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Abstract

A Walrasian Voluntary Contribution to Public Goods

by Howard Riady

This paper extends the standard model of voluntary provision of a public good. In a simple

two-person economy with one public good which is provided through voluntary contributions

and two private goods that are competitively traded in a general equilibrium setting, I find

that the total level of the public good provided and the final allocation of the private goods

are independent of income redistributions between consumers.
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Chapter 1

Introduction

The model of voluntary contributions to public goods plays an important role in contem-

porary society. This model has been applied by Bergstrom et al. (1986) to study the

contribution of campaign funds for political parties and by Becker (1981) to study the eco-

nomic behavior of households. Furthermore, issues of private donations to charity, collective

bargaining of labor unions, allied defense, and multilateral environmental policies, such as

restrictions on carbon dioxide emissions, are within the scope of this model.

This paper aims to provide an exposition to the private provision of a public good model

with multiple private goods that are traded in competitive markets in a general equilibrium

setting and a public good that is provided voluntarily by consumers. The extension from

partial equilibrium to general equilibrium is primarily motivated by the fact that supply

and demand in a single market is contingent on prices of other commodities.1 Since prices

and consumers’ consumption bundles are endogenously determined in general equilibrium,

the value of consumers’ endowments is also endogenously determined. This implies that the

consumers’ demand functions exhibit wealth effects that link different markets.2 Hence, a

general equilibrium approach is more representative of consumers’ economic behavior.3

1In reality, consumers consume multiple private goods that are traded in competitive markets.
2In contrast, demand functions in partial equilibrium do not exhibit wealth effects.
3The existence of competitive markets for private goods imply that consumers’ maximum contributions

are no longer bounded by their initial endowments of the input to the public good.
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This paper presents an extension to the classic treatment of the theory of private provision

of public goods by Warr (1983) and Bergstrom et al. (1986). Warr (1983) proved that for a

single public good that is provided voluntarily by consumers, the total level of the public good

provided is neutral of income redistributions in a partial equilibrium setting. Bergstrom et

al. (1986) extended this neutrality result for a general model with a single private good and

proved that government provision “crowds out” private contributions.4 Ley (1996) showed

the same results geometrically using the Kolm triangle.

The following are two main results of this model. Firstly, sufficiently small lump-sum

wealth redistributions do not change the final allocation of both the private goods and the

total level of the public good supplied in general equilibrium. This has two implications: (1)

increased wealth equality in the presence of competitive markets does not lead to higher total

contributions. That is, the neutrality result by Warr (1983) and Bergstrom et al. (1986)

extends to my model. (2) The second fundamental welfare theorem5 fails to hold in general

equilibrium with public goods that are voluntarily supplied.6 Secondly, government taxation

in the interest of a specific public good cannot increase the total level of the public good

supplied since there is a complete crowding out effect, just as in the model of Bergstrom et

al. (1986).

The remainder of this paper is structured as follows: Chapter 2 introduces my basic

model; Chapter 3 shows the effect of government provision on private contributions; Chapter

4 presents extensions from my model to multiple public goods, a single public good with

Leontief production function, and an impure public good; and Chapter 5 concludes and

describes future work.

4The neutrality theorem of Bergstrom et al. (1986) generalizes to several public goods.
5The second fundamental theorem of welfare economics, which applies to private goods, states that,

under certain assumptions, every Pareto efficient allocation can be attained through a market-based (i.e.,
Walrasian) equilibrium using an appropriate lump-sum wealth redistribution policy.

6I am grateful to Professor Tilman Klumpp for pointing this out.
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Chapter 2

The Basic Model

Consider a simple pure exchange economy1 where there is one public good, two private goods

and two consumers. Both private goods are traded in competitive markets and the public

good is financed through voluntary contributions. Each consumer i consumes an amount xi

and yi of the private goods and contributes an amount gi ≥ 0 to the supply of the public

good. Suppose gi is produced linearly from xi. Let G denote the total amount of the public

good contributed to by both consumers and G−i denote the total contribution excluding

consumer i’s contribution. Each consumer i has a utility function of ui(xi, yi, G) and is

endowed with xi and yi, indicated by ωxi and ωyi respectively.

Definition 1: A Walrasian/voluntary contribution equilibrium is an allocation

(x∗i , y
∗
i , g
∗
i ) for i = 1, 2 and prices (p∗x, p

∗
y) satisfying the following conditions:

1. Feasibility condition

∑
i

x∗i +
∑
i

g∗i =
∑
i

ωxi and
∑
i

y∗i =
∑
i

ωyi .

1No production of private goods
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2. Individual utility maximization condition

∀i, Given g∗i and G∗−i, xi and yi maximizes ui(xi, yi, G
∗)

s.t. p∗xxi + p∗yyi + p∗xgi ≤ p∗xω
x
i + p∗yω

y
i .

