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Abstract

Assessment of High-Resolution PM2.5 Exposures and Changes in PM2.5 Cardiorespiratory
Disease Associations Over Time

By Jianzhao Bi

Fine particulate matter with aerodynamic diameters less than 2.5 micrometers (PM2.5) is

one of the six criteria air pollutants defined by the National Ambient Air Quality Stan-

dards. Numerous epidemiological studies have shown the associations between long-term

and short-term exposure to PM2.5 and increased risks of cardiovascular and respiratory dis-

eases. Understanding the accurate distribution of ground PM2.5 concentrations is of growing

importance for studying the acute and chronic health effects of PM2.5. Measurements from

satellites (aerosol optical depth, AOD) and low-cost air pollution sensors have been in-

creasingly utilized in improving the estimation of ground PM2.5 concentrations due to their

extensive spatiotemporal coverage. However, an important issue influencing the effective use

of satellite AOD retrievals is the large proportion of non-random missing data caused by

snow and cloud cover. This study examined the impacts of snow and cloud cover on AOD

and PM2.5 and made full-coverage PM2.5 predictions with the consideration of these im-

pacts. In addition, little has been done to incorporate low-cost sensor PM2.5 measurements

in large-scale PM2.5 exposure modeling. This study conducted spatially varying calibration

and developed a down-weighting strategy to optimize the use of low-cost sensor data in PM2.5

estimation. Finally, although PM2.5 is a complex mixture composed of different chemical

components, it is commonly treated as a single pollutant to assess its health effects given

that ambient air regulations focus on PM2.5 (and not its components). This study examined

temporal changes in the risk of emergency department visits for cardiovascular diseases and

asthma associated with short-term increases in ambient PM2.5 concentrations. By generating

the improved PM2.5 exposures and examining the contribution of PM2.5 components to its

overall toxicity, this study sought to broaden the application of satellite and low-cost sensor

observations to PM2.5 exposure assessment and to provide new information for the health

effects of PM2.5 mixture.
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1

1 Background and Significance

Fine particulate matter with aerodynamic diameters less than 2.5 micrometers (PM2.5) is

one of the six criteria air pollutants defined by the National Ambient Air Quality Standards

(NAAQS). Numerous epidemiological studies have shown the associations between long-term

exposure to PM2.5 and increased risks of cardiovascular and respiratory diseases [1]. Growing

evidence also shows the adverse effects of short-term exposure to PM2.5 on cardiorespiratory

diseases [2, 3]. Biological hypotheses suggested that short-term exposure to PM2.5 may lead

to or exacerbate cardiovascular diseases through neurogenic and inflammatory processes [4]

and the acceleration of the development of atherosclerosis [5]. The contribution of PM2.5 to

oxidative stress and allergic inflammation may also lead to more immediate exacerbation of

respiratory diseases, especially asthma [6–9].

Understanding the accurate distribution of ground PM2.5 concentrations is of growing im-

portance for pollution control and public health. While regulatory air quality stations have

been employed for the ground-level PM2.5 measurement, they lack spatiotemporal coverage

to fully capture population exposures for the research of adverse impacts of PM2.5. Recently,

satellite-based aerosol optical depth (AOD) has been increasingly utilized in PM2.5 exposure

assessment due to its extensive spatiotemporal coverage. For example, with a 1-km resolu-

tion, the Multi-Angle Implementation of Atmospheric Correction (MAIAC) dataset is able

to reflect detailed AOD pollution patterns and a more precise link between PM2.5 and mi-

croenvironment [10–12]. AOD has a non-linear relationship with ground-level PM2.5, which

varies spatially and temporally [13]. Statistical models have been developed to account for

this non-linear and variant AOD-PM2.5 relationship. For example, previous studies adopted

multi-stage regression models to generate accurate PM2.5 predictions based on satellite AOD

data [14–18]. Recently, non-parametric machine learning models, especially Artificial Neural

Networks (ANN) [19, 20] and Random Forests (RF) [21, 22], have been increasingly applied

to improve the modeling accuracy and precision.

An important issue influencing the effective use of satellite AOD data is the large propor-

tion of non-random missing data [23], the majority of which is caused by cloud cover and
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high surface brightness (e.g., snow/ice and desert) [24]. This data gap issue is especially

severe in high-latitude areas with large areal extents of snow cover in winter. Furthermore,

previous studies showed that AOD/PM2.5 levels changed when there was cloud cover due

to changes in AOD/PM2.5 physical characteristics under different meteorological conditions

[25–29]. For example, Belle et al. [26] found that changes in cloud properties such as effective

radius, optical depth, and emissivity were associated with changes in PM2.5 concentrations

and composition. Several strategies have been developed to deal with non-random AOD

missingness with meteorological interactions [16, 17, 30, 31]. Kloog et al. [17] proposed a

spatial smoothing model based on universal kriging with daily mean PM2.5 concentrations

and random cell-specific slopes to generate fully covered PM2.5 predictions across New Eng-

land of the United States. Kloog et al. [16] incorporated inverse probability weighting (IPW)

in PM2.5 regression to address the selection bias caused by AOD missingness and generated

PM2.5 predictions with high reliability. Xiao et al. [31] proved that cloud-AOD interactions

can be partially explained by incorporating cloud features into AOD gap-filling models. In

general, when estimating missing AOD data, the significant influence of cloud cover has to

be considered in order to minimize estimation biases. Similar to cloud cover, snow cover is

also associated with the AOD/PM2.5 relationship. Several studies reported that PM2.5 levels

were higher on snowy days in mountainous terrains because of colder, more humid, and more

stagnant atmospheric conditions [32–34]. To our knowledge, however, limited studies have

been conducted to explicitly address the AOD missingness due to snow cover. Incorporating

snow features into the AOD gap-filling model is beneficial to obtaining more accurate AOD

estimations in the regions with extensive snow cover.

Another limitation regarding PM2.5 exposure assessment is sparse regulatory PM2.5 stations.

Due to the high installation and maintenance cost of regulatory stations, even in the United

States with the most extensive monitoring network, a large number of less populated coun-

ties have still not been covered by regulatory PM2.5 monitoring [14, 35, 36]. The sparse

monitoring network hinders a comprehensive picture of intra-urban PM2.5 pollution details,

causing difficulties in accurately reflecting PM2.5 exposure in the areas without monitoring

stations. With attractive features such as easy installation and low maintenance, low-cost

PM2.5 sensors have recently emerged as a means to build more extensive networks of mea-
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surement sites, though few sensor brands have undergone the rigorous quality examinations

that Federal Reference and Equivalent Methods (FRM/FEM) need to pass [37]. For exam-

ple, a worldwide low-cost air quality monitoring network, PurpleAir, has more than 2,000

sensors in California, compared to ∼150 regulatory air quality stations in the state. How-

ever, in contrast to the well-maintained regulatory air quality stations, low-cost sensors have

a significantly lower data quality. Many efforts have been made to calibrate low-cost sen-

sors against collocated high-accurate reference instruments [38–43]. For example, Holstius

et al. [41] calibrated self-designed low-cost PM2.5 instruments using FEM measurements in

Oakland, California with linear modeling R2 values of 0.6 at a 1-h scale and 0.72 at a 24-h

scale. Kelly et al. [42] conducted ambient tests for low-cost PM2.5 sensors and reported

a non-linear response between the sensor measurements and FRM observations when the

PM2.5 concentration exceeded 40 µg/m3. By evaluating low-cost air quality monitors in

both laboratory and ambient settings, Castell et al. [40] found their performance varied

spatially and temporally, depending on PM2.5 composition and weather conditions. Broday

and Citi-Sense Project [38] validated the quality of low-cost air quality monitors by a range

of criteria, indicating the necessity of frequent calibrations to address quality degradation.

