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Abstract

The effect of population structure and the mode of selection on multi-locus
adaptation

By Qihan Liu

Evolution is influenced by many factors, for example, epistasis, sex, and mutation.
This thesis investigates key factors influencing evolution, including effect of population
structure and mode of selection with multiple loci. The first part explores adaptation
in structured populations with clonal interference by introducing drastic population
dynamics and synchronized sexual reproduction. This approach effectively utilizes
genetic diversity preserved by population structure, leading to enhanced adaptation.
Surprisingly, the rate of adaptation in structured populations is comparable to that
in well-mixed populations, even in a consistent environment. The second part fo-
cuses on the impact of modifying the fitness function to simulate effective population
structure. By imposing limits on the fittest individuals using a logistic fitness func-
tion, moderately fit individuals are promoted, resulting in increased genetic diversity
and accelerated adaptation in sexual populations. This finding highlights the impor-
tance of considering the fitness distribution in shaping the adaptive process. In the
third part, a simulation analysis is applied to investigate the emergence of variants
of concern (VOCs) in SARS-CoV-2. A quantitative framework captures evolutionary
pathways, considering both between-host transmission and within-host chronic infec-
tions. Results suggest that VOCs are primarily driven by multiple mutations from
individuals with acute or chronic infections. Addressing chronic infections becomes
vital in reducing future VOC emergence. Our findings have implications for opti-
mal evolution strategies with clonal interference, evolutionary experiments, epidemic
disease analysis, and future pathogen prediction.
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1

Introduction

The study of population genetics has a long history of theoretical analysis on evolution

under different conditions, dating back to the pioneering work of Fisher, Wright, and

Haldane [37, 69, 128]. In particular, the phenotypes can be viewed as combined im-

pacts of many independent loci, each of which contributes a small additive benefit for

selection [105]. When mutation supply is low, the population accumulates mutations

through sequences of fixations [63, 122]. Each mutation fixes with a probability that

depends only on its own selective coefficient. However, when the mutation supply is

high, it becomes more complicated. In this case, new mutations will arise before the

previous ones fix. This causes multiple lineages simultaneously compete for fixation

and their sweeping process would overlap and interfere with each other. During this

process, strongly fit individuals would out-compete other beneficial ones, resulting

in the loss of favorable mutations. This process is called clonal interference, first

articulated by Muller in 1932 and statistically described by Gerrish and Lenski in

1998 [41, 86]. There has been much research on how sexual reproduction can recom-

bine mutations into a single individual and thereby break down clonal interference

[27, 86, 88, 94, 108].

In Chapter 1, we extend this research to a model of a structured population

with fluctuating rates of dispersal and sexual reproduction. This kind of pattern

can be induced by occasional environmental stress, including, for example, starvation

or exposure to toxins [38, 60, 85, 110]. The fact that similar environmental stimuli
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can trigger both dispersal and recombination produces two forms of synchronization:

both processes within the same individual (individual level) and one process across

individuals (population level). In microbial experiments, this process is practically

feasible by introducing a stressful environment during occasional mixing process [65,

83]. It has been shown that population-level synchronization of conditional sexual

reproduction can affect the rate of adaptation with additive mutation [7, 64, 100,

120]. However, these studies are for well-mixed populations. It remains unclear how

this population and individual synchronization would interact with the population

structure. Intuitively, the population structure would always hinder the adaptation

when the effect of mutations is additive, since it would sacrifice the “exploitation”

of existing mutations in exchange for “exploration” in the genotype space, which

is, in this case, worthless when only a single peak exists [65, 87]. However, our

simulations show that structured populations with individual- and/or population-

synchronized recombination and dispersal can adapt faster than well-mixed ones.

The population stricture can accumulate genetic diversity in different demes, and both

synchronizations, especially population synchronization, can maximize the probability

of recombining migrant individuals who are most likely to contain distinct mutations.

Therefore, the rate of adaptation is increased as the population dynamics increase the

probability for a mutation to survive from clonal interference and fix in the population

by recombination.

In Chapter 1, it is particularly surprising that a structured population without

neither population nor individual synchronization can adapt as fast, if not faster,

than a well-mixed one. This implies that maintaining genetic diversity could be a

universal strategy to maintain the variation-selection balance. Previous studies have

demonstrated the importance of this balance [52, 53, 105, 107, 115, 133]. Specifically,

the dependency of adaptation speed in selection strength is not always monotonic;

in fact, a relaxed selection can be optimal for the long-term response of quantitative
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traits. Therefore, in Chapter 2, we consider the effect of a fitness function that limits

the reproductive advantage of the fittest individuals. This can be seen as an effective

description of the effects of spatial structure on reducing competition, or it could

be a direct description of an artificial selection scheme. We find that such fitness

functions can accelerate adaptation by promoting the reproduction of moderately fit

individuals that provide the genetic diversity to fuel future adaptation. Our study

highlights the significance of maintaining genetic diversity in the evolution of a sexual

population, especially when clonal interference is strong.

Population genetics originally arose as a tool to solve practical biological problems.

In Chapter 3, we use simulations to investigate the emergence of Variants of Con-

cern (VOCs) of SARS-CoV-2 [1, 35, 113]. During 2020, three VOCs of SARS-CoV-2,

Alpha, Beta, and Gamma, which share a large number of mutations, emerged inde-

pendently and almost simultaneously, later followed by Delta and Omicron in 2021

which are genetically and phenotypically distinct [79, 103, 112, 112]. Here, we provide

a quantitative framework that can generate the pathogenic dynamics based on dif-

ferent evolutionary pathways, including within- and between-host evolution and dif-

ferent fitness landscapes. We investigate the likelihood of those pathways to produce

dynamics similar to those observed for the VOCs of SARS-CoV-2. The simulation

results imply that the VOCs are most likely to have emerged from chronic infections

by accumulating multiple key mutations. This suggests that a public health strategy

of finding and treating chronic SARS-CoV-2 infections could lower the probability of

future VOCs.
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Chapter 1

Population structure can reduce

clonal interference under

synchronized recombination and

dispersal

Abstract

In populations with limited recombination, clonal interference among beneficial

mutations limits the maximum rate of adaptation. Spatial structure slows the spread

of beneficial alleles; in purely asexual populations, this increases the amount of clonal

interference. Beyond this extreme case, however, it is unclear how spatial structure

and recombination interact to determine the amount of clonal interference. This in-

teraction is particularly interesting because dispersal and recombination are often at

least partially synchronized in natural populations, both at the individual and popu-

lation level, as when plants switch from vegetative growth to sexual reproduction or

stress responses increase both motility and recombination in microbes. We simulate

island models of adapting populations and find that synchronized dispersal and re-



5

combination allow them to adapt faster than matched well-mixed populations. This

is because the spatial structure preserves genetic diversity and the dispersal increases

the chance that recombination events occur between diverged individuals from dif-

ferent demes, i.e., the pairings where negative linkage disequilibrium can be most

effectively reduced.

1.1 Introduction

On smooth fitness landscapes, adaptation is driven by the fixation of beneficial muta-

tions. When beneficial mutations are rare, they can fix independently from each other

in sequential selective sweeps. But if the beneficial mutation supply is large, multi-

ple beneficial mutations will be simultaneously polymorphic in the population, and

may compete with each other for fixation. This “clonal interference” effectively puts

an upper limit on the rate of adaptation, particularly when recombination is limited

[32, 41, 86, 88, 120]. Spatial structure increases the time it takes for a selective sweep,

and therefore increases the probability that multiple beneficial mutations will coexist

and interfere. In asexual populations, strong spatial structure can drastically reduce

the rate of adaptation [78]. On rugged fitness landscapes, in contrast, populations

must find the best combinations of mutations to adapt, and these combinations may

not involve the most individually beneficial mutations. It has long been suggested that

spatial structure may facilitate adaptation, in this case, [8, 22, 23, 25, 65, 87, 116, 128],

although it is controversial whether it actually does so in nature [24].

To a certain extent, these two opposing effects of space on adaptation on smooth

and rugged landscapes are caused by the same mechanism: spacial structure impedes

competition and thus maintains genetic diversity. When an asexual population climbs

up a smooth fitness peak, it is always advantageous to maximize the reproduction

of the fittest genotype currently present in the population; thus, spatial structure
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necessarily increases clonal interference and slows down adaptation [65, 78, 87]. How-

ever, the situation is less clear when recombination is introduced. At least in some

situations, adaptation is primarily driven by recombination between genotypes that

are not exceptionally fit. This can certainly be the case in rugged fitness landscapes

[22, 25, 128], but it can also be true in smooth ones [100]. Thus while maximizing the

reproduction of the fittest individuals maximizes the rate of adaptation in the cur-

rent generation, it also reduces the genetic diversity that would fuel future adaptation

[107, 115]. This suggests that by slowing selection, spatial structure may actually be

able to increase the rate of adaptation, even in smooth fitness landscapes.

Natural environments constantly fluctuate, and these fluctuations can affect dis-

persal and recombination. In particular, both dispersal and recombination are often

increased by stressful conditions. Mobile microbes can generally gain mobility from

exposure to stressful environments such as starvation, temperature shift, and expo-

sure to toxins [85, 110], in extreme cases manifesting as collective swarming behavior

[5, 28]. Some microbes can also switch between asexual and sexual reproduction un-

der stress. For example, bacteria can be induced to sexual reproduction by starvation

[38, 60], or can become transformable in order to absorb and integrate exogenous

DNA as a general response to stress [19, 20, 72, 104]. A similar response is found

in yeast, which can perform meiosis and sporulate under starvation or high oxidative

stress [6, 29, 40, 60, 77, 89].

The fact that dispersal and recombination are triggered by some similar environ-

mental stimuli will tend to introduce some synchronization, both between the two

processes (individual synchronization) and within processes across individuals (pop-

ulation synchronization, assuming that some environmental fluctuations affect many

individuals in the population). In other systems, such as plants that can switch

between local vegetative growth or sexual reproduction via dispersed pollen, the

two processes may also be mechanistically synchronized. It has been shown that
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population-level synchronization of facultative recombination can affect the rate of

adaptation on both smooth [7, 64, 100, 120] and rugged landscapes [25, 119]. But

these results are largely from well-mixed populations, and it is still unclear how syn-

chronization of recombination interacts with population structure and the possible

additional individual-level synchronization with dispersal. Intuitively, it seems plau-

sible that population structure could allow diversity to build up in the population

in different demes, which could then be brought together to produce new genotypes

in a burst of synchronized dispersal and recombination, allowing the population to

balance exploration and exploitation of the fitness landscape (Fig. 1.1).

In this paper, we simulate evolution on smooth fitness landscapes and test the

effects of population structure and fluctuating, possibly synchronized, recombina-

tion and dispersal on the rate of adaptation. We find that when the beneficial mu-

tation supply is high, structured populations with individual- and/or population-

synchronized recombination and dispersal can adapt faster than well-mixed ones.

Population-level synchronization has the strongest effect, as it maximizes the proba-

bility that recombination events will occur between individuals with different benefi-

cial mutations, the pairings that have the highest potential for generating extremely

fit offspring.

1.2 Model

We consider a structured population distributed in D demes with N haploid individ-

uals in each deme. We assume an island model, with bi-directional dispersal between

all pairs of demes at a time-dependent rate m(t) with average m. As a baseline, we

also simulate a well-mixed population with only one deme with the same total popu-

lation size, D×N individuals. In the simulation results, D = 10 and N = 106 unless

stated otherwise. Each individual has L = 1000 unlinked loci. Beneficial mutations
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are uniformly distributed and occur at genomic rate U . We neglect back-mutations.

Each mutation has the same log-fitness advantage s = 0.05 and all mutations com-

bine multiplicatively, i.e., the fitness landscape is completely smooth. Individuals are

facultatively sexual, with outcrossing occurring at a time-dependent rate f(t) with

average f . Because most reproduction is asexual, linkage disequilibrium can be large

even though all loci are unlinked.

We allow for two possible ways that dispersal and recombination can be syn-

chronized, as illustrated in Fig. 1.2. The first, individual-level synchronization, is

a synchronization between the two processes and can be observed within a single

generation. If the expected fractions of migrant and sexually produced offspring in

that generation are m(t) and f(t) respectively, then there is individual-level synchro-

nization if the expected fraction of offspring that are both migrants and sexually

produced is > m(t)f(t). If, for example, m(t) > f(t), then in the most extreme

case of individual-level synchronization, all sexually produced offspring would also be

migrants. For simplicity, we focus on this extreme case in our simulations.

The other form of synchronization, population-level, can only be observed by

comparing across multiple generations, and involves synchronizing dispersal, sexual

reproduction, or both across individuals. It is automatically induced by the time

dependence of m(t) and f(t). In generations when m is high, many individuals

disperse, and in generations when it is low, few do, and similarly for f and sexual

reproduction. In populations with both forms of synchronization, both dispersal

and sexual reproduction are concentrated in the same generations and in the same

individuals within those generations.

We consider a limiting form of population-level synchronization, in which dis-

persal and/or sexual reproduction occur only every tgap generations, with tgap = 1

corresponding to a steady rate, i.e., the absence of population synchronization. For

tgap > 1, then if the average probability of, e.g., dispersal is m, then there will be no
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dispersal for tgap−1 generations and then dispersal with probabilitym/tgap for a single

generation. Larger values of tgap therefore correspond to increased population-level

synchronization. Note that since the probabilities of dispersal and sexual reproduc-

tion must both be ≤ 1 in each generation, tgap must be less than m and f . While this

model is largely chosen for simplicity, it is also inspired by the design of microbial

evolution experiments that test the effect of spatial structure [65, 87] or facultative

outcrossing [83] on the rate of adaptation. In these experiments, organisms have

multiple generations of asexual reproduction within separate demes, interrupted by

occasional generations of sexual reproduction and/or mixing among demes.

We use a form of Wright-Fisher reproduction, in which the entire population is

replaced every generation. To produce an individual in deme d in generation t + 1,

we first determine whether it is a resident (with probability 1 −m(t)) or a migrant

(with probability m(t)). We then determine if it is the offspring of uniparental or bi-

parental reproduction. In the absence of individual-level synchronization, these have

probabilities 1 − f(t) and f(t), respectively. With individual-level synchronization,

all resident individuals are produced uniparentally, while migrants have a probability

f(t)/m(t) of being produced biparentally. (We always keep f(t) < m(t) in simula-

tions with indivual-level synchronization.) Resident individuals draw their parent or

parents from the individuals living in deme d at time t with probability proportional

to their fitnesses, Migrant individuals draw their parents from a migrant pool. All

demes contribute equally to the migrant pool, but within each deme’s contribution,

individuals are weighted proportional to their fitness. In other words, selection only

acts within demes. For migrants produced by biparental reproduction, the two par-

ents’ demes are chosen independently, i.e., mating is assumed to take place within

the migrant pool.

The key outcome variable is the rate of adaptation v, defined as the rate of increase

of mean log fitness. This is proportional to the probability of fixation of beneficial
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mutations, Pfix: v = NDUPfix ln(1 + s) ≈ NDUPfixs. In the absence of clonal

interference, Pfix = 2s independent of the spatial structure [82], and the rate of

adaptation is v = v0 ≈ 2NDUs2 [120]. To understand the dynamics underlying the

observed changes in v, we also track additional statistics of the populations. We

measure total genetic diversity using the heterozygosity H =
∑

i pi(1− pi), where pi

is the frequency of the mutant allele at locus i. According to Fisher’s Fundamental

Theorem [37], the speed of adaptation is equal to the (genetic) variance in fitness. In

our simulations, the standard deviation of log fitness is always ≤ 0.15, which means

that the variance in fitness is close to the variance in log fitness (see Text S1). In

linkage equilibrium, this is simply s2
∑

i pi(1−pi), proportional to the heterozygosity.

The extent to which v/s2 lags behind the heterozygosity therefore provides a measure

of total multilocus negative linkage disequilibrium. To track the dynamics of the nose

of the fitness distribution, we follow the frequency of “best genotypes”, which we

define as those within s of the maximum current log fitness in the population (see

Text S2). Finally, to determine whether adaptation is being driven by mutations in

the nose of the fitness distribution or recombinants leaping to the nose, we track the

Hamming distance between the fittest individuals in the population in consecutive

generations.

In our simulation, we keep s = 0.05 and L = 1000 for computational reasons.

(Smaller values of s require longer run times, and larger values of L require more

memory.) We choose the other parameters to probe the region in which both selection

and clonal interference are strong, 1/N ≪ Pfix ≪ 2s. This latter condition requires

that mutation be frequent and recombination rare. We determined that we could

achieve this with computationally feasible total population sizes with mutation rate

U = 5×10−4 per generation and average frequency of sexual reproduction f = 1.25×

10−3 per generation. Unless otherwise stated, we set average dispersal probability

to m = 2.5 × 10−3 and the waiting time in population-synchronized simulations to
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tgap = 100.

