewed	periodontitis symptoms	[28]
Crassulaceae	Sedum spathulifolium Hook.	plant	Thompson		used for periodontitis	[28]
Cupressaceae	Juniperus occidentalis Hook.	leaf	Shoshoni	poultice	used for periodontitis	[28]
Ericaceae	Andromeda polifolia L.		Southwest Native Americans; "Hobefzobal"	used for periodontitis	?	[115]
Ericaceae	<i>Arctostaphylos uva-ursi</i> (L.) Spreng.	plant	Blackfoot	infusion	used for periodontitis	[28]
Ericaceae	<i>Menziesia</i> <i>ferruginea</i> Sm.	nectar	Hesquiat	eated for halitosis	periodontitis symptoms	[28]
Ericaceae	Oxydendrum arboreum (L.) DC	bark	Cherokee	chewed for mouth ulcers	periodontitis symptoms	[28]

Fabaceae	Desmodium		root	Cherokee	chewed	used for periodontitis	[28]
	nudiflorum (L.) DC.						
Geraniaceae	Geranium maculatum L.		root, leaf	Meswaki, Ojibwa	infusion	used for periodontitis	[28]
Geraniaceae	Geranium oreganum Howell		root, leaf	Meswaki, Ojibwa	infusion	used for periodontitis	[28]
Grossulariaceae	<i>Ribes lobbii</i> A. Gray		roots	Kwakiutl	poultice	periodontitis symptoms	[28]
Haemodoraceae	<i>Lachnanthes caroliniana</i> (Lam.) Dandy		root	Cherokee	decoction for sore mouth	periodontitis symptoms	[28]
Hydrophyllaceae	Hydrophyllum virginianum L.		root	Iroquois	chewed; decoction	periodontitis symptoms	[28]
Juglandaceae	<i>Carya laciniosa</i> (F.Michx.) G.Don		bark	Cherokee	chewed	periodontitis symptoms	[28]
Juglandaceae	<i>Carya pallida</i> (Ashe) Engelm. & Graebn.		bark	Cherokee	chewed	periodontitis symptoms	[28]
Juglandaceae	Carya tomentosa (Lam.) Nutt.	<i>Carya alba</i> (L.) Nutt. ex Elliot	inner bark	Cherokee	doctor chews inner bark and blows into mouth for sore mouth	?	[73]
Juglandaceae	Juglans cinerea L.		buds	Iroquois	infusion	periodontitis symptoms	[28]
Lamiaceae	Mentha canadensis L.		Flowers	Cree	ground, rubbed on gums	used for periodontitis	[28]

Lauraceae	Persea planifolia	seed	Mahuna	powder	used for periodontitis	[28]
Malvaceae	Sphaeralcea fendleri A. Gray	whole plant	Navajo, Kayenta	Infusion	periodontitis symptoms	[28]
Moraceae	Artocarpus altilis (Parkinson ex F.A.Zorn) Fosberg	Latex	Hawaiian	for mouth sores	periodontitis symptoms	[28]
Myrtaceae	<i>Syzygium malaccense</i> (L.) Merr. & L.M.Perry	bark, whole plant	Hawaiian	juice of whole plant	periodontitis symptoms	[28]
Nyctaginaceae	<i>Abronia fragrans</i> Nutt. ex Hook.		Navajo Ramah	Infusion	used for periodontitis	[28]
Nymphaeaceae	Nymphaea odorata Aiton	Root	Chippewa	pulverized root for mouth sores	periodontitis symptoms	[28]
Olaceae	Ximenia americana L.	root	Seminole	mouthwash	used for periodontitis	[28]
Oleaceae	Syringa vulgaris L.	bark, leaves	Iroquois	chewed by children	periodontitis symptoms	[28]
Oxalidaceae	Oxalis corniculata L.	leaf	Cherokee	chewed for sore mouth	periodontitis symptoms	[28]
Oxalidaceae	Oxalis stricta L.	whole plant	Iroquois	infusion for halitosis	periodontitis symptoms	[28]
Pedaliaceae	<i>Prosopis velutina</i> (Wooton) Britton & Rose	Gum	Pima	Decoction	used for periodontitis	[28]

Pinaceae	<i>Abies grandis</i> (Douglas ex D.Don) Lindl.		root	Kwakiutl	root held in mouth	used for periodontitis	[28]
Pinaceae	Abies lasiocarpa (Hook.) Nutt.		needles	Flathead	pounded and mixed with lard	used for periodontitis	[28]
Pinaceae	<i>Picea glauca</i> (Moench) Voss		young tips	Tanana	decoction with blackberry stems	periodontitis symptoms	[28]
Pinaceae	Picea sitchensis (Bong.) Carriere		pitch	Haisla, Hanaksiala	chewed for halitosis	periodontitis symptoms	[28]
Pinaceae	Pseudotsuga menziessi	<i>Pseudotsuga menziesii</i> (Mirb.) Franco	bud tips	Swinomish	Chewed	periodontitis symptoms	[28]
Polemoniaceae	<i>Phlox gracilis</i> (Douglas ex Hook.) Greene	<i>Microsteris gracilis</i> (Douglas ex Hook.) Greene	whole plant	Navajo, Ramah	Poultice	periodontitis symptoms	[28]
Polygalaceae	Polygala senega L.		root	Cree	for sore mouth	periodontitis symptoms	[28]
Polygonaceae	Eriogonum spp.		flowers, leaves	Southwest Native Americans; "Pasvaat"	infusion, mouthwash; for periodontisis held in mouth a few minutes daily		[115]
Polygonaceae	Polygonum amphibium L.	<i>Persicaria amphibia</i> (L.) Delarbre	roots	Cree	poultice for mouth blisters	periodontitis symptoms	[28]

Polygonaceae	Rumex crispus L.	leaf	Navajo, Ramah	infusion	periodontitis symptoms	[28]
Polygonaceae	Rumex hymenosepalus Torr.	root	Pima	root held in mouth	used for periodontitis	[28]
Polypodiaceae	Pleopeltis polypodioides (L.) E.G. Andrews & Windham	Frond	Houma	mouthwash	used for periodontitis	[28]
Polypodiaceae	<i>Polypodium glycyrrhiza</i> D.C. Eaton	Rhizomes	Bella Coola, Hesquiat	eaten for halitosis	periodontitis symptoms	[28]
Polypodiaceae	Polypodium hesperium Maxon	rhizomes	Thompson		used for periodontitis	[28]
Primulaceae	Dodecatheon pulchellum (Raf.) Merr.	leaf	Blackfoot	infusion for children	periodontitis symptoms	[28]
Ranunculaceae	<i>Coptis trifolia</i> (L.) Salisb.	root	Potawatomi	infusion	used for periodontitis	[28]
Ranunculaceae	Xanthorhiza simplicissima Mashall	stem	Cherokee	chewed	periodontitis symptoms	[28]
Rhamnaceae	Ceanothus americanus L.	bark	Iroquois	decoction for sore mouth	periodontitis symptoms	[28]