Current work has shown the potential of low-cost sensors to shed light on fine spatiotemporal

variations of PM2.5 pollution. At a larger spatial scale, however, no study has been devoted

to evaluate and calibrate a regional low-cost sensor network, especially for the sensors far

away from regulatory stations. The lack of large-scale quality control has limited the use of

low-cost sensor data in high-resolution PM2.5 exposure assessment.

Although PM2.5 is a complex mixture composed of different chemical components, it is

commonly treated as a single pollutant to assess its health effects given that ambient air

regulations focus on PM2.5 (and not its components) and because PM2.5 measurements are

generally more readily available. Previous toxicological studies reported that certain PM2.5

components may have higher toxicity than others for certain health outcomes [44, 45]. This

toxicological evidence is echoed by the epidemiological hypothesis that the temporal and

regional heterogeneity in PM2.5 health effects may be explained by the variation of PM2.5

composition [46–49] as well as the size and solubility [50] of the particles. National-scale

epidemiological studies have indicated that the estimated acute effects of PM2.5 may vary
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by region [47, 51, 52], and differences in PM2.5 composition across regions may in part ex-

plain this variability. However, the regional variation in acute effects of PM2.5 may also be

explained by other geographical factors, such as the spatially heterogeneous population sus-

ceptibility and exposure misclassification. In detail, it is likely that some regions have higher

proportions of population at a greater risk of PM2.5-related health effects. It is also possible

that the estimated PM2.5 exposure levels are more representative to the true pollution levels

at certain regions than others, especially when the exposure assessment relies on central air

quality stations. In comparison, assessing the temporal variation in acute effects of PM2.5 at

the same location would be a more ideal way to mitigate the influence of these unmeasured

geographical factors while assessing the influence of PM2.5 composition changes on PM2.5-

related health effects. Currently, very few studies have systematically assessed the temporal

variation in the health effects of PM2.5 respect to changes in PM2.5 composition. Recent

work evaluated the health effects of short-term exposure to PM2.5 in New York State before,

during, after a period between 2005 and 2016 when major emission regulations went into

effect and significant emission changes occurred [53–55]. This series of studies found that

even with decreasing PM2.5 concentrations, its health effects on cardiovascular [55] and respi-

ratory diseases [53, 54] were elevated with each interquartile-range increase in concentration

after the implementation of emission policies, suggesting a possible association between the

overall toxicity of PM2.5 mixture and its composition [56]. Changes in the acute response to

PM2.5 over time have also been observed in other regions. For example, Abrams et al. [57]

found weaker associations between PM2.5 and cardiorespiratory emergency department (ED)

visits after the emission control policies were fully realized in Atlanta, Georgia. Outside of

the United States, Kim et al. [58] reported temporal variation of estimated risks of PM2.5

on asthma hospitalization in Seoul, South Korea from 2003 to 2011 when the Korean air

quality standards had been strengthened. However, to the best of our knowledge, no PM2.5

component-specific epidemiological analysis has been conducted to examine if the changes

in the health effects of PM2.5 can be attributed to specific PM2.5 components.

Given the above-mentioned limitations regarding PM2.5 exposure assessment and health anal-

ysis, this study aimed to develop an improved PM2.5 exposure dataset with spatiotemporally

high resolutions and complete coverage by incorporating satellite, low-cost sensor, and regu-
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latory monitoring data, and to further explore variations in overall acute effects of PM2.5 on

cardiorespiratory disease outcomes attributed to specific PM2.5 components. By generating

the improved PM2.5 exposures and examining the contribution of PM2.5 components to its

overall toxicity, this study sought to broaden the application of satellite and low-cost sensor

observations to PM2.5 exposure assessment and to provide new information for the health

effects of PM2.5 mixture. Although the study regions were limited to the United States due

to the accessibility of air quality and epidemiological data, the methodology is expected to

be generalizable to other countries with limited regulatory air quality measurements.
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2 Description of Aims

PM2.5 pollution has contributed to a growing health burden worldwide, causing a variety

of mortality and morbidity. In this study, data from novel PM2.5 measurement platforms

were utilized to better reveal PM2.5 pollution features, including satellite AOD data which

has been increasingly applied to the large-scale prediction of PM2.5 pollution and become

an important supplement to ground-based regulatory PM2.5 monitoring, and low-cost sensor

data which have provided a valuable opportunity to improve the spatiotemporal coverage

of PM2.5 exposure assessment. By means of the appropriate approaches for satellite AOD

gap-filling and low-cost sensor calibration, reliable PM2.5 exposures with fine spatiotemporal

resolutions and broad coverage were developed. An epidemiological analysis was also con-

ducted by looking further at not only the overall health effects of PM2.5 as a single pollutant,

but also the influence of PM2.5 composition on the health effects of PM2.5 as a mixture of

pollutants. Specifically,

(i) Aim 1 built a gap-filling model incorporating satellite snow/cloud fractions to estimate

missing satellite AOD data in the regions with extensive snow and cloud cover. A PM2.5

prediction model based on the gap-filled AOD was developed to validate the quality

of the gap-filling dataset. The importance of the satellite-observed snow fraction in

the gap-filling process was evaluated by comparing the full-model predictions to the

predictions from a reduced model without the snow parameter. New York State with

extensive snow and cloud cover was selected as the study domain to examine the

validity of the proposed gap-filling process.

(ii) Aim 2 developed a spatially-varying calibration model dealing with the measurement

errors of low-cost PM2.5 sensors. A weighted prediction model with the regulatory

PM2.5 observations, calibrated sensor PM2.5 measurements, gap-filled satellite AOD,

and other variables were built to predict PM2.5 exposure levels with spatial details.

California with dense low-cost PM2.5 sensors was selected as the study domain to

validate the proposed calibration and exposure prediction methods.

(iii) Aim 3 assessed the temporal variation in the associations between the emergency de-
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partment visits for cardiovascular and asthma outcomes and short-term exposure to

PM2.5 in Los Angeles, California during 2005 – 2016, which experienced significant

changes in PM2.5 concentrations and composition due to the implementation of emis-

sions reduction policies during this period. The health effects of specific PM2.5 com-

ponents were further analyzed to explore whether the changes in the health effects of

PM2.5 over time could be attributed to specific PM2.5 components.
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3 Manuscript I: Impacts of Snow and Cloud Covers on

Satellite-Derived PM2.5 Levels

Jianzhao Bi, Jessica H. Belle, Yujie Wang, Alexei I. Lyapustin, Avani Wildani, and Yang Liu

Remote Sensing of Environment 2019, 221, 665–674; doi: 10.1016/j.rse.2018.12.002

3.1 Abstract

Satellite aerosol optical depth (AOD) has been widely employed to evaluate ground fine

particle (PM2.5) levels, whereas snow/cloud covers often lead to a large proportion of non-

random missing AOD values. As a result, the fully covered and unbiased PM2.5 estimates

will be hard to generate. Among the current approaches to deal with the data gap issue, few

have considered the cloud-AOD relationship and none of them have considered the snow-

AOD relationship. This study examined the impacts of snow and cloud covers on AOD and

PM2.5 and made full-coverage PM2.5 predictions with the consideration of these impacts.