All plots show data averaged over 100 independent simulation runs, with error

bars smaller than the size of the plot markers. In plots showing the average dynamics

over the course of a cycle of tgap generations, the first and last data points are the

beginning of two consecutive bursty cycles, i.e., tgap + 1 generations are shown.

1.3 Results

1.3.1 Population structure can very slightly speed adapta-

tion even without synchronization

In asexual populations, clonal interference is stronger in spatially structured pop-

ulations than it is in well-mixed ones [65, 78]. Sexual reproduction reduces clonal

interference in both spatially structured [78] and well-mixed populations, but how

does it change their relative rates of adaptation, i.e., the effect of spatial structure?

To investigate this, we first simulate populations with facultative sex and varying

degrees of spatial structure but no synchronization (schematic: Fig. 1.2B; results:

Fig. 1.2 and Fig. A.2B, orange lines).

At small total population sizes such that the mutation supply is low (NU ≲ 1),

well-mixed populations experience little clonal interference and adapt at close to the

maximum rate v0, even if they are asexual. In this regime, increasing spatial struc-

ture only impedes adaptation (Fig 1.2A, left side), because it slows down sweeps,

increasing the probability that they overlap and interfere with each other. However,

for large mutation supplies (NU ≫ 1), well-mixed populations with limited recom-

bination experience strong clonal interference. Surprisingly, in this regime, splitting

the population into demes does not slow down adaptation and even very slightly ac-

celerates it, with the population split into 100 demes evolving 6% faster than the

well-mixed population (t-test, p = 0.035; see Fig. 1.2A).



14

To understand this result, note that under strong clonal interference the speed

of adaptation is only weakly (logarithmically) dependent on population size [32, 88,

120, 121]. Thus, in a population large enough that each individual deme has a high

mutation supply, each deme can adapt nearly as fast as a well-mixed population of the

same size as the whole meta-population. So space only slightly slows down asexual

evolution, and the increased genetic diversity between demes means that spatially

structured populations can benefit more from recombination, pushing their overall

rate of adaptation above well-mixed ones (Fig. A.1 and 1.2A).
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Figure 1.2: Population-level synchronization of dispersal and sexual reproduction ac-
celerates adaptation by increasing the production of fit recombinants. (A) Ratios
of adaptation speeds relative to a well-mixed population with unsynchronized sexual
reproduction. Dashed lines show results from simulated populations comprising 10
demes, while solid lines show populations comprising 100 demes. The strongly struc-
tured (100-deme) population with synchronized sexual reproduction and dispersal
adapts roughly twice as fast as other populations. Structured populations with no
synchronization or synchronization of only dispersal have slight advantages over the
well-mixed population (ratios=1.06 (p = 0.035) and 1.17 (p < 0.001), respectively,
for populations of 100 demes). Details of the adaptation speeds are in Fig. A.2. In all
other simulation result, D = 100 and N = 106 unless stated otherwise, since they pro-
duces the fastest adaptation. (B) Hamming distance between the fittest individuals
in successive generations, shown over the course of the tgap = 100 generations be-
tween rounds of synchronized dispersal/sexual reproduction. All curves are averages
over 10 runs, each of which consists of 2400 generations (i.e., 24 tgap periods). For
populations without synchronization or synchronization of only dispersal, the small
(≈ 1 mutation) distances indicate that adaptation is primarily driven by the accumu-
lation of mutations on already-fit backgrounds. Populations with synchronized sexual
reproduction and dispersal, on the other hand, leap ahead suddenly by ≈ 100 muta-
tions due to recombination between divergent parents. (C) Mutation accumulation
trajectories of different populations. The adaptation of the synchronized population
is punctuated. Red lines indicate fits used for determining adaptation speeds. (D)
Relative adaptation speeds (rates of increase of mean fitness) of different populations.
The full combination of Strong structure and synchronized sexual reproduction and
dispersal is needed to substantially accelerate adaptation. Individually, these factors
only have very small effects or even slow down adaptation.
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1.3.2 Population synchronization of sexual reproduction and

dispersal can significantly accelerate adaptation

We first examine the effects of pure population synchronization, in which both sex-

ual reproduction and dispersal are synchronized at the population level, with no

additional individual-level synchronization (schematic: Fig. 1.2D). This represents

a scenario in which, for example, an entire experimental population is forced to go

through periodic rounds of dispersal and sexual reproduction [65, 83]. We see that

when clonal interference is strong, this life history can approximately double the

speed of adaptation relative to that of a well-mixed population with no synchroniza-

tion (Fig. 1.2A). The increase in speed relative to a well-mixed population with the

same synchronization of sexual reproduction is even larger (Fig. A.2A). Thus, spatial

structure reduces clonal interference in this instance.

The population with synchronized sexual reproduction and dispersal achieves its

higher adaptation speed via bursts of adaptation every tgap generations. These bursts

move both the nose and the mean of the fitness distribution. But the nose (Fig. 1.2B)

shifts in genotype space by far more than the distribution moves toward the optimal

genotype (Fig. 1.2C). This indicates that the leading genotype is replaced by a dis-

tantly related recombinant, unlike in the other populations. The combination of

structure and synchronization apparently allows it to both maintain and exploit a

large reservoir of beneficial mutations beyond those that are found in the current

best genotype.

1.3.3 Sexual reproduction among migrants is crucial to the

increase in adaptation speed

We next introduce individual-level synchronization, such as could be a response to

individual-level environmental variation, as opposed to the global environmental fluc-
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tuations that lead to population synchronization. We find that it can also accelerate

adaptation, although not by as much as population synchronization (Fig. 1.3A, yel-

low squares vs dark blue diamonds). Populations with both forms of synchronization

adapt fastest of all (Fig. 1.3A, light blue triangles), although the increase in speed

over pure population-level synchronization is modest at the large population sizes

where synchronization accelerates adaptation the most.

There are two possible explanations for why individual-level synchronization pro-

vides only a modest acceleration in large populations that already have population-

level synchronization: either it is not important that sexual reproduction be happen-

ing specifically among migrants, or population-level synchronization already creates

a large enough pool of sexually reproducing migrants that there are only limited

benefits to increasing it further. To test these possibilities, we modify the simula-

tions with only population-level synchronization so that either only migrants or only

residents can reproduce sexually. We do not increase the rate of sexual reproduc-

tion among the group where it is allowed, so this lowers the overall rate of sexual

reproduction—drastically so when sexual reproduction is limited to migrants, who

are typically a minority of the population. For example, at the value tgap = 100

where synchronization provides the greatest benefit, 25% of individuals are migrants

in the high-dispersal generations. But we see that limiting sexual reproduction to

these migrants hardly slows down adaptation, while limiting it to the 75% of indi-

viduals who are residents reduces the rate of adaptation by more than a factor of

two (Fig. 1.3B). We, therefore, see that sexual reproduction among migrants is es-

sential to the advantage of synchronization, suggesting that the limited benefits of

individual-level synchronization are simply because population-level synchronization

already creates a strong association between the two processes.
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Figure 1.3: Sexual reproduction among migrants drives the increase in adaptation
speed. (A) Adaptation speed of populations with differing synchrony between sexual
reproduction and dispersal. Individual-level synchronization between sexual repro-
duction and dispersal accelerates adaptation, although not by as much as population-
level synchronization. The two forms of synchronization act synergistically at mod-
erate population sizes but have diminishing returns at a (B) effect on adaptation
speed of limiting sexual reproduction to migrant or resident individuals in popula-
tions with population-synchronized sexual reproduction and dispersal. For low values
of the synchronization parameter tgap, almost all individuals are residents and sexual
reproduction among migrants contributes negligibly to adaptation. At higher values
of tgap ≈ 100, even though migrants are still a minority, it is their offspring who are
driving adaptation, with the majority residents making a negligible contribution. For
even higher values tgap > 200, migrants make up a majority of the population in the
generations in which sexual reproduction takes place.
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1.3.4 The synchronization between sexual reproduction and

dispersal is crucial to the increase in population speed

Population-level synchronization both synchronizes dispersal with sexual reproduc-

tion and synchronizes among multiple dispersal events and among multiple instances

of sexual reproduction. It seems intuitive that the former effect should be the most

important for adaptation, since it focuses sexual reproduction on pairings with the

greatest genetic diversity. But individual-level synchronization also produces this ef-

fect, and does not accelerate adaptation nearly as much (Fig. 1.3A). This raises the

question of whether perhaps the synchronization between sexual reproduction and dis-

persal is actually unimportant, with the acceleration being driven by just the separate

synchronizations among dispersal events and among instances of sexual reproduction.

To test this, we introduce an offset between generations of increased dispersal and

generations of increased sexual reproduction. Experimentally, this would correspond

to having separate passages in which cells were mixed across wells and in which some

cells were forced to undergo sexual reproduction. In natural populations, it would

correspond to different pathways triggering dispersal and sexual reproduction in re-

sponse to different environmental cues.

We find that the rate of adaptation is maximized when sexual reproduction and

dispersal occur in the same generation (Fig. 1.3A), confirming the initial intuitive

expectation. The rate of adaptation decreases as the number of generations elapsing

after dispersal and before sexual reproduction increases, as the genetic diversity intro-

duced into demes by dispersal is lost. However, we find a new surprise, that the rate

of adaptation partially recovers for very long delays, such that dispersal quickly fol-

lows sexual reproduction. Examining the statistics of the simulations further reveals

that the initial decrease in the rate of adaptation can be explained by a decrease

in the fitness of the fittest recombinants formed (Fig. 1.3B). This effect saturates

for long delays, likely because within-deme genetic diversity reaches a steady state



21

maintained by mutation. At this point, it is better for adaptation to delay sexual

reproduction more so that fit recombinants can quickly be redistributed across demes

in the next dispersal event. This is because the demes vary in fitness (Fig. 1.3C), so

dispersal will tend to move very fit recombinants into less-fit demes, where they will

compete with each other less. For these very long offsets, the absolute adaptation

speed (5.23 ± 0.11 × 10−3 for offset = 99) is similar to that for populations with

synchronized dispersal but unsynchronized sexual reproduction (5.68 ± 0.15 × 10−3,

Fig. A.2C) or no synchronization (5.19± 0.12× 10−3, Fig. A.2B).
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Figure 1.3: Simultaneous sexual reproduction and dispersal maximizes the rate of
adaptation. (A) Adaptation speed as a function of the delay between high-dispersal
generations and high-sexual reproduction generations. Dispersal occurs at times 0
and 100 on the horizontal axis, so an offsets of 0 or 100 are identical. Increasing
the delay before sexual reproduction lowers the rate of adaptation, as the increased
within-deme genetic diversity introduced by dispersal is lost. Surprisingly, there is a
slight uptick in the rate of adaptation for very long delays such that dispersal follows
shortly after sexual reproduction. (B) Increase in the fitness of the fittest individual
in a deme over the tgap = 100 generations between dispersal events, for different
values of the delay before sexual reproduction. This local maximum fitness jumps in
the sexual reproduction generation, but by less as the delay increases and the genetic
diversity introduced by dispersal decays. It appears to reach a steady state at ≈ 80
generations, partially explaining the uptick in panel A. (C) Standard deviation of
local maximum fitness across demes shows the same qualitative pattern as overall
adaptation speed (A), initially decreasing as the delay increases and then rebounding
for very long delays. Overall, the standard deviations are substantial, suggesting that
dispersal soon after recombination may help the fittest recombinants by moving them
to less competitive demes, which could explain the uptick. Details are in Fig. A.5.
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1.4 Discussion

In this paper, we demonstrate that population structure, by creating the possibility

for synchronized dispersal and sexual reproduction, can increase the rate of adap-

tive evolution. To our knowledge, this is the first demonstration that a population

structure that does not affect the fixation probability of isolated alleles can accel-

erate adaptation on smooth fitness landscapes without epistasis by reducing clonal

interference among alleles. It does this both by alternately accumulating diversity in

different demes and then bringing it together and forming fit recombinants, and by

tending to concentrate recombination events in pairs of migrant individuals who are

likely to be genetically distinct.

1.4.1 Synchronization of dispersal and sexual reproduction

in experiments and natural populations

Our model is meant to match the most straightforward way of implementing popu-

lation structure and sexual reproduction in experimental microbial population grown

in batch culture. Since dispersal is naturally done at transfers, it is automatically

synchronized [65, 87]. Synchronized sexual reproduction (or more generally, recombi-

nation) is also natural when working with organisms such as yeast or many bacteria

where it must be induced by environmental conditions [19, 83].

We believe that our model also captures important features found in natural

populations. Facultative sexual reproduction is common in nature [93]. Sexual repro-

duction often carries costs, including mate-finding, performing sexual behavior, and

producing males [109]. Facultative sexual reproduction provides most of benefits in

terms of creating genetic diversity with less cost than obligate sexual reproduction

[12, 64, 93]. If sexual reproduction is rare, having it be synchronized helps reduce

mate-finding costs [64].
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Facultatively sexual reproduction is often a response to stressful conditions [93].

To the extent that these stressful conditions affect multiple individuals, this provides

one mechanism for synchronization. As dispersal is also often a response to stress

(e.g., [81]), it will naturally also be synchronized with sexual reproduction. While

environmental fluctuations are implicitly the source of synchronization in our model,

the fitness landscape is static. Presumably the primary reason that sexual reproduc-

tion and dispersal can be triggered by stress is that it is a signal that the organism

is poorly adapted to its present habitat, and that it should try to improve the match

by producing offspring with different haplotypes or moving to a new environment.

In other words, the response most likely evolved as a way to track the fluctuating

components of the fitness landscape. Our work shows that a side effect can be more

rapid adaptation to the fixed components of the landscape as well.
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Chapter 2

Promoting moderately fit

individuals can increase adaptation

speed under strong clonal

interference

Abstract

When mutations are rare, strong selection can efficiently exploit the existing mu-

tations to achieve the fastest adaptation, as the best genetic background can be

built for future mutations. However, when mutations are common, different lineages

carrying unique beneficial mutations can coexist and compete for fixation, leading to

strong clonal interference. Under these conditions, strong selection eliminates distinct

mutations on mediocre genetic backgrounds, ultimately decreasing genetic variation.

Therefore, it is crucial to maintain a balance between variation and selection, espe-

cially in the presence of recombination. Recombination can reduce clonal interference

and combine unique beneficial mutations from different competing lineages into a

single individual. To achieve this, we propose a logistic fitness function an alternative
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to the exponential function typically used in population genetics. The logistic fitness

function promotes the evolutionary advantage of the moderately fit individuals and

impedes the sweeping process of the fittest individuals, thereby preserving genetic

diversity at the cost of short-term response. At the same time, the profound genetic

diversity creates a faster long-term adaptation. We compare the performance of the

logistic fitness function with two other fitness functions and find that the effect is

not directly due to the limited selection of the fittest individuals, but rather due to

the increased fitness of ordinarily fit individuals. Our findings suggest that balancing

genetic diversity and selection for sexual reproduction could be a critical strategy for

adaptation in a strong clonal interference environment.

2.1 Introduction

The strategy for achieving the fastest adaptation is contingent on the specific details

of a population. In general, the rate of adaptation is primarily influenced by the

mutation rate U , population size N , and the probability that new mutations become

fixed P . When the mutation influx is small, the rate of mutation accumulation

can be expressed as the product of the mutation supply and the fixation probability,

v = NUP , where N is the population size, U is the mutation rate and P is the fixation

probability. For a homogeneous population, the fixation probability of a beneficial

allele is P ≈ 2s for s ≪ 1, resulting in a baseline rate of mutation accumulation is

v ≈ 2NUs [44, 63, 98]. In this case, stronger selection leads to faster adaptation, as

the rate of adaptation is positively correlated with the selective coefficient s.

However, in cases where the mutation supply is abundant, clonal interference can

occur, wherein multiple beneficial genotypes compete for fixation [41, 97]. In such

circumstances, the balance between selection and mutation is crucial in the evolution

process. Selection reduces the fitness distribution while mutation expands it [32].
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Although strong and accurate selection can produce immediate responses, it can also

reduce the effective population size by limiting the number of parents and lineages

that contribute to the next generation [54, 105]. This would eventually lead to a

decrease in the long-term response due to the lack of genetic variation.

The variation-selection balance is particularly important for sexual populations

as recombination of mutations from competing lineages can lead to the emergence

of novel traits [37, 86]. Previous research has demonstrated that the relationship

between adaptation speed and selection strength is not always monotonic; in fact, a

relaxed selection can optimize the long-term response of a quantitative trait [52, 53,

105, 107, 115, 133]. In addition, it has also been studied in the context of breeding

problems, where the goal is to maximize response to artificial selection based on

various factors such as effective population size and inbreeding rate [10, 13, 48, 106].

To maintain genetic variation, previous studies have employed either uniformly

weaker selection or selecting a larger proportion of the leading nose of the population

[52, 53, 105, 107, 115]. However, these methods still heavily rely on the fittest indi-

viduals in the population. In contrast, in the previous section, we demonstrated that

population structure can have a similar effect in balancing selection and genetic vari-

ation. Specifically, our simulations showed that a structured population can exhibit

similar, if not better, adaptation speed than a well-mixed population. This is because

population structure extends the time for favorable mutations to fixation, allowing

other genotypes to accumulate subsequent mutations and increase clonal interference

[17, 39, 123]. These findings suggest an alternative artificial selection strategy, which

is to limit the evolutionary advantage of the fittest individuals.