Rhamnaceae	Ceanothus fendleri A.Gray	leaf	Keres	chewed	periodontitis symptoms	[28]
Rosaceae	Fragaria vesca L.	root	Iroquois	decoction	periodontitis symptoms	[28]
Rosaceae	<i>Geum triflorum</i> Pursh	root	Blackfoot	infusion	used for periodontitis	[28]
Rosaceae	<i>Malus coronaria</i> (L.) Mill.	bark	Cherokee	infusion for sore mouth	periodontitis symptoms	[28]
Rosaceae	Prunus americana Marshal	root bark	Meskwaki	Astringent	periodontitis symptoms	[28]
Rosaceae	Prunus emarginata (Douglas ex Hook.) Walp.	root	Kwakiutl	poultice for mouth sores for children	periodontitis symptoms	[28]
Rosaceae	Rosa spp.	roots	Crow	Infusion	used for periodontitis	[28]
Rosaceae	Rubus spp.	stem	Tanana	decoction with Picea glauca	periodontitis symptoms	[28]
Salicaceae	Populus tremuloides Minchx.	Leaves	Haisla, Hanaksiala		used for periodontitis	[28]
Salicaceae	Salix arbusculoides Andersson	leaves	Eskimo, Kuskokwagmuit	chewed	periodontitis symptoms	[28]
Salicaceae	<i>Salix fuscescens</i> Andersson	leaves	Eskimo	chewed		[28]

						periodontitis symptoms	
Salicaceae	<i>Salix humilis</i> Marshall		roots	Catawba	mouthwash	periodontitis symptoms	[28]
Salicaceae	Salix nigra Marshall			Iroquois		used for periodontitis	[28]
Salicaceae	<i>Salix planifolia</i> Pursh		whole plant	Eskimo <i>,</i> Nunivak	chewed	periodontitis symptoms	[28]
Salicaceae	Salix rotundifolia Trautv.		whole plant	Eskimo <i>,</i> Nunivak	chewed	periodontitis symptoms	[28]
Salicaceae	<i>Salix sericea</i> Marshall			Iroquois		used for periodontitis	[28]
Salicaceae	<i>Salix tristis</i> Aiton	<i>Salix humilis</i> var. <i>tristis</i> (Aiton) Griggs	root	Catawba	mouthwash for sore gums	?	[73]
Santalaceae	Comandra umbellata (L.) Nutt.		whole plant	Navajo, Kayenta	mouthwash	periodontitis symptoms	[28]
Saxifragaceae	Heuchera cylindrica Douglas		root	Thompson	chewed	used for periodontitis	[28]

Table S3: Plants Used for Periodontitis and Periodontitis Symptoms

Family	Species (reported name)	Species (accepted name)	Part Used	Medicinal System	Application	Tested on P. gingivalis?	Citation	Notes
Acanthaceae	Barleria prionitis L.					used for periodontitis	[28]	
Aizoaceae	Carpobrotus acinaciformis (L.) L.Bolus		fruit, leaf	S. Africa	boiled; for sore mouth	periodontitis symptoms	[28]	
Aliaceae	Allium sativum L.		bulb	Europe, India	chewed for toothache	used for periodontitis	[28] [91]	
Anacardiaceae	Mangifera indica L.		leaf	India	chewed	Y	[116]	
Anacardiaceae	Pistacia lentiscus L.			Turkey	mastic	used for periodontitis	[28]	
Anacardiaceae	Rhus glabra L.		root, bark, leaves	Jemez, Sanpoil	bark and leaves chewed; root decoction	used for periodontitis	[28]	native north american
Anacardiaceae	<i>Rhus trilobata</i> Nutt.		bark, leaves	Jemez, Sanpoil	chewed	used for periodontitis	[28]	native north american
Anacardiaceae	<i>Rhus virens</i> Lindh. ex A. Gray		bark, leaves	Jemez, Sanpoil	chewed	used for periodontitis	[28]	native north american
Apiaceae	<i>Heracleum maximum</i> W. Bartram		root	Eastern U.S.	powder rubbed on gums	used for periodontitis	[28]	
Asteraceae	Echinacea pallida (Nutt.) Nutt.		root, leaves	Cheyenne	powdered	used for periodontitis	[28]	native north american
Asteraceae	Solidago virgaurea L.		plant	England	decoction	used for periodontitis	[28]	
Asteraceae	Spilanthes mauritiana		Flowers	England, S. Africa	chewed	used for periodontitis	[28]	

	(A.Rich. ex Pers.) DC.							
Asteraceae	<i>Stenotus Ianuginosus</i> (A.Gray) Greene		plant	Navajo		used for periodontitis	[28]	native north american
Asteraceae	Xanthium strumarium L.		burs	Paiute	rubbed on gums	used for periodontitis	[28]	native north american
Berberidaceae	Berberis vulgaris L.		root, bark	Micmac, penobscot	pounded	used for periodontitis	[28]	native north american
Berberidaceae	<i>Mahonia fremontii</i> (Torr.) Fedde		plant	Норі		used for periodontitis	[28]	native north american
Bignonaceae	<i>Tecomaria capensis</i> (Thunb.) Spach	<i>Tecoma</i> <i>capensis</i> (Thunb.) Lindl.	bark	S. Africa	powder rubbed on gums	used for periodontitis	[28]	
Burseraceae	<i>Commiphora myrrha</i> (Nees) Engl.		resin	Near East	resin	used for periodontitis	[28]	
Cornaceae	Cornus florida L.		bark	Eastern North America	decoction for sore mouth	periodontitis symptoms	[28]	native north american
Crassulaceae	Sedum spathulifolium Hook.		plant	Thompson		used for periodontitis	[28]	native north american
Cupressaceae	Juniperus occidentalis Hook.		leaf	Shoshoni	poultice	used for periodontitis	[28]	native north american
Ebenaceae	Diospyros virginiana L.		bark	Eastern North America	boiled bark decoction for sore mouth of babies	periodontitis symptoms	[28]	native north american
Eleocarpaceae	<i>Elaeocarpus</i> <i>floribundus</i> Blume					used for periodontitis	[28]	

Ericaceae	<i>Arctostaphylos uva-ursi</i> (L.) Spreng.		plant	Blackfoot	infusion	used for periodontitis	[28]	native north american
Euphorbiaceae	Acalypha phleoides Cav.		plant	Mexico	mouthwash	used for periodontitis	[28]	american
Euphorbiaceae	<i>Flueggea virosa</i> (Roxb. ex Willd.) Royle		boiled roots	Philiphines	mouthwash	used for periodontitis	[28]	
Euphorbiaceae	Gelonium multiflorum A.Juss.	Suregada multiflora (A.Juss.) Baill.	Bark	Himalayas	tonic	used for periodontitis	[28]	
Euphorbiaceae	Hymenocardia acida Tul.		roots	S. Africa	ashed roots for mouth infection	periodontitis symptoms	[28]	
Euphorbiaceae	Jatropha dioica Sesse			Mexico	tea	used for periodontitis	[28]	
Euphorbiaceae	Sapium ellipticum (Hochst.) Pax	Shirakiopsis elliptica (Hochst.) Esser	bark	Central Africa	decoction as mouthwash (for ulceration of gums and loose teeth caused by scurvy)	periodontitis symptoms	[28]	
Fabaceae	<i>Acacia pennata</i> (L.) Willd.		Leaves + sugar and cumin	Himalayas	chewed	used for periodontitis	[28]	
Fabaceae	Acacia spp.			India		used for periodontitis	[28]	contain tannins
Fabaceae	<i>Albizia lebbeck</i> (L.) Benth.		root bark	Himalayas	powdered	used for periodontitis	[28]	
Fabaceae	Desmodium nudiflorum (L.) DC.		root	Cherokee	chewed	used for periodontitis	[28]	native north american
Fabaceae	Glycyrrhiza glabra L.		roots	Himalayas		used for periodontitis	[28]	
Fabaceae	<i>Mimosa palmeri</i> Rose		Bark	Mexico	chewed	used for periodontitis	[28]	