To estimate missing AOD values, daily gap-filling models with snow/cloud fractions and

meteorological covariates were developed using the random forest algorithm. By using these

models in New York State, a daily AOD data set with a 1-km resolution was generated with

a complete coverage. The “out-of-bag” R2 of the gap-filling models averaged 0.93 with an

interquartile range from 0.90 to 0.95. Subsequently, a random forest-based PM2.5 prediction

model with the gap-filled AOD and covariates was built to predict fully covered PM2.5 esti-

mates. A ten-fold cross-validation for the prediction model showed a good performance with

an R2 of 0.82. In the gap-filling models, the snow fraction was of higher significance to the

snow season compared with the rest of the year. The prediction models fitted with/without

the snow fraction also suggested the discernible changes in PM2.5 patterns, further confirming

the significance of this parameter. Compared with the methods without considering snow

and cloud covers, our PM2.5 prediction surfaces showed more spatial details and reflected

small-scale terrain-driven PM2.5 patterns. The proposed methods can be generalized to the

areas with extensive snow/cloud covers and large proportions of missing satellite AOD data

for predicting PM2.5 levels with high resolutions and complete coverage.

https://doi.org/10.1016/j.rse.2018.12.002


9

3.2 Introduction

Fine particulate matter (PM2.5) may be inhaled and deposited in alveoli, increasing the

risk of cardiorespiratory disease [59–62]. Though air quality stations have been employed

to measure PM2.5 and its composition, their spatial coverage is insufficient to cover larger

populations to study the impacts of PM2.5 exposure on human health. Recently, satellite

aerosol optical depth (AOD) with broad spatiotemporal availability has been widely applied

in PM2.5 exposure modeling [16, 22, 63]. With a 1-km resolution, Multi-Angle Implementa-

tion of Atmospheric Correction (MAIAC) AOD has been able to reveal pollution patterns

with more detail and estimate the link between PM2.5 and microenvironment more precisely

[12, 14]. High-resolution AOD is critical for reflecting PM2.5 pollution patterns in the regions

dominated by local sources, e.g., New York State, U.S., in which residential wood combustion

and on-road emissions are the primary PM2.5 sources [64–66].

Though satellite AOD can serve as a surrogate of ground PM2.5, a non-linear relationship is

shown between the two, which varies spatially and temporally [13]. To reflect this relation-

ship, various statistical models have been developed [15, 31, 67]. For instance, Kloog et al.

[15] employed mixed models to estimate high-resolution PM2.5 with an out-of-sample R2

(coefficient of determination) of 0.88 in the Northeastern U.S. Xiao et al. [31] built two-stage

models to produce 1-km PM2.5 estimates with complete coverage over the Yangtze River

Delta (YRD) in China with cross-validation (CV) R2 values of ∼0.8. In these parametric

models, however, restrictive assumptions of independence and population distributions are

needed, which can be a challenge for a complex mixture, e.g., PM2.5. In contrast, non-

parametric models (e.g., machine learning models) can capture the non-linear relationships

and interactions between the variables with fewer a priori assumptions. Popular machine

learning models for PM2.5 prediction consist of Artificial Neural Networks (ANN) [19, 20, 68]

and Random Forests (RF) [22, 69]. To be specific, random forests are advantaged in the in-

terpretability of modeling outcomes by their measures of variable importance [70]. Hu et al.

[22] developed a random forest model with satellite AOD and covariates, generating 12-km

PM2.5 predictions over the Contiguous U.S. with a CV R2 of 0.80 and a root-mean-square

error (RMSE) of 1.78 µg/m3.
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The large proportion of non-random missing data is considered as a critical problem asso-

ciated with the effective use of satellite AOD, which primarily results from cloud cover and

high surface brightness from factors such as snow and ice [24, 71, 72]. This non-random

missingness has significantly affected data availability and generated biases in the stages

of data processing [31]. Several strategies have been developed to cope with this data gap

problem. Donkelaar et al. [73] adopted adjusted cloud filtering standards in the Dark Target

algorithm and achieved a 21% increase of available AOD during Moscow wildfire events in

2010. Kloog et al. [17], based on universal kriging with daily mean PM2.5 levels and random

slopes, proposed a spatial smoothing model and generated full-coverage PM2.5 predictions

across New England within the U.S. Kloog et al. [16] incorporated inverse probability weight-

ing (IPW) with PM2.5 regression to reduce the selection bias caused by AOD missingness.

They achieved PM2.5 predictions with higher reliability. However, it has been found that

AOD and PM2.5 levels were changed in the presence of cloud cover due to the shifted AOD/

PM2.5 physical characteristics under various meteorological conditions [25–28]. For instance,

Belle et al. [26] found that variations in cloud properties (e.g., cloud optical depth and emis-

sivity) were correlated with the shifted levels of PM2.5 and its components. Accordingly, the

gap-filling process without considering cloud interactions may cause estimation biases. Xiao

et al. [31] showed that the cloud-AOD interactions can be partially explained by incorpo-

rating cloud features in AOD gap-filling processes. By using a multiple imputation model

coupled with cloud fractions, they found a higher level of gap-filled AOD on cloudy days in

the YRD of China. Similar to cloud, snow cover, with a large areal extent in high-latitudes

of Northern Hemisphere [74], has also resulted in a large proportion of missing AOD [12, 23]

and the changes of AOD/PM2.5 levels [10, 32–34]. Emili et al. [10] found that due to the

contamination of cloud and snow pixels, satellite AOD would be occasionally overestimated.

Studies suggested that in mountainous terrains, PM2.5 levels were higher on snowy days

because of more stagnant atmospheric conditions [32, 34]. To our knowledge, no study has

been conducted to deal with the snow-related AOD missingness in PM2.5 modeling. Thus,

incorporating snow features in AOD gap-filling processes may help to obtain more reliable

PM2.5 estimates in the regions with extensive snow cover.

In this case study, we incorporated satellite-retrieved snow and cloud fractions in an AOD
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gap-filling model to generate fully covered AOD data in New York State where there were

extensive snow/cloud covers, especially in winter. Based on the AOD data, we generated

high-resolution and fully covered PM2.5 predictions. In the meantime, we examined the

significance of the snow fraction in the AOD gap-filling and PM2.5 prediction processing.

We also identified the patterns of local PM2.5 pollution in New York State using our high-

resolution PM2.5 predictions.

3.3 Data and Methods

3.3.1 Study Areas

New York State and its surrounding areas were selected as our study areas (Figure 1). The

surrounding areas served as the buffer to minimize the quality degradation on the edge of

the areas and to ensure sufficient ground PM2.5 stations in the study areas. These areas

were suitable for examining the performance of our models since 1) the cloud cover and

heavy snowfall led to a considerable amount of missing satellite AOD data, particularly

in winter [26]; 2) local PM2.5 emission sources (e.g., residential wood combustion and on-

road emissions) were dominated in this state so that reliable predictions with a high spatial

resolution were needed to reveal the spatial details of PM2.5 pollution [64, 66]. All analyses

were based on the 1-km grid of MAIAC AOD, covering 474,392 grid cells in the entire

areas.

3.3.2 PM2.5 Measurements

PM2.5 measurements inside the U.S. were provided by the United States Environmental

Protection Agency (EPA) (https://www.epa.gov/). The measurements inside Canada were

provided by the National Air Pollution Surveillance (NAPS) (http://maps-cartes.ec.gc.

ca/). NAPS has three types of samplers (Dichotomous, Partisol and Speciation) for PM2.5

measurements. Only Dichotomous and Partisol measurements were employed to ensure the

data quality. For each ground station from AQS or NAPS, daily mean PM2.5 levels were

calculated and matched with AOD and other variables in the MAIAC grid cells. The entire

areas covered 137 PM2.5 ground stations (with 127 inside the U.S. and 10 inside Canada;

https://www.epa.gov/
http://maps-cartes.ec.gc.ca/
http://maps-cartes.ec.gc.ca/
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Figure 1).