In this paper, we propose a general strategy for creating artificial selection by al-

tering the fitness function to mimic the effects of population subdivision. By default,

the population has an approximately exponential growth rate of its fitness, which is

derived from the growth factor per generation W = er ≈ 1 + r [32]. We replace this
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exponential fitness function with a logistic fitness function to impose limitations on

the best individuals. Our study shows that the logistic fitness function is effective only

when clonal interference is strong. Under such conditions, the logistic fitness function

can preserve genetic diversity by hindering the sweeping process of the fittest individ-

uals, similar to the population subdivision. This approach fosters competing lineages

to maintain genetic diversity at the cost of short-term adaptation, while yielding a

better long-term response. We find that the rate of adaptation can increase by a fac-

tor of 2.79 compared to the original exponential fitness function, and that this effect

is due to the increased fitness of moderately fit individuals. Our results suggest that

a universal strategy for evolution in a strong clonal interference environment could

involve limiting the fittest individuals and promoting mediocre individuals to main-

tain high genetic variation. Overall, our research provides insight into the delicate

balance between selection and genetic diversity in population genetics and highlights

the importance of maintaining this balance for long-term adaptation. The proposed

logistic fitness function offers a potential strategy for achieving this balance, and

future studies could further explore its efficacy in various evolutionary scenarios.

2.2 Model

Table 2.1: Symbol definitions

Symbols Definition

W Fitness
z Breeding value, a trait in a population
N Haploid population size
L Genome size
r Frequency of sexual reproduction
U Genomic beneficial mutation rate
s Selective coefficient of beneficial mutations
P Fixation probability of a mutation
v Adaptation speed in breeding values (mutation numbers)
v0 v in the absence of interference
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The focus of this paper is on the adaptation speeds of breeding values from dif-

ferent fitness functions. We define the breeding value z = k as the number of ad-

ditive beneficial alleles. This implies the adaptation speed in z is v = NUP ≈

2NUs[44, 63, 98].

By default, the fitness is exponentially correlated with the breeding value,W (z) =

esz [32, 120]. To limit the exponential advantage of preeminent individuals, we con-

sidered the shifted logistic fitness function:

W (z) =
c

1 + e−ks(z−z0)
(2.1)

The three coefficients can be determined by requiring that the Taylor series expansion

of W (z) around z = 0 satisfies the following conditions:


W (0) = 1

W ′(0) = 1

W ′′(0) = d

The first two requirements ensure the novel mutations have additive advantages in a

homogeneous genetic background, which should be identical to the exponential fitness

function. The second derivative is to tune the fitness function. The fitness function

can be rewritten in the form of d:

W (z) =
2(1− d)

1− 2d+ e−2s(1−d)z
(2.2)

Notably, when d = 1/2, Eq.2.2 becomes the exponential function. In this paper,

we set d = −2.715 based on simulation results, while maintaining the polynomial

approximation for the infinitesimal model’s monotonic increase.

The mean value of the fitness function should be 1 in a population with constant
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size, which is forced by the sampling method. Thus the effective fitness function

is normalized and has a different coefficient c′ where z ∼ N (0, σ2). According to

Supplementary B.1, it should have the form as:

Weffective(z) =
1 + exp(ksz0/γ)

1 + exp (−ks(z − z0))
; γ =

√
1 +

k2s2πσ2

8
(2.3)

Overall, the logistic fitness function harbors mediocre individuals and limits the evo-

lutionary fitness of the individuals on either side of the distribution. This is shown

in Fig.2.1.

As the logistic fitness function is scaled based on the variance of the breeding

value, the selective advantages of novel mutations differ under different fitness func-

tions. Consequently, the condition W ′
effective(0) = 1 is no longer valid. To enforce this

condition, we rescaled the selective coefficient s byWeffective(1|sL) = es, so that a novel

mutation has an equivalent evolutionary effect on both fitness functions. Specifically,

when sE = 5× 10−2, the scaled selective coefficient sL = 6.06× 10−2. The impact of

rescaling the selective coefficient should be mild since the differences between two se-

lective coefficients are minor and its impact would be reduced when clonal interference

is strong. Details can be found in Supplementary B.3.

In the simulation, we consider the Wright-Fisher population with N haploid in-

dividuals. Each individual possesses L loci, and each locus accumulates favorable

mutations with a rate of U . Parents are chosen by their fitnesses, which propor-

tionally rely on the breeding value sz = sk, where k is the number of beneficial

mutations and the selective coefficient s = 0.05. The fitness functions can be expo-

nential, logistic, and other specified functions. Sexual reproduction occurs at a rate

of r, with offspring having a equal chance to inherit from either parent at any locus.

The adaptation speed is obtained from linear fitting the mutation trajectories over

generations. In order to obtain a steady adaptation speed, we only fit the latter half
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Figure 2.1: The comparison of fitness functions. The logistic fitness function restricts
the dominance of the fittest individuals and promotes the fitness of the general indi-
viduals. The fitness functions are plotted in the range of 3σz, which is obtained in
Fig.2.5a.

of the trajectory.

We use simulation to investigate the adaptation speed with strong clonal inter-

ference. In this regime, the fixation probability is expected to be 1
N

≪ P ≪ 2s.

The two bounds are from the circumstances of random fixation and strong selection

respectively. This condition also be written as U ≪ v ≪ 2NUs. In our simulation,

the parameters are N = 1 × 106, L = 1.2 × 104, S = 5 × 10−2, U = 3 × 10−3, and

r = 2 × 10−2. Our simulation includes beneficial and back mutations which occur

randomly at any site by a geometric distribution. The simulation terminates when

half of the genome is mutated when back mutation dominates.

2.3 Results

2.3.1 Adaptation speed with weak clonal interference

We consider a Wright-Fisher population with unlinked loci. Since the population

has a large genome (>= 106) and each gene makes a small contribution, we assume
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the infinitesimal model [4, 54, 105, 120]. An individual with trait value z produces a

Poisson distributed number of offspring with the expectation ofW (z). The offspring’s

trait values follow a normal distribution around the mean of their parents, with

a constant variance VO. With random mating, the next generation would have the

variance VP/2+VO, while the variance of the parents is VP . At equilibrium, VP ≈ 2VO.

In our model, the mating is polygamous. Both parents are drawn with weights

given by W (z). The probability of fixation P can be obtained by calculating the

probability of loss. It has been shown that the exponential fitness function has the

adaptation speed as v = 1
4
W(v0) =

1
4
W(2NUs2), whileW(x) is a product log function

[120]. We show the approximated adaptation speed with the logistic fitness function

in Supplementary B.2 while z, v ≪ 1, when the clonal interference is weak. Overall,

their approximated adaptation speeds are:

vexp =
1

4
W(v0) ≈ v0 − 4v20 + 24v30 −

512

3
v40 +O(v50)

vlogistic ≈ v0 − 4v20 +
32

9

(
11 + d− d2

)
v30 +

64

27

(
−200− 36d+ 33d2 + 4d3

)
v40 +O(v50)

(2.4)

As shown in Fig.2.2a, their adaptation speeds are similar.

Noted that the above studies are based on the assumption of full sexual repro-

ductions. The results would differ when facultative sex is involved. In this case, the

selective coefficient needs to be rescaled by 1/r. Details are included in the discussion.

2.3.2 Adaptation speed with strong clonal interference

Currently, the analytic solution to the adaptation speed with strong clonal interfer-

ence remains unraveled. Therefore, we use simulations to investigate the effect of

limiting the best individuals. Fig.2.2b demonstrates that restricting the fitness of the

best individuals generates a trade-off between short-term and long-term evolutionary

dynamics. While the exponential fitness function enables swift adaptation to the new
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Figure 2.2: The rate of adaptation from approximation and simulation. (a). When
the clonal interference is weak, the adaptation speed of populations under exponential
and logistic fitness functions is relatively similar. (b). When the clonal interference
is strong, the population with the limited evolutionary advantage evolves faster than
the one with multipliable advantages (ratio ≈ 2.79). The exponential fitness function
creates a rapid adaptation in early generations. However, the logistic fitness function
has a faster long-term adaptation (0.398± 0.002 for E and 2.79± 0.02 for L). Noted
that the trajectories can not extend infinitely with finite genome size. The bottom
inset shows the adaptation in the first 500 generations. The red lines indicate the
linear regression and the adaptation speeds are acquired from their slopes.
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environment, it comes at the cost of diminishing long-term adaptability. In contrast,

the logistic fitness function prevents the best individuals from quickly dominating the

entire population, so it exhibits slower initial adaptation. However, this maintains the

genetic diversity of mediocre individuals, which can be leveraged by recombination.

With recombination, diverse genetic resources can be utilized to create novel geno-

types. Eventually, the logistic fitness function can have a better long-term evolution

(ratio of adaptation speed ∼ 2.79).

Since selection is weak (s = 0.05) and recombination is strong (totally random at

each locus), linkage disequilibrium (LD) among alleles sweeping to fixation is expected

to be negligible. Therefore, the heterozygosity H =
∑

L pi(1− pi) is proportional to

the variance of breeding value z:

σ2
z =

∑
L

σ2
i = H (2.5)

while pi is the frequency of loci i.

By Fisher’s ”Fundamental Theorem”, the rate of increase in log fitness is given

by its heritable variance; this is v = sσ2
z . Therefore, the genetic diversities should be

proportional to the adaptation speed without linkage disequilibrium (LD):

v/s = σ2
z = H (2.6)

The Price Equation relates changes in the mean phenotype (∆z) to changes in the

mean fitness (w̄) and the covariance between them (cov(wi, zi)). In this study, since

the fitness functions are normalized and approximated as W (z) ≈ 1 + sz for both

functions, the rate of adaptation can be expressed as ∆z ∼ sσ2
z when z ∼ z̄. The

results presented in Fig.2.3 confirm that σ2
z ≈ ∆z̄/s, which signifies the establishment

of the Price Equation.

Furthermore, when the population is in linkage equilibrium, the heterozygosity is
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equivalent to the variance of mutations, which is also equivalent to the breeding value

z, as shown in Eq.2.5. However, with the logistic fitness function, the heterozygosity is

over 10 times higher than the variance of z. This observation indicates the existence of

negative linkage disequilibrium, where individuals with similar fitnesses have distinct

genotypes.

The presence of negative linkage disequilibrium implies that individuals with dis-

tinct genotypes coexist in the population. When the advantage of the fittest indi-

viduals is limited, their sweeping process slows down. This leads to strong clonal in-

terference, where beneficial genotypes compete for fixation. The abundance of clonal

interference can have a duo effect. On one hand, it reserves sufficient genetic diversity

for sexual reproduction. Recombination can utilize the distinct mutations to generate

novel genotypes for further adaptation. On the other hand, moderately fit individuals

may impede the spread of those novel genotypes, slowing down adaptation. Gener-

ally, sufficient sexual reproduction is required to efficiently collaborate with abundant

genetic diversity. As a result, the distinct mutations can be efficiently integrated into

the same genotype, while the mediocre individuals would be eliminated by sex and

selection.

In our simulation, Fig.2.4 implies that sexual reproduction is effective to cooper-

ate with genetic diversity. With the logistic fitness function, the Hamming Distance

between the best individuals in consecutive generations remains high, even in the

stable phase. It indicates that the population experiences significant genetic changes

(mean = 213 mutations) between generations. This is the result of the integration

of existing mutations by recombination. Meanwhile, the exponential fitness function

shows mild genetic changes (mean=6.81 mutations), which suggests sequential evolu-

tion of the same genotypes over generations. However, it is unknown if the sex rate

can be further increased due to the limited computational resources, which will be

discussed later in the paper.
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Figure 2.3: The genetic diversity with different fitness functions. The variance of z is
closely related to the rate of adaptation, which is consistent with the Price Equation.
However, with the logistic function, the heterozygosity exceeds the other two types
of genetic diversities, indicating negative linkage disequilibrium.
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Figure 2.4: The Hamming Distance between the best individuals in two consecutive
generations as measured in sites. The population under the logistic fitness func-
tion exhibits significant genetic changes (mean=213 mutations), while the population
under the exponential fitness function shows smaller genetic variations (mean=6.81
mutations). The plot is truncated as the exponential fitness function reaches a sta-
tionary phase.

The infinitesimal model assumes that breeding values are normally distributed.

As shown in Fig.2.5, this assumption is valid with the exponential fitness function,

which results in low linkage disequilibrium (LD) (Fig.2.3a). This is because the

genetic change over generations is small (Fig.2.4 allowing the recombination to break

down any initial stochastic LD. Consequently, an individual’s fitness is determined

by the sum of many independent common alleles, leading to a normal distribution in

breeding value. However, because the best individuals are promoted exponentially,

the mean of breeding values quickly converges. Hence, the distribution of breeding

value is narrow, and the population suffers from the lack of genetic resources.

In contrast, the logistic fitness function imposes a fitness cutoff. The fittest indi-

viduals are restricted from sweeping the whole population, which allows the less-fit

individuals to persist in the population. For this reason, there is a long tail on the

right side of the distribution as shown in Fig.2.5a. It also produces the negative

LD, as illustrated in Fig.2.3b, indicating the coexistence of multiple genotypes in
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the population. Accordingly, common alleles are not independent and the combi-

nation of them is not Gaussian. As a result, the logistic fitness function presents a

right-skewed distribution. Those preserved genetic diversity in the right tail of the

distribution provides ample mutations for recombination to create novel genotypes.

2.3.3 Alternative Fitness Functions

We propose to rescale the exponential fitness function into a saturating function

by introducing a scale function f(z) that satisfies certain conditions. Specifically,

the scale function f(z) should be approximately 1 at z = 0 and have an asymptotic

behavior of esz as z approaches infinity. This allows us to define a new fitness function

W (z) = esz/f(z) that saturates as z becomes large, while remaining linear around 0.

We consider two forms of the scale function: Cauchy and Gaussian scaled. The

Cauchy scaled function takes the form f(z) = 1 + a s2z2

1+s2z2
esz, while the Gaussian

scaled function is f(z) = 1 + b(1 − exp(−s2z2/2))esz. Parameters a and b are set to

0.35 and 0.5, respectively, to ensure the monotonicity of W (z) and steady increases

over z.

Despite all the fitness functions saturating over z, they have different effects on

adaptation. The logistic fitness function significantly increases fitness (ratio ∼ 2.79)

by imposing a strong cut-off on the best individuals. This allows the moderately fit

population to experience a sufficient increase in fitness. In contrast, the Cauchy and

Gaussian scaled fitness functions are unable to further suppressed individuals on both

sides while maintaining monotonicity. In fact, the Cauchy and Gaussian scaled fitness

functions can limit the advantage of the fittest individuals substantially. However, the

general population is still vulnerable to being swept out by preeminent individuals,

which results in only mild changes in fitness (ratio ∼ 1.43 and ∼ 1.13, respectively).

This is shown in the inset of Fig. 2.6, where general individuals have similar fitness

to the exponential fitness function.
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Figure 2.5: The distributions of the breeding value and fitness. The exponential fitness
function yields a normally distributed breeding value z, whereas the logistic fitness
function produces a right-skewed distribution. Specifically, the logistic fitness function
has a wider distribution with a higher maximum value (zmax = 95 compared to zmax =
23 for the exponential function). By imposing a fitness cut-off, it accommodates
mediocre individuals from those fittest individuals.
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Figure 2.6: The comparison of different fitness functions. The logistic fitness function
exhibits a unique fitness increase in mediocre individuals by compromising the fitness
of well-adapted individuals. All fitness functions are normalized with mean= 0 based
on their own distributions of z. The figure is plotted in the range of 3σz (logistic),
while the inset is σz (logistic). σz is obtained in Fig.2.5a.

The goal of the new fitness function is to prevent the dominance of the fittest

individuals. Therefore, an ideal sexual population should be effective in preserving

genetic diversities and combining them into novel genotypes. As a result, this pop-

ulation should not only maintain a high level of genetic diversity but also ensure

that the Hamming distances of the top performers are sufficiently large. Our study

has examined four different fitness functions and found that the rate of adaptation

is correlated with the strength of promotion imposed on the moderately fit individ-

uals. The abundance of moderately fit individuals improve the efficiency of sexual

reproduction by providing distinct lineages, resulting in a bigger genetic changes in

the fittest individuals (Supplementary B.4, Fig.B.4 and Fig.B.5). This implies that

the degree of heterozygosity and the Hamming distance of the best individuals can

be indicators for the effectiveness of sexual reproduction.
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2.4 Discussion

2.4.1 Summary

In this paper, we investigate the impact of limiting the evolutionary advantages of

outstanding individuals in sexual populations with either weak or strong clonal inter-

ference. Our findings reveal that the logistic fitness function can significantly enhance

the rate of adaptation compared with the original exponential fitness function when

clonal interference is strong. The exponential fitness function exploits the best geno-

types to promote the genetic background for future mutations. However, this comes

with the cost of eliminating other genotypes with lower fitness when multiple lineages

coexist. On the other hand, the logistic fitness function can harbor those moderately

fit genotypes, leading to negative linkage disequilibrium and profound genetic diver-

sity. This exceptional genetic diversity can be leveraged by recombination to explore

novel genotypes. Those novel genotypes drive the evolution and increase the rate of

adaptation by a factor of 2.79. This is consistent with its high genetic changes (∼ 200

mutations) in two consecutive generations, while the exponential selection shows a

mild transformation of the best genotypes (∼ 10 mutations). We also investigate

other fitness functions, demonstrating that the faster adaptation is related with the

effectiveness in preserving genetic diversity as well as in recombining them. During

this process, the moderately fit individuals plays a key role in providing genetic devi-

ations. Our study highlights the significance of genetic diversity in the evolution of a

sexual population, where strong selection can slow down the adaptation by sweeping

out maladapted individuals.

