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Abstract 

 

Long-term exposure to low-level NO2 and mortality in the southeastern US 

 

By Yaoyao Qian 

 

 

Background 

Mounting evidence has shown that the long-term exposure to fine particulate matter and ozone can 

increase mortality. However, the health effects associated with long-term exposure to nitrogen 

dioxide (NO2) are less clear, in particular the evidence is scarce for NO2 at low levels below the 

current National Ambient Air Quality Standards (NAAQS). 

 

Methods 

We constructed a population-based full cohort comprised of all Medicare beneficiaries (aged ≥65, 

N=13,590,387) in the Southeastern US from 2000-2016, and then further defined the below-

guideline cohort that only included those who were always exposed to low-level NO2, with annual 

means below the current NAAQS (i.e., ≤53 ppb). We applied previously estimated spatially- and 

temporally-resolved NO2 concentrations and assigned annual means to study subjects based on 

ZIP code of residence. Cox proportional hazards models were used to examine the association 

between long-term exposure to low-level NO2 and all-cause mortality, adjusting for potential 

confounders. 

 

Results 

About 99.95% of the Medicare beneficiaries in the southeastern US were always exposed to low-

level NO2 over the study period. We observed a statistically significant association between long-

term exposure to low-level NO2 and all-cause mortality, with a hazard ratio (HR) of 1.040 (95% 

CI: 1.031, 1.050) in single-pollutant models and a HR of 1.042 (95% CI: 1.033, 1.052) in multi-

pollutant models (adjusting for PM2.5 and ozone), per 10 ppb increase in annual NO2 concentrations. 

The penalized spline indicates a linear dose-response relationship across the entire NO2 exposure 

range. Subjects who are white, female, and residing in urban areas are more vulnerable to long-

term NO2 exposure. 

 

Conclusion 

Using a large cohort, we provide epidemiological evidence that long-term exposure to NO2, even 

below the NAAQS guideline, was significantly linearly associated with a higher risk of mortality, 

independent of PM2.5 and ozone. Improving air quality by reducing NO2 emissions may yield 

substantial health benefits.  
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1. Introduction 
Air pollution is one of the most important environmental and public health issues (Chen and Kan 

2008). Mounting evidence has demonstrated that long-term PM₂.₅ and ozone exposures increase 

the risk of death (Shi et al. 2016; Wei et al. 2020; Yu et al. 2020), cardiorespiratory diseases 

(Akintoye et al. 2016; Cole and Freeman 2009; Requia et al. 2018; Wang et al. 2015; Zu et al. 

2017), and neurological disorders (Shi et al. 2020). The association between short-term exposure 

to NO2 and mortality was also well documented (Chen et al. 2012; Chiusolo et al. 2011; Mills et 

al. 2016; Samoli et al. 2006). However, the effects of long-term exposure to NO2 are less 

understood with limited epidemiology evidence. 

In order to protect public health from adverse health outcomes induced by air pollution, 

the U.S. Environmental Protection Agency (EPA) set the National Ambient Air Quality Standards 

(NAAQS) based on evidence from multiple disciplines including epidemiological and 

toxicological studies, and periodically revised standard levels of various air pollutants. Current 

NAAQS for long-term exposure to NO2 is set at an annual average of 53 ppb, and current near-

road monitoring installed by EPA shows that air quality levels are well below the NAAQS for NO2 

in urban areas with large populations (EPA 2018). However, it is not clear whether the current 

NAAQS of 53 ppb is a safe threshold. Limited number of studies have investigated the relationship 

between long-term exposure to NO2 and mortality, most of which assessed NO2 exposure across 

the entire range and at relatively coarse resolution (Heinrich et al. 2013; Jerrett et al. 2013; 

Maheswaran et al. 2010). As a result, these studies provide limited insights on the health effects 

of long-term exposure to low levels of NO2 with high resolution.  