3.3.3 MAIAC AOD Data

MAIAC is an advanced AOD data set based on Moderate Resolution Imaging Spectrora-

diometer (MODIS) Collection 6 Level 1B data. Using a time-series algorithm, the MAIAC

data set has increased the accuracy of aerosol detection and optimized the spatial resolution

to 1-km [12]. Since MAIAC is a novel algorithm for MODIS AOD, the quality assess-

ment of this product is insufficient. A current validation over South America suggested

that ∼66% MAIAC AOD retrievals were within the expected error (±(0.05+0.05×AOD))

[75]. Terra/Aqua satellites provide two MODIS data sets with different crossing times. In

our PM2.5 prediction models, Terra (descending node at 10:30 A.M. local time) and Aqua

(ascending node at 1:30 P.M. local time) AOD served as two separate predictors to reflect

diurnal changes of AOD.

Figure 1: Study areas. Latitude: [40.1◦N, 45.6◦N]; Longitude: [80.5◦W, 71◦W]. The area
outside New York State served as the buffer. Red diamonds are EPA AQS stations. Blue
triangles are NAPS stations.
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3.3.4 MODIS Cloud and Snow Fractions

Cloud and snow fractions as the percentages of cloud and snow in a grid cell are critical for

the quantitative estimation of cloud- and snow-AOD interactions in the gap-filling processing.

Cloud fractions were generated from MODIS Level-2 Cloud product (MOD06 L2/MYD06 L2,

https://modis.gsfc.nasa.gov/). In this product, the cloud fraction has been retrieved

from infrared and visible wavelengths along with other physical and radiative cloud proper-

ties [76]. A global evaluation by Ackerman et al. [77] suggested that MODIS cloud detection

reached an agreement of ∼85% with the ground lidar observations. Snow fractions were gen-

erated from MODIS Snow Cover product (MOD10/MYD10, https://modis.gsfc.nasa.

gov/). In this product, the snow fraction has been generated from the Normalized Difference

Snow Index (NDSI) [78]. MODIS Snow Cover product was found with a high correlation

(r = 0.9) with ground-truth observations [79]. Terra and Aqua data sets were employed

respectively and matched with corresponding AOD data sets. Only daytime cloud/snow

observations were adopted.

3.3.5 Meteorological Data

Meteorological data were obtained from the North American Regional Reanalysis (NARR)

(http://www.emc.ncep.noaa.gov/) [80] and the North American Land Data Assimilation

System (NLDAS) (http://ldas.gsfc.nasa.gov/nldas) [81]. NARR had a resolution of

0.25◦ and a 3-h temporal interval. NLDAS had a resolution of 0.125◦ and a 1-h temporal

interval. Since NLDAS has higher spatiotemporal resolutions, the parameters from this data

set were used first. The parameters not provided by NLDAS were extracted from NARR.

The meteorological parameters from NLDAS consisted of air temperature, humidity, surface

pressure, precipitation, wind speed, potential evaporation, downward shortwave radiation as

well as convective available potential energy (CAPE). The parameters from NARR covered

planetary boundary layer height (HPBL) and visibility. To match the observation time of

MAIAC AOD data, we calculated the daily values of meteorological parameters by averaging

the simulations from 9 A.M. to 3 P.M. (local time, i.e., GMT 1400 – 2000 for NLDAS and

GMT 1500, 1800, 2100 for NARR).

https://modis.gsfc.nasa.gov/
https://modis.gsfc.nasa.gov/
https://modis.gsfc.nasa.gov/
http://www.emc.ncep.noaa.gov/
http://ldas.gsfc.nasa.gov/nldas
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3.3.6 Land-Use Variables

The land-use parameters covered (1) the Advanced Spaceborne Thermal Emission and Re-

flection Radiometer (ASTER) Global Digital Elevation at a 1 arc-second (∼30 m) resolu-

tion (https://asterweb.jpl.nasa.gov/gdem.asp); (2) LandScan ambient population in

2015 at a 900-m resolution (https://web.ornl.gov/sci/landscan/); (3) Normalized Dif-

ference Vegetation Index (NDVI) from MODIS vegetation indices at a 500-m resolution

(MOD13/MYD13, https://modis.gsfc.nasa.gov/); (4) distances to highways and ma-

jor roads computed from ESRI StreetMap (Environmental System Research Institute, Inc.,

Redland, California).

3.3.7 Data Matching

All data sets with various spatial resolutions were matched and fitted into the MAIAC AOD

1-km grid. For the data sets with spatial resolutions coarser than 1 km (e.g., meteorological

fields, cloud and snow fractions, and NDVI), the inverse distance weighting (IDW) interpo-

lation was employed [82]. For the data sets with finer resolutions (e.g., ASTER GDEM), the

down-sampling was conducted, i.e., a process of averaging neighboring pixels into one value.

For the LandScan population, each data point was assigned to its nearest MAIAC grid cell.

Subsequently, the population in that grid cell was summarized.

3.3.8 AOD Gap-Filling Model

Random Forest (RF) is an “ensemble learning” method creating numerous decision trees

and aggregating the regressing results from these trees [83, 84]. It adopts two types of

bootstrap aggregating strategies (i.e., a bootstrap training sample and a group of randomly

selected independent variables) for each decision tree. These strategies allow the random

forest to be a robust algorithm against overfitting [83]. A random forest model has two

major parameters, i.e., the number of decision trees in the forest (ntree) and the number of

independent variables in each tree (mtry). It also provides variable importance measures that

inform variable weights and contribute to the interpretation of the model [84]. Our AOD

https://asterweb.jpl.nasa.gov/gdem.asp
https://web.ornl.gov/sci/landscan/
https://modis.gsfc.nasa.gov/
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gap-filling model was based on the random forest algorithm, which is expressed as

AODst =f(cloud fractionst, snow fractionst, air temperaturest, specific humidityst,

relative humidityst, previous day precipitationst, elevations, Xs, Ys)
(1)

where s denotes the location of a grid cell, and t is the time of an observation. The depen-

dent variable was the satellite AOD. Independent variables covered cloud and snow fractions,

meteorological parameters (i.e., air temperature, specific humidity, relative humidity and pre-

cipitation on the previous day), elevation, and spatial coordinates. The spatial coordinates

were the real distances in kilometers to the central point of the study areas. By comparing

the results with different settings, ntree and mtry were set as 200 and 3 respectively to balance

the prediction accuracy and computational efficiency.

The AOD gap-filling model (Equation (1)) was fitted daily for both Terra and Aqua AOD

data sets. Equation (1) without the snow fraction (a.k.a. cloud-only gap-filling model) was

also fitted to examine the impact of this variable on the gap-filled AOD. Since MAIAC

AOD had a large proportion of missing data, we employed three rolling-day samples for

the middle day’s model. Out-of-bag (OOB) R2 and RMSE were employed to assess the

modeling performance. OOB R2 was calculated from the predictions not in the bootstrap

sample (a.k.a. “out-of-bag” sample) [83]. Since the mechanism of OOB is similar to cross-

validation (CV), OOB R2 is nearly equal to CV R2 under large sample size [70]. RMSE was

calculated by aggregating the errors of OOB predictions. Model-estimated “permutation

accuracy importance” [85] was used to suggest the variable importance. This importance

measure was estimated in line with the fall of prediction accuracy after randomly permuting

the OOB sample of the targeting variable [84].