2.4.2 Short-term and long-term evolution

Initially, the genetic background of a population is homogeneous. The exponential

fitness function rapidly promotes the best genotype as the new genetic background
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at the cost of losing other genotypes. Thus, it produces faster adaptation in the early

generations (< 400 gens in our simulations), since short-term adaption is sensitive to

the strength and precision of the selection [54]. However, when multiple genotypes

coexist and the clonal interference becomes stronger, the logistic fitness function

becomes more effective in protecting individuals with moderately fit fitness from being

eliminated. This condition breaks when dominant genotypes emerge. At this time,

the cycle restarts as the genetic background is back to homogeneity to some extent

in a period of ∼ 1000 generations. When the interaction between clonal interference

and recombination reaches equilibrium, the fluctuation damps, and the population

enters the stationary phase, which is the phase of focus in this study. During this

phase, the effective mutation rate is proportional to the number of unmutated sites.

The adaption speed is insensitive to the effective mutation rate, only at the level of

the logarithm. However, when half of the sites are mutated, the effective mutation

rate is 0. After that, the adaptation slows down as the available sites start to deplete.

In practice, the optimal strategy depends on the subject studied, and the length

of the experiments. For microbial experiments, the time scale can range from a few

generations (∼ 10) to dozens of thousands of generations (∼ 60, 000), which may cover

the whole range of different phases [11, 61, 67]. Even though limiting advantages of

preponderant individuals could be potent for long-term evolution, the exponential

selection for breeding values can be effective for short-term adaptation. Additionally,

the fastest adaptation occurs when clonal interference is intermediate and the logistic

selection is present. This phase lasts for a considerable duration, making it optional

for mid-range experiments. Overall, the optimal strategy for adaptation depends on

the specific research being conducted.
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2.4.3 Population subdivision

The population structure interacts with the clonal interference and affects the rate of

adaptation. Even though the fixation probability of a beneficial allele can be uninflu-

enced by population subdivision when each deme contributes proportionally to its size

[39, 82, 123], this can change when multiple sweeps occur simultaneously. In asexual

populations, the population subdivision would limit the adaptation by preventing the

fixation of beneficial alleles in different sub-populations [78, 123]. However, long-range

migration and recombination can alleviate local clonal interference [78]. Specifically,

recombination can overcome and utilize clonal interference in structured populations

[37, 86]. This would allow a structured population adapt faster than a well-mixed

population, as discussed in the last chapter.

Population structure acts as a physical barrier that slows down the sweeping

process of those ascendant individuals. This is because individuals in different sub-

populations are restricted by migration, subject to local genetic background and local

competition. Hence, the mechanism of the sexual structured population is similar

to limiting the evolutionary advantages of the best individuals, which is to reserve

genetic diversity for recombination. This indicates that preserving novel mutations

from being swept out by natural selection could be a universal strategy for long-term

evolution.

2.4.4 Limits on the higher frequency of sex

Sexual reproduction can cope with genetic diversity and decrease clonal interference

by aggregating the mutations into the same genotype. Therefore, the frequency of

sexual reproduction is vital to the rate of adaptation. It has been shown that facul-

tative sex would rescale selective coefficients by a factor of 1/r, resulting in replacing

the speed baseline v by v/r2 [88, 120]. Hence, in order to simulate the unlinked loci,

it requires complete sexual reproductions. In our simulations, the frequency of sex
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remains low (r = 10−3 ∼ 10−2). It is hard to dramatically increase due to estimated

memory usage. In order to understand that, when interference is strong, the rate of

adaptation v0/r
2 ∼ 1, which can also be written as v/v0 ∼ (r/s)2

NU
. To maintain other

parameters, the population size would increase with r2 which linearly increases the

memory usage. When sex is free, estimated memory usage would be around 2500

times more than the current usage. In addition to this, the mutation accumulation

would be even faster and it requires a much larger genome size to enter the station-

ary phase, which further requires additional demand on memory. Therefore, it is

technically difficult to simulate a clonal interference with free recombination.
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Chapter 3

Investigating the evolutionary

origins of the first three

SARS-CoV-2 variants of concern

Abstract

The emergence of Variants of Concern (VOCs) of SARS-CoV-2 with increased

transmissibility, immune evasion properties, and virulence poses a great challenge to

public health. Despite unprecedented efforts to increase genomic surveillance, funda-

mental facts about the evolutionary origins of VOCs remain largely unknown. One

major uncertainty is whether the VOCs evolved during transmission chains of many

acute infections or during long-term infections within single individuals. We test the

consistency of these two possible paths with the observed dynamics, focusing on the

clustered emergence of the first three VOCs, Alpha, Beta, and Gamma, in late 2020,

following a period of relative evolutionary stasis. We consider a range of possible

fitness landscapes, in which the VOC phenotypes could be the result of single muta-

tions, multiple mutations that each contribute additively to increasing viral fitness,

or epistatic interactions among multiple mutations that do not individually increase
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viral fitness—a “fitness plateau”. Our results suggest that the timing and dynamics

of the VOC emergence, together with the observed number of mutations in VOC lin-

eages, are in best agreement with the VOC phenotype requiring multiple mutations

and VOCs having evolved within single individuals with long-term infections.

3.1 Introduction

For the first 8 months of the SARS-CoV-2 pandemic, the virus exhibited a very

slow pace of adaptation, with D614G being the only persistent adaptive substitution

that appears to have resulted in increased transmissibility of the virus [55, 99, 132].

However, during the second half of 2020, three designated variants of concern (VOCs)

of SARS-CoV-2, Alpha, Beta, and Gamma, emerged independently and in quick

succession [1, 35, 113]. No other VOC emerged until Delta and Omicron in 2021

which appear to be very different, both genetically and phenotypically, from the three

original VOCs [103, 112]. The VOCs are characterized by a large number of mutations

relative to the genetic background from which they first emerged, and exhibit altered

phenotypes resulting in varying combinations of increased transmissibility, virulence,

and immune evasion [15, 30, 35, 111].

Phylogenetic analyses show that a large number of mutations, mostly located in

the spike protein, have independently evolved in multiple lineages of SARS-CoV-2

including the Alpha, Beta and Gamma variants and are likely playing a key role in

the adaptive evolution of the SARS-CoV-2 [79, 112]. Experimental measurements

and molecular dynamics simulations also show that some of these mutations have

synergistic interactions for important functional traits [90, 131], indicating that they

may have greater combined fitness benefit to the virus. Some of the distinctive mu-

tations in the VOCs, including the E484K and N501Y mutations found in the first

three VOCs, have also been observed in chronic infections such as those in certain im-
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munocompromised individuals [18, 58, 62], suggesting that the VOCs may have arisen

from such infections. Some of the other possible explanations for the emergence of

VOCs include prolonged circulation of the virus in areas of the world with poor ge-

nomic surveillance or reverse-zoonosis from other animals such as rodents followed

by sustained transmission and adaptive evolution within the animal population and

a spill over back to the humans (see [95] for a recent review on the possible origins of

variants of SARS-CoV-2).

While finding the evolutionary process(es) that may have led to the emergence

of VOCs has profound consequences for understanding the fate of the SARS-CoV-

2 pandemic, there have currently been no systematic investigations to assess the

likelihood of any particular evolutionary pathway that would lead to the emergence

of VOCs. In this work, we investigate whether the emergence of VOCs was the result

of evolution via sustained transmission chains between acutely infected individuals

or prolonged infections and evaluate plausible fitness landscapes. We also discuss

the potential implications of our results for the future of the pandemic and potential

measures that might lower the rate at which new VOCs emerge.
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3.2 Results

3.2.1 Emergence of VOCs: an evolutionary puzzle

The Alpha, Beta, and Gamma VOCs arose independently and in quick succession,

with several shared mutations, in three different countries and began to spread glob-

ally (Figure 3.1). This long waiting time followed by clustered emergence of a hand-

ful of lineages was not predicted by any simple evolutionary theories. Typically, one

would assume that either the beneficial mutation supply is small, in which case one

expects a long waiting time for the first VOC but also long gaps before subsequent

VOCs, or the mutation supply is large, in which case one expects many VOCs with

only a short waiting time [57]. Moreover, each VOC had > 6 − 10 mutations dis-

tinguishing it from then-dominant genotypes, which was also unexpected. One of

the key evolutionary questions is whether VOCs evolved over the course of many

acute infections or within single chronic infected hosts. Both possibilities have se-

rious issues. The many-acute-infections hypothesis needs to explain how the virus

acquired so many changes, as the mutant lineages would have had to remain at fre-

quencies below the detection threshold in different countries for several months. The

chronic-infection hypothesis needs to explain both why adaptation to the within-host

environment led to a transmission advantage between hosts, and why there was no

‘leakage’ of some intermediate mutations at the between-host level before the emer-

gence of the VOCs, i.e., why genotypes with some of the VOC mutations did not

escape from the chronically infected patients earlier.

3.2.2 Between-host model of VOC emergence

We assume the effective virus population size is Ne = N/σ2 where N is the number of

infectious individuals worldwide and σ2 is the variance in offspring number (secondary

cases). We treat each acute infection as one generation, assuming a tight transmis-
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Figure 3.1: The three initial Variants of Concern arose in quick succession after a
long period of limited adaptation. For each VOC, the curve shows its frequency
among the SARS-CoV-2 sequences collected each week from its country of origin.
The table shows the amino acid changes across the SARS-CoV-2 genome that are
shared between at least two of the three VOCs [112]. *E484K has been detected in
some Alpha sequences.

sion bottleneck of a single virion [9, 73, 80]. Viruses mutate at rate µ per base per

generation (see Section 3.4). For a mutant virus population with selective advantage

s relative to the background, the average number of secondary cases increases by

a factor 1 + s. We also assume that the number of secondary cases approximately

follows a negative binomial distribution with mean Rt and dispersion parameter k, so

that σ2 ≈ Rt(1+Rt/k). There is substantial uncertainty in the amount of overdisper-

sion in the pandemic, and consequently similar uncertainty in the effective population

size. Therefore, we consider a range of values for k to see if any would be consistent

with the observed dynamics of the VOC emergence. We also note that while the im-

portance of spatial structure is clearly visible in the spatially restricted initial spread

of the VOCs from real-world data, we expect that we can neglect it when analyzing

their emergence. This is because spatial structure should not have a large impact on

viral dynamics until a lineage becomes locally common, and the specific mutations

differentiating the VOCs were all locally rare prior to their emergence.
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3.2.3 Within-host model of VOC emergence

Unlike tracking the between-host evolution of SARS-CoV-2 where an unprecedented

effort has led to huge numbers of consensus genome sequences [50], our current knowl-

edge of the within-host evolutionary dynamics of SARS-CoV-2 is still very limited,

particularly in those with chronic infections. Because there is very limited data with

which to constrain the within-host evolutionary dynamics of chronic infections with

SARS-CoV-2, we simply treat it as a ‘black box’ and assume with some probability,

Pf , that a new infection is chronic and may lead to the production of a VOC (Ta-

ble 3.1; section 3.4). We also assume that within-host substitutions required for the

production of the VOC occur at a constant rate µC per generation (see Table 3.1).

(Here a generation is still defined as the typical length of an acute infection.) Given

that we know only three VOC lineages emerged by late 2020, we expect TobsNPf ∼ 3

where Tobs ∼ 180− 317 days is the expected time to the emergence of the first VOC

since the beginning of the pandemic based on phylogenetic estimates (see Table 3.1).

Therefore, given the typical variation in the population size throughout the pandemic

for biologically relevant parameter combinations N ∼ 1 × 106 − 1 × 107, we expect

that values of Pf ∼ 5×10−9−1×10−7 will maximize the likelihood of the within-host

model and focus on these.
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3.2.4 Fitness landscapes

One possible explanation for the temporal clustering of VOCs with large numbers

of mutations is that the underlying fitness landscape may have some structure that

causes the dynamics to deviate from our usual expectations. Unfortunately, the

full space of possible fitness landscapes is enormous and impossible to explore ex-

haustively. To investigate the possible effects of the landscape on the dynamics, we

therefore focus on three limiting local fitness landscapes that span a range of biolog-

ically plausible scenarios (Figure 3.2a). Importantly, these landscapes describe only

between-host fitness, which could be very different from within-host fitness. As men-

tioned above, we treat within-host dynamics implicitly using an effective substitution

rate and so do not need an explicit fitness landscape for it. In all three landscapes,

the peak is a VOC phenotype with fitness advantage s over the ancestor. We assume

that Alpha, Beta, and Gamma are similar enough that they can be approximately de-

scribed by the same landscape and the same value of s, which we infer from the early

rate of increase of the VOCs (see Methods). Landscape 1 is the simplest possibility:

a single mutation on the ancestral background is sufficient to confer the full advan-

tage. In Landscape 2, we test whether simply increasing the number of mutations

involved can explain the temporal clustering. In this landscape, the VOC phenotype

is produced by a combination of K > 1 mutations, each providing an independent

fitness benefit s/K. In Landscape 3, we test whether epistasis may have an effect: the

VOC phenotype again requires K mutations, but we now assume that they provide

no fitness benefit until the full combination is acquired, i.e., the population must cross

a fitness plateau. As mentioned above, there is experimental evidence for this form of

epistasis among the VOC mutations [90, 131]. We expect that shallow fitness valleys

will produce similar dynamics to Landscape 3, as will shallow upward slopes with a

large jump in fitness at the end [122]. Note that mutations in all the three landscapes

can be acquired via the between- or within-host evolutionary pathways (Figure 3.2b).
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Table 3.1: Model parameters

Symbol Description Value(range) Source

t Time in units of genera-
tions

assuming 5.2 days per gen-
eration

[36]

IFR Global median infection
fatality rate of COVID-19

0.5%(0.2%− 1.5%) [68]

N Number of daily infectious
individuals worldwide

daily confirmed deaths /
median global IFR

-

µ Mutation rate per nu-
cleotide per generation

1.0(0.87− 2.0)× 10−5 [43]

s Selective advantage of the
VOCs

(0.3 - 1.1)

k Dispersion in distribution
of number of secondary in-
fections

0.1 (0.05 - 0.2) [34]

Tobs Time to the emergence of
the first VOC (number of
days since 2020-01-03)

(180 - 317) days [1, 35, 74, 113]

∆Tobs Time between the emer-
gence of the first and sec-
ond VOC

(0 - 137) days [1, 35, 74, 113]

Pf Probability of a chronic
SARS-CoV-2 infection in
an ICI producing a VOC

– –

µc Within-host fixation rate
of VOC mutations per gen-
eration

– –
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For each evolutionary scenario, we test whether there are parameter values consistent

with the data on the timing of the emergence of Alpha, Beta, and Gamma variants

of SARS-CoV-2 (see Section 3.4; Table 3.1). For these parameter values, we further

investigate whether they correspond to biologically reasonable scenarios in terms of

the frequencies of the intermediate mutations prior to the emergence of VOCs, total

number of mutations required to produce VOCs, total number of successful VOC

lineages produced over time, and the timing between the emergence of different VOC

lineages.

3.2.5 Landscape 1: Single mutations

We start with the simplest possible fitness landscape, in which a single mutation

conferring a fitness advantage s relative to the genetic background of circulating

lineages is required for the emergence of VOCs. We first consider the between-host

evolutionary pathway. As long as the effective population size of the pandemic was not

much smaller than the census size (i.e., overdispersion was not too large), the mutation

supply Neµ became large early in 2020. At this point, numerous lineages would

have emerged over a short period of time (see the k = 0.2 scenario in Figure 3.3a),

inconsistent with the observed dynamics. We can therefore rule out this scenario.
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(a) (b)

(c)

Figure 3.2: Possible evolutionary pathways to the emergence of SARS-CoV-2 VOCs.
(a, left) The three limiting fitness landscapes for the emergence of VOCs as a function
of the relevant number of mutations required, K. (a, right) VOCs can emerge from
either a single advantageous mutation (green) or multiple mutations that each con-
tribute independently to increasing fitness (blue) or only in combination (magenta).
(b). Emergence of VOCs via the within-host evolutionary path such that an infec-
tious individual passes on a wild-type variant of the virus to an immunocompromised
individual where the virus may acquire the relevant mutations during the chronic
phase of the infection and later be passed on to the rest of the population.