3. Nash equilibrium condition

∀i, Given G∗−i, x
∗
i , and y∗i , gi maximizes ui(x

∗
i , y
∗
i , gi +G∗−i)

s.t. p∗xxi + p∗yyi + p∗xgi ≤ p∗xω
x
i + p∗yω

y
i .

Note that there are two possible methods to solve for a Walrasian/voluntary contribution

equilibrium using backward induction.2 In the first, a sequential game, consumers choose

how much to contribute toward the public good and then trade their private goods. The

second case, called a simultaneous game, is the reverse. In this case, consumers initially

trade their private goods and then choose how much to contribute toward the public good.

Note that it is described as a simultaneous game because consumers indirectly determine

their contributions by choosing their level of private goods consumption.

Now consider the utility maximization problem of the consumer under a simultaneous

game. Each consumer i can indirectly choose the level of G by deciding how much to

contribute gi. Then each consumer i solves

max
xi,yi,gi

ui(xi, yi, gi +G∗−i)

s.t. pxxi + pyyi + pxgi ≤ pxω
x
i + pyω

y
i

where xi, yi, gi ≥ 0.

(2.1)

2The total level of public good supplied in a sequential game is the same in a simultaneous game under
Cobb-Douglas utility function. See Appendix E.
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2.1 An Extended Neutrality Result

Assumption 1: Each consumer’s utility function satisfies ux > 0, uy > 0, uxy > 0, uxx <

0 and uyy < 0.

Assumption 2: For each consumer, the marginal rate of substitution between x and g is

independent of y.

Theorem 1. If consumers have convex, strictly increasing and continuous preferences satis-

fying Assumptions 1 and 2, then in the Walras/voluntary contribution equilibrium, the final

allocation of x∗, y∗, and G∗ is independent of the initial allocation, provided that the exchange

of x and y is appropriately small and does not change the set of contributors.

Proof. This proof is divided into three steps. First, I will show that the final allocation of xi

and G is independent of the endowment ωxi and ωyi . In step two, I will show that given the

total amount of contribution in the Nash equilibrium, denoted by G∗, the final allocation of

x and y in this economy is constrained Pareto efficient. In the final step, I will show that

the final allocation of y is independent of the endowments.

Step 1

I will show that the final allocation of xi and G is independent of the endowment ωxi and

ωyi following Ley’s (1996) expositional framework with a Kolm triangle.3 A Kolm triangle

is an equilateral triangle representing the feasible allocations xi and gi for i = 1, 2. That

is, for any arbitrary point e in Figure 2.1, each consumer i’s consumption xi is measured by

the distance from e to OiO while the total level of the public good supplied G is measured

by the distance from e to O1O2. It must follow that consumer one’s utility is increasing in

the northeast direction while consumer two’s utility is increasing in the northwest direction.

Suppose we select an arbitrary initial endowment allocation W = (ωx1 , ω
x
2 ), consumer one’s

3Although Ley (1996) has proved this statement, I will briefly explain for the ease of reading through the
proof.
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Figure 2.1: A Kolm triangle

budget line is represented by the distance from W to A while consumer two’s budget line is

represented by the distance from W to B. Each consumer chooses her consumption bundle

where her indifference curve is tangent to her budget line so that the best response curves

are increasing in the direction shown in Figure 2.1. Hence, a Nash equilibrium e must exist

where the two best responses intersect each other in the shaded region. An income redistri-

bution does not change the final allocation because changing the initial endowment from W

to W ′ only shifts each consumer’s budget line but not their best responses. Therefore the

final allocations xi and G are independent of endowments ωxi and ωyi , assuming that income

redistributions are appropriately small.

Step 2

Given the total amount of contribution in the Nash equilibrium, denoted by G∗, the

final allocation of x and y in this economy is constrained Pareto efficient. An allocation
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is constrained Pareto efficient if it is not possible to make at least one consumer better

off without making any other consumer worse off. Suppose the market equilibrium is not

constrained Pareto efficient, where there is a feasible allocation x̃1, ỹ1, x̃2, ỹ2 such that

x̃1 + x̃1 +G∗ = ωx1 + ωx2 (2.2)

ỹ1 + ỹ2 = ωy1 + ωy2 , (2.3)

and is preferred by either or both consumers. That is,

u1(x̃1, ỹ1, G
∗) ≥ u1(x1, y1, G

∗) (2.4)

u2(x̃2, ỹ2, G
∗) ≥ u2(x2, y2, G

∗), (2.5)

with at least one strict inequality. However, by assumption, I have a market equilibrium

where each consumer is purchasing the best bundle he or she can afford. If bundle (x̃i, ỹi, G
∗)

is better than the bundle consumer i is choosing, then it must cost more than what consumer

i can afford:

pxx̃1 + pyỹ1 + pxg
∗
1 ≥ pxω

x
1 + pyω

y
1 , (2.6)

pxx̃2 + pyỹ2 + pxg
∗
2 ≥ pxω

x
2 + pyω

y
2 , (2.7)

with at least one strict inequality. Adding equations (2.6) and (2.7) together I get

px(x̃1 + x̃2 + g∗1 + g∗2) + py(ỹ1 + ỹ2) > px(ω
x
1 + ωx2 ) + py(ω

y
1 + ωy2). (2.8)

Substituting equations (2.2) and (2.3) into equation (2.8) yields

px(ω
x
1 + ωx2 ) + py(ω

y
1 + ωy2) > px(ω

x
1 + ωx2 ) + py(ω

y
1 + ωy2), (2.9)

which is a contradiction. Therefore given G∗, the final allocation of x and y in this economy
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is constrained Pareto efficient.