Fabaceae	Vicia faba L.		bean	North America	ground dried beans for sore mouth	periodontitis symptoms	[28]	native north american
Fagaceae	Quercus alba L.		Bark	North America	decoction for sore mouth	periodontitis symptoms	[28]	native north american
Fagaceae	Quercus spp.			India		used for periodontitis	[28]	contain tannins
Geraniaceae	Geranium maculatum L.		root, leaf	Meswaki, Ojibwa	infusion	used for periodontitis	[28]	native north american
Geraniaceae	Geranium oreganum Howell		root, leaf	Meswaki, Ojibwa	infusion	used for periodontitis	[28]	native north american
Juglandaceae	Juglans regia L.			India		used for periodontitis	[28]	contain tannins
Krameriaceae	<i>Krameria triandra</i> Ruiz & Pav.	<i>Krameria lappacea</i> (Dombey) Burdet & B.B. Simpson		India		used for periodontitis	[28]	contain tannins
Lamiaceae	Mentha canadensis L.		Flowers	Cree	ground, rubbed on gums	used for periodontitis	[28]	native north american
Lamiaceae	Thymus vulgaris L.					used for periodontitis	[28]	phenolic thymol
Lauraceae	Persea planifolia		seed	Mahuna	powder	used for periodontitis	[28]	native north american
Meliaceae	Aglaia spp.		bark	Philiphines	chewed	used for periodontitis	[28]	
Myricaceae	Myrica cerifera L.	<i>Morella cerifera</i> (L.) Small.	root bark	Southern U.S.	decoction	used for periodontitis	[28]	
Myrtaceae	<i>Syzygium aromaticum</i> (L.) Merr. & L.M. Perry					Y	[28] [117]	eugenol

Nyctaginaceae	<i>Abronia fragrans</i> Nutt. ex Hook.			Navajo Ramah	infusion	used for periodontitis	[28]	native north american
Olaceae	Ximenia americana L.		root	Seminole	mouthwash	used for periodontitis	[28]	native north american
Orchidaceae	<i>Dendrobium nobile</i> Lindl.			China	Polyherbal	used for periodontitis	[28]	
Pedaliaceae	<i>Prosopis velutina</i> Wooton		gum	Pima	decoction	used for periodontitis	[28]	native north american
Pinaceae	<i>Abies grandis</i> (Douglas ex D.Don) Lindl.		root	Kwakiutl	root held in mouth	used for periodontitis	[28]	native north american
Pinaceae	<i>Abies lasiocarpa</i> (Hook.) Nutt.		needles	Flathead	pounded and mixed with lard	used for periodontitis	[28]	native north american
Pinaceae	<i>Pseudotsuga taxifolia</i> (Lindl.) Britton	Pseudotsuga menziesii (Mirb.) Franco	bud tips	U.S.	chewed for mouth sores	periodontitis symptoms	[28]	native north american
Polygonaceae	Eriogonum atrorubens Engelm.		root	Mexico	chewed	used for periodontitis	[28]	
Polygonaceae	Rumex hymenosepalus Torr.		root	Pima	root held in mouth	used for periodontitis	[28]	native north american
Polypodiaceae	<i>Drynaria fortunei</i> (Kunze ex Mett.) J.Sm.	Drynaria roosii Nakaike		China	Polyherbal	used for periodontitis	[28]	

Polypodiaceae	<i>Pleopeltis polypodioides</i> (L.) E.G. Andrews & Windham		frond	Houma	mouthwash	used for periodontitis	[28]	native north american
Polypodiaceae	Polypodium hesperium Clute		rhizomes	Thompson		used for periodontitis	[28]	native north american
Pteridaceae	Pellaea calomelanos (Sw.) Link		rhizomes	S. Africa	decoction for mouth cankers	periodontitis symptoms	[28]	
Ranunculaceae	<i>Aconitum napellus</i> L.					used for periodontitis	[28]	alkaloids
Ranunculaceae	<i>Coptis groenlandica</i> (Oeder) Fernald	<i>Coptis trifolia</i> subsp. <i>Groenlandica</i> (Oeder) Hulten	roots	Eastern North America	chewed for mouth sores	periodontitis symptoms	[28]	native north american
Ranunculaceae	<i>Coptis trifolia</i> (L.) Salisb.		root	Potawatomi	infusion	used for periodontitis	[28]	native north american
Ranunculaceae	Hydrastis canadensis L.		roots	Eastern North America	chewed for mouth sores	used for periodontitis	[28]	alkaloids
Rhamnaceae	<i>Gouania lupuloides</i> (L.) Urb.		stem	West Indies		used for periodontitis	[28]	
Rosaceae	Fragaria vesca L.		fruit, root, leaves	England	lotions and gargles for ulcers and sore mouth	used for periodontitis	[28]	
Rosaceae	<i>Geum triflorum</i> Pursh		root	Blackfoot	infusion	used for periodontitis	[28]	native north american
Rosaceae	Potentilla fulgens T.T.Yu & C.L.Li	Potentilla lineata Trevir.	root	Himalayas	tonic	used for periodontitis	[28]	

Rosaceae	Rosa spp.		roots	Crow	infusion	used for periodontitis	[28]	native north american
Rubiaceae	Psychotria spp.		sap	Solomon Islands	decoction for sore mouth	periodontitis symptoms	[28]	
Rubiaceae	<i>Uncaria gambir</i> (Hunter) Roxb.			India		used for periodontitis	[28]	contain tannins
Rutaceae	Citrus aurantifolia	<i>Citrus aurantiifolia</i> (Christm.) Swingle	leaf	Malaya	decoction for sore mouth	periodontitis symptoms	[28]	
Rutaceae	Zanthoxylum alatum Roxb.	Zanthoxylum armatum DC.	stick	Himalayas	chewed	used for periodontitis	[28]	alkaloids
Rutaceae	<i>Zanthoxylum capense</i> (Thunb.) Harv.		root	S. Africa	decoction for mouth ulcers	periodontitis symptoms	[28]	
Salicaceae	Populus tremuloides Michx.		leaves	Haisla, Hanaksiala		used for periodontitis	[28]	native north american
Salicaceae	Salix nigra Marshall			Iroquois		used for periodontitis	[28]	native north american
Salicaceae	Salix sericea Marhsall			Iroquois		used for periodontitis	[28]	native north american
Sapotaceae	Mimusops elengi L.			India		used for periodontitis	[28]	contain tannins
Saxifragaceae	Heuchera cylindrica Douglas		root	Thompson	chewed	used for periodontitis	[28]	native north american
Solanaceae	<i>Lycium barbarum</i> L.			China	Polyherbal	used for periodontitis	[28]	
Solanaceae	<i>Lycium chinense</i> Mill.			China	Polyherbal	used for periodontitis	[28]	
Solanaceae	<i>Solanum merkeri</i> Dammer					used for periodontitis	[28]	
Solanaceae	Solanum verbascifolium L.	unresolved	leaf	Solomon Islands	decoction for sore mouth	periodontitis symptoms	[28]	
--------------	---	------------	------	--------------------	--------------------------	---------------------------	------	
Symplocaceae	<i>Symplocos</i> <i>racemose</i> Roxb.		bark	India	decoction gargled	used for periodontitis	[28]	