56

(a) (b)

Figure 3.3: Evolution between hosts on a single-mutation landscape (K = 1) rarely re-
produces the observed VOC dynamics, even with extreme overdispersion. (a). Total
number of established VOC lineages (M) measured under varied levels of overdisper-
sion, k, such that IFR= 1.5%, µ = 0.87× 10−5, K = 1, and s = 0.4. The inset shows
M with respect to the waiting time for the establishment of the first VOC lineage
since the start of the pandemic, T0. The region corresponding to the waiting time
for the emergence of the first three SARS-CoV-2 VOC is highlighted in red. Under
low levels of overdispersion (blue, k = 0.2), too many VOC lineages are produced
very early on in the pandemic. On the other hand, as we increase overdispersion
(orange and green), fewer VOCs can establish in the population. It also takes them
much longer to establish and reach high frequencies in the population. (b). Eval-
uating the temporal clustering of the first three VOC lineages. For each simulation
run, represented by a point on the graph, we measure T0 and the time difference
between the establishment of the first and third successful VOC lineages. The red
dashed rectangle shows the region corresponding to the emergence of the first three
SARS-CoV-2 VOCs with the cross sign (“X”) representing the mean value. We see
that as the level of overdispersion increases, the emergence time of VOCs are more
scattered and rarely exhibit temporal clustering in late 2020 – Only 9.1% and 2.9% of
the evolutionary dynamics corresponding to overdispersion k = 0.005 and k = 0.001
fall inside the enclosed area, respectively. The inset shows that 33.2% and 79.2% of
the runs for k = 0.005 and k = 0.001 scenarios produce fewer than three successful
VOC lineages by the end of the simulation period. Each run stops once the frequency
of the VOC population reaches 75%. See also Appendix Figure C.1.
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If overdispersion were very large, it could have kept Neµ low through the estab-

lishment of the VOCs (see the k = 0.005 and 0.001 scenarios in Figure 3.3a). Figure

3.3a shows that under extremely high levels of overdispersion (k = 0.005 and 0.001)

this model can match the long waiting time for the emergence of the first VOC.

However, such high levels of overdispersion are not supported by any existing epi-

demiological studies on SARS-CoV-2 transmission [34]. Moreover, Figure 3.3b shows

that this model rarely produces an evolutionary dynamics that would fit the joint

waiting time distribution for all three VOCs (also see Appendix Figure C.1). Un-

der these mutation-limited conditions, there is an approximately exponential waiting

time for the arrival of each VOC lineage (once we reach the point where COVID-19

becomes a pandemic in March 2020). Thus, it predicts similarly long waiting times for

the emergence of Alpha, Beta, and Gamma, inconsistent with the observed temporal

clustering. Therefore, there is no biologically reasonable combination of parameters

that result in the clustered emergence of VOCs in late 2020 via the Landscape 1

between-host evolutionary pathway.

On the other hand, if VOCs arose from chronic infections, then their emergence

was a two-step process: first, chronic infections had to occur, and then the VOC

mutation had to arise in them. The waiting time for the first step is determined by

NPf ; note that the number of chronic infections depends on the census size N rather

than Ne, i.e., it is insensitive to the amount of overdispersion. The second step follows

an exponential distribution within each chronic host, with rate µC . The third step, the

spread of the VOC from the original chronic host to the rest of the population, then

takes much less time than the first two. Figure 3.4 shows that to match observed

VOC dynamics we must assume that the level of overdispersion is very high (i.e.,

very low mutation supply, Neµ), effectively blocking the between-host evolutionary

pathway, while simultaneously assuming that chronic infections are very frequently

produced in the population (i.e., NPf ∼ 1) and that there is a relatively long waiting
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time before the production of each VOC mutation (µC ∼ 0.01). However, like the

between-host pathway, this scenario requires very high levels of overdispersion which

makes the Landscape 1 within-host evolutionary pathway also an unlikely explanation

for the emergence of VOCs (see Appendix Figure C.2).
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(a)

(b)

(c)
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Figure 3.4: Evolution within hosts on a single-mutation (K = 1) landscape can
match the observed VOC dynamics, but only with extreme overdispersion to prevent
between-host evolution. (a). Total number of established VOC lineages (M) mea-
sured under varied levels of overdispersion, k, where the within-host parameters for
the k = 0.2 scenario (blue) are Pf = 5 × 10−10 and µC = 0.001. For the k = 0.005
scenario (orange), Pf = 6 × 10−8 and µC = 0.1. Finally, for the k = 0.001 scenario
(green), Pf = 6× 10−6 and µC = 0.01. For all the three scenarios, the between-host
parameters µ = 0.87 × 10−5, IFR= 1.5%, K = 1, and s = 0.4 are the same. The
inset showsM with respect to the waiting time for the establishment of the first VOC
lineage since the start of the pandemic, T0. The region corresponding to the waiting
time for the emergence of the first three SARS-CoV-2 VOC is highlighted in red. We
see that under low levels of overdispersion, k = 0.2 (blue), too many VOC lineages are
produced very early on in the pandemic. On the other hand, as we increase overdis-
persion (orange and green), fewer VOC lineages can establish in the population, and
it generally takes longer for them to do so. (b). Evaluating the temporal clustering
of the first three VOC lineages. For each simulation run, represented by a point on
the graph, we measure the time that it takes for a single adaptive mutation to es-
tablish in the population and the time difference between the establishment of the
first and third successful VOC lineage. The red dashed rectangle shows the region of
the parameter space corresponding to the emergence of the first three SARS-CoV-2
VOCs with the cross sign (“X”) representing the mean value. The graph shows that
by increasing the level of overdispersion and lowering the evolutionary contribution
from the between-host pathway, multiple VOCs can emerge in quick succession via
the within-host pathway such that a larger fraction of the simulation runs yield the
correct timing for the emergence of the first three VOCs in late 2020 (i.e., they fall
inside the enclosed area). The inset shows that 27.8% and 17.2% of the runs for
k = 0.005 and k = 0.001 scenarios produce fewer than three successful VOC lineages
by the end of the simulation period. Each run stops once the frequency of the VOC
population reaches 75%. (c). A typical evolutionary trajectory corresponding to the
k = 0.001 scenario (green) highlighted with a bold green circle in panel (b).. The
graph shows the VOC population (green) along with the individual VOC lineages
(black dashed lines) emerging from the background population (gray). Red vertical
arrows show the establishment time of the first three VOCs. We see that the VOC
mutation is first produced in a single individual within the population (chronically
infected case) for a relatively long time before successfully spreading to the rest of
the population. See also Appendix Figure C.2.
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3.2.6 Landscape 2: Additive mutations

Landscape 2 corresponds to an evolutionary pathway in which there wereK > 1 major

mutations involved in the emergence of VOCs, each making an additive contribution of

≈ s/K to fitness. If evolution occurred at the whole-population level, Figure 3.5 and

Appendix Figure C.3 show that, for a range of parameter combinations, the additive

fitness landscape requiring up to four mutations can create evolutionary dynamics

with appropriately long waiting times before the arrival of the first successful VOC

lineage, while for combinations of more than four mutations, VOC lineages do not

emerge by late 2020 under any biologically reasonable parameter combinations for

effective population size, mutation rate, and selective coefficient. However, while

K ≤ 4 can match the observed waiting for the first VOC lineage, for the K = 2

and 3, this first VOC is usually followed by the establishment of nearly a dozen

VOC lineages that emerge in quick succession (see K = 2 and 3 scenarios in Figure

3.5a; also see Appendix Figure C.3), inconsistent with the observation of only three

VOC lineages emerging in late 2020. However, while for K = 4 fewer VOC lineages

are produced, a closer examination of a typical evolutionary trajectory that matches

the long waiting time before the establishment of the first VOC further reveals that

the intermediate single-, double-, or triple-mutants reach high frequencies before the

emergence of the first successful (quadruple-mutant) VOC lineage (Figure 3.5c). The

sequential fixation of adaptive mutations at the population level would imply that

the intermediate mutations were detectable many months prior to the emergence of

VOCs, again inconsistent with the genomic surveillance data from around the world.

The inconsistency is also visible phylogenetically. The sequential fixation dynamics

predicted by the model create a ladder-like phylogenetic relationship between the

background and mutant populations whereby every new VOC mutation becomes

dominant in the population before giving rise to lineages with additional mutations.

Even though such phylogenetic relationships may emerge in SARS-CoV-2 over longer
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evolutionary timescales [as have been observed in human coronaviruses [33]], they do

not resemble the observed topology of the phylogeny of the VOCs of SARS-CoV-2,

which is more star-like.
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(a)
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Figure 3.5: Between-host evolution on an additive fitness landscape can match the
observed VOC dynamics, but only by having intermediate mutants reach unrealis-
tically high frequencies. (a). Total number of established VOC lineages (M) for
different number of mutations, K, involved in the production of a VOC. For the
K = 2 scenario (blue), IFR= 1.5%, µ = 0.87× 10−5, k = 0.05, and s = 0.3. For the
K = 3 scenario (orange), IFR= 0.5%, µ = 0.87 × 10−5, k = 0.05, and s = 0.5. For
both the K = 4 (green) and K = 5 (magenta) scenarios, IFR= 0.2%, µ = 2 × 10−5,
k = 0.2, and s = 1.0. The inset shows M with respect to the waiting time for the
establishment of the first VOC lineage since the start of the pandemic, T0. Under
K = 2 and 3, a very large number of successful VOC lineages are produced by late
2020, with the K = 2 scenario producing, on average, more than 20 VOC lineages
that establish in the population. On the other hand, for the K = 5 scenario, on
average, fewer than three lineages are produced. It also takes much longer for them
to establish in the population. (b). Evaluating the temporal clustering of the first
three VOC lineages. For each simulation run, represented by a point on the graph,
we measure the time that it takes for a single adaptive mutation to establish in the
population and the time difference between the establishment of the first and third
successful VOC lineage. The red dashed rectangle shows the region of the parameter
space corresponding to the emergence of the first three SARS-CoV-2 VOCs with the
cross sign (“X”) representing the mean value. We see a noticeable overlap between
the K = 2 and 4 scenarios and the red rectangle suggesting that a larger fraction of
the simulation runs exhibit temporal clustering dynamics for VOC emergence. The
inset shows that 10.3% of the runs for the K = 4 scenario produce fewer than three
successful VOC lineages by the end of the simulation period. Each run stops once the
frequency of the VOC population reaches 75%. (a). A typical evolutionary trajectory
corresponding to the K = 4 scenario highlighted with a bold green circle in panel
(b).. The graph shows the background population in gray and the i-mutant popula-
tions (1 < i ≤ K) in different shades of green from light (fewer mutations) to dark
(more mutations). Note that for the K = 4 scenario, there are four single-mutant,
six double-mutant, four triple-mutant, and one quadruple-mutant genotypes. The
dashed lines show the dynamics of all the established VOC lineages over time. Red
vertical arrows show the establishment time of the first three VOCs. We can see that
some of the intermediate mutant genotypes reach close to fixation before giving rise
to the VOC population. See also Appendix Figure C.3.
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For the chronic-infection pathway, on the other hand, the intermediate mutants

could have fixed within the host while remaining at undetectable frequencies at the

between-host level until the production of the VOCs. Figure 3.6 shows that for a

combination of parameters requiring K=3 and 6 mutations where the mutation supply

is low and the strength of selection is relatively weak such that the intermediate

mutants cannot reach fixation before the emergence of the VOC population, the

Landscape 2 within-host pathway can lead to the clustered emergence of a few VOC

lineages by late 2020. However, if the selective coefficient s/K on single mutants

is too high, they will reach observable frequencies before the VOCs emerge, as we

discussed above with the between-host pathway. Effectively, this means that there is

a minimal K of at least 3 needed so that the strength of selection on each mutant

allele is not too strong. Alternatively, lower K is possible but requires extremely large

overdispersion, as in the K = 1 case.
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Figure 3.6: Evolution within hosts on an additive fitness landscape can match the
observed VOC dynamics as long as K is large enough that between-host evolution is
ineffective. (a). Total number of established VOC lineages (M for different number of
mutations, K, involved in the production of a VOC. ForK = 3 (blue), the within-host
parameters are Pf = 3.5× 10−8, and µC = 0.15. For K = 6 (orange), Pf = 3× 10−8,
and µC = 0.3. In both scenarios, the between-host parameters µ = 0.87 × 10−5,
IFR= 1.5%, k = 0.05, and s = 0.3 are the same. The inset shows M with respect to
the waiting time for the establishment of the first VOC lineage since the start of the
pandemic, T0. The region corresponding to the waiting time for the emergence of the
first three SARS-CoV-2 VOC is highlighted in red. Both scenarios produce roughly
the same of number of VOC lineages. However, on average, T0 is slightly longer for
the K=6 scenario. (b). Evaluating the temporal clustering of the first three VOC
lineages. For each simulation run, represented by a point on the graph, we measure
the time that it takes for a single adaptive mutation to establish in the population
and the time difference between the establishment of the first and third successful
VOC lineage. The red dashed rectangle shows the region of the parameter space
corresponding to the emergence of the first three SARS-CoV-2 VOCs with the cross
sign (“X”) representing the mean value. We can see that by having a combination of
relatively high level of overdispersion, high IFR, and low between-host mutation rate,
there is a lower chance of intermediate mutations reaching fixation via the between-
host path. Instead, multiple VOCs can emerge in quick succession during chronic
infections such that a relatively large fraction of the simulation runs yield a temporal
clustering that matches the emergence of the first three VOCs in late 2020 (i.e., they
fall inside the enclosed area). The inset shows that 20.5% and 13.7% of the runs for
K = 3 and 6 scenarios produce fewer than three successful VOC lineages by the end
of the simulation period, respectively. Each run stops once the frequency of the VOC
population reaches 75%. (c). A typical evolutionary trajectory corresponding to the
K=6 scenario highlighted with a bold orange circle in panel (b).. The graph shows
the background population in gray and the i-mutant populations (1 < i ≤ K) in
different shades of green from light (fewer mutations) to dark (more mutations). The
dashed lines show the dynamics of all the established VOC lineages over time. Red
vertical arrows show the establishment time of the first three VOCs. We can see that
the single-mutant genotypes (lines in light orange) are produced via the between-host
pathway but never reach above 1% prevalence before the emergence of the VOCs
(white dashed lines). See also Appendix Figure C.4.
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3.2.7 Landscape 3: Fitness plateau crossing

As in Landscape 2, Landscape 3 describes an evolutionary pathway where there are

K > 1 major mutations involved in the generation of VOCs, but in this case, only

the full K-mutant VOC genotype has a substantial selective advantage relative to the

background population, while the selective advantages of the intermediate genotypes

are negligible. This does not necessarily imply that the selective coefficients of the

intermediate genotypes are small in the standard weak-selection sense (small relative

to 1/Ne), but only that they are too small to substantially affect the dynamics of

the production of the first successful K-mutant VOC lineage, a weaker condition that

depends on the mutation rate [122].

For the between-host model of VOC emergence, our analysis suggests that only a

plateau-crossing of size K = 2 may be consistent with the timing of the emergence of

SARS-CoV-2 VOCs (Figure 3.7; Appendix Figure C.5). Extended plateaus requiring

K > 2 mutations take much longer to cross and for most parameter combinations

either zero or one VOC lineage is produced before the end of 2020 (Figure 3.7a).