Step 3

It has been shown above that the final allocation of x is independent of the endowments

of x’s. Let us denote the final allocation of x as x∗. Now I will show that the final allocation

of y is independent of the endowments of y’s. Any point on the contract curve satisfies

u1x
u1y

=
u2x
u2y

. (2.10)

Differentiate both sides implicitly with respect to y1 to get the left-hand side

u1xyu2y + u1xxu2y
dx1
dy1

+ u2xyu1x
dx2
dy1

+ u2yyu1x
dy2
dy1

(2.11)

and the right hand side

u1yyu2x + u1xyu2x
dx1
dy1

+ u2xxu1y
dx2
dy1

+ u2xyu1y
dy2
dy1

. (2.12)

Then solve for dx1/dy1 to get

dx1
dy1

=
u1xu2yy − u2yu1xy + u2xu1yy − u1yu2xy
u2yu1xx − u1xu2xy − u2xu1xy + u1yu2xx

(2.13)

which will always be positive by Assumption 1. Given that the contract curve is increasing,

for each x∗, there must exist a unique y such that the point (x∗, y) lies on the curve. Since

I have proven that (x∗, y) is constrained Pareto efficient given g∗, it must follow that the

point (x∗, y) lies on the contract curve. Therefore, y is unique given x∗ and g∗. Since I have

proven that the final allocation of x∗ and g∗ are independent of the initial endowments, then

the final allocation of y must also be independent of the initial endowments.
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To show that Theorem 1 is a sufficient but not necessary condition, suppose each con-

sumer i solves the following constrained optimization problem in the following simple econ-

omy

max
xi,yi,gi

ui = (
√
xi +

√
yi)(gi +G∗−i)

s.t. pxxi + pyyi + pxgi ≤ pxω
x
i + pyω

y
i

where xi, yi, gi ≥ 0.

(2.14)

Then the first order necessary conditions with respect to xi, yi, gi and λ respectively are

[xi]
gi + gj
2
√
xi

= λpx (2.15)

[yi]
gi + gj
2
√
yi

= λpy (2.16)

[gi]
√
xi +

√
yi = λpx (2.17)

[λi] pxxi + pyyi + pxgi = pxω
x
i + pyω

y
i . (2.18)

Note that the marginal rate of substitution between xi and gi is dependent of yi. Using

the budget constraint to solve for gi and gj simultaneously in terms of prices (px, py) and

endowments (ωix, ω
j
x, ω

i
y, ω

j
y), I obtain gi = (3pxω

x
i + 3pyω

y
i − pxωxj − pyω

y
j )/4px, where gj is

symmetric to gi. Subsequently, I normalize py and use the first feasibility requirement to

solve for p∗x in terms of the endowments (ωix, ω
j
x, ω

i
y, ω

j
y) to get

p∗x =
ωyi + ωyj +

[
(ωyi + ωyj )

2 + 8(ωxi ω
y
j + ωxi ω

y
i + ωxj ω

y
j + ωxj ω

y
i )
] 1

2

2(ωxi + ωxj )
. (2.19)

Given the competitive prices (p∗x, p
∗
y), I can solve for the final allocation (x∗i , y

∗
i , G

∗) in terms

of the endowments (ωix, ω
j
x, ω

i
y, ω

j
y):

G∗ =
(3(ωyi + ωyj ) + α)(ωxi + ωxj )

2(ωyi + ωyj + α)
(2.20)

x∗i =
(ωxi + ωxj )2(3(ωyi + ωyj ) + α)

4(ωxi + ωxj ) + 2(ωyi + ωyj ) + 2α(ωyi + ωyj + 1)
(2.21)
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y∗i =
(ωyi + ωyj )(α

2 + 3)

16(ωxi + ωxj ) + 8(ωyi + ωyj ) + 8α
, (2.22)

where α =
(
(ωyi + ωyj )(ω

y
i + ωyj + 8[ωxi + ωxj ])

) 1
2 . Since consumer j’s final allocation of xj

and yj is symmetric to consumer i’s, I can ensure that the extended neutrality holds even

when the marginal rate of substitution between xi and gi is dependent of yi. Hence, I

have established that Theorem 1 is a sufficient but not necessary condition to the extended

neutrality result. Note that neutrality can be characterized conveniently as an allocation in

the form of a function f(ωxi + ωxj , ω
y
i + ωyj ). Therefore, only changes in the total endowment

can alter the final allocation.
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Chapter 3