We recently estimated temporally and spatially resolved NO2 concentrations in the US 

through an ensemble model that integrates multiple machine learning algorithms, including neural 
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network, random forest, and gradient boosting, with a variety of predictor variables (e.g., satellite 

remote sensing and chemical transport models) (Di et al. 2019b). This approach allows one to 

estimate daily NO2 at a 1 km × 1 km resolution across the contiguous US from 2000 to 2016 with 

an excellent prediction model performance. Therefore, we were able to assess long-term exposures 

of NO2 for population-based cohort studies, with residents living far from monitors and those 

potentially exposed to low-level NO2.  

To address these critical gaps in knowledge, we conducted a large population-based cohort 

study encompassing all Medicare beneficiaries (aged ≥65) from 2000-2016 in the southeastern US, 

using spatially and temporally resolved NO2 concentrations from the ensemble model. The NO2 

annual mean levels in the study area were largely below the current NAAQS of 53 ppb. We 

examined the association between long-term exposure to the low-level NO2 and mortality among 

the elderly, independent of PM2.5 and ozone, and study the health effects associated with NO2 at 

low level below the NAAQS. By doing a multi-state analysis, with both rural and urban locations 

included, we have the opportunity to explore the NO2 effects in diverse exposure settings, where 

patterns of correlations between NO2 and its co-pollutant may differ. 

 

2. Materials and Methods 
2.1 Study Population  

The study population was comprised of all Medicare beneficiaries who were aged 65 or over from 

2000-2016 in 7 southeastern US states (Alabama, Florida, Georgia, Mississippi, North Carolina, 

South Carolina, and Tennessee). We constructed an open cohort from January 1, 2000 to December 

31, 2016, with all-cause mortality as the outcome. We obtained the year and age of Medicare 

enrollment, date of death, age, sex, race, ZIP code of residence, and Medicaid eligibility (a proxy 
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for SES, socioeconomic status, i.e., an individual eligible for Medicaid usually has lower SES) at 

the individual level from the Medicare beneficiary denominator file, which was derived from the 

Center for Medicare and Medicaid Services. The ZIP code of residence and calendar year were 

used for further exposure assignment. This study was approved by the Institutional Review Board 

of Emory University and a waiver of informed consent was granted. 

2.2 Exposure  

We applied previously estimated daily NO2 concentrations at 1 km × 1 km resolution in the US 

from 2000-2016 using an ensemble model, which integrated multiple machine learning algorithms 

and predictor variables (Di et al. 2019b). Briefly, we respectively fit a neural network, a random 

forest, and a gradient boosting model with input predictor variables (satellite remote sensing, 

chemical transport models, meteorological variables, and multiple land-cover terms) and 

monitored NO2 measurements to generate daily NO2 predictions. This ensemble learning approach 

yielded a cross-validated mean R2 of 0.79 and an average root mean square error (RMSE) of 7.2 

ppb. For each ZIP code, we averaged daily NO2 concentrations across all covered 1 km × 1 km 

grid cells, and then the data were averaged annually for reference to long-term exposure.  

2.3 Covariates 
Daily PM2.5 concentrations at 1 km × 1 km resolution in the US from 2000-2016 were previously 

estimated using the same ensemble model (Di et al. 2019a). This trained model produced a cross-

validated mean R2 of 0.84 and an average RMSE of 2.79 μg/m3. Then we calculated daily PM2.5 

concentrations across all covered 1 km × 1 km grid cells according to the ZIP code, based on which 

we further calculated the annual averages.   

Daily ozone concentrations at 1 km spatial resolution in the US from 2000-2016 were 

estimated using a neural network (Requia et al. 2020). Specifically, the modeling approach 

combined satellite-based ozone measurements, chemical transport model simulations, land-use 
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terms, and other auxiliary variables, and yielded a cross-validated mean R2 of 0.90. For each ZIP 

code, we calculated daily average ozone across all covered 1 km × 1 km grid cells, and further 

calculated a warm-season mean in each year based on daily predictions from May through October.  

We obtained eight ZIP code tabulation areas (ZCTA)-level variables from the 2000 US 

Census, 2010 US Census, and the American Community Survey for 2005-2012, and then we 

matched the ZCTA-level variables to ZIP codes. The eight variables included median home value, 

median household income, population density, Black percentage, Hispanic percentage, percentage 

of less-educated (i.e., with less than a high school degree), the percentage of those below the 

poverty level, and percentage of owner-occupied housing units. When any of the data were missing, 

we linearly interpolated or extrapolated them based on the available data (Junninen et al. 2004). 