For a typical K = 2 plateau-crossing trajectory, single-mutant genotypes grow lin-

early over time and reach a frequency of ⪅ 0.1% before producing ∼ 1− 5 successful

VOC lineages that emerge in quick succession (Figure 3.7c). Therefore, unlike the

between-host evolutionary pathway in Landscape 2, a fitness plateau could have led

to the clustered emergence of several VOCs after a long waiting time during which

none of the intermediate mutations reached high frequency. However, the fact that

for biologically plausible parameter values only a narrow plateau of K = 2 muta-

tions can be crossed seems inconsistent with the high number of mutations found in

the VOCs and particularly with the high number of similar mutations shared across

unrelated VOC lineages. This inconsistency may be partly reconciled with the pos-

sibility of compounded evolutionary effects following the plateau-crossing event such

as the emergence of hyper-mutability traits across certain sites or strong within-host
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selection following the acquisition of the K mutations.
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Figure 3.7: Between-host evolution on a fitness plateau can match the observed VOC
dynamics, but only for K = 2. (a). Total number of established VOC lineages (M)
for different number of mutations, K, involved in the production of a VOC, such
that IFR= 0.2%, µ = 2 × 10−5, k = 0.2, and s = 1.0. The inset shows M with
respect to the waiting time for the establishment of the first VOC lineage since the
start of the pandemic, T0. For K = 1 and 3 scenarios, there are too many and
too few VOC lineages are produced by late 2020. Only for the K = 2 scenario we
can see an intermediate number of VOC lineages being produced in the right time
span. (b). Evaluating the temporal clustering of the first three VOC lineages. For
each simulation run, represented by a point on the graph, we measure the time that
it takes for a single adaptive mutation to establish in the population and the time
difference between the establishment of the first and third successful VOC lineage.
The red dashed rectangle shows the region of the parameter space corresponding to the
emergence of the first three SARS-CoV-2 VOCs with the cross sign (“X”) representing
the mean value. We see a noticeable overlap between the K = 2 scenario and the red
rectangle suggesting that a fraction of the simulation runs exhibit temporal clustering
dynamics for VOC emergence. The inset shows that 99.2% and 25.7% of the runs
for the K = 3 and two scenarios produce fewer than three successful VOC lineages
by the end of the simulation period. Each run stops once the frequency of the VOC
population reaches 75%. (c). A typical evolutionary trajectory corresponding to
the K = 6 scenario highlighted with a bold orange circle in panel (b).. The graph
shows the background population in gray, single-mutants in light orange, and double-
mutants in dark orange. Note that for theK = 2 scenario, there are two single-mutant
and one double-mutant genotypes. The dashed lines show the dynamics of all the
established VOC lineages over time. Red vertical arrows show the establishment time
of the first three VOCs. We can see that the single-mutant genotypes reach close to
0.1% before giving rise to the VOC population. See also Appendix Figure C.5.
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If the VOCs arose from chronic infections, the intermediate VOCmutations (which

are neutral at the between-host level of selection but may be selected within-host)

can rapidly fix within a host, allowing much wider plateaus to be crossed compared

to the between-host evolutionary pathway. Unlike Landscape 2 within-host pathway,

the early leakage of intermediate mutations to the population is much less likely as

they have no strong selective advantage over the background population. Figure 3.88

shows that the within-host evolutionary pathway of Landscape 3 creates evolutionary

trajectories that are consistent with the clustered emergence of ∼ 3 VOCs in late

2020. There is also less seeding of new chronic infections with intermediate mutations,

leading to fewer VOC lineages compared to Landscape 2 (also see Appendix Figure

C.6).
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Figure 3.8: Within-host evolution on a fitness plateau can match the observed VOC
dynamics for a large range of plateau widths. (a). Total number of established VOC
lineages (M for different number of mutations, K, involved in the production of a
VOC. For K = 3 (blue), the within-host parameters are Pf = 2×10−8, and µC = 0.1.
For K = 6 (orange), Pf = 4.5×10−8, and µC = 0.25. In both scenarios, the between-
host parameters µ = 1 × 10−5, IFR= 0.5%, k = 0.1, and s = 0.7 are the same. The
inset showsM with respect to the waiting time for the establishment of the first VOC
lineage since the start of the pandemic, T0. The region corresponding to the waiting
time for the emergence of the first three SARS-CoV-2 VOC is highlighted in red.
Both scenarios produce roughly the same of number of VOC lineages. However, on
average, T0 is slightly longer for the K = 6 scenario. (b). Evaluating the temporal
clustering of the first three VOC lineages. For each simulation run, represented by a
point on the graph, we measure the time that it takes for a single adaptive mutation
to establish in the population and the time difference between the establishment of
the first and third successful VOC lineage. The red dashed rectangle shows the region
of the parameter space corresponding to the emergence of the first three SARS-CoV-
2 VOCs with the cross sign (“X”) representing the mean value. We can see that a
noticeable fraction of simulation runs for both scenarios yield a temporal clustering
that matches the emergence of the first three VOCs in late 2020 (i.e., they fall inside
the enclosed area). The inset shows that 35.5% and 25.9% of the runs for K = 3
and 6 scenarios produce fewer than three successful VOC lineages by the end of
the simulation period, respectively. Each run stops once the frequency of the VOC
population reaches 75%. (c). A typical evolutionary trajectory corresponding to
the K = 6 scenario highlighted with a bold orange circle in panel (b).. The graph
shows the background population in gray and the i-mutant populations (1 < i ≤ K)
in different shades of orange from light (fewer mutations) to dark (more mutations).
The dashed lines show the dynamics of all the established VOC lineages over time.
Red vertical arrows show the establishment time of the first three VOCs. We can see
that the single-mutant genotypes (lines in light orange) are produced via the between-
host pathway from very early on in the pandemic but are at very low prevalence before
the emergence of the VOCs (white dashed lines). See also Appendix Figure C.6.
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3.3 Discussion

The global spread of the Omicron variant of SARS-CoV-2 has given a renewed atten-

tion to the underlying evolutionary mechanisms that lead to the emergence of VOCs.

Practically, we would like to know whether to expect future VOCs to arise, and if so

when and whether there will be early warning signs. Answering this question is not

only important for understanding the fate of the pandemic but also may have major

public health implications for how to best develop strategies for controlling the spread

of the disease. In this study, we provided a quantitative framework for investigating

the likelihood of different evolutionary pathways that can give rise to VOCs of SARS-

CoV-2. We found that VOCs are unlikely to be driven by a single adaptive change at

the population level as this would require significantly high levels of overdispersion

which is not supported by any existing epidemiological study on SARS-CoV-2 trans-

mission [34]. We also showed that if multiple VOC mutations combine additively for

advantage, they can only emerge on the background of a chronic infection, otherwise

individual VOC mutations would reach high frequencies from the early stages of the

pandemic and, therefore, would have been picked up from genomic surveillance data.

If individual VOC mutations were acquired during chronic infections and had a strong

advantage relative to the then-dominant genotypes, they may have still been leaked

to the population at large before the emergence of VOCs. Therefore, we showed that

only additive mutations with relatively small fractional contribution to VOC fitness

may yield evolutionary dynamics that resembles the clustered emergence of SARS-

CoV-2 VOCs in late 2020. On the other hand, we showed that cryptic circulation of a

mutant lineage for sustained periods of time before producing VOCs is possible via a

fitness plateau-crossing landscape. While at the between-host level such a landscape

may not yield more than two mutations in excess of the background population over

a period of 7-12 months under biologically relevant parameter combinations, many

more mutations can be accumulated during a chronic infection, for example such as
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those found in certain immunocompromised individuals, without ever being leaked to

the rest of the population. We found that the pattern of the timing of VOC emergence

via the fitness plateau-crossing landscape under both the within- and between-host

pathways are aligned with the timing of the clustered emergence of Alpha, Beta, and

Gamma variants in late 2020.

Studies have shown that the N501Y mutation alone in Alpha have resulted in

its enhanced transmissibility in hamsters while other mutations were either neutral

or deleterious when expressed individually [70]. This may imply that the evolution-

ary pathway towards the emergence of Alpha may have been a result of a mixture

between Landscape 1 and 2 whereby some of the intermediate mutants had a selec-

tive advantage compared to the ancestral state while others were effectively neutral.

Furthermore, it is possible that other VOCs such as Delta have taken up a similar

evolutionary path where some of the intermediate mutations reached high frequencies

in the population before the constellation of mutations appeared in the Delta clade

[76].

Phylogenetic studies have also provided evidence for the detection of intermediate

Alpha- and Gamma-like genomes which are highly divergent and are ancestral to the

Alpha and Gamma clades [46, 51]. This is aligned with the possibility that some of

the intermediate mutants which are potentially highly divergent leaked through to

the rest of the population before the constellation of K mutation was produced in a

chronically infected individual, as predicted by our model.

Finally, it is important to note that in all of the within-host evolutionary pathways

(i.e., Landscapes 1, 2, and 3), we found parameter combinations that can re-create the

clustered emergence of the first three SARS-CoV-2 VOCs. In particular, we showed

that either because of having very few mutations that are selectively beneficial at the

population level (i.e., Landscape 1) or the low prevalence of intermediate mutations

before the emergence of the VOCs (i.e., Landscapes 2 and 3), we would expect the
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Figure 3.9: Within-host evolution reproduces the star-like genealogy of the VOCs.
For a wide range of parameter combinations in Landscape 1, 2, and 3, we showed
that the within-host evolutionary dynamics can become virtually uncoupled from the
evolution at the between-host level enabling each VOC lineage to arise independently
on the background of a different clade which leads to a star-like tree topology.

phylogenetic relationship between the VOC lineages and background populations to

manifest itself with a long evolutionary distance branch connected to deeper internal

nodes of the tree with each VOC clade independently emerging from a unique genetic

background and be subsequently replaced by another VOC clade from an entirely

different background (Figure 3.9). This creates a phylogenetic relationship between

VOC clades that is similar to what we observe for Alpha, Beta, and Gamma variants

[1, 35, 113].

3.3.1 Cryptic transmission of VOCs in humans

Another possibility for why the VOCs were not detected until mid to late 2020 is

that they may have been circulating cryptically in areas of the world with poor

genomic surveillance before becoming globally dominant. While variants of SARS-

CoV-2 with multiple spike mutations have been detected through travel surveillance

from passengers travelling from areas with little to no genomic surveillance [21, 31],

if they were highly transmissible variants and had a potential to become a VOC,

given the interconnectivity of the human interactions, it should not take very long
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before they become globally dominant. Therefore, as we showed in our analysis

of Landscape 1, this scenario of VOC emergence seems to be only possible under

significant levels of overdispersion such that it prohibits the selectively beneficial

mutations from immediately taking off globally relative to other variants.

3.3.2 Possibility of reverse zoonosis

A somewhat similar idea to the cryptic transmission of variants in human populations

is the possibility of a lineage (or multiple lineages) of SARS-CoV-2 jumping from

humans to other mammals such as white-tailed deer, mink, hamster, and mouse

where they circulate and evolve without being detected for a relatively long period

before they jump back to the human population [16, 96, 118, 130]. In particular,

some recent studies have reported the detection of multiple spillovers of SARS-CoV-

2 from humans and onward transmission in deer population with highly divergent

genomes being detected in deer population with potential deer-to-human transmission

[66, 102]. However, the genomic composition of these divergent genomes in deer

population are different from the VOCs with a much lower ratio of non-synonymous

to synonymous changes which suggests they may be following a completely different

evolutionary path. Nevertheless, these studies indicate that it is possible for a highly

divergent set of genomes to evolve in another species with a potential for deer-to-

human transmission without ever being detected. Mink and hamster sequences offer

some of the more compelling examples of transmission from humans to a non-human

species and back, supported by phylogenetic evidence [96, 130]. None of the currently

identified sequences from animals appear as sister taxa to any of the circulating VOCs.

While we cannot rule out evolution in an animal reservoir, one might expect the

contribution of animals to human transmission chains to be dwarfed by the amount

of human-to-human transmission currently happening.
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3.3.3 Role of recombination

Recombination can bring together mutations from different backgrounds, potentially

expediting the rate of adaptation by creating viable and more pathogenic hybrid new

variants of a pathogen. Coronaviruses are also known to recombine with one an-

other during mixed infections [47, 75]. While during the early stages of the pandemic

SARS-CoV-2 sequences typically differed by only a handful of mutations from each

other thereby making the effects of recombination indistinguishable from those of re-

current mutation [84], as more viral genetic diversity built-up in the population, the

generation and transmission of interlineage recombinants of SARS-CoV-2 in humans

were reported in multiple studies [49, 56]. Even though there is currently no definitive

evidence for recombination being involved in the emergence of VOCs, including the

emergence of ancestral Omicron lineage [117], we would expect the role of recombina-

tion to be more pronounced as the virus continues accumulate more genetic diversity

by sustained circulation around the world. It has also been suggested that the emer-

gence of the BA.3 lineage was a result of an ancestral recombination event between

BA.1 and BA.2 [117]. Also, the emergence of the newly identified BA.4/BA.5 lineages

was likely through a prior interlineage recombination event [114].

3.3.4 Shifting landscape

We have assumed a static fitness landscape prior to the emergence of the first three

VOCs; here we consider the plausibility of that assumption. During the first year of

the pandemic, a novel virus was spreading in an immunologically näıve population

[79]. As more individuals became infected and developed natural immunity, it is

possible that the fitness landscape for the virus shifted as selection for immune escape

increased [3]. However, by the time the first three VOCs emerged in late 2020,

the majority of the world’s population were still susceptible to the disease and may

not have even been exposed to it. Therefore, it is unlikely that the build-up of
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natural immunity alone was the reason behind their increased selective advantage. In

contrast, the global dominance of Omicron in late 2021 was largely due to its immune

escape properties relative to previous variants of SARS-CoV-2 [103] and, therefore,

its emergence was likely the result of a changing viral fitness landscape.

Based on our model assumptions, one may expect that Omicron should have also

emerged along with the first three VOCs in late 2020. However, it is possible that the

rapid rise in infections globally by early 2021 resulted in a shift in the evolutionary

landscape of the virus, creating another long waiting time before the emergence of

Omicron. In that respect, our modelling framework may also explain the clustered

emergence of BA.1 and BA.2 lineages of Omicron around the same time with largely

similar sets of mutations. It is possible that after acquiring the necessary constellation

of mutations, they leaked to the rest of the population as BA.1 while the virus was still

evolving in a chronically infected host diverged further away from BA.1 by acquiring

rapid sequential adaptive substitutions leading to the BA.2 lineage. Therefore, we

may expect to see similar shifts in the landscape in 1-2 years from now.

3.3.5 Delta, Omicron, and future VOCs

Emergence of new VOCs with increased transmissibility, immune evasion properties,

and virulence poses a great challenge to managing SARS-CoV-2. While we have

focused on the first three VOCs, our basic finding that chronic infections greatly

increase the virus’ ability to explore the fitness landscape suggests such infections are

likely to also have been sources of the highly divergent Delta and Omicron variants

and may well also be sources of future VOCs. Apart from the N501Y and E484K

mutations, other spike mutations such as ∆H69–V70, P681H, and H655Y have also

been found in several VOCs including Delta and Omicron as well as some chronically

infected individuals [124, 125], making it plausible that these VOC mutations have

also emerged from chronic infections which have also been repeatedly favored by
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natural selection [2].

If chronic infections are indeed the main source of generating VOCs, then finding

and treating chronic infections should be a top priority, not just for the benefit of

chronically ill patients but also from a public health standpoint. One of the main

challenges with assessing the likelihood of VOC emergence during chronic infections

would be to quantify the prevalence of immunosuppressed individuals within a popu-

lation and determine which forms of immunosuppression are associated with chronic

infections.

Several studies have now shown evidence of recurrent SARS-CoV-2 mutations in

immunocompromised patients [18, 58, 62], with some suggesting the detection of a

variant-like lineage which arose from a chronic infection that spilled over into a local

population [45, 124]. Another major implication of our work is that we can now

quantitatively explain the possibility of such events and find the expected time that

it takes for a new VOC to emerge from a within-host evolutionary pathway that

involves any number of mutations. We showed that a typical within-host plateau-

crossing or additive mutation pathway involving 3-6 mutations requires a within-host

fixation rate of µC ∼ 0.1−0.3 per generation which corresponds to a period of 50-300

days since the start of a chronic infection. The timing of such an event aligns with

the time frame over which some of the major mutations involved in VOCs have been

observed in patients with chronic infections [18, 58, 62]. This also implies that if a

VOC emerges from the within-host evolutionary pathway, it is more likely to reflect

the genetic diversity of the virus population from several months ago. It can explain

why, for instance, Delta was not descended from an earlier VOC, and even more

strikingly, the Omicron variants were not descendants of Delta, which was the most

prevalent variant at the time of emergence of Omicron. It also suggests that while the

next VOC could emerge from the prevalent Omicron background, it could also come

from, e.g., a chronic infection with Delta that started prior to the Omicron wave.
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Some of the key remaining questions involve how much more of the fitness landscape

the virus will be able to explore as more chronic cases accumulate and existing chronic

cases last longer. For instance, if it has already crossed a 6-mutant fitness-plateau,

how much longer would it take to explore 7-mutant fitness plateaus?

3.4 Materials and methods

3.4.1 Between-host model of VOC emergence

Effective population size

We approximate the between-host evolution of SARS-CoV-2 as a haploid popula-

tion of size N(t) which is equal to the number of daily infectious individuals with

SARS-CoV-2 worldwide. Since the number of confirmed cases is often a significant

underestimation of the true number of infections [e.g., see [14, 42]], we use the number

of daily confirmed deaths [127] to back-calculate the number of infectious individuals,

N(t), from the global median infection fatality rate (IFR) of COVID-19 [68]. We note

this approach is still subject to several potential sources of bias including variation in

IFR over time (e.g. due to various pharmaceutical interventions) and across different

demographics [92]. Using confirmed COVID-19-related deaths may still underesti-

mate the true number of deaths associated with the disease due to under-reporting of

deaths particularly in areas of the world where there is limited testing from suspect

cases [59]. Nevertheless, by allowing for a wide variation in global IFR (from 0.2% to

1.5%), we can capture most of the uncertainty in the number of infectious individuals

worldwide. We also note that for the timespan of interest in our work (i.e., start of the

pandemic until the emergence of the first three VOCs), the impact of pharmaceutical

interventions such as vaccination on lowering the global IFR is likely to have been

negligible given that vaccination campaigns mostly started in 2021. The confirmed
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global deaths started being reported from 2020-01-23. Assuming a 20-day delay from

the onset of symptoms to death [129], we set 2020-01-03 as the first timepoint in the

simulation.