The Effect of Government Provision

on Private Contributions

There are numerous instances where governments provide some amount of the public good

financed through taxation in an attempt to increase the total level of public good in the

economy. For example, a government may provide relief funds which are financed through

tax revenues. However, can this government policy actually increase the total amount of

public good supplied in the economy? Consider a Walrasian voluntary contribution model

under which the government imposes a lump-sum tax in order to provide some quantity of

the public good. Suppose that each consumer i has a Cobb-Douglas utility function and

let t be the lump-sum tax imposed on each consumer’s endowment of x’s. Without loss of

generality, each consumer i solves1

max
xi,yi,gi

ui = xαi y
β
i (gi +G∗−i + 2t)

s.t. pxxi + pyyi + pxgi ≤ px(ω
x
i − t) + pyω

y
i

where xi, yi, gi ≥ 0 and 0 ≤ α, β ≤ 1.

(3.1)

1Consumer j’s utility function is symmetric to consumer i’s with coefficients γ and δ respectively.
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Let G∗−t denote the total level of public good supplied by the private sector. Solving the

constraint optimization problem yields

x∗i =
α(ωxi + ωxj )

1 + α + γ
(3.2)

y∗i =
β(ωyi + ωyj )

β + δ
(3.3)

G∗ = G∗−t + 2t =
−2t(α + γ) + (ωxi + ωxj )− 2t

1 + α + γ
+ 2t =

ωxi + ωxj
1 + α + γ

(3.4)

g∗i =
px[ω

x
i (1 + γ + δ)− tφ− ωxj (α + β)]− ωyj (α + β) + ωyi (1 + γ + δ)

pxφ
(3.5)

where, φ = 1 + γ + β + α+ δ. Since consumer j’s final allocation is symmetric to consumer

i’s, I have established that the extended neutrality holds when the government provides

some quantity of the public good.2 The model further shows that there is a “dollar-for-

dollar crowding-out” in private contributions when lump-sum tax is imposed. The one-to-

one “crowding-out” effect is, in fact, consistent with the results shown by Bergstrom et al.

(1986). Therefore, from a purely theoretical standpoint, government provision, in my model,

cannot increase the total level of public good supplied in the economy.3

2See Appendix B for complete derivations.
3If the government instead taxes y’s from consumers and can “exclusively” use y’s to provide some

quantity of the public good, then government provision via taxes can increase the total level of public good
supplied. However, I cannot find a realistic scenario of this model.
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Chapter 4

Extensions

4.1 Multiple Public Goods

In reality, consumers have the option of contributing to multiple public goods. Consider the

Walrasian voluntary contribution model with two public goods: G and H. Each consumer

i can voluntarily contribute some quantity of private good xi toward G and some quantity

of private good yi toward H. For simplicity, suppose each consumer i has a simple utility

function given by ui = xiyi + GH. Then the constraint optimization problem for each

consumer is given by

max
xi,yi

ui = xiyi + (gi +G∗−i)(hi +H∗−i)

s.t. px(xi + gi) + py(yi + hi) ≤ pxω
x
i + pyω

y
i

where xi, yi, gi, hi ≥ 0.

(4.1)

It appears that solving the maximization problem above yields multiple equilibria. Although

there are four best response equations and four unknown variables gi, gj, hi, hj, the best

responses are linearly dependent on each other. Consequently, one of the contributions

needs to be determined exogenously to solve for a unique Walras/voluntary contribution
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equilibrium. Hence, solving the equations simultaneously I obtain

gi = gi (4.2)

gj =
px(ω

x
i + ωxj ) + py(ω

y
i + ωyj )− 6pxgi

6px
(4.3)

hi =
2(pxω

x
i + pyω

y
i )− (pxω

x
j + pyω

y
j )− 3pxgi

3py
(4.4)

hj =
pxω

x
j + pyω

y
j − (pxω

x
i + pyω

y
i ) + 2pxgi

2py
. (4.5)

Despite the indeterminacy, the total level of public good G and H is given by

G∗ =
px(ω

x
i + ωxj ) + py(ω

y
i + ωyj )

6px
(4.6)

H∗ =
px(ω

x
i + ωxj ) + py(ω

y
i + ωyj )

6py
, (4.7)

in which I can conclude that the total level of public good G and H are both neutral to

income redistributions. Since G and p∗x are neutral, I have also established that the extended

neutrality holds in this model.1 Differentiating h∗i with respect to gi yields

∂h∗i
∂gi

= −p
∗
x

p∗y
= −

ωyi + ωyj
ωxi + ωxj

< 0, (4.8)

which is the rate of exchange between consumer i’s contribution gi and hi. Note that it may

not always equal to one, depending on the total endowment of x’s and y’s. Suppose the total

endowment of y’s in the economy is much greater than that of x’s, implying that the price

of x is higher than the price of y. Then
∂h∗i
∂gi

equals a negative number less than negative

one (-1), meaning that a unit increase in gi will reduce hi by more than one unit. In other

words, for a consumer to maintain her wealth, she needs to sacrifice more y’s for a unit of x

as the latter is more expensive than the former.