Table S4: Plants Used for Tooth Coloring

Family	Species	Species (accepted name)	Part Used	Medicinal System	Application	Tested on P. gingivalis?	Citation	Notes
Annonaceae	Hexalobus senegalensis A. DC.	<i>Hexalobus monopetalus</i> (A.Rich.) Engl. & Diels	fruits	Nigeria, Morroco; Bornu, Adamawa, Wanuamwezi	reddening			
Arecaceae	Cocos nucifera L.		fruit rind	Japan, "Ohaguro"	blackening; tannic extract mixed with iron			tannins
Bigoniaceae	<i>Arrabidaea chica</i> (Bonpl.) Verl.	<i>Fridericia chica</i> (Bonpl.) L.G. Lohmann			blackening	active against Streptococcus sanguis and Actinomyces naeslundii	[28]	polyphenolic substances
Cucurbitaceae	<i>Luffa petola</i> Ser.	<i>Luffa cylindrica</i> (L.) M.Roem.	gourd juice	Japan, "Ohaguro"	blackening; tannic extract mixed with iron			tannins
Euphorbiaceae	Agrostistachys borneensis Becc.		stems	Dyaks of Singhi, Malaysia	blackening			tannins
Euphorbiaceae	Antidesma spp.		bark	Philiphines	blackening; ashes from burned bark			tannins
Euphorbiaceae	Homonoia riparia Lour.		juice	Java	blackening			tannins
Fagaceae	Quercus cyclophora Endl.	<i>Lithocarpus cyclophorus</i> (Endl.) A.Camus	acorns	Japan, "Ohaguro"	blackening; tannic extract mixed with iron			tannins

Icacinaceae	Calatola costaricensis Standl.			blackening	active against Streptococcus sanguis and Actinomyces naeslundii	[28]	polyphenolic substances
Melastomataceae	Melastoma malabathricum L.	woody parts	Singapore	blackening; wood tar			tannins
Moraceae	Ficus religiosa L.	resin	Gujarat	reddening			
Nyctaginaceae	Neea floribunda Poepp. & Endl.			blackening	active against Streptococcus sanguis and Actinomyces naeslundii	[28]	polyphenolic substances
Nyctaginaceae	Neea parviflora Poepp. & Endl.		Caqueta, Columbia/Peru; Putumayo, Columbia/Pero	blackening			
Rubiaceae	Manettia divaricate Wernham		Peru	blackening	active against Streptococcus sanguis and Actinomyces naeslundii	[28]	polyphenolic substances
Rubiaceae	Paederia foetida L.	bark	Philiphines	blackening; ashes from burned bark			tannins
Rubiaceae	Schradera marginalis Standl.		Citara, Columbia	blackening, chewed			
Sterculiaceae	<i>Cola acuminata</i> (P.Beauv.) Schott & Endl.	nut	Hausa	tooth coloring; chewed			

Table S5: Chewing Sponges

Family	Species	Part Used	Medicinal System	Application	Citation
Combretaceae	<i>Terminalia glaucescens</i> Planch. ex Benth.	inner fiber of branches	Ghana	Chewing Sponge	[28]
Combretaceae	<i>Terminalia</i> ivorensis A.Chev.	inner fiber of branches	Ghana	Chewing Sponge	[28]
Fabacea	<i>Acacia pennata</i> (L.) Willd.	inner fiber of branches	Ghana	Chewing Sponge	[28]
Malvaceae	Hibiscus rosa- sinensis L.	inner fiber of branches	Ghana	Chewing Sponge	[28]
Malvaceae	<i>Hibiscus rostellatus</i> Guill. & Perr.	inner fiber of branches	Ghana	Chewing Sponge	[28]
Stemonuraceae	Lasianthera Africana P.Beauv.	inner fiber of branches	Ghana	Chewing Sponge	[28]

Table S6: Plants used for Toothpastes

Family	Species (reported name)	Species (accepted name)	Part Used	Medicinal System	Application	Tested on P. gingivalis?	Citation
Acoraceae	Acorus calamus L.		powdered root	Europe/North America	Toothpaste	?	[28]
Anacardiaceae	<i>Lannea grandis</i> Engl.	<i>Lannea coromandelica</i> (Houtt.) Merr.	powdered bark	India	Toothpaste	?	[28]
Burseraceae	<i>Commiphora myrrha</i> (Nees) Engl.		powdered gum resin	Near East	Toothpaste	?	[28]
Combretaceae	Myrobalanifera spp.		powdered fruit	India	Toothpaste	?	[28]
Ericaceae	Gaultheria procumbens L.		cortex	North America	Toothpaste	?	[28]
Fabaceae	Caesalpinia pulcherrima (L.) Sw.			Nicaragua	Toothpaste	?	[28]
Fabaceae	<i>Peltophorum pterocarpum</i> (DC.) K.Heyne		powdered bark	Southeast Asia	Toothpaste	?	[28]
Krameriaceae	<i>Krameria triandra</i> Ruiz & Pav.	<i>Krameria lappacea</i> (Dombey) Burdet & B.B. Simpson	powdered root	Bolivia, Peru	Toothpaste	?	[28]
Lessoniaceae	<i>Macrocystis pyrifera</i> L. C.Ag.		?		Toothpaste	?	[28]
Polygonaceae	Rumex crispus L.		powdered root	North America	Toothpaste	?	[28]
Rhamnaceae	<i>Gouania lupuloides</i> (L.) Urb.		powdered stem	Central America	Toothpaste	?	[28]
Rubiaceae	Cinchona officinalis L.		powdered bark	Europe/North America	Toothpaste	?	[28]
Rubiaceae	Vitis vinifera L.		ashes of burnt branches	England	Toothpaste	?	[28]

Table S7: Cleaning Gums and Quids

Family	Species (reported name)	Species (accepted name)	Part Used	Medicinal System	Application	Citation
Anacardiaceae	<i>Toxicodendron diversilobum</i> (Torr. & A.Gray) Greene		plant	Karok	Gum	[28]
Apiaceae	Osmorhiza occidentalis (Nutt.) Torr.		roots	Blackfoot	Gum	[28]
Apocynaceae	Apocynum cannabinum L.		latex	Kiowa	Gum	[28]
Asceliadaceae	Asclepias spp.		latex, seed silk	Kawaiisu, Karok, Mendocino, Acoma, Zuni	Gum	[28]
Asceliadaceae	Sarcostemma cynanchoides Decne.		sap boiled	Pima	Gum	[28]
Asteraceae	Agoseris aurantiaca (Hook.) Greene		root	Karok	Gum	[28]
Asteraceae	<i>Chloracantha</i> <i>spinosa</i> (Benth.) G.L.Nesom		stems	Navajo	Gum	[28]
Asteraceae	Chrysothamnus spp.		roots	Paiute, Gosiute	Gum	[28]
Asteraceae	Dugaldia hoopesii (A.Gray) Rydb.	Hymenoxys hoopesii (A.Gray) Bierner	roots	Navajo	Gum	[28]
Asteraceae	<i>Encelia farinosa</i> A.Gray ex Torr.		gum	Papago, Pima	Gum	[28]
Asteraceae	Hymenopappus filifolius Hook.		root	Zuni	Gum	[28]