Behavioral Risk Factor Surveillance System (BRFSS) provided information on county-level 

variables including body mass index (BMI) and percentage of the ever smokers from 2000 to 2016. 

These annual average data were assigned to individuals according to the ZIP code of residence. 

We assigned the county-level variables to ZIP codes whose centroids are located within the county 

boundary. 

The data of daily air temperature, as well as relative humidity in southeastern US at 32 km 

× 32 km spatial resolution, were obtained from the North American Regional Reanalysis data 

(NARR) for 2000-2016. We linked the nearest 32 km grid cell for each ZIP code and assigned the 

daily meteorological data. We calculated the annual average of these two variables for each ZIP 

code and then assigned them to each subject residing in that ZIP code. 

2.4 Statistical analysis 
A counting process survival dataset was constructed using the individual-level data, which was 

based on the scheme presented by Andersen and Gill (Andersen and Gill 1982). We respectively 

fit single-, two-, and tri-pollutant Cox proportional hazards models to estimate the hazard ratio for 
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all-cause mortality from annual mean NO2 exposure among the elderly population. All models 

were stratified by 5-year age categories, gender (female, male), race (white, black, and other), as 

well as Medicaid eligibility, adjusting for indicators for each year, annual average air temperature, 

relative humidity, median home value, median household income, population density, and the 

percentage of many variables including Hispanic, Black, population of less educated, population 

below the poverty level, owner-occupied housing units, BMI, and percentage of the ever smokers.  

To identify subgroups who are most vulnerable, we evaluated effect modification by sex (female 

vs male), race (black vs white vs other), age (over 80 vs below 80), Medicaid eligibility (dual vs 

non-dual), urbanicity (quartiles of population density), and area-level SES indicator (a measure 

showing socioeconomic status, high SES vs low SES) in tri-pollutant Cox models. Area-level low 

SES was defined as below the median and high SES as above the median of the distribution of 

percentage below the poverty level. To assess the potential non-linearity of the dose-response 

relationship, we fit a penalized spline for NO2, which controlled for both individual- and area-level 

variables and co-pollutants.  

To obtain more robust confidence intervals, we conducted the m-out-n bootstrapping 

method. We did this since the Cox model treats the observations as independent, yet the closer 

people live to each other, the more likely they were exposed to similar health risks. Therefore, we 

used the m-out-n bootstrapping method to break down the spatial dependence by randomly 

sampling ZIP codes for each bootstrap replicate and yield more robust standard errors and thus 95% 

confidence intervals. Namely, it is least likely that our findings are influenced by spatial correlation.  

We performed some sensitivity analyses to test whether the results are robust. First, 

alternative models, with each excluding a different set of covariates including co-pollutant, time 

trends, SES, meteorology variables, behavioral risk factors, and stratification by individual-level 
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variables were fitted. We compared the results of these models to examine the influence of 

potential confounders. Second, we calculated the E-values, which measured the amount of 

unmeasured confounding that would be needed to explain away the effect estimates (VanderWeele 

and Ding 2017). A higher E-value indicates that the analyses are more robust to unmeasured 

confounding. Additionally, we evaluated the potential heterogeneity of associations by states. 

The computations of the analyses were run on the Rollins High-Performance Computing 

(HPC) Cluster at Emory University. R software, version 4.0.2 (R projects for Statistical Computing) 

was used in this study.  

3. Results 
We included a total of 13,590,387 Medicare enrollees residing in 10,193 ZIP codes, with 

107,291,652 person-years of follow-up in our full cohort study. A total of 4,898,015 (36.0%) 

participants died between 2000 to 2016. Among them, 13,583,802 (99.95%) Medicare enrollees 

living in 10,093 ZIP codes were exposed to annual mean NO2 concentrations below NAAQS (53 

ppb), with 4,894,351 (36.0%) deaths out of 107,264,499 person-years of follow-up. The median 

follow-up year for both the full cohort and the below-guideline cohort was 8 years. Table 1 shows 

the detailed characteristics of the study population. 