1See Appendix C for complete derivations.



15

4.2 Leontief Production Function for the Public Good

In this section, I extend my model by modifying the production function of the public good

G, and allowing each consumer i to donate some monetary contribution ci ≥ 0 to the public

good. Suppose the public good is produced by an independent entity under a Leontief

production function. Hence, the entity solves

max
x,y

G = [min {κx, y}]µ

s.t. pxx+ pyy = ci + cj

where 0 < µ <∞.

(4.9)

Suppose that each consumer i consumes an amount xi and yi of the private goods, has

a Cobb-Douglas utility function, and is endowed with xi and yi, indicated by ωxi and ωyi

respectively. Without loss of generality, each consumer i solves2

max
xi,yi

ui = xαi y
β
i G
∗

s.t. pxxi + pyyi + ci ≤ pxω
x
i + pyω

y
i

where xi, yi, ci ≥ 0.

(4.10)

Given the production function for the public good, the entity’s demand functions for x and

y are given by x = e
lnG
µ

κ
and y = e

lnG
µ respectively. Substituting the demand functions into

the entity’s budget constraint and isolating G I get G =
[
κ(ci+cj)

px+κpy

]µ
. Therefore, consumer i’s

new maximization problem can be written as

max
xi,yi,ci

ui = xαi y
β
i

[
κ(ci + cj)

px + κpy

]µ
s.t. pxxi + pyyi + ci ≤ pxω

x
i + pyω

y
i

where xi, yi, ci ≥ 0.

(4.11)

2Consumer j’s utility function is symmetric to consumer i’s with coefficients γ and δ respectively.
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Let C be the total monetary contributions by both consumers. From the first order necessary

conditions, I get xi = αC
pxµ

and yi = βC
pyµ

. Normalizing py and solving for C from the constraint

optimization problem above, I obtain

C∗ =
µ[px(ω

x
i + ωxj ) + (ωyi + ωyj )]

µ+ α + β + γ + δ
, (4.12)

which is neutral to income redistributions. Since p∗x is also neutral to income redistributions,

I have established that the extended neutrality holds under any general Leontief production

function for the public good and at different types of returns to scale.3

4.3 Impure Public Goods

In reality, most public goods are instead impure public goods because consumptions of the

public good, at some point, become rivalrous as many consume the public good simultane-

ously. Although a public park is generally considered a public good, a typical consumer’s

consumption becomes “congested” when many people are using the park at a particular

time. Consider a model with one impure public good, two private goods and two consumers.

Let G denote the total level of the impure public good contributed to by both consumers,

and let ci represent consumer i’s actual consumption of the public good after congestion.

max
xi,yi,gi

ui(xi, yi, ci)

s.t. pxxi + pyyi + pxgi ≤ pxω
x
i + pyω

y
i

where xi, yi, gi, ci ≥ 0.

(4.13)

Assumption 3: The utility function for each consumer is multiplicatively separable.

Theorem 2. If consumers have convex, strictly increasing and continuous preferences sat-

isfying Assumptions 1, 2 and 3, then in the Walrasian/voluntary contribution equilibrium,

3See Appendix D for complete derivations.
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the final allocation of private goods x∗i , y
∗
i and the impure public good G∗ is independent of

the initial allocation, provided that the exchange of x and y is appropriately small and does

not change the set of contributors.

Proof. Let consumer i’s post-congestion consumption of the impure public good be given by

ci = G−
2∑
i 6=j

kijcj, (4.14)

where kij is a constant representing the congestion effect of consumer j imposed on consumer

i. Since equation (4.14) is symmetric for each consumer, I can rearrange the linear equations

into a matrix equation
(

1 k12
k21 1

)(
c1
c2

)
=
(
G
G

)
. Using Cramer’s rule to solve for ci in terms of

k’s and G’s I get c1 = det
(
G k12
G 1

)
/det

(
1 k12
k21 1

)
and c2 = det

(
1 G
k21 G

)
/det

(
1 k12
k21 1

)
. However,

since there will always be a column of G’s on the ith column for consumer i, basic properties

of determinants allow us to, for any ci, factor G such that

c∗i = γG, (4.15)

where γ is a constant resulting from the kij’s. Substituting equation (4.15) into consumer

i’s maximization problem I get

max
xi,yi,gi

ui(xi, yi, γG)

s.t. pxxi + pyyi + pxgi ≤ pxω
x
i + pyω

y
i

where xi, yi, gi, ci ≥ 0.