Asteraceae	Hymenoxys richardsonii (Hook.) Cockerell		root	Navajo, Isleta, Keres Western	Gum	[28]
Asteraceae	<i>Lactuca tatarica</i> (L.) C.A.Mey		root	Apache White Mountain, Navajo, Zuni	Gum	[28]
Asteraceae	Lygodesmia spp.		root	Lakota, Navajo Ramah, Washo	Gum	[28]
Asteraceae	Senecio spp.		root, latex	Navajo Ramah, Aleut	Gum	[28]
Asteraceae	Silphium Iaciniatum L.		stems	Dakota, Omaha, Pawnee, Ponca	Gum	[28]
Asteraceae	Stephanomeria pauciflora (Torr.) A.Nelson		root, fuzz	Kawaiisu, Navajo, Paiute	Gum	[28]
Asteraceae	<i>Stephanomeria spinosa</i> (Nutt.) Tomb	Pleiacanthus spinosus (Nutt.) Rydb.	root, fuzz	Kawaiisu, Navajo, Paiute	Gum	[28]
Asteraceae	Tragopogon porrifolius L.		latex	Thompson	Gum	[28]
Chenopodiaceae	Chenopodium californicum S.Watson		latex	Cahuilla	Gum	[28]
Cupressaceae	<i>Thuja plicata</i> Donn. ex D.Don		resin	Kwakiutl Southern, Montana Indian	Gum	[28]
Euphorbiaceae	Croton xalapensis Hook.f.		gum	Mexico	Gum	[28]
Euphorbiaceae	Euphorbia marginata Pursh			Kiowa	Gum	[28]
Fabaceae	<i>Myroxylon balsamum</i> (L.) Harms		gum	South America	Gum	[28]

Geraniaceae	<i>Erodium cicutarium</i> (L.) L'Her.	roots	Digueno	Gum	[28]
Hamamelidaceae	Liquidambar styraciflua L.	gum	Cherokee	Gum	[28]
Lamiaceae	Mentha spp.	fresh leaves	Kiowa	Gum	[28]
Moraceae	Ficus spp.		Seminole	Gum	[28]
Pinaceae	<i>Abies amabilis</i> (Douglas ex Loudon) J.Forbes	pitch, inner bark gum	Nitinaht, Shuswap	Gum	[28]
Pinaceae	<i>Abies grandis</i> (Douglas ex D.Don) Lindl.	pitch, inner bark gum	Nitinaht, Shuswap	Gum	[28]
Pinaceae	<i>Larix occidentalis</i> Nutt.	solidified resin	Flathead, Okanagan- Colville, Thompson	Gum	[28]
Pinaceae	Picea glauca (Moench) Voss	resin	Algonquin Quebec, Cree Woodlands, Eskimo Alaska, Tanana Upper	Gum	[28]
Pinaceae	<i>Picea mariana</i> (Mill.) Britton, Sterns & Poggenb.	resin	Cree Woodlands	Gum	[28]
Pinaceae	Picea sitchensis (Bong.) Carriere	resin	Haisla, Hanaksiala, Hesquiat, Kwakiutl Souther, Makah, Quinault	Gum	[28]
Pinaceae	<i>Pinus banksiana</i> Lamb.	resin	Blackfoot, Hesquiat	Gum	[28]

Pinaceae	<i>Pinus edulis</i> Engelm.	resin	Navajo Ramah	Gum	[28]
Pinaceae	Pinus monophylla Torr. & Frem.	resin	Paiute Northern	Gum	[28]
Pinaceae	<i>Pinus monticola</i> Douglas ex D.Don	resin	Salish coast	Gum	[28]
Pinaceae	<i>Pinus ponderosa</i> Douglas ex C.Lawson	resin	Cheyenne, Okanaga-Colville, Paiute	Gum	[28]
Pinaceae	<i>Pseudotsuga menziesii</i> (Mirb.) Franco	resin	Apache White Mountain, Gosiute	Gum	[28]
Pinaceae	Tsuga heterophylla (Raf.) Sarg.	resin	Hesquiat	Gum	[28]
Polygonaceae	Rumex hymenosepalus Torr.	roots	Pima	Gum	[28]
Salicaceae	Dalea candida Willd.	plant	Santa Clara	Gum	[28]
Salicaceae	<i>Dalea lasiathera</i> A.Gray	root	Zuni	Gum	[28]
Salicaceae	<i>Dalea purpurea</i> Vent.	root	Lakota, Ponca	Gum	[28]
Salicaceae	Populus angustifolia E.James	buds	Navajo	Gum	[28]
Salicaceae	Populus deltoides Marshall	buds	Apache White Mountain, Chiricahua, Isleta, Mescalero, Zuni	Gum	[28]
Salicaceae	Populus fremontii S.Watson	catkins	Havasupai	Gum	[28]

Sapotaceae	Sideroxylon Ianuginosum Michx.	outer bark mucilage	Kiowa	Gum	[28]
Ulmaceae	<i>Ulmus rubra</i> Muhl.	inner fresh bark	Kiowa	Gum	[28]

Table S8: Plants from Kampo

Family	Species (reported name)	Species (accepted name)	Part Used	Medicine Name; Medicinal System	Application	Tested on P. gingivalis?	Citation
				"hainosan;" TCM and Kampo	oral administration, boiled in 20-fold weight of water for 30 minutes and filtered, lyophilized for powder extracts & suspended in water	Υ	[56, 118]
Rutaceae	Citrus aurantium L.		Dried immature fruit		2.25g		[56, 118]
Paeoniaceae	Paeonia Iactiflora Pall.		Dried root		2.25g		[56, 118]
Campanulaceae	Platycodon grandifloras (Jacq.) A.DC.		Dried root		1.125g		[56, 118]
				"hangeshashinto;" Kampo	Oral administration, boiled in 20-fold weight of water for 30 minutes and filtered, lyophilized for powder extracts & suspended in water	Υ	[56, 118]
Araceae	<i>Pinellia ternata</i> (Thunb.) Makino		Dried tuber		2.5g		[56, 118]

Lamiaceae	Scutellaria baicalensis Georgi		Dried root		1.25g		[56, 118]
Fabaceae	<i>Glycyrrhiza</i> <i>uralensis</i> Fisch.		Dried root and stolon		1.25g		[56, 118]
							[56, 118]
Rhamnaceae	<i>Ziziphus jujuba</i> Mill.		Dried fruit		1.25g		[56, 118]
Araliaceae	Panax ginseng C.A.Mey		Dried root		1.25g		[56, 118]
Ranunculaceae	<i>Coptis japonica</i> (Thunb.) Makino		Dried rhizome		0.5g		[56, 118]
Zingiberaceae	Zingiber officinale Roscoe		Dried rhizome after being steamed		1.25g		[56, 118]
				"Juzentaihoto (JTT);" Kampo		Y	[62]
Araliaceae	Panax ginseng						[62]
Fabaceae	Astragali Radix	Astragalus spp.					[62]
Apiaceae	Angelicae Radix	<i>Angelica sinensis</i> (Oliv.) Diels					[62]
Scrophulariaceae	Rehmanniae Radix	Rehmannia spp.					[62]
Asteraceae	Atractylodis Ianceae	<i>Atractylodes lancea</i> (Thunb.) DC.	Rhizome				[62]
Lauraceae	Cinnamomi cortex	<i>Cinnamomum</i> <i>verum</i> J.Presl					[62]
Polyporaceae	<i>Poria cocos</i> F.A.Wolf	<i>Wolfiporia extensa</i> (Peck) Ginns					[62]
Paeoniaceae	Paeoniae Radix	Paeonia spp.					[62]

Apiaceae	Ligustici Rhizome	Ligusticum striatum DC.					[62]
Fabaceae	Glycyrrhizae Radix	Glycyrrhiza glabra L.					[62]
Fabaceae	<i>Spatholobus</i> <i>suberectus</i> Dunn		Dried stems	"Jixueteng;" Kampo		Y	[62]
Anacardiaceae	Pistacia lentiscus L.		resin	Mastic; "Yo- Nyuko olibanum;" Kampo	chewing gums with oil extracts	Y	[62]

Table S9: Plants from Karnataka India

Family	Species (reported name)	Species (accepted name)	Part Used	Medicinal System	Application	Tested on P. gingivalis?	Citation
Acanthaceae	<i>Blepharis repens</i> (Vahl) Roth	<i>Blepharis integrifolia</i> (L.f.) E.Mey & Drege ex Schinz	young parts	Karnataka, India	Chewed and held in mouth for toothache		[91]
Amaranthaceae	Achyranthes aspera L.		whole plant	Karnataka, India	Dried, burnt; ashes + salt massage gums		[91]
Anacardiaceae	Mangifera indica L.		bark	Karnataka, India	powdered bark held in mouth for toothache		[91]
Araceae	Acorus calamus L.		rhizome	Karnataka, India	paste applied to teeth and gums		[91]
Asclepiadaceae	Calotropis gigantea (L.) Dyrand.		latex; whole plant	Karnataka, India	cotton + latex placed on tooth for toothache; whole dried plant ash massage gums	used for periodontitis	[91]
Asclepiadaceae	Pergularia daemia (Forssk.) Chiov.		latex	Karnataka, India	cotton + latex placed on tooth for toothache		[91]
Basellaceae	Basella alba L.		leaves	Karnataka, India	Chewed and held in mouth for toothache		[91]
Capparaceae	Capparis sepiaria L.		leaves	Karnataka, India	baked powder massaged on teeth and gums		[91]
Cariaceae	Carica papaya L.		latex	Karnataka, India	latex of unripened fruit applied with cotton for toothache		[91]

Convolvulaceae	<i>Merremia chryseides</i> (Ker Gawl.) Hallier f.	<i>Merremia hederacea</i> (Burm. F.) Hallier f.	whole plant	Karnataka, India	decoction gargled for toothache		[91]
Euphorbiaceae	Jatropha curcas L.		latex	Karnataka, India	applied for toothache		[91]
Euphorbiaceae	Jatropha gossypiifolia L.		latex	Karnataka, India	applied with cotton for toothache		[91]
Euphorbiaceae	<i>Ricinus communis</i> L.		seed oil	Karnataka, India	applied for toothache		[91]
Fabaceae	<i>Caesalpinia coriaria</i> (Jacq.) Willd.		fruits	Karnataka, India	powder massaged on teeth and gums for toothache		[91]
Fabaceae	Cassia hirsuta L.	<i>Senna hirsuta</i> (L.) H.S.Irwin & Barneby	seeds	Karnataka, India	powder massaged on teeth and gums for protection		[91]
Fabaceae	Cassia tora L.	<i>Senna tora</i> (L.) Roxb.	seeds	Karnataka, India	powder massaged on teeth and gums for protection	used for periodontitis	[91]
Lamiaceae	<i>Leucas aspera</i> (Willd.) Link		whole plant	Karnataka, India	powder massaged on teeth and gums for protection		[91]
Lamiaceae	<i>Ocimum sanctum</i> L.	Ocimum tenuiflorum L.	leaves	Karnataka, India	crushed with salt; applied for toothache		[91]
Malvaceae	Gossypium herbaceum L.		seeds	Karnataka, India	paste applied to teeth and gums		[91]
Meliaceae	<i>Azadirachta indica</i> A.Juss.		bark	Karnataka, India	powdered inner bark held in mouth for half and hour for toothache		[91]
Mimosaceae	<i>Acacia nilotica</i> (L.) Delile		bark	Karnataka, India	decoction gargled for periodontitis; chewed and held in mouth for tootache	used for periodontitis	[91]

Mimosaceae	Prosopis juliflora (Sw.) DC.	leaves	Karnataka, India	ground with tobacco and lime for toothache		[91]
Moraceae	Streblus asper Lour.	bark	Karnataka, India	ground with copper sulphate and held in mouth for toothache		[91]
Myrtaceae	Psidium guajava L.	young leaves	Karnataka, India	chewed with sold for toothache		[91]
Olacaceae	Ximenia americana L.	root	Karnataka, India	paste applied to teeth and gums for toothache		[91]
Oxalidaceae	Oxalis corniculata L.	leaves	Karnataka, India	Chewed and held in mouth for toothache		[91]
Papaveraceae	Argemone mexicana L.	root	Karnataka, India	crushed and applied for toothache		[91]
Salvadoraceae	<i>Azima tetracantha</i> Lam.	leaves	Karnataka, India	crushed and applied for toothache		[91]
Solanaceae	Solanum surattense Burm. f.	seeds, fruits	Karnataka, India	fumes from burning seeds held in mouth for toothache; powdered fruit massaged on gums for periodontitis	used for periodontitis	[91]
Solanaceae	Solanum violaceum Ortega	fruits	Karnataka, India	powder applied for toothache		[91]
Verbenaceae	Vitex negundo L.	leaves	Karnataka, India	crushed with salt; applied for toothache		[91]
Zygophyllaceae	<i>Tribulus terrestris</i> L.	fruits	Karnataka, India	baked, powdered; massaged on gums for toothace		[91]

Evtract	Family	Species	Dort	Extract	Average %	Avorago %	Average %
Extract Number	Family	Species	Part	Extract	Average % Inhibition at	Average % Inhibition at	Average %
Number				Solvent			Inhibition at
					265 μg/mL	64 μg/mL	32 µg/mL
1283	Anacardiaceae	Pistacia	leaves	95%	91.29 ± 3.14	40.92 ± 3.42	8.82 ± 7.05
		lentiscus		Ethanol			
1288	Anacardiaceae	Pistacia	leaves	dH2O	98.2 ± 0.6	97.36 ± 1.51	(-)105.21 ±
		lentiscus					6.69
1300	Anacardiaceae	Pistacia	woody parts	95%	102.2 ± 6.07	92.55 ± 3.50	97.05 ± 2.02
		lentiscus		Ethanol			
1457	Anacardiaceae	Pistacia	woody parts	dH2O	65.17 ± 27.41	(-)21.22 ±	11.64 ± 10.54
		lentiscus				14.02	
1891	Anacardiaceae	Pistacia	leaves	95%	78.38 ± 10.39		
		lonisus		Ethanol			
1892	Anacardiaceae	Pistacia	fruits	95%	90.09 ± 1.59	99.72 ±	98.41 ± 0.88
		lonisus		Ethanol		0.96	
142	Asteraceae	Achillea	Inflorescence	EtOH	-1.95 ± 3.19		
		millefolium				_	_
		L.					
153	Asteraceae	Achillea	Leaves	EtOH	2.7 ± 12.32		
100	/ Steruceue	millefolium	Stems	Lton	2.7 = 12.52	_	_
		L.	Sterris				
159	Asteraceae	Achillea	Flowers	EtOH	-12.51 ± 9.46		
135	Asteraceae	millefolium	Leaves	Lion	12.31 ± 3.40	_	_
		L.	Stems				
234	Asteraceae	Achillea	Leaves	MeOH	6.81 ± 8.74		
234	Asteraceae	millefolium	Stems	Weon	0.01 ± 0.74	_	_
		L.	Flowers				
235	Asteraceae	Achillea	Inflorescence	MeOH	-10.81 ± 6.79		
235	Asteraceae	millefolium	mnorescence	меон	-10.01 ± 0.79	_	-
		L.					
C A C	Astorosos	L. Achillea	Champa	MeOH	-19.22 ±		
646	Asteraceae		Stems	MeOH		_	_
		millefolium '	Leaves		14.46		
		<u>L.</u>					
656	Asteraceae	Achillea	Leaves	MeOH	-33.03 ±	_	-
		<i>millefolium</i>	Stems		18.72		
		<i>L.</i>					
1654	Ebenaceae	Diospyros	leaves	80%	98.3 ± 24.75	6.12 ± 3.88	4.27 ± 7.14
		virginiana		Ethanol			
		L.					
1676	Ebenaceae	Diospyros	leaves	80%	80.58 ± 8.41	_	_
		virginiana		Ethanol			
		L.					
1737	Ebenaceae	Diospyros	stems	80%	79.38 ± 4.25	_	_
		virginiana		Ethanol			
		L.					

Table S10: Screen Results at 256 $\mu g/mL$, 64 $\mu g/mL$, and 32 $\mu g/mL$

1755	Ebenaceae	Diospyros virginiana L.	immature fruits	80% Ethanol	69.37 ± 6.29	_	-
1841	Ebenaceae	Diospyros virginiana L.	woody stems	80% Ethanol	72.07 ± 2.35	_	-
66	Fabaceae	Vicia faba L.	Leaves Flowers Whole Plant Roots Stems	EtOH	97.75 ± 5.31	98.12 ± 0.55	41.00 ± 10.53
350	Fabaceae	Vicia faba L.		MeOH	108.11 ± 2.62	98.05 ± 0.24	97.76 ± 0.13
1150	Fabaceae	Tamarindu s indica L.	Leaves	95% Ethanol	43.24 ± 40.79	_	_
619	Fagaceae	Quercus alba L.	Bark	MeOH	79.48 ± 2.72	_	-
620	Fagaceae	Quercus alba L.	Galls	MeOH	87.09 ± 1.31	_	-
632	Fagaceae	Quercus alba L.	Leaves	MeOH	85.49 ± 2	_	-
647	Fagaceae	Quercus alba L.	Bark	dH2O	-41.54 ± 9	_	-
648	Fagaceae	Quercus alba L.	Galls	dH2O	83.93 ± 0.64	_	-
1201	Fagaceae	Quercus alba L.	woody parts	MeOH	79.18 ± 1.42	_	_
1209	Fagaceae	Quercus alba L.	woody parts	dH2O	3 ± 6.64	_	-
634	Hamamelidace ae	Liquidamb ar styraciflua L.	Woody Parts	MeOH	50.05 ± 3.19	-	-
636	Hamamelidace ae	Liquidamb ar styraciflua L.	Leaves	MeOH	90.19 ± 4.38	11.00 ± 22.72	(-)2.82 ± 11.27
637	Hamamelidace ae	Liquidamb ar styraciflua L.	Fruits Seeds	MeOH	89.39 ± 8.68	-	-
1637	Hamamelidace ae	Liquidamb ar styraciflua L.	roots	80% Ethanol	96.6 ± 3.24	83.51 ± 2.47	19.67 ± 1.54
1691	Hamamelidace ae	Liquidamb ar styraciflua L.	leaves	80% Ethanol	69.87 ± 18.57	-	-

126	Juglandaceae	Juglans regia L.	Immature Fruits	EtOH	91.79 ± 3.04	96.17 ± 1.26	86.98 ± 2.93
180	Juglandaceae	Juglans regia L.	Leaves	EtOH	86.19 ± 3.46	_	_
195	Juglandaceae	Juglans regia L.	Woody Parts	EtOH	90.19 ± 1.51	96.87 ± 0.36	97.25 ± 0.13
275	Juglandaceae	Juglans regia L.	Woody Parts	MeOH	71.67 ± 6.04	_	_
276	Juglandaceae	Juglans regia L.	Immature Fruits	MeOH	89.89 ± 0.97	94.92 ± 1.97	94.36 ± 0.57
277	Juglandaceae	Juglans regia L.	Leaves	MeOH	88.29 ± 3.34	_	-
638	Juglandaceae	Carya tomentosa (Poir.) Nutt.	Woody Parts	MeOH	273.47 ± 17.82	131.04 ± 6.17	107.09 ± 1.97
639	Juglandaceae	Carya tomentosa (Poir.) Nutt.	Leaves	MeOH	13.31 ± 60.26	_	_
640	Juglandaceae	Carya tomentosa (Poir.) Nutt.	Fruits	MeOH	359.06 ± 65.04	195.76 ± 9.93	154.45 ± 11.86
1511	Juglandaceae	Juglans r.	woody stems	95% EtOH	96.3 ± 3.31	94.99 ± 1.04	61.60 ± 9.02
1512	Juglandaceae	Juglans r.	woody stems	MeOH	92.19 ± 0.6	99.93 ± 0.32	32.61 ± 7.22
1582	Juglandaceae	Carya tomentosa (Poir.) Nutt.	leaves	80% Ethanol	89.19 ± 5.24	4.38 ± 15.66	(-)3.76 ± 6.15
1701	Juglandaceae	Carya tomentosa (Poir.) Nutt.	bark	80% Ethanol	81.48 ± 0.92	-	_
1703	Juglandaceae	Carya tomentosa (Poir.) Nutt.	woody stems	80% Ethanol	92.59 ± 8.63	36.46 ± 7.85	25.60 ± 8.18
1544	Lauraceae	Sassafras albidum (Nutt.) Nees	leaves	80% Ethanol	93.89 ± 0.17	12.11 ± 32.59	13.16 ± 5.33
1697	Lauraceae	Sassafras albidum (Nutt.) Nees	roots	80% Ethanol	88.69 ± 2	-	-
1795	Lauraceae	Sassafras albidum (Nutt.) Nees	stems	80% Ethanol	90.89 ± 1.25	99.93 ± 0.24	7.52 ± 0.98

1161	Meliaceae	Azadiracht a indica A.Juss.	Leaves Woody Stem	95% Ethanol	90.29 ± 1.39	96.66 ± 1.37	10.85 ± 16.34
1148	Moraceae	Artocarpus altilis (Parkinson ex F.A.Zorn) Fosberg	Leaves	95% Ethanol	-11.21 ± 87.12	_	_
747	Myricaceae	Myrica cerifera L.	Leaves Flowers	MeOH	25.13 ± 61.23	53.5 ± 44.18	5.53 ± 2.47
762	Myricaceae	Myrica cerifera L.	Woody Parts Woody Stem	MeOH	92.79 ± 2.46	(-)3.83 ± 15.87	2.17 ± 2.26
865	Myricaceae	Myrica cerifera L.	Woody Stem	dH2O	13.11 ± 6.24	_	_
902	Myricaceae	Myrica cerifera L.	Branches Stems	MeOH	85.79 ± 4	_	_
1116	Myricaceae	Myrica cerifera L.	Bark	MeOH	70.97 ± 4.05	_	-
1126	Myricaceae	Myrica cerifera L.	Bark	dH2O	-26.53 ± 32.29	9.74 ± 14.17	18.51 ± 7.08
1180	Myricaceae	Myrica cerifera L.	stems, branches	dH2O	6.31 ± 10.23	_	-
132	Oleaceae	Olea europaea L.	Leaves	EtOH	109.51 ± 3.42	76.41 ± 2.17	26.68 ± 2.85
293	Oleaceae	Olea europaea L.	Woody Parts	MeOH	95.6 ± 3.08	(-)15.38 ± 1.59	12.44 ± 4.23
294	Oleaceae	Olea europaea L.	Leaves	MeOH	106.61 ± 6.36	96.38 ± 1.05	36.37 ± 10.77
122	Polygonaceae	Rumex crispus L.	Fruits Leaves Stems Aerial Parts	EtOH	93.19 ± 1.14	35.77 ± 5.79	17.64 ± 4.93
378	Polygonaceae	Rumex crispus L.		MeOH	-44.54 ± 36.52	_	-
402	Polygonaceae	Rumex crispus L.		MeOH	44.74 ± 25.75	_	_
784	Polypodiaceae	Pleopeltis polypodioid es (L.) E.G. Andrews & Windham	Whole Plant	MeOH	-23.57 ± 14.23	-	-
786	Polypodiaceae	Pleopeltis polypodioid es (L.) E.G. Andrews & Windham	Whole Plant	dH2O	43.14 ± 5.29	-	-

120	Rubiaceae	Vitis vinifera var.aglianic o	Stems	EtOH	87.69 ± 6.82	-	-
123	Rubiaceae	Vitis vinifera var.aglianic o	Fruits	EtOH	92.69 ± 2.27	14.96 ± 10.63	10.48 ± 14.91
124	Rubiaceae	Vitis vinifera var.aglianic o	Leaves	EtOH	93.99 ± 2.97	94.05 ± 0.15	6.22 ± 1.48
335	Rubiaceae	Vitis vinifera var.aglianic o	Fruits	MeOH	-49.95 ± 29.86	_	-
336	Rubiaceae	Vitis vinifera var.aglianic o	Leaves	MeOH	98.1 ± 6.13	97.22 ± 0.48	(-)2.75 ± 5.57
337	Rubiaceae	Vitis vinifera var.aglianic o	Stems	MeOH	136.04 ± 14.59	100.77 ± 0.43	97.98 ± 0.63
481	Rubiaceae	Vitis rotundifoli a Michx.	Leaves Stems	MeOH	81.83 ± 1.49	_	-
1613	Rubiaceae	Vitis rotundifoli a Michx.	leaves	80% Ethanol	81.78 ± 10	_	_
1760	Rubiaceae	Vitis rotundifoli a Michx.	roots	80% Ethanol	85.59 ± 6	_	_
1831	Rubiaceae	Vitis rotundifoli a Michx.	woody stems	80% Ethanol	67.07 ± 64.46	24.91 ± 3.79	3.76 ± 1.27
1837	Rubiaceae	Vitis rotundifoli a Michx.	immature fruits	80% Ethanol	80.48 ± 0.79	_	_
498	Rutaceae	Citrus × sinensis (L.) Osbeck	Fruit Rind	MeOH	-50.35 ± 8.79	_	_
1111	Rutaceae	Citrus sinensis (L.) Osbeck	Woody Parts	MeOH	98.2 ± 0.79	96.78 ± 0.32	94.79 ± 0.57
1236	Rutaceae	Citrus sinensis (L.) Osbeck	woody parts	МеоН	-50.9 ± 7.43	_	-

1290	Rutaceae	Zanthoxylu m armatum	fruits, seeds	95% Ethanol	117.12 ± 1.97	98.82 ± 0.84	96.6 ± 0.33
774	Salicaceae	Salix nigra Marshall	Leaves	MeOH	-11.51 ± 8.87	_	_
897	Salicaceae	Salix nigra Marshall	Leaves	dH2O	54.65 ± 14.25	_	_
922	Salicaceae	Salix nigra Marshall	Flowers Fruits Leaves	MeOH	73.37 ± 6.59	_	_
1023	Salicaceae	Salix nigra Marshall	Branches	MeOH	64.46 ± 6.69	_	_
1028	Salicaceae	Salix nigra Marshall	Woody Stem	MeOH	91.09 ± 2.5	27.14 ± 18.01	0.72 ± 5.51
1030	Salicaceae	Salix nigra Marshall	Woody Stem	dH2O	87.99 ± 4.92	_	_
1031	Salicaceae	Salix nigra Marshall	Branches	dH2O	-32.43 ± 7.72	_	_
1065	Salicaceae	Salix nigra Marshall	Leaves Fruits Flowers	dH2O	2.4 ± 9.67	_	-
1071	Salicaceae	Salix nigra Marshall	Woody Stem	MeOH	-46.35 ± 2.72	_	-
1073	Salicaceae	Salix nigra Marshall	Leaves	MeOH	86.29 ± 2.33	_	_
1134	Salicaceae	Salix nigra Marshall	Bark	MeOH	85.49 ± 2.27	_	_
1136	Salicaceae	Salix nigra Marshall	Bark	MeOH	82.78 ± 4.03	_	_
1185	Salicaceae	Salix nigra Marshall	Bark	MeOH	-24.02 ± 17.53	_	_
1206	Salicaceae	Salix nigra Mars hall	bark	dH2O	85.79 ± 8.11	_	_
1210	Salicaceae	Salix nigra Mars hall	woody stems	dH2O	96.55 ± 0.21	15.80 ± 2.95	15.26 ± 11.56
1211	Salicaceae	Salix nigra Mars hall	bark	dH2O	97.5 ± 0.76	16.77 ± 5.39	14.53 ± 3.96
1576	Salicaceae	Salix nigra Marshall	leaves	80% Ethanol	91.39 ± 3.8	(-)5.22 ± 5.12	(-)0.36 ± 3.29
1749	Salicaceae	Salix nigra Marshall	bark	80% Ethanol	84.38 ± 4.26	_	_
1783	Salicaceae	Salix nigra Marshall	roots	80% Ethanol	105.01 ± 9.82	26.23 ± 0.73	3.47 ± 15.98
919	Sapotaceae	Sideroxylon celastrinu m (Kunth) T.D. Penn.	Stems	MeOH	16.22 ± 72.77	81.14 ± 3.56	25.52 ± 6.95

1182	Sapotaceae	Sideroxylon celastrinu m (Kunth) T.D. Penn.	leaves, stems	MeOH	73.97 ± 9.99	_	_
1190	Sapotaceae	Sideroxylon celastrinu m (Kunth) T.D. Penn.	leaves, stems	dH2O	-33.93 ± 7.28	_	_
1225	Sapotaceae	Sideroxylon celastrinu m (Kunth) T.D. Penn.	stems	dH2O	-35.74 ± 7.77	-	_
1609	Sapotaceae	Sideroxylon lanuginosu m Michx.	leaves	80% Ethanol	80.18 ± 6.5	_	_
1718	Sapotaceae	Sideroxylon lanuginosu m Michx.	leaves	80% Ethanol	74.97 ± 3.32	_	_
1756	Sapotaceae	Sideroxylon lanuginosu m Michx.	woody stems	80% Ethanol	85.69 ± 1.14	_	_
1864	Sapotaceae	Sideroxylon lanuginosu m Michx.	bark	80% Ethanol	94.19 ± 1.42	43.70 ± 5.25	30.59 ± 4.34

Table S10: Results from single concentration screens at 256 $\mu g/mL$, 64 $\mu g/mL$, and 32 $\mu g/mL$

Percent of growth inhibition is reported as averages with standard deviation (n=3). At 256 μ g/mL, extracts with >90% growth inhibition, standard deviations allowing for >90% growth inhibition, or high standard deviations, were chosen for further study. Extracts with >90% growth inhibition at 64 μ g/mL or 32 μ g/mL were chosen for MIC. Extract 747 was included in MIC; further tests were necessary to rule it out as a high activity extract due to high standard deviation in the single-concentration screen.