3.3.9 PM2.5 Prediction Model

The PM2.5 prediction model also followed the random forest algorithm (Equation (2)). The

dependent variable was the PM2.5 measurements from AQS and NAPS. Independent vari-

ables covered gap-filled Terra and Aqua AOD, meteorological parameters (air temperature,
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dew-point temperature, surface pressure, specific humidity, wind speed, visibility, planetary

boundary layer height, potential evaporation, downward shortwave radiation, and CAPE),

land-use parameters (population, distances to highways and major roads, elevation, and

NDVI), and dummy variables for months and Julian days. Moreover, a convolutional layer

of PM2.5 levels was applied, representing the weighted averages of nearby PM2.5 levels. This

parameter helps to fully exploit the spatial autocorrelation of PM2.5 and can significantly

increase the accuracy of PM2.5 prediction [19, 22]. By comparing the results with different

settings, ntree and mtry were set as 500 and 7 respectively to achieve the best prediction

accuracy.

PM2.5st = f(Terra AODst, Aqua AODst, air temperaturest, dew point temperaturest,

surface pressurest, specific humidityst, wind speedst, visibilityst, HPBLst,

potential evaporationst, downward shortwave radiationst, CAPEst, populations,

NDVIst, highway distances, major distances, elevations, convolutional layerst,

montht, dayt)

(2)

where s denotes the location of a grid cell and t denotes the time of an observation. The

variable selection strategy used in Hu et al. [22] was adopted here, in which the variables with

low importance values were discarded (e.g., precipitation and relative humidity in this anal-

ysis). 10-fold CVs was employed to assess the mode performance, including overall, spatial,

and temporal CVs [31]. The spatial CV generated validation samples in accordance with

the locations of the PM2.5 measurements. The temporal CV generated validation samples

in line with the Julian days of the measurements. Besides the original model, Equation (2)

without both Terra and Aqua gap-filled AOD parameters (a.k.a. no-AOD prediction model)

was fitted to examine the impact of the gap-filled AOD on the PM2.5 predictions. Equation

(2) with AOD gap-filled by cloud fractions (a.k.a. cloud-only prediction model) was also

fitted to verify the importance of the snow parameter in the PM2.5 prediction.
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3.3.10 Comparison With Another Gap-Filling Method

To assess our gap-filling model, our full-coverage PM2.5 predictions were compared to the

gap-filled PM2.5 generated by a previous gap-filling method proposed by Kloog et al. [17]

and Just et al. [86] (Equation (3)).

√
PredPMst = α0 + α1 ×

√
MeanPMt + s(X,Y)s + εst (3)

where s denotes the location of a grid cell, and t is the time of an observation. The de-

pendent variable
√

PredPMst denotes the existing PM2.5 predictions at location s at time t.
√

MeanPMt denotes an average PM2.5 measurement on day t. s(X,Y)s is a spline surface

of the coordinates of the grid cells. The reason for applying square root was to ensure the

positive values of PM2.5 [86]. We had also tried calculating
√

MeanPMt within a 100-km

buffer [15]. Yet the PM2.5 distribution showed significant artificial patterns due to the sparse

monitoring network so that the buffer was not adopted. The gap-filling model was fitted

monthly to better reveal the temporal variations of PM2.5 [15]. A 10-fold CV was employed

to examine the modeling performance.



18

3.4 Results

3.4.1 Descriptive Statistics for MAIAC AOD Missingness

Table 1: Average daily missing rates of MAIAC AOD caused by cloud and snow covers in
NYS in 2015. The first 15 weeks of 2015 are defined as the “snow season”. The ∼10%
gap between the overall missing rate and the total rate caused by cloud and snow resulted
from the MAIAC pixels outside the sensor scanning range (i.e., no measurement). The
contribution of water/ice to the missing AOD was negligible in NYS.

AOD Missing Type Mean Median 25th – 75th Quantiles

Aqua

Overall 90.27% 96.54% 87.62% – 99.84%
Cloud-related 75.58% 79.47% 64.74% – 91.48%
Snow-related 6.14% 0.00% 0% – 2.48%

Snow-related (first 15 weeks) 21.15% 14.03% 5.23% – 31.18%

Terra

Overall 89.50% 96.54% 84.88% – 99.75%
Cloud-related 76.66% 81.32% 66.29% – 92.12%
Snow-related 5.55% 0.00% 0% – 2.88%

Snow-related (first 15 weeks) 19.03% 10.78% 5.00% – 29.84%

The Quality Assessment (QA) flags of MAIAC AOD were employed to infer the rates of

missing AOD caused by cloud cover, snow cover and water/ice (Table S1). The average

daily missing rates associated with cloud and snow are listed in Table 1 (the contribution of

water/ice-related missing AOD was negligible in NYS). Since the missing AOD caused by

snow cover was primarily in the first 15 weeks (105 days) of 2015, the average missing rates

in this period are separately summarized in the table. This period is also referred to as the

“snow season” hereinafter. The overall AOD missing rate was ∼90% in 2015, and the cloud-

related missing AOD was ∼76% of the total data. Though the snow-related missingness only

took up ∼6% in this year, the percentage increased to ∼20% in the snow season. There was

a ∼10% gap between the overall missing rate and the total rate caused by cloud and snow.

This gap resulted from the MAIAC pixels located in the areas outside the sensor scanning

range (i.e., no measurement). In general, though the missing AOD was primarily caused by

cloud cover, snow-related AOD missingness remained a severe issue in the snow season.
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3.4.2 AOD Gap-Filling by Random Forests

Figure 2: AOD spatial distributions in 2015: (a) annual distribution of Aqua AOD (original
and gap-filled AOD); (b) annual distribution of gap-filled Aqua AOD; (c) annual distribution
of Terra AOD (original and gap-filled AOD); (d) annual distribution of gap-filled Terra AOD;
(e) differences between gap-filled and original Aqua AOD (gap-filled minus original AOD);
(f) differences between gap-filled and original Terra AOD (gap-filled minus original AOD).

By Equation (1), full-coverage AOD was generated for both Terra and Aqua data sets.

Daily RF models had a mean OOB R2 of 0.93 (for both Terra and Aqua data sets) with

interquartile ranges (IQR) from 0.91 to 0.95 for Terra and 0.90 to 0.95 for Aqua. The annual

AOD distributions and the spatial differences between gap-filled and original AOD are shown

in Figure 2. The overall and gap-filled AOD showed the similar spatial patterns. The peak
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AOD levels appeared in the Allegheny Plateau of Southern NYS. Some populated areas in

NYS (e.g., New York City) also had high-level AOD. For Terra, original and gap-filled AOD

had the annual means of 0.11 (IQR: [0.10, 0.12]) and 0.26 (IQR: [0.25, 0.26]), respectively.

For Aqua, original and gap-filled AOD had the annual means of 0.09 (IQR: [0.08, 0.10]) and

0.25 (IQR: [0.24, 0.25]), respectively. As Figure 2(e) and (f) suggest, the gap-filled AOD

was higher than the original AOD throughout the state. This outcome is consistent with

that of Belle et al. [26] and Xiao et al. [31] who found clear evidences that the hygroscopic

growth of aerosol droplets under cloudy and humid weather resulted in higher levels of AOD

estimates.

3.4.3 PM2.5 Prediction by Random Forests

3.4.3.1 Modeling Performance

Figure 3: Random forest modeling performance: (a) 10-fold cross-validation (CV) scatters
with an R2 of 0.82 and an RMSE of 2.16 µg/m3; (b) variable importance ranking. The PM2.5

convolutional layer had the highest value and five of the top-seven important variables were
land-use terms.