(4.16)

Since the utility function is multiplicatively separable by Assumption 3, multiplying the

utility function by a constant γ does not change the final allocation, and I have previously

shown that the extended neutrality result holds for utility functions satisfying Assumptions

1 and 2. Hence, I have now established that the extended neutrality holds in a Walrasian

voluntary contribution game under a single impure public good.
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Furthermore, it is clear that this proof can be extended for n consumers and under a single

private good voluntary contribution model by similar steps. In my model, the congestion

effect is comparable to the effect of an increase in the price of the private good x; the existence

of congestion makes it more expensive for consumers to contribute towards the public good.
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Chapter 5

Conclusion and Discussion

This paper has provided an exposition to the theory of private provision to a public good

using a general equilibrium framework for private goods. A general equilibrium analysis

implies that consumers choose their private goods consumption levels by trading in an inter-

dependent system of competitive markets. When consumers can competitively trade private

goods, their contributions are no longer limited to their initial levels of endowment. A

consumer who places a sufficiently high valuation for the public good can exchange their

non-input private goods for more input private goods. A general equilibrium analysis also

provides greater flexibility in determining the public good technology. Aside from having

multiple private goods as inputs to the production of a public good, it is possible to charac-

terize some private goods as time-intensive and some as commodity-intensive. All the above

reasons suggest that a general equilibrium approach increases the realism of the model.

This paper reveals that, within a general equilibrium framework, in a simple pure ex-

change economy with a public good which is provided voluntarily and two private goods

which are traded in competitive markets, the total level of the public good supplied and

the final allocation of the private goods are independent of income redistributions between

consumers. This extended neutrality result implies that wealth equality does not increase

the total level of the public good provided by consumers, which is consistent with the neu-
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trality result by Bergstrom et al. (1986). It also implies that the second welfare theorem

of economics fails to hold when a public good is introduced to a general equilibrium model.

That is to say, a social planner cannot achieve a desired Pareto-efficient allocation through a

lump-sum wealth redistribution policy because consumers maximize their utility by changing

their contributions by the exact amount of their change in wealth.

The extended neutrality is a persistent result. Chapter 4 shows that the extended neu-

trality result holds in the case of multiple public goods, a single public good with Leontief

production function, and impure public goods.

This paper further shows that, consistent with the result by Bergstrom et al. (1986),

government provision of public goods financed through lump-sum taxes cannot increase the

total level of the public good supplied in a simple pure exchange economy. This complete

crowding out effect arises since my model is limited to analyzing interior contributions.

Consumers always contribute a positive amount so that the set of contributors never changes.

It would be interesting to capture the effect of marginal contributors that changes the set of

contributors.

Extending my pure exchange model into a Walrasian voluntary contribution with profit-

maximizing producers may yield interesting results. When a consumer has a stake in a

profit-maximizing firm that produces public goods and receives income according to her

share of ownership, I hypothesize that extended neutrality will no longer hold due to the

asymmetric wealth changes.
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Chapter 6

Appendices

6.1 Appendix A

Basic Model

Let consumer i’s maximization problem be expressed as a Lagrange function

Li = xαi y
β
i (gi + gj) + λ [pxω

x
i + pyω

y
i − px(xi + gi)− pyyi] . (6.1)

It follows that the first order necessary conditions are

[xi]
αxαi y

β
i (gi + gj)

xi
− λpx = 0 (6.2)

[yi]
βxαi y

β
i (gi + gj)

yi
− λpy = 0 (6.3)

[gi] xαi y
β
i − λpx = 0 (6.4)

[λi] pxω
x
i + pyω

y
i = px(xi + gi) + pyyi. (6.5)

By the marginal rate of substitution conditions, xi = α(gi + gj) and yi =
β(gi+gj)px

py
. Sub-

stituting the two equations above into consumer i’s budget constraint yields pxω
x
i + pyω

y
i =

pxα(gi + gj) + pxβ(gi + gj) + pxgi, where consumer j’s equation is symmetric to that of con-
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sumer i’s with utility function coefficients γ and δ respectively. Normalizing py and solving

the two equations simultaneously for gi and gj yields

gi =
px[ω

x
i (1 + γ + δ)− ωxj (α + β)]− ωyj (α + β) + ωyi (1 + γ + δ)

px(1 + γ + β + α + δ)
, (6.6)

where gj is symmetric to gi. Then, solving for p∗x using the first feasibility requirement gives

p∗x =
(ωyi + ωyj )(1 + α + γ)

(ωxi + ωxj )(β + δ)
, (6.7)

which is neutral to income redistributions. The final allocation of xi, yi, gi and G is then

given by

g∗i =
ωxj [ωyi (δ − α)− ωyj (β + α)] + ωxi [ωyi (1 + γ + δ) + ωyj (1− β + γ)]

(ωyi + ωyj )(1 + α + γ)
(6.8)

x∗i =
α(ωxi + ωxj )

1 + α + γ
(6.9)

y∗i =
δ(ωyi + ωyj )

β + δ
(6.10)

G∗ =
ωxi + ωxj

1 + α + γ
, (6.11)

where gj, xj and yj are symmetric to gi, xi and yj respectively.
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6.2 Appendix B

Government Provision on Private Contributions

Let consumer i’s maximization problem be expressed as a Lagrange function

Li = xαi y
β
i (gi + gj + 2t) + λ [px(ω

x
i − t) + pyω

y
i − px(xi + gi)− pyyi] . (6.12)

It follows that the first order necessary conditions are

[xi]
αxαi y

β
i (gi + gj + 2t)

xi
− λpx = 0 (6.13)

[yi]
βxαi y

β
i (gi + gj + 2t)

yi
− λpy = 0 (6.14)

[gi] xαi y
β
i − λpx = 0 (6.15)

[λi] px(ω
x
i − t) + pyω

y
i = px(xi + gi) + pyyi. (6.16)

By the marginal rate of substitution conditions, xi = α(gi + gj + 2t) and yi =
β(gi+gj+2t)px

py
.