The annual NO2 concentrations across the southeastern US was 13.7 ppb with an 

interquartile range (IQR) of 9.3 ppb from 2000-2016 (Table 2). The spatial distribution of long-

term NO2 concentrations was displayed in Figure 1, which showed consistent patterns with major 

roads (supplemental Figure S1). The temporal trend of long-term NO2 concentrations by state was 

shown in supplemental Figure S2. At the beginning of the study, Mississippi had the lowest NO2 

levels, and Florida had the highest levels. Overall, the NO2 concentrations exhibited a declining 

trend over the study period, despite elevated levels between 2009 and 2011.  
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Broadly, long-term exposure to NO2, even at low levels, was significantly and positively 

associated with mortality in all statistical analyses (Table 3). In single-pollutant models, we 

observed a HR of 1.040 (95% CI: 1.030, 1.050) per 10 ppb increase in NO2 concentrations. After 

adjusting for PM2.5 or/and ozone, the results were similar, i.e., the results were quite robust to 

inclusion of co-pollutants. The relationship between long-term NO2 concentrations and mortality 

was almost linear across the exposure distribution, which may indicate the lack of an observed 

NO2 threshold (Figure 2).  

The results of effect modification analysis showed that being white (1.057, 95% CI: 1.046, 

1.067), being female (1.072, 95% CI: 1.058, 1.087) and residing in urban areas (1.053, 95% CI: 

1.034, 1.072) were at significantly higher risks than other subgroups (p-values<0.05). The 

relatively younger population (<80 years old) and the neighborhoods with a higher percentage 

below poverty were also at a higher risk, although not significant. Details can be found in the 

Figure 3. 

In the sensitivity analyses, we examined the influence of potential confounders and the 

results showed that the time trend influenced the effect estimates of NO2 most (Table S1). We 

obtained relatively large E-values (~1.20) for all hazard ratios, indicating that our results are robust 

to unmeasured confounding. All subgroup analyses stratified by state yielded consistently positive 

associations between long-term NO2 exposure and mortality, with the highest HR among Medicare 

beneficiaries in North Carolina.  

4. Discussion 
This large-scale population-based cohort study showed that long-term exposure to NO2, even at 

levels below current NAAQS, significantly linearly increases mortality, independent of PM2.5 and 

ozone. Furthermore, the results of effect modification analysis showed that being white, female, 
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and urban residents had significantly higher risks of all-cause mortality associated with long-term 

NO2 exposure than other subgroups. These findings collectively indicate that reducing NO2 levels 

below current national standards, may yield substantial health benefits. 

This study used spatio-temporally resolved exposure data to calculate hazard ratio for all-

cause mortality and reported a hazard ratio of all-cause mortality at 1.042 (95% CI: 1.032,1.052) 

per 10 ppb increase of NO2 concentrations. Our findings are consistent with previous studies 

(Crouse et al. 2015; Faustini et al. 2014; Hart et al. 2011; Hoek et al. 2013). In a meta-analysis, 

Faustini et al. (2014) reported a HR of 1.04 (95% CI: 1.02, 1.06) for all-cause mortality with an 

increase of 10 μg/m3 (i.e., about 5.2 ppb) in annual NO2 exposure (Faustini et al. 2014). Another 

recent meta-analysis estimated a pooled HR of 1.05 (95% CI: 1.03, 1.08) for all-cause mortality 

associated with per 10 μg/m3 (i.e., about 5.2 ppb) increase in NO2 (Hoek et al. 2013). Hart et al. 

(2011) examined the association between occupational NO2 exposure with mortality in the US 

trunk industry, and observed an 8.2% (95% CI: 4.5, 12.1%) increased risk of all-cause mortality 

per 8 ppb increase in NO2 (Hart et al. 2011). In a subset of the Canadian Census and Environment 

Cohort (CanCHEC), Crouse et al. (2015) reported a HR of 1.045 (95% CI: 1.037, 1.052) for non-

accidental mortality per 5 ppb increase in NO2, adjusting for PM2.5 and ozone (Crouse et al. 2015).  