Advantage of mutants

The selective coefficient of a mutant individual depends on its number of mutations

and the fitness landscape (see Figure 3.2a). For instance, in the case of an additive

fitness landscape of sizeK = 3, the fitness advantage of the single-, double-, and triple-

mutants are s/3, 2s/3, and s relative to the wild-type population, respectively. During

one generation, the frequency fi of individuals with genotype i and selective advantage

si relative to the wild-type increases by a factor (1+si), along with further adjustments

to their frequency due to mutations from/to other genotypes. Upon normalization

(
∑

i fi = 1), these frequencies are used for the Dirichlet-multinomial sampling step.

After the sampling step, the numbers of cases are converted to frequencies for sampling

in the next generation.

Epidemic spread

Due to a high degree of individual-level variation in the transmission of SARS-CoV-2

(i.e., overdispersion) [34, 71], we use a Dirichlet-multinomial (instead of a multi-

nomial) distribution to assign offspring in generation t + 1 to parents from gen-

eration t. The Dirichlet-multinomial is parametrized by N(t + 1) (the number of

offspring to draw for the next generation) and A
−→
f , the weights of the different

genotypes, where
−→
f is the normalized vector giving their frequencies in the cur-

rent generation. The scalar A controls the amount of dispersion, with smaller A

corresponding to increased demographic noise. To match it to observations, we note

that under the Dirichlet-multinomial model, the number of secondary cases produced

by an infection approximately follows a negative binomial distribution with mean
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Rt = N(t + 1)/N(t). In terms of the Dirichlet multinomial parameters, the vari-

ance of this negative binomial is σ2 = N(t+1)
N(t)

(
1− 1

N(t)

)
N(t+1)+A

1+A
≈ Rt

N(t+1)+A
1+A

. This

should match the variance in the number of secondary cases written in terms of the

dispersion parameter K, σ2 = Rt(1 + Rt/k). Equating these two expressions gives

A = kN(t)(1− 1
N(t+1)

)− 1 ≈ kN(t).

Mutation rate

Assuming a constant generation time 5.2 days for all variants of SARS-CoV-2 over

time [36], we use the phylogenetically estimated substitution rate per site per year

[43] to calculate the mutation rate per site per generation time, µ. We also note

that generation time may vary over time depending on the behavioral changes in the

population and emergence of variants, which is why we allow for some variation in

the mutation rate parameter in our model (0.87− 2.0)× 10−5 based on phylogenetic

estimates. We assume each site has two states: wild-type and mutant. Therefore, for

a group of K sites, there are 2K genotypes. The reason for choosing this binarization

of the mutation states is given the relatively short evolutionary timescales over which

we are examining the evolution of SARS-CoV-2, we do not expect to see more than

one nucleotide change at any given site. We assume that at each site there is only one

possible mutation that contributes to the VOC phenotype, so alternative mutations

can be neglected.

Inferring the selective advantage of VOCs

Finally, the selective advantage s of the VOCs is determined by fitting an exponen-

tial function, f(t), of the form, f(t) = aest, to the proportion of Alpha, Beta, and

Gamma variants sampled in the country where they were first detected (i.e., UK,

South Africa, and Brazil) using the NonlinearModelFit function in Mathematica 11.0

[126]. We find that the selective advantage s for Alpha, Beta, and Gamma are 0.37
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(95% confidence interval: 0.33 - 0.41), 0.74 (95% confidence interval: 0.65 - 0.83),

and 0.84 (95% confidence interval: 0.58 - 1.08), respectively (see Appendix Figure

C.7). The confidence interval is obtained by multiplying the standard error by the

value of Student’s t for the given confidence level and degrees of freedom. Given

the uncertainty in our estimates due to noise in the observations, potential sampling

bias, and spatio-temporal heterogeneities, we make the assumption that the value of

s is roughly the same for the different VOCs and use the same estimate for all three

trajectories (Table 3.1).

3.4.2 Within-host model of VOC emergence

Each VOC mutation is fixed within the host at rate µC such that the fixation time

is an exponentially distributed number with mean 1/µC . Each mutation may then

spread to the rest of the population with a probability that is proportional to its

fitness as determined by the Dirichlet-multinomial sampling. At any time during the

pandemic, a chronic infection can be seeded by other infectious individuals within the

population, N(t), with a probability Pf . Therefore, at every generation, the number

of chronic infections is given by a binomial distribution with success probability Pf .

Once a chronic infection emerges, it remains in the population for the remainder of

the simulation period.

3.4.3 Simulation setup

For both within-host and between-host models of VOC emergence, we run each evo-

lutionary scenario for a given combination of model parameters 1,000 times. We then

measure total number of established VOC lineages, M , the time that it takes for the

establishment of the first VOC, T0, and the time between the establishment of the ith

and (i+1)th VOC, Ti:(i+1), for the first six established VOC lineages in each scenario.

An established VOC lineage is defined as a lucky lineage with selective advantage s
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that survives drift upon reaching a size 1/s. Similarly, the establishment time of a

VOC lineage is defined as the time that it takes for that lineage to reach size 1/s.

Each run stops once the frequency of the VOC population reaches 75%.
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Conclusion

In this dissertation, we have investigated various aspects of evolution: optimal pop-

ulation dynamics, mode of selection, and the emergence of SARS-CoV-2 variants of

concern (VOCs). The findings from the three independent projects shed light on

different mechanisms and factors influencing adaptation and genetic changes.

Collectively, these three projects contribute to our understanding of the complex-

ities of evolution and provide insights into the mechanisms underlying adaptation

and genetic changes. By considering population dynamics, selection modes, and real-

life scenarios such as viral evolution, this research enhances our knowledge of the

factors shaping evolutionary processes. Further investigations building upon these

findings will continue to advance our understanding of evolution and its implications

for various biological systems and practical challenges.

Synchronization at the population and individual

level

In Chapter 1, we focused on investigating the synchronization of population and

individual levels with respect to population structure. Our study revealed how pop-

ulation structure can facilitate the accumulation of genetic diversity, and how this

can combine with synchronized dispersal and sexual reproduction to produce very fit

recombinant individuals.
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The novel mechanism we discovered shows how population structure can expedite

adaptation on smooth fitness landscapes without the presence of epistasis by mini-

mizing clonal interference among alleles. This finding has significant implications for

evolutionary experiments, as structured populations are often preferred when study-

ing scenarios involving epistasis, as they allow for exploration across the genome space

[22, 65, 87, 116].

The bursty population dynamics we observed are particularly effective in gener-

ating novel genotypes during periods of environmental stress, facilitating significant

moves within the genome space. This characteristic is especially advantageous when

crossing fitness valleys becomes necessary [25]. Moreover, the proposed synchroniza-

tion approach is practical and feasible for evolutionary experiments. Microbial ex-

periments have already investigated the rate of adaptation in structured populations

[65, 101]. By incorporating a periodic stressful environment into the bursty mixing

setup, it can be easily implemented using existing experimental protocols [65]. Sim-

ply introducing a stressful stimuli during the mixing procedure to induce facultative

sexual reproduction allows for the creation of the desired synchronization. Therefore,

our model holds promise for further experimental investigations.

Exploring the role of bursty population dynamics in the context of complex fitness

landscapes, including landscapes with epistasis and ruggedness, would be a fascinating

area of investigation. This would help elucidate the specific conditions under which

bursty populations are most advantageous and shed light on the interplay between

population structure, synchronization, and the exploration of the genome space.

Saturating fitness function

In Chapter 2, we explored the introduction of the logistic fitness function to limit

the reproductive advantage of the fittest individuals. This approach promoted the
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coexistence of competing lineages, generating abundant genetic diversity. Comparing

different forms for the fitness function revealed that the key to enhancing adaptation

was promoting the reproduction of moderately fit individuals.

However, it is important to note that there is a lack of direct results regarding

the contribution to adaptation of individuals from different parts of the fitness distri-

bution. Previous studies have indicated that moderate-strength truncation selection

(∼ 15% − 50%) can be optimal for long-term evolution [52, 53, 105]. This suggests

that the contribution of the best individuals directly impacts short-term evolution,

while moderately fit individuals play a crucial role in long-term evolution. The impact

of maladapted individuals remains unclear. On one hand, they can hinder adaptation

by reducing the efficiency of exploiting beneficial genotypes. On the other hand, they

may carry novel mutations that occur independently of their genetic background. In

the bursty population framework, the genetic variation present in maladapted in-

dividuals can be used during periods of very frequent sexual reproduction, freeing

beneficial mutations from poor genetic backgrounds. Future studies could focus on

investigating the evolutionary contribution of these less-fit individuals under consis-

tent environmental conditions.

Moreover, it is worth considering the potential integration of the optimal evolution

strategies explored in this chapter and in Chapter 1. In Chapter 1, we introduced a

population dynamics that effectively uses the genetic diversity preserved by popula-

tion structure. In Chapter 2, we introduced a mode of selection that greatly increases

genetic diversity. By combining these two approaches, we propose a more effective

evolution strategy. The fitness function can allow genetic diversity to build up during

typical generations, and then these genetic resources can be converted to phenotypic

diversity during bursts of frequent sexual reproduction. These bursts could also in-

clude periods during which the fitness function is switched back to a more standard

exponential form to allow for increased exploitation. This integrated strategy holds
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promise for adaptation in scenarios characterized by strong clonal interference.

The emergence of the first three SARS-CoV-2 vari-

ants of concern

In Chapter 3, we introduced a quantitative framework to study the evolutionary

pathway leading to the emergence of Variants of Concern (VOCs) of SARS-CoV-2,

focusing on the contrast between evolution occurring while being transmitted from

host to host and within-host evolution during chronic infection. Our findings high-

light that VOCs are primarily driven by combinations of mutations originating from

chronic infections. Consequently, treating chronic infections becomes crucial in re-

ducing the rate of future VOC emergence. While our simulations are consistent with

multiple clinical studies (see Chapter 3, Section 3.3), they rely on inferred clinical

parameters. The actual mechanism of within-host evolution, in particular, remains

poorly understood. We treat this process as a “black box” and assume a constant

within-host substitution rate, independent of the genetic background and health of the

host. Additionally, there is a lack of studies on two key parameters, Pf and µc, which

we indirectly infer. It is important for subsequent studies to improve the understand-

ing of the actual mechanisms and corresponding parameters to refine the accuracy

of the predictions. It remains completely unclear, for instance, how the within-host

fitness landscape relates to the between-host one, i.e., why evolution within a single

host should sometimes select for increased ability to transmit between hosts.

Regarding between-host evolution, there has been unprecedented attention given

to this specific process for COVID-19. As a result, we have multiple sources to infer

the parameters (Table 3.1). However, there are simplifications in this mechanism.

We treat susceptible individuals as a well-mixed population, neglecting the spatial

structure of SARS-CoV-2 transmission. This simplification may impact the spread of



91

intermediate mutants that do not benefit from complete fitness increases. We argue

that this effect might be minor in the early stages when the mutant frequency is still

low. Lineages can still experience exponential growth in frequency based on fitness

advantages before encountering limitations imposed by locality. But the observed

incidence curves of the VOCs in fact deviate substantially from simple exponentials.

The reasons for this remain unclear, as does the reason for the prolonged period of

stasis in overall case numbers, and for the large fluctuations observed in local allele

frequencies.
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Appendix A

Population structure can reduce

clonal interference under

synchronized recombination and

dispersal
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A.1 The rate of adaptation w/ and w/o sex
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Figure A.1: Structured populations benefit more from sexual reproduction than well-
mixed populations. The vertical and horizontal axes are the adaptation speeds with
and without sexual reproduction, respectively. Sexual reproduction is assumed to be
unsynchronized. Without sexual reproduction, the well-mixed population adapts the
fastest, while with sexual reproduction, it is the slowest.
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A.2 The adaptation speeds of different population

structures
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Figure A.2: The adaptation speeds of different population structures. Ratio is com-
pared to a corresponding well-mixed population (w/ or w/o synced sex). A. Well-
mixed population. B. Unsynced structured population. C. Structured population
with unsynced sex and population synced dispersal. D. Population synchronization
(synced sex and dispersal). E. Individual synchronization. Derived from Fig. A.2B.
F. Population and individual synchronization structured. Derived from Fig. A.2D.
(B-F). The violet lines are the corresponding well-mixed population (w/ or w/o
synced sex) from Fig. A.2A.
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A.3 Genetic difference of the best individuals with

the population synchronization and unsynced

sex
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Figure A.3: Genetic differences of the best individuals with the population synchro-
nization and unsynced sex. (A). Well-mixed population. (B). Unsynced structured
population (C). Structured population with unsynced sex and population synced
dispersal. (D). Individual synchronization. Derived from Fig. A.3B. (B-C) are
specifications of Fig. 1.2B.
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A.4 Trend of global genetic diversity
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Figure A.4: Trend of global genetic diversity of the population synchronizations:
unsynced (A), population synced dispersal only (B), population synced sex and dis-
persal (C) and individual synced only (D). Data are set to start with 0 at each tgap
cycle. The trend is ’S’ curved with only synced dispersal (B), while it is constantly
increasing trend with synced sex and dispersal (C).
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A.5 Maximum fitnesses and their frequency
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Figure A.5: Maximum fitnesses and their frequency in the offset simulation, as in Fig.
1.3. Maximum fitnesses and their frequency globally (A-B), and locally(C-D). When
sex is introduced, the frequency of best individuals are usually very low ∼ 0.1%. So,
the novel genotypes are vulnerable.
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Appendix B

Promoting moderately fit

individuals can increase adaptation

speed under strong clonal

interference

B.1 Normalize the fitness function

Since the weight of each individual being selected as a parent is proportional to its

fitnessW (z), the mean of all fitnesses should be normalized to 1 when the population

size is constant E[W (z)] = 1. With an exponential fitness function, this is avoided

by shifting the distribution of z [120]. However, the form of a logistic fitness function

W (z) = c
1+e−ks(z−z0)

= 2(1−d)

1−2d+e−2s(1−d)z has not yet be normalized.

We consider the approximation logistic function [26]. A shifted logistic function

can be approximated by the error function erfc(x) = 1− erf(x) = 1− 2√
π

∫ x

0
e−t2dt :

L(x|k, x0) =
1

1 + exp (−ks(x− x0))
≈ 1

2
erfc

(
−ks

√
π

4
(x− x0)

)
(B.1)
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Also, the product of an error function and an exponential function can be inte-

grated as [91]:

∫ +∞

−∞
erf(x) exp(−ax+ b)2dx = −

√
π

a
erf(

b√
a2 + 1

), ℜ(a) > 0

This can be further extended to the expectation under the normal distribution:

E[L(z|k, z0)] =
∫ +∞

−∞
L(z|k, z0)N (y|zN , σ)dz

=

∫ +∞

−∞
L(z|k, 0)N (z|zN − z0, σ)dz

≈
∫ +∞

−∞

1

2
erfc(−ks

√
π

4
z)N (z|zN − z0, σ)dz

=
1

2
erfc

(
−ks

√
π

4γ
(zN − z0)

)
; γ =

√
1 +

k2s2πσ2

8

≈ L

(
zN − z0|

k

γ
, 0

)
=

1

1 + exp
(
−ks

γ
(zN − z0)

)

(B.2)

Thus, the fitness functionW (z) = c×L(z|k, z0) should be normalized toWeffective(z) =

c′ ∗ L(z|k, x0) when z ∼ N (0, σ2):

Weffective(z) = c′ ∗ L(z|k, z0) = L(z|k, x0)/L(−z0|k/γ, 0)

=
1 + exp(ksz0/γ)

1 + exp (−ks(z − z0))
; γ =

√
1 +

k2s2πσ2

8

=

(
1

1−2d

) √
2√

π(d−1)2s2v+2 + 1

e2(d−1)sz

1−2d
+ 1

(B.3)

The variance of the breeding value z is not a constant. The fitnesses will automat-

ically be normalized by the sampling methods. Therefore, the actual fitness function

is Weffective(z).
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B.2 Adaptation speed with unlinked loci

Previous study has studied the the adaptation speed with exponential fitness func-

tion [120]. Here, we extend the formula of adaptation speed to a general fitness

function. According to the infinitesimal model, the breeding value z is the result of

a vast number of alleles with additive effects. The breeding values x of offspring

of two individuals with breeding values y, z would follow a normal distribution

x ∼ N ((y+ z)/2,
√
v/2) = ϕ(x|y, z). As discussed in the main text, v is the variance

in z at equilibrium and the rate of increase in z based on Fisher’s ”Fundamental

Theorem”. Therefore, we have the distribution of breeding values in the current

generation following a normal distribution z ∼ N (0,
√
v) = ψ(z).