Substituting the two equations above into consumer i’s budget constraint yields px(ω
x
i − t)+

pyω
y
i = pxα(gi+ gj + 2t) +pxβ(gi+ gj + 2t) +pxgi, where consumer j’s equation is symmetric

to that of consumer i’s with utility function coefficients γ and δ respectively. Normalizing

py and solving the two equations simultaneously for gi and gj yields

gi =
px[ω

x
i (1 + γ + δ)− tφ− ωxj (α + β)]− ωyj (α + β) + ωyi (1 + γ + δ)

pxφ
, (6.17)

where φ = 1 + γ + β + α + δ and gj is symmetric to gi. Then, solving for p∗x using the first

feasibility requirement gives p∗x =
(ωyi +ω

y
j )(1+α+γ)

(ωxi +ω
x
j )(β+δ)

, which is neutral to income redistributions.

Let G∗−t be the total level of public good contributed by both consumers. Then,

G∗−t =
−2t(α + γ) + (ωxi + ωxj )− 2t

1 + α + γ
(6.18)
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G∗−t + 2t =
ωxi + ωxj

1 + α + γ
(6.19)

x∗i =
α(ωxi + ωxj )

1 + α + γ
(6.20)

y∗i =
β(ωyi + ωyj )

β + δ
, (6.21)

where xj and yj are symmetric to xi and yi respectively.
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6.3 Appendix C

Multiple Public Goods

Let consumer i’s maximization problem be expressed as a Lagrange function

Li = xiyi + (gi + gj)(hi + hj) + λ [pxω
x
i + pyω

y
i − px(xi + gi)− py(yi + hi)] . (6.22)

It follows that the first order necessary conditions are

[xi] yi − λpx = 0 (6.23)

[yi] xi − λpy = 0 (6.24)

[gi] hi + hj − λpx = 0 (6.25)

[hi] gi + gj − λpy = 0 (6.26)

[λi] pxω
x
i + pyω

y
i = px(xi + gi) + py(yi + hi). (6.27)

By the marginal rate of substitution conditions, xi = gi + gj and yi =
px(gi+gj)

py
. Substituting

the two equations above into consumer i’s budget constraint yields pxω
x
i + pyω

y
i = 3pxgi +

2pxgj +pyhi. Since consumer j’s budget constraint is symmetric to that of consumer i, there

are four equations and four unknown variables (gi, gj, hi, hj):

gi =
pxω

x
i + pyω

y
i − 3pyhi − 2pyhj
px

(6.28)

gj =
pxω

x
j + pyω

y
j − 3pyhj − 2pyhi

px
(6.29)

hi =
pxω

x
i + pyω

y
i − 3pxgi − 2pxgj
py

(6.30)

hj =
pxω

x
j + pyω

y
j − 3pxgj − 2pxgi

py
. (6.31)
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Solving these equations simultaneously yields

gi = gi (6.32)

gj =
px(ω

x
i + ωxj ) + py(ω

y
i + ωyj )− 6pxgi

6px
(6.33)

hi =
2(pxω

x
i + pyω

y
i )− (pxω

x
j + pyω

y
j )− 3pxgi

3py
(6.34)

hj =
pxω

x
j + pyω

y
j − (pxω

x
i + pyω

y
i ) + 2pxgi

2py
. (6.35)

Consequently, the total amount of the public goods G and H are given by

G∗ =
px(ω

x
i + ωxj ) + py(ω

y
i + ωyj )

6px
(6.36)

H∗ =
px(ω

x
i + ωxj ) + py(ω

y
i + ωyj )

6py
. (6.37)

Since the first feasibility requirement states that ωxi +ωxj = xi + xj +G, solving for p∗x yields

p∗x =
ωyi + ωyj
ωxi + ωxj

, (6.38)

which is neutral to income redistributions. Given that p∗x, G, and H are neutral, it follows

that the final allocation of xi and yi are neutral. Therefore, extended neutrality holds.
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6.4 Appendix D

Leontief Production Function for the Public Good

Let consumer i’s maximization problem be expressed as a Lagrange function

Li = xαi y
β
i

(
κ(ci + cj)

px + κpy

)µ
+ λ (pxω

x
i + pyω

y
i − pxxi − pyyi − ci) . (6.39)