By Equation (2), 1-km PM2.5 predictions with full coverage were generated. The prediction

model showed an overall CV R2 of 0.82 (Figure 3(a)) with spatial and temporal CV R2 values

of 0.74 and 0.81, respectively. The model had an RMSE of 2.16 µg/m3, suggesting a good

prediction accuracy. Figure 3(b) shows the ranking of the variable importance. The PM2.5



21

convolutional layer had the highest importance value, which is consistent with that of Hu et

al. [22] who confirmed an improvement of model accuracy by the PM2.5 convolutional layer.

Five of the top-seven important variables were land-use terms (e.g., population, distances to

major roads, elevation, distances to highways, and NDVI). This outcome could suggest that

the PM2.5 sources in New York State were primarily local sources, and the transportation of

regional pollution was relatively weak, which is consistent with the PM2.5 emission inventory

of New York State in 2014. Though the gap-filled AOD parameters did not have high

importance values, they still contributed to a changed spatial pattern of PM2.5 estimates. We

also performed the PM2.5 prediction for 2002 – 2012, finding that the modeling performance

was stable in terms of CV R2 and variable importance ranking (Table S2).

3.4.3.2 PM2.5 Predictions

Figure 4: PM2.5 spatial distributions in 2015: (a) annual distribution of PM2.5 with a 1-km
resolution by Equation (2); (b) gap-filled PM2.5 by Equation (3); (c) differences between
full-model and no-AOD PM2.5 in the snow season (full-model minus no-AOD PM2.5); (d)
differences between full-model and cloud-only PM2.5 in the snow season (full-model minus
cloud-only PM2.5).
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Figure 4(a) shows the annual PM2.5 distribution in NYS in 2015 (the PM2.5 distributions in

different seasons shown in Figure S1). The PM2.5 levels had a mean of 5.30 µg/m3 with an

IQR from 4.43 to 6.08 µg/m3. The distribution showed clear patterns of higher PM2.5 along

with the roads and in the populated areas. These patterns are consistent with the PM2.5

emission inventory of NYS, suggesting that the PM2.5 sources were primarily residential wood

combustion and on-road emissions. The highest PM2.5 levels appeared in the large cities,

e.g., New York City, Long Island, and Buffalo. Other major cities, e.g., Albany, Rochester,

Yonkers, and Syracuse also had relatively high PM2.5 levels. In contrast, the Adirondack

Mountains in the Northeastern NYS with the lowest population density showed the lowest

PM2.5 levels.

Since New York State lies upon the portion of Northeast Appalachians, most of its areas,

in particular Upstate New York, are dominated by the mountainous terrain. Our high-

resolution PM2.5 predictions showed obvious evidence of the correlation between elevation

and PM2.5 in NYS. This correlation can be partially reflected by the variable importance

since the elevation was the 4th important variable in the prediction model. Besides, we

found obvious patterns of PM2.5 accumulation in the valleys of the Allegheny Plateau in

winter. An area in the Allegheny Plateau was selected to highlight the valley accumulation

of PM2.5. Figure 5 shows the PM2.5 distribution with contours (140-m intervals) in this area

in winter (January, February, and December in 2015). Elevated PM2.5 levels in the valleys

were clearly shown. In these valleys, PM2.5 levels were 1 – 2 µg/m3 higher than those in the

surroundings. These results suggested that our 1-km PM2.5 predictions could reflect small-

scale PM2.5 features driven by local geographical factors, which would be smeared with a

coarser resolution.
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Figure 5: PM2.5 accumulation effect in the valleys of Upstate New York in winter. The areas
are on the border of Chenango County and Otsego County (Latitude: [42.375◦N, 42.75◦N];
Longitude: [75.5◦W, 75.15◦W]). The widths of the valleys are ∼3 km.

3.4.3.3 Comparison With Another Gap-filling Approach

To verify the effectiveness of our gap-filling model, we compared our PM2.5 predictions to the

PM2.5 generated using a reported gap-filling method (Equation (3)). For a fair comparison,

Equation (3) followed a subset of our PM2.5 predictions derived from the original MAIAC

AOD (i.e., removing the PM2.5 predictions generated from the gap-filled AOD). The ten-fold

cross-validation R2 values of the monthly models had a mean of 0.69 ranged from 0.60 to

0.78, lower than the OOB R2 values of our gap-filling model. Figure 4(b) shows the annual

PM2.5 distribution generated by Equation (3). Even though the model had full-coverage

predictions, the PM2.5 were spatially over-smoothed. In contrast, since the major PM2.5

sources were local sources in NYS (i.e., residential wood combustion and on-road emissions)

[66], our PM2.5 spatial patterns well captured these well-defined sources.
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3.4.4 The Importance of Gap-Filled AOD With Snow Cover Parameter

3.4.4.1 Contribution of Gap-filled AOD to PM2.5 Predictions

Since the gap-filled AOD parameters were not among the top-important variables (Figure

3(b)), their contribution to our PM2.5 predictions was examined to verify their validity in

the prediction model. A prediction model without gap-filled AOD parameters was fitted

(a.k.a. no-AOD prediction model), and the analysis of the PM2.5 estimates emphasized on

the snow season (first 105 days in 2015). Figure 4(c) shows the spatial differences between

full-model and no-AOD PM2.5 in the snow season. Compared with the no-AOD PM2.5, the

full-model PM2.5 had higher levels along with the roads and lower levels in the background

areas (e.g., the Adirondack Mountains). Hence, after the addition of the AOD parameters

in the prediction model, the pattern of PM2.5 sources was intensified, in particular on-road

emissions. Quantitatively, the mean absolute difference between two PM2.5 data sets was

0.13 µg/m3 with an IQR from 0.06 to 0.18 µg/m3. The maximum absolute difference reached

0.99 µg/m3, suggesting a significant change in terms of a 105-day average. Also, the full-

model PM2.5 was compared with the PM2.5 predictions derived from the original MAIAC

AOD (Figure S2). The significant differences between two data sets suggested the impact of

not only the systematic changes of gap-filled AOD values, but also the significant increase of

the sample size. These comparisons suggested that the pollution information incorporated

in the gap-filled AOD significantly impacted the PM2.5 prediction, leading to discernible

changes in PM2.5 patterns. The reason for the intensified pattern of on-road PM2.5 pollution

after the addition of the gap-filled AOD needs further studies.

3.4.4.2 Influences of Snow Cover Parameter on AOD and PM2.5

During and after the snow season, the rank change of the snow fraction’s importance in the

AOD gap-filling model indicated the importance of this variable in the gap-filling process.

Among the 9 variables in the AOD gap-filling model, the average rank of snow fraction’s

importance was valued as 5 during the snow season and dropped to 8 after the snow season. In

contrast, the rank of cloud fraction’s importance was stable with an average of 2 throughout

the year. As expected, this outcome indicated that the snow fraction was more important
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when it was snowy. Further, we fitted a cloud-only AOD gap-filling model (i.e., the snow

fraction was removed) to examine the impact of the snow fraction on the gap-filled AOD

(the cross-validation performance listed in Table S3). We found that the mean absolute

differences between the full-model AOD and the cloud-only AOD were 0.002 (IQR: [0.001,

0.003]) and 0.001 (IQR: [0.0004, 0.001]) for Terra and Aqua, respectively. During the snow

season, the maximum absolute difference was 0.007 in terms of a 105-day average. Moreover,

we also examined the impact of the snow fraction on the PM2.5 predictions. By using the

full-model and cloud-only AOD in the PM2.5 prediction, two PM2.5 data sets were generated:

1) full-model PM2.5 and 2) cloud-only PM2.5. Figure 4(d) shows the differences between two

PM2.5 data sets in the snow season. Compared with the cloud-only PM2.5, the full-model

PM2.5 tended to be higher in the regions with high PM2.5 levels (e.g., populated areas and

major roads) and lower in backgrounds. Hence, the snow fraction improved the source

patterns of PM2.5. In the snow season, the mean absolute difference between two PM2.5 data

sets reached 0.09 µg/m3 (IQR: 0.02 to 0.12 µg/m3), and the maximum absolute difference

reached 0.99 µg/m3. The mean difference was at a similar scale as the mean difference

caused by the gap-filled AOD, which was 0.13 µg/m3 in the snow season. This suggested

that the snow cover might take up the majority of gap-filled AOD’s impact on the PM2.5

predictions. In brief, by influencing the gap-filled AOD, the impact of the snow cover was

transferred to the PM2.5 predictions, resulting in the discernible changes in PM2.5 patterns.

The reason for the intensified source patterns after the addition of this parameter needs

further studies.

3.5 Discussion

In this study, fully covered and high-resolution PM2.5 levels were estimated based on the

gap-filled MAIAC AOD in New York State in 2015. To the best of our knowledge, this is the

first study applying both snow and cloud cover parameters in the gap-filling process to in-

crease the spatiotemporal availability of satellite AOD and the accuracy of PM2.5 estimation.

Despite the ∼90% AOD missingness in the region, our gap-filling models still had excellent

performance with a mean OOB R2 of 0.93. Xiao et al. [31] adopted a multiple imputation

model with similar predictors (except for the snow fraction) to conduct AOD gap-filling in
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the YRD of China, in which there was nearly no snow cover, and the AOD missing rate

was ∼60%. They had a mean modeling R2 of 0.77 with an IQR from 0.71 to 0.82. The

improvement in our modeling performance reflected the advantages over the model of Xiao

et al. [31] and the potential of machine learning models dealing with the AOD gap-filling

with complex snow/cloud-AOD interactions. Our gap-filled AOD was significantly higher

than the original MAIAC AOD by an average of 0.15. This outcome is consistent with the

findings of previous studies suggesting that the increased humidity caused by cloud could

lead to the aerosol hygroscopic growth [26, 27, 31].

Our PM2.5 prediction model showed a good performance with a CV R2 of 0.82 and an

RMSE of 2.16 µg/m3. Hu et al. [22], also applying the random forest algorithm to the PM2.5

prediction, had a CV R2 of 0.79 and an RMSE of 2.84 µg/m3 in the Northeastern U.S.

(including New York and New England states). Compared to the model of Hu et al. [22],

our model achieved the major improvements of 1) conducting satellite AOD gap-filling and

making full-coverage PM2.5 predictions, 2) conducting PM2.5 predictions with a higher 1-km

spatial resolution, and 3) achieving similar modeling performance without the convolutional

layers of land-use variables. Kloog et al. [15] estimated high-resolution PM2.5 with an “out-

of-sample” R2 of 0.88 and an RMSE of 2.33 µg/m3 in the Northeastern U.S. using a linear

mixed effects model. However, their PM2.5 gap-filling model, virtually a generalized additive

model (GAM) with a spline surface (Equation (3)), tended to over-smooth the PM2.5 spatial

details. In contrast, our PM2.5 predictions showed strong local sources in the populated

areas and major roads. 2014 National Emissions Inventory suggested that the largest PM2.5

emission source in New York State was the residential wood combustion, resulting in 17,916

tons of PM2.5 emissions. This emission source was primarily gained around the large and

densely populated cities (e.g., New York metropolitan area, Buffalo, Rochester, Syracuse

and Albany) [65]. Thus, the correlation between high PM2.5 levels and high populations in

our areas was reasonable. Besides, the emission inventory suggested that among the top-

twelve PM2.5 emission sources in New York State (out of 60 Emissions Inventory System

emission sectors), at least four of them had the direct correlation with on-road emissions.

These sources (paved road dust, on-road diesel heavy-duty vehicles, unpaved road dust,

and on-road non-diesel light-duty vehicles) led to 19,753 tons of PM2.5 emissions in 2014.
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These high-level PM2.5 emissions could interpret the strong PM2.5 signals along with the

roads in our areas. Due to the 1-km resolution, our predictions could reflect small-scale

PM2.5 features driven by local topographic factors. In some mountainous areas of Upstate

New York, 1 – 2 µg/m3 higher PM2.5 accumulated in valleys in winter was found. This

phenomenon is consistent with the findings of previous studies suggesting that the stagnant

weather conditions in valleys caused by strong temperature inversions could lead to the

increase in PM2.5 levels [87–89].

This study considered snow cover in AOD gap-filling process by introducing the snow fraction

in the gap-filling model. The significance of the snow fraction was partially reflected by its

importance ranking in the gap-filling models. In the snow season (first 15 weeks of 2015),

when the heaviest snowfalls appeared, the snow fraction would be the 5th/6th important

variable, compared with the rest of the year when its importance only ranked 8th/9th. To

further examine the impact of the snow fraction on the PM2.5 predictions, two prediction

models without the gap-filled AOD or snow fraction were built. In the snow season, the

gap-filled AOD alone caused the absolute changes of PM2.5 by an average of 0.13 µg/m3,

and the snow fraction resulted in an average absolute change of 0.09 µg/m3. Accordingly,

the impact of the snow fraction might be responsible for the primary influence of gap-filled

AOD on the PM2.5 predictions in the snow season. For the spatial pattern, the snow fraction

led to the increase of PM2.5 estimates in the areas with large PM2.5 sources (e.g., populated

areas and major roads). Previous studies found that the elevated PM2.5 levels appeared to

occur on snowy days due to more stagnant atmospheric conditions [32, 34]. The impact

of snow on PM2.5 patterns in this analysis could partially reflect this phenomenon. On the

whole, by affecting the gap-filled AOD, the impact of the snow fraction was transferred to the

PM2.5 predictions, leading to the discernible changes in PM2.5 patterns. These analyses also

suggested the advantages of estimating missing satellite AOD data for PM2.5 prediction,

instead of directly estimating the missing PM2.5 levels. The former approach can, to a

greater extent, draw upon the pollution characteristics incorporated in the satellite AOD

and the additional information provided by AOD-related meteorological features. Though

this study was limited to New York State, the methodology relative to the AOD gap-filling

and PM2.5 prediction is generalizable to other areas with extensive snow/cloud covers and
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large proportions of missing satellite AOD data.

The major limitation of this study is that the physical characteristics of snow and cloud

are insufficiently considered. The parameters used in this study only reflected the coverage

of snow and cloud. Their different physical features, however, may cause the changes in

the AOD and PM2.5 levels [26]. Accordingly, more snow/cloud characteristics (e.g., cloud

optical depth, cloud emissivity, surface albedo, etc.) can be applied to better interpret the

interactions between snow/cloud and AOD/PM2.5. With an increased number of snow/cloud

parameters, a more suitable strategy to incorporate them, instead of additively applying

them to the model, also deserves to be considered. Furthermore, the reason for snow/cloud-

related AOD/PM2.5 pattern changes needs further studies.

3.6 Conclusions

In this study, an AOD gap-filling model and a PM2.5 prediction model based on the ran-

dom forest algorithm were developed to estimate fully covered and high-resolution ground

PM2.5 in New York State in 2015. By introducing the MODIS snow/cloud fractions into

the gap-filling process, a 100% gap-filled AOD data set was produced with an excellent

modeling performance. The 1-km PM2.5 predictions derived from the gap-filled AOD could

reflect the detailed emission patterns and small-scale terrain-driven features. It is the first

attempt where both snow and cloud parameters are introduced into the AOD gap-filling

process. Though we only applied fraction measures of snow and cloud, the importance of

these parameters was still reflected, and the discernible interactions between snow/cloud and

AOD/PM2.5 were observed. It is necessary for future applications to adopt more physical

characteristics of snow and cloud and to explore more suitable strategies to introduce these

parameters into the gap-filling process. The methodology of this study can be generalized

to other areas with extensive snow/cloud covers and large proportions of missing satellite

AOD data to estimate PM2.5 exposures that previously could not be obtained. The im-

proved PM2.5 exposures with an increased sample size and good data quality are expected

to contribute to downward epidemiological studies.
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4.1 Abstract

Low-cost air quality sensors are promising supplements to regulatory monitors for PM2.5

exposure assessment. However, little has been done to incorporate the low-cost sensor mea-

surements in large-scale PM2.5 exposure modeling. We conducted spatially varying calibra-

tion and developed a down-weighting strategy to optimize the use of low-cost sensor data

in PM2.5 estimation. In California, PurpleAir low-cost sensors were paired with Air Quality

System (AQS) regulatory stations and calibration of the sensors was performed by Geograph-

ically Weighted Regression. The calibrated PurpleAir measurements were then given lower

weights according to their residual errors and fused with AQS measurements into a Random

Forest model to generate 1-km daily PM2.5 estimates. The calibration reduced PurpleAir’s

systematic bias to ∼0 µg/m3 and residual errors by 36%. Increased sensor bias was found to

be associated with higher temperature and humidity as well as a longer operating time. The

weighted prediction model outperformed the AQS-based prediction model with an improved

random cross-validation (CV) R2 of 0.86, an improved spatial CV R2 of 0.81, and a lower

prediction error. The temporal CV R2 did not improve due to the temporal discontinuity of

PurpleAir. The inclusion of PurpleAir data allowed the predictions to better reflect PM2.5

spatial details and hot-spots.

4.2 Introduction

Particulate matter with an aerodynamic diameter ≤ 2.5 µm (PM2.5) is associated with a

broad range of adverse health outcomes [90, 91] and is a major contributor to the global

http://doi.org/10.1021/acs.est.9b06046
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burden of disease [92]. Precise and detailed ambient PM2.5 exposure assessment is funda-

mental to reliably describing PM2.5-disease relationships [60, 93, 94] and developing PM2.5

pollution control policies [63, 95]. Ambient PM2.5 exposure assessment has traditionally re-

lied on regulatory air quality monitoring stations such as the U.S. Environmental Protection

Agency (EPA) Air Quality System (AQS) stations. Due to high instrumentation and main-

tenance cost, regulatory monitoring is only performed at limited locations for examining the

compliance of air quality standards. Given the spatial variability of PM2.5 at the kilometer

scale [96], sparse and uneven regulatory monitoring has a limited ability to reflect PM2.5

pollution details [97], especially at remote communities or when impacted by episodic events

such as wildfires [98, 99]. This paradigm is shifting with the development of citizen science

where many individuals voluntarily collect large amounts of air quality data through low-cost

air quality sensors. These low-cost sensors typically cost < $2,500 and have desirable features

such as flexibility of deployment and ease of maintenance. Due to the lower costs, they can

be deployed more densely than government-operated regulatory stations. Low-cost sensor

data have the potential to provide meaningful air quality information in a spatiotemporally

more frequent manner.

Since the majority of low-cost PM2.5 sensors are based on the light-scattering principle [100],

they tend to have a higher uncertainty than reference-grade monitors. The uncertainty

may be caused by the measurement principle itself such as the uncertainty in measured

particle counts and the conversion from particle counts to mass concentrations [40, 101].

The manufacturing calibration which uses manufactured aerosols with different composition

and properties than those in the ambient environment is another source of uncertainty [100,

102]. The sensors may also experience quality degradation over time [103] and other logistical

issues during deployment and maintenance. Therefore, the data quality of low-cost sensors

varies with sampling locations and conditions [40, 100, 104]. Previous studies suggested

that the pre-test and calibration of low-cost sensors should be conducted where the sensors

are intended to be deployed [40, 100, 104]. Current laboratory and field calibration of

low-cost sensors mainly focuses on reducing their systematic bias [105–107]. Humidity and

temperature were found to be two important factors affecting the systematic bias [102,

108], especially when humidity is high [101, 105, 109]. Multivariate regression models with
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these factors as covariates have been widely used to calibrate the sensors against collocated

reference-grade monitors, which are able to significantly improve the accuracy of the data

but have a limited ability to reduce their residual errors [41, 105, 110].

Currently, there are two primary uses for low-cost PM2.5 sensors. First, they improve moni-

toring coverage in areas where there is insufficient regulatory monitoring. For example, Pope

et al. [111] identified spatial features and diurnal behavior of PM pollution based on low-cost

sensor data deployed at three locations in Nairobi, Kenya, a city without long-term reference-

grade PM measurements. The applications of low-cost sensors in regions with limited access

to regulatory monitoring have advanced local communities’ awareness and understanding

of air pollution [99, 100, 112]. The second major use of low-cost sensors is to assist with

revealing the fine-scale variability of PM2.5, especially in developed countries. In this case,

low-cost sensor data are used as a supplement to regulatory measurements in physical or

statistical models to fill in the spatiotemporal gaps of PM2.5 concentrations. For example,

Masiol et al. [113] incorporated continuous PM concentrations from commercially available

low-cost sensors in land-use regression models to derive hourly-resolved PM predictions in

Monroe County of New York State. With the addition of calibrated low-cost sensor data

to the few regulatory measurements from existing air quality stations in Imperial County

of California, Bi et al. [114] found that low-cost sensor data could improve the accuracy of

PM2.5 predictions with more reasonable spatial details.

Though it holds promise, there are two major limitations with regard to using a low-cost

sensor network to improve PM2.5 pollution mapping and exposure assessment. First, due

to the significant cost of extensive field testing by trained scientists [111], the side-by-side

low-cost sensor calibration against reference-grade monitors has mostly been confined in a

small region, e.g., at a city or county level. In other words, even though low-cost sensors are

individually cheap, the high cost of field calibration makes their use at large spatial scales

expensive. Field calibration is more difficult for the low-cost sensor networks established

by third parties for other purposes. Secondly, even though low-cost sensor data attain a

relatively low systematic bias after calibration, their precision is still not comparable to that

of reference-grade measurements. The residual measurement errors of sensor data are difficult
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to be reduced by current multivariate calibration models [114]. When the calibrated sensor

data are treated as ground truth, their residual errors may still significantly influence the

reliability of their downstream applications such as hot-spot detection, source identification,

and epidemiological analysis [113]. These limitations also apply to other citizen science

programs with large amounts of low-quality volunteer-generated data, such as the personal

weather data collected by citizens across the U.S. for the Citizen Weather Observer Program

[97].

In this study, we proposed a two-step approach to address the aforementioned limitations and

optimize the use of low-cost sensor measurements in a spatially extensive, high-resolution

PM2.5 exposure assessment. Using a commercial low-cost sensor network as an example,

we first conducted a large-scale spatially varying calibration for low-cost PM2.5 data against

existing reference-grade measurements. A down-weighting process was then conducted in

the prediction stage to reduce the negative impacts of the residual errors of the calibrated

sensor data. Our framework is designed to integrate low-cost sensor data with regulatory

monitoring data and other sources of information such as satellite, meteorological, and land-

use data to improve the high-resolution PM2.5 exposure assessment. This framework could

also be informative to other citizen science programs to improve