The shape of the dose-response relationship between NO2 and mortality has not been 

assessed in the literature. Our findings address this important gap and found that this relationship 

was linear across the exposure distribution, suggesting that there is no “safe” level of NO2 pollution. 

Thus, our study further confirms the adverse health effects of NO2 on human health, which lasts 

even at low levels far below the NAAQS. This is supported by emerging evidence in Oceania that 

also reported adverse health effects of low-level NO2 (Dirgawati et al. 2019; Hanigan et al. 2019). 

Hanigan et al. (2019) found that in Sydney (mean NO2 level = 17.75 μg/m3), there was a 3% 
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increase in all-cause mortality per 5 μg/m3 in NO2. Dirgawati et al. (2019) also reported a 

significantly positive association between low-level NO2 (mean = 13.4 μg/m3) and all-cause 

mortality.  

Our effect modification results show significant higher HR among white, female, and urban 

populations. The effect of modification of age was not apparent, which was similar to the study of 

NO2  and mortality in three Canadian cities (Chen et al. 2013). People residing in urban areas had 

higher hazard ratio than those in rural areas, and similar results were found by other studies (Eum 

et al. 2019; Lewné et al. 2004). Huge motor vehicle emissions, industrial activities and other 

exposure sources (Neisi et al. 2018) could be possible explanations to the results. Besides, females 

have significant higher risk than males. Health disparities between genders could be explained by 

gender inequality and gender invisibility (Butter 2006). Women visit health-care professionals less 

often and have higher exposure to cooking fuels, which is an indoor source of NO2 exposure 

(Duncan 2006).  

NO2 primarily forms from emissions from cars, buses, trucks, power plants, as well as off-

road equipment, and therefore is often considered as a surrogate for traffic-related air pollutants 

(Alotaibi et al. 2019). Long-term exposure to NO2 has been associated with both acute and chronic 

respiratory diseases, such as increased bronchial hyperresponsiveness, increased respiratory 

infection, and decreased lung function (Abbey et al. 1993; Faustini et al. 2014; Gan et al. 2012; 

Liang et al. 2020). Biological evidence has been reported for plausible mechanisms regarding the 

health effects of NO2. A critical review suggested that NO2 inhalation can induce lung function 

changes, accelerate pulmonary infections, and aggravate existing lung diseases by triggering 

proinflammatory response, which is an innate immune response (Hesterberg et al. 2009). NO2 can 

also enhance oxidative stress, generate reactive oxygen and nitrogen species, and then deteriorate 
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the cardiovascular and immune system (Ayyagari et al. 2007; Bevelander et al. 2007; Liang et al. 

2020).   

To the best of our knowledge, this is the first of its kind to restrict exposure and to explore 

the dose-response relationship between NO2 below the current U.S. EPA annual standards and 

mortality in a large-scale population-based study. All residents exposed to low-level NO2 in the 

southeastern US, not just urban residents or those near monitors, were included in this analysis. 

The strengths of this study include the use of highly spatio-temporally resolved NO2 exposure, 

which allows the inclusion of all Medicare beneficiaries in the Southeastern US. Our large sample 

size is representative of the nature of the cohort and our analysis of subgroups increases our 

statistical power in underrepresented populations. Our results are also robust in the ability to model 

the mortality effects exclusively of NO2 exposure after we compared single-pollutant, two-

pollutant, and multi-pollutant models. Moreover, our study obtained effect estimates along with 

statistically rigorous confidence intervals, using m-out-n bootstrapping. This approach allows one 

to account for the spatial dependence for covariates and derive standard errors that would not be 

impacted by the residual spatial dependence.   