In order to obtain the fixation probability of an allele, we consider it occurs in

a genetic background z at t = 0, which results in the fitness as (1 + s)W (z). That

means this individual would produce a Poisson-distributed number of offspring with

the expectation of W (z). With random mating, each offspring would have the other

parent draw from the distribution ψ(z)W (z).

The fixation probability at t = 0 is P0(z), and the chance of losing this allele is

Q0(z) = 1−P0. In general, Pt(z) = P0(z− vt). The probability of loss is determined

by the chances of loss for all offspring (with ), considering all possible mates:

Q0(z) =
∞∑
j=0

e−λλj

j!
(

∫ ∞

−∞
ψ(y)W (y)

∫ ∞

−∞
ϕ(x|y, z)Q1(x)dxdy)

j

= exp

(
−λ

∫ ∞

−∞
ψ(y)W (y)

∫ ∞

−∞
ϕ(x|y, z)Pi(x)dxdy

) (B.4)

Where λ = (1 + s)W (z) is the fitness with the allele.
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Therefore, the probability of fixation is

P0(z) = 1−Q0(z)

= 1− exp

(
−λ

∫ ∞

−∞
ψ(y)W (y)

∫ ∞

−∞
ϕ(x|y, z)P1(x)dxdy

)
= 1− exp(−λPI(z))

(B.5)

Assuming s ≪ 1 and the clonal interference is strong P ≪ 2s, the probability of

fixation can be approximated by P ∼ O(s):

P0(z) = 1−Q0(z)

= 1− exp

(
−λ

∫ ∞

−∞

∫ ∞

−∞
ψ(y)W (y)ϕ(x|y, z)P1(x)dxdy

)
= 1− exp

(
−(1 + s)P̃0(z)

)
≈ (1 + s)P̃0 −

1

2
P̃0(z)

2 +O(s3)

(B.6)

where P̃0 is given by

P̃0 = W (z)

∫ ∞

−∞

∫ ∞

−∞
ψ(y)W (y)ϕ(x|y, z)P1(x)dxdy

= W (z)

∫ ∞

−∞

∫ ∞

−∞
ψ(y)W (y)ϕ(x|y, z)P0(x− v)dxdy

(B.7)

Since P0(z) = P̃0 + O(s2), P0(z) is obtained to the first order in s for a specific

fitness function W (z). However, the coefficient of P0(z) can not be determined from

Eq. B.7. Instead, we can infer it from Eq. B.6 by taking the expectations:

2sP̄ = P (z)2 (B.8)

By combining both Eq. B.7 and Eq. B.8, we have the fixation probability. Substi-

tuting the expression for v, it becomes v = NUP̄ log(1 + s).

For our logistic fitness function, we use polynomial approximation W (z) = 1 +
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z + dz2 to calculate its fixation probability. Its effective fitness function can be

Weffective(z) = 1 + z + dz2 − d3v2 (B.9)

Thus, the fixation probability P (z) can be approximated

P (z) = c1(1 + c2z + c3z
2) +O(z3)

≈ c1

(
1 + 2z +

4

3
(1 + d)z2

) (B.10)

where

c1 =
2s(4dv + 4v + 3)

16d2v2 + 32dv2 + 8dv + 16v2 + 20v + 3

.

Since v = NUP̄ log(1 + s) ≈ v0P̄ /2s, the overall adaptation speed is given by

(3 + 4(1 + d)v)2v0 − (9 + 12(5 + 2d)v + 48(1 + d)2v2)v = 0 (B.11)

The solution to this function can be approximated by:

v ≈v0 − 4v20 +
32

9

(
−11− d+ d2

)
v30

+
64

27

(
−200− 36d+ 33d2 + 4d3

)
v40

(B.12)

In comparison, the adaptation speed with the exponential fitness function has the

Taylor series as v ≈ v0 − 4v20 + 24v30 − 512v04

3
.
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B.3 Rescale the selective coefficient

One of the conditions for a fitness function is that a novel mutation should have a

fixed evolutionary benefit in a uniform genetic background, which can be expressed

as W ′(0) = 1 or W (1) = es.

However, this condition is no longer valid when the effective fitness function

Weffective(z) is scaled from the general fitness function W (z), as the mean of the

effective fitness function should be 1. This rescale is unavoidable, since the popula-

tion size is fixed and it occurs automatically in the sampling method. Therefore, we

manually scale the selective coefficient to validate the condition

Weffective(z, sL) = esE

Specifically, when sE = 5e− 2, the scaled selective coefficient is sL = 6.06e− 2. The

differences between these two selective coefficients are minor, which can be further

reduced when clonal interference is strong. As shown in Fig.B.1, the fitness functions

with either selective coefficient are similar. The overall simulation results, including

the adaptation speeds, genetic diversities, and the Hamming Distances of the fittest

individuals, are highly comparable (Fig.B.1 and Fig.B.2). Therefore, the faster rate

of adaptation in logistic fitness function is not a result of a higher selective coefficient,

but rather a result of the form of the fitness function.
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Figure B.1: The fitness functions with different selective coefficients are similar.
Therefore, they yield similar adaptation trajectories in the simulations. The ratios
of the adaptation speed compared with the exponential fitness function are 2.68 for
s = 5E− 2 and 2.79 for s = 6.06E− 2.
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Figure B.2: The observed genetic variance and relatedness among the fitness functions
with different selective coefficients are highly comparable.
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Figure B.3: The distributions of breeding values and fitnesses remain similar whether
using the unscaled and scaled selective coefficients.
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B.4 Cauchy and Gaussian scaled fitness functions

We propose a general form to rescale the exponential fitness function

W (z) = esz/f(z) (B.13)

and the scale function f(z) should satisfy the following conditions:


f(0) ≈ 1

f(∞) ∼ esz

(B.14)

In general, the scale fitness function should be saturated to a certain value when

z is large in order to limit the beneficial individuals.

We consider Cauchy and Gaussian as two scale functions. Specifically, the Cauchy

scaled function is f(z) = 1+ 0.5 s2z2

1+s2z2
esz, and the Gaussian scaled function is f(z) =

1+0.35(1−exp(−s2z2

2
))esz. In our simulations, these two fitness function creates a mild

increase in the rate of adaptation, compared with the exponential fitness function.

As discussed in the main text, the effectiveness of a fitness function can be indicated

by the intensity of the genetic diversity and the Hamming distance of the fittest

individuals, when sexual reproduction is present. This matches the simulation results

in Fig.B.4 and Fig.B.5.
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Figure B.4: The adaptation trajectories and relatedness for Cauchy and Gaussian
scaled fitness functions. (a.) Compared to the exponential fitness function, the
ratios of adaptation speeds for logistic, Cauchy, and Gaussian scaled fitness functions
are 2.79± 0.02 1.43± 0.01 and 1.13± 0.01 respectively. (b.) The Hamming Distance
of the best individuals between two consecutive generations is positively correlated
with the adaptation speeds. This could be an indicator of the effectiveness of sexual
reproduction.
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Figure B.5: The genetic diversity of populations subject to Cauchy and Gaussian
scaled fitness functions is positively correlated with adaptation speed. This suggests
that the faster adaptation speed observed with the saturating fitness function is a
consequence of more effective sexual reproduction, as evidenced by the increased
genetic diversity.
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Figure B.6: The breeding values are normally distributed for both Cauchy and Gaus-
sian scaled fitness functions. The maximum breeding value for Cauchy and Gaussian
scaled fitness functions are 39.15 and 30.16 respectively.
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Appendix C

Investigating the evolutionary

origins of the first three

SARS-CoV-2 variants of concern
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C.1 Distribution of waiting times with the between-

host pathway assuming a fitness landscape with

a single adaptive mutation.

Figure C.1: Distribution of waiting times for the establishment of consecutive pairs of
VOC lineages via the between-host pathway assuming a fitness landscape with a single
adaptive mutation. The distribution of times that it takes between the production of
theith and (i+1)th lineage, Ti:(i+1), for the first 5 established VOC lineages described
in Figure 3.3. T0 : 1 is the waiting time for the establishment of the first VOC lineage
(equivalent to T0).
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C.2 Distribution of waiting times with the within-

host pathway assuming a fitness landscape with

a single adaptive mutation.

Figure C.2: Distribution of waiting times for the establishment of consecutive pairs of
VOC lineages via the within-host pathway assuming a fitness landscape with a single
adaptive mutation. The distribution of times that it takes between the production of
the ith and (i+1)th lineage, Ti:(i+1), for the first 5 established VOC lineages described
in Figure 3.4. T0 : 1 is the waiting time for the establishment of the first VOC lineage
(equivalent to T0).
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C.3 Distribution of waiting times with the between-

host pathway assuming an additive fitness land-

scape.

Figure C.3: Distribution of waiting times for the establishment of consecutive pairs of
VOC lineages via the between-host pathway assuming an additive fitness landscape.
The distribution of times that it takes between the production of the ith and (i+1)th

lineage, Ti:(i+1), for the first 5 established VOC lineages described in Figure 3.5. T0 : 1
is the waiting time for the establishment of the first VOC lineage (equivalent to T0).
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C.4 Distribution of waiting times with the within-

host pathway assuming an additive fitness land-

scape.

Figure C.4: Distribution of waiting times for the establishment of consecutive pairs
of VOC lineages via the within-host pathway assuming an additive fitness landscape.
The distribution of times that it takes between the production of the ith and (i+1)th

lineage, Ti:(i+1), for the first 5 established VOC lineages described in Figure 3.6. T0 : 1
is the waiting time for the establishment of the first VOC lineage (equivalent to T0).



116

C.5 Distribution of waiting times with the between-

host pathway assuming a fitness plateau land-

scape.

Figure C.5: Distribution of waiting times for the establishment of consecutive pairs
of VOC lineages via the between-host pathway assuming a fitness plateau landscape.
The distribution of times that it takes between the production of the ith and (i+1)th

lineage, Ti:(i+1), for the first 5 established VOC lineages described in Figure 3.7. T0 : 1
is the waiting time for the establishment of the first VOC lineage (equivalent to T0).
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C.6 Distribution of waiting times with the within-

host pathway assuming a fitness plateau land-

scape.

Figure C.6: Distribution of waiting times for the establishment of consecutive pairs
of VOC lineages via the within-host pathway assuming a fitness plateau landscape.
The distribution of times that it takes between the production of the ith and (i+1)th

lineage, Ti:(i+1), for the first 5 established VOC lineages described in Figure 3.8. T0 : 1
is the waiting time for the establishment of the first VOC lineage (equivalent to T0).
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C.7 Exponential fit for selective coefficient

(a)

(b)

(c)

Figure C.7: Exponential model fits to the frequency of individual SARS-CoV-2 VOC
sequences sampled in its country of origin. (a)-(c). Fitting an exponential function
of the form, f(t) = aebt, to the frequency of Alpha, Beta, and Gamma sequences
sampled in the UK, South Africa, and Brazil, respectively. Vertical dashed line shows
the starting timepoint used for the fitting. The shaded area shows the mean prediction
bands.
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Enyew Birru Tadese, and Gideon Meyerowitz-Katz. Assessing the burden of

COVID-19 in developing countries: systematic review, meta-analysis and pub-

lic policy implications. BMJ Global Health, 7(5):e008477, May 2022. ISSN

2059-7908. doi: 10.1136/bmjgh-2022-008477.

[69] R C Lewontin. The Genetic Basis of Evolutionary Change. Columbia University

Press, 1974.

[70] Yang Liu, Jianying Liu, Kenneth S. Plante, Jessica A. Plante, Xuping Xie,



133

Xianwen Zhang, Zhiqiang Ku, Zhiqiang An, Dionna Scharton, Craig Schin-

dewolf, Steven G. Widen, Vineet D. Menachery, Pei-Yong Shi, and Scott C.

Weaver. The N501Y spike substitution enhances SARS-CoV-2 infection and

transmission. Nature, 602(7896):294–299, February 2022. ISSN 1476-4687. doi:

10.1038/s41586-021-04245-0.

[71] J. O. Lloyd-Smith, S. J. Schreiber, P. E. Kopp, and W. M. Getz. Superspreading

and the effect of individual variation on disease emergence. Nature, 438(7066):

355–359, November 2005. ISSN 1476-4687. doi: 10.1038/nature04153.

[72] M. G. Lorenz and W. Wackernagel. Bacterial gene transfer by natural genetic

transformation in the environment. Microbiological Reviews, 58(3):563–602,

September 1994. ISSN 0146-0749.

[73] Katrina A. Lythgoe, Matthew Hall, Luca Ferretti, Mariateresa de Cesare,

George MacIntyre-Cockett, Amy Trebes, Monique Andersson, Newton Otecko,

Emma L. Wise, Nathan Moore, Jessica Lynch, Stephen Kidd, Nicholas Cortes,

Matilde Mori, Rebecca Williams, Gabrielle Vernet, Anita Justice, Angie Green,

Samuel M. Nicholls, M. Azim Ansari, Lucie Abeler-Dörner, Catrin E. Moore,

Timothy E. A. Peto, David W. Eyre, Robert Shaw, Peter Simmonds, David

Buck, John A. Todd, on behalf of the Oxford Virus Sequencing Analysis Group

(OVSG), Thomas R. Connor, Shirin Ashraf, Ana da Silva Filipe, James Shep-

herd, Emma C. Thomson, The COVID-19 Genomics UK (COG-UK) Consor-

tium, David Bonsall, Christophe Fraser, and Tanya Golubchik. SARS-CoV-

2 within-host diversity and transmission. Science, 372(6539):eabg0821, April

2021. doi: 10.1126/science.abg0821.

[74] Katrina A. Lythgoe, Tanya Golubchik, Matthew Hall, Thomas House, George

MacIntyre-Cockett, Helen Fryer, Laura Thomson, Anel Nurtay, David Buck,

Angie Green, Amy Trebes, Paolo Piazza, Lorne J. Lonie, Ruth Studley, Emma



134

Rourke, Duncan Cook, Darren Smith, Matthew Bashton, Andrew Nelson,

Matthew Crown, Clare McCann, Gregory R. Young, Rui Andre Nunes dos San-

tos, Zack Richards, Adnan Tariq, Wellcome Sanger Institute COVID-19 Surveil-

lance Team, COVID-19 Infection Survey Group, The COVID-19 Genomics UK

(COG-UK) Consortium, Christophe Fraser, Ian Diamond, Jeff Barrett, Sarah

Walker, and David Bonsall. Lineage replacement and evolution captured by the

United Kingdom Covid Infection Survey, January 2022.

[75] Spyros Lytras, Wei Xia, Joseph Hughes, Xiaowei Jiang, and David L. Robert-

son. The animal origin of SARS-CoV-2. Science, August 2021. ISSN 0036-8075,

1095-9203. doi: 10.1126/science.abh0117.

[76] M. Cyrus Maher, Istvan Bartha, Steven Weaver, Julia di Iulio, Elena Ferri,

Leah Soriaga, Florian A. Lempp, Brian L. Hie, Bryan Bryson, Bonnie Berger,

David L. Robertson, Gyorgy Snell, Davide Corti, Herbert W. Virgin, Sergei L.

Kosakovsky Pond, and Amalio Telenti. Predicting the mutational drivers of

future SARS-CoV-2 variants of concern. Science Translational Medicine, 14

(633):eabk3445, January 2022. doi: 10.1126/scitranslmed.abk3445.

[77] B. Mai and L. Breeden. CLN1 and its repression by Xbp1 are important for

efficient sporulation in budding yeast. Molecular and Cellular Biology, 20(2):

478–487, January 2000. ISSN 0270-7306. doi: 10.1128/mcb.20.2.478-487.2000.

[78] Erik A Martens and Oskar Hallatschek. Interfering Waves of Adaptation Pro-

mote Spatial Mixing. Genetics, 189(3):1045–1060, November 2011. ISSN 1943-

2631. doi: 10.1534/genetics.111.130112.

[79] Darren P. Martin, Steven Weaver, Houriiyah Tegally, James Emmanuel San,

Stephen D. Shank, Eduan Wilkinson, Alexander G. Lucaci, Jennifer Giandhari,

Sureshnee Naidoo, Yeshnee Pillay, Lavanya Singh, Richard J. Lessells, Ravin-



135

dra K. Gupta, Joel O. Wertheim, Anton Nekturenko, Ben Murrell, Gordon W.

Harkins, Philippe Lemey, Oscar A. MacLean, David L. Robertson, Tulio de

Oliveira, and Sergei L. Kosakovsky Pond. The emergence and ongoing conver-

gent evolution of the SARS-CoV-2 N501Y lineages. Cell, 184(20):5189–5200.e7,

September 2021. ISSN 0092-8674. doi: 10.1016/j.cell.2021.09.003.

[80] Michael A. Martin and Katia Koelle. Comment on “Genomic epidemiology of

superspreading events in Austria reveals mutational dynamics and transmission

properties of SARS-CoV-2”. Science Translational Medicine, 13(617):eabh1803,

October 2021. doi: 10.1126/scitranslmed.abh1803.

[81] Carlos Martorell and Marcela Mart́ınez-López. Informed dispersal in plants:
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