It follows that the first order necessary conditions are

[xi]
αxαi y

β
i

(
κ(ci+cj)

px+κpy

)µ
xi

− λpx = 0 (6.40)

[yi]
βxαi y

β
i

(
κ(ci+cj)

px+κpy

)µ
yi

− λpy = 0 (6.41)

[gi]
µxαi y

β
i

(
κ(ci+cj)

px+κpy

)µ
ci + cj

− λ = 0 (6.42)

[λi] pxω
x
i + pyω

y
i = pxxi + pyyi + ci. (6.43)

By the marginal rate of substitution conditions, xi =
α(ci+cj)

µpx
and yi =

β(ci+cj)

µpy
. Substi-

tuting the two equations above into consumer i’s budget constraint yields pxω
x
i + pyω

y
i =

(α+β)(ci+cj)

µ
+ ci. Since consumer j’s budget constraint is symmetric to that of consumer i’s,

I can solve simultaneously for ci and cj in terms of prices and endowments to get

c∗i =
px[ω

x
i (δ + γ + µ)− ωxj (α + β)] + ωyi (γ + δ + µ)− ωyj (α + β)

α + β + γ + δ + µ
, (6.44)

where cj is symmetric to ci. If I let C = ci + cj,

C∗ =
µ[px(ω

x
i + ωxj ) + (ωyi + ωyj )]

µ+ α + β + γ + δ
, (6.45)
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which is immune to income redistributions. Next, I normalize py and use the first feasibility

requirement to solve for p∗x. To simplify, let

φ = (β + µ+ δ)2
(
ωxi + ωxj

)2
µ2) (6.46)

ψ = 2
(
ωxi + ωxj

)
[µ (−δ − α− γ − β − µ) + (β + δ) (γ + α)] (ωyi + ωyj )κ (6.47)

τ = (α + γ + µ)2
(
ωyi + ωyj

)2
. (6.48)

Subsequently,

p∗x =
(φ+ ψ + τ)1/2 + (−δ − β − µ)(ωxi + ωxj )κ+ (γ + α + µ) (ωyi + ωyj )

2 (β + δ)
(
ωxi + ωxj

) , (6.49)

which is also neutral to income redistributions. Given that p∗x and C are neutral, it follows

that the final allocation of xi and yi must be neutral. Hence, extended neutrality holds.
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6.5 Appendix E

Sequential Games

I will show that the total level of public good supplied in a sequential game is the same in a

simultaneous game. Using backward induction, the stage two problem is given by

max
xi,yi

ui = xiyi(g
∗
i +G∗−i)

s.t. pxxi + pyyi + pxgi ≤ pxω
x
i + pyω

y
i

where xi, yi ≥ 0.

(6.50)

Given G∗, the demand functions for xi and yi are given by xi = [px(ω
x
i − gi) + pyω

y
i ]/2px and

yi = [px(ω
x
i − gi) + pyω

y
i ]/2py. Normalizing py and solving for p∗x I get p∗x = (ωyi + ωyj )/(ω

x
i +

ωxj −G). Substituting p∗x into the demand functions yields

x∗i =
(2ωyi + ωyj )(ω

x
i − gi) + ωyi (ω

x
j − gj)

2(ωyi + ωyj )
(6.51)

y∗i =
(2ωyi + ωyj )(ω

x
i − gi) + ωyi (ω

x
j − gj)

2(ωxi + ωxj −G)
. (6.52)

In the stage one problem, I substitute the two equations above into the consumer’s utility

function to get the indirect utility function given by

u∗i =
[(2ωyi + ωyj )(ω

x
i − gi) + ωyi (ω

x
j − gj)]2(gi + gj)

4(ωyi + ωyj )(ω
x
i + ωxj − gi − gj)

. (6.53)

Differentiating the indirect utility function with respect to gi for each consumer i yields two

best response functions. Using the best response functions to solve simultaneously for gi and



30

gj yields

g∗i =
ωxi (7ωyi + 5ωyj )− ωxj (2ωyi + 4ωyj )

9(ωyi + ωyj )
(6.54)

g∗j =
ωxj (7ωyj + 5ωyi )− ωxi (2ωyj + 4ωyi )

9(ωyi + ωyj )
, (6.55)

which maximize each consumer’s utility.1 Since G = g∗i +g∗j = (ωxi +ωxj )/3, I have established

that the total amount of the public good supplied is the same in sequential and simultaneous

games.

1Solving the best response functions yields three equilibrium allocations, but the remaining two not shown
are minimum allocations.



31

Bibliography

[1] Becker, G. (1981). A Treatise on the Family. Cambridge: Harvard University Press.

[2] Bergstrom, T., L. Blume, and H. Varian. (1986). On the Private Provision of Public

Goods. Journal of Public Economics, 29, 25-49.

[3] Kemp, M. (1984). A Note on the Theory of International Transfers. Economics Letters,

14, 2-3, 259-262.

[4] Ley, E. (1996). On the Provision of Public Goods: A Diagrammatic Exposition. Investi-
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