We acknowledge that our study has some limitations. First, a major limitation of the 

Medicare data is that only the ZIP code of residence for each Medicare beneficiary, but not home 

address, is available, therefore we were not able to assign our 1 km NO2 exposure or calculate the 

distance to roads that can better capture the near-road environments to study subjects. As a result, 

the finest resolution for exposure we can get in our analysis is at the ZIP code level, limiting the 

ability to capture local or small area variation near roads and represent personal exposure to traffic-

related air pollution. Despite this, the comparison of major roads (Figure S1) and NO2 

concentrations (Figure 1) suggests that ZIP code-level NO2 may still serve as a good indicator of 
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traffic pollution. Second, the Medicare data do not provide the underlying cause of death that is 

necessary to understand possible pathways. Third, although we controlled for ozone and PM₂.₅, 

we cannot rule out the possibility that NO2 is an indicator of other traffic-related air pollutants, 

such as ultrafine particles, soot, and trace metals. Another limitation is that we only focused on the 

southeastern US, which may not represent the vast US where the air pollution profiling and 

demographic characters vary. In addition, unmeasured confounding is likely because individual-

level risk factors for mortality such as smoking, alcohol consumption, and physical activity, were 

not considered in this study. However, Makar et al. (2017) reported that when using ZIP code-

level exposure data, confounding by individual-level behavioral risk factors may not be much of 

an issue (Makar et al. 2017).  

In conclusion, we found a statistically significant, positive, and linear association between 

long-term exposure to NO2 and all-cause mortality, independent of PM2.5 and ozone. Our results 

suggested an increased risk of mortality associated with traffic-related air pollution. Improving air 

quality by reducing NO2 emissions may yield substantial health benefits.  
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6.Tables 
6.1 Table 1. Descriptive statistics for the study population.  

 

 

  

 Full cohort Below-guideline cohort 

Full cohort Number % Number % 

   Number of Death 4,898,015 36.0 4,894,351 36.0 

   Number of Total Population 13,590,387 100 13,583,802 99.95 

   Total person-years 107,291,652 100 107,264,499 99.97 

   Median follow-up year 8 8 

Age at entry (years) 

   65-74 13,527,082 99.5 13,520,643 99.5 

   75-84 53,181 0.4 53,062 0.4 

   85-94 9,523 0.07 9,498 0.07 

   95-114 599 0.004 597 0.004 

Sex 

   Male  5,943,391 43.7 5,940,441 43.7 

   Female  7,646,996 56.3 7,643,361 56.2 

Race 

   White 11,217,509 82.5 11,212,879 82.5 

   Black 1,745,096 12.8 1,744,111 12.8 

   Other 627,782 4.6 626,812 4.6 

Medicaid Eligibility 

   Dual-Eligible 1,718,169 12.6 1,715,867 12.6 

   Non-dual Eligible 11,872,218 87.4 11,867,935 87.3 
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6.2 Table 2. Spatial and Temporal Variability of Annual NO2 levels (ppb) in years 2000-
2016 

 

  

  Min 5th 25th 50th 75th 95th Max Mean 

Overall 

 0.58 5.25 8.36 12.09 17.68 27.10 56.95 13.65 

By Year  

2000 3.32 8.26 14.11 20.17 25.62 34.34 52.47 20.30 

2001 4.06 7.51 11.65 17.39 23.74 33.56 49.62 18.45 

2002 2.82 6.19 9.91 15.45 21.60 30.69 42.82 16.37 

2003 2.71 5.28 8.97 14.06 20.60 29.67 52.11 15.32 

2004 2.07 7.19 10.23 14.45 19.49 27.79 46.07 15.48 

2005 3.33 6.07 9.04 13.49 19.50 27.43 44.91 14.72 

2006 2.11 5.44 7.90 12.13 19.28 26.50 41.54 13.97 

2007 1.93 4.70 6.57 9.97 17.11 27.09 42.75 12.41 

2008 2.42 6.12 8.00 11.18 16.63 25.13 35.97 12.87 

2009 0.93 4.74 6.33 9.30 14.56 21.00 30.62 10.78 

2010 0.58 5.23 8.03 10.92 15.18 23.52 36.62 12.14 

2011 3.98 7.37 10.25 12.58 15.64 22.95 41.41 13.49 

2012 2.94 7.77 10.00 11.85 14.59 21.15 49.47 12.86 

2013 2.37 4.67 7.01 9.51 12.82 19.18 56.95 10.44 

2014 2.39 4.51 6.62 9.54 14.34 21.12 39.01 10.99 

2015 0.97 4.78 7.78 10.48 13.83 20.05 32.08 11.16 

2016 1.09 3.84 6.31 9.36 14.03 20.84 31.44 10.59 

By State  

Alabama 2.21 4.71 6.96 9.77 14.45 21.50 37.55 11.17 

Florida 1.98 7.28 11.35 14.87 19.32 25.50 45.19 15.54 

Georgia 2.58 5.64 8.56 11.90 19.24 32.37 52.47 14.86 

Mississippi 2.24 4.63 6.78 9.52 13.87 20.19 29.85 10.70 

North 

Carolina 
0.58 5.58 8.87 12.70 19.01 29.06 46.07 14.54 

South 

Carolina 
2.97 5.55 8.23 11.17 16.00 25.38 37.71 12.78 

Tennessee 0.94 4.55 6.87 10.08 16.90 27.71 56.95 12.58 
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6.3 Table 3. Estimated Hazard Ratio of Mortality (95% CI) associated with an Increase of 
10 ppb in NO2 Concentration. 
 

 

 

7. Figures 
7.1 Figure 1. The spatial distribution of NO2 concentrations (2000-2016) in the 
Southeastern US 

 

 

 

 

 

 
Full cohort Below-guideline cohort 

Models HR (95% CI) E-value  HR (95% CI) E-value  

Single-pollutant 1.040 (1.030, 1.050) 1.20 (1.17) 1.040 (1.031, 1.050) 1.20 (1.17) 

Two-pollutant (+PM2.5) 1.039 (1.030, 1.049) 1.19 (1.17) 1.040 (1.030, 1.049) 1.20 (1.17) 

Two-pollutant (+Ozone) 1.042 (1.033, 1.052) 1.20 (1.18) 1.043 (1.033, 1.052) 1.20 (1.18) 

Tri-pollutant 1.042 (1.032, 1.052) 1.20 (1.17) 1.042 (1.033, 1.052) 1.20 (1.18) 



 19 

7.2 Figure 2. The dose-response relationship between long-term exposure to NO2 and all-

cause mortality.  Shaded areas indicate the 95% confidence bands  

                                 

7.3 Figure 3. The hazard ratios of mortality associated with a 10 ppb increase in NO2 

concentrations for study subgroups. Density Q1-Q4 stand for low population density, low-

medium population density, medium-high population density, and high population density, 

respectively 
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8. Supplementary Tables 
8.1 Table S1. Estimated Hazard Ratio of Mortality (95% CI) associated with an Increase of 
10 ppb in NO2 Concentration at different levels of confounding adjustment 
 
 
 
 
 
 
 
 

 

8.2 Table S2. Estimated Hazard Ratio of Mortality (95% CI) associated with an Increase of 
10 ppb in NO2 Concentration by state 
 
 
 
 
 
 
 
 

 

9. Supplementary Figures 
9.1 Figure S1. The map of major roads in the Southeastern US 
 

                            

HR (95%CI) Below-guideline cohort 

Main Analysis 1.042 (1.033, 1.052) 

Excluding co-pollutant 1.040 (1.031, 1.050) 

Excluding time trends 1.247 (1.236, 1.259) 

Excluding meteorological variables 1.043 (1.033, 1.052) 

Excluding BRFSS 1.040 (1.031, 1.050) 

Excluding US Census 1.053 (1.045, 1.061) 

Excluding stratification by individual-level variables 1.018 (1.017, 1.019) 

HR (95%CI) Below-guideline cohort 

Main Analysis 1.042 (1.033, 1.052) 

Alabama 1.055 (1.043, 1.067) 

Florida 1.035 (1.030, 1.040) 

Mississippi 1.050 (1.033, 1.068) 

North Carolina 1.062 (1.055, 1.069) 

South Carolina 1.024 (1.013, 1.035) 

Georgia 1.009 (1.002, 1.016) 

Tennessee 1.013 (1.007, 1.020) 
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9.2 Figure S2. The temporal trend of NO2 concentrations (2000-2016) in the Southeastern 
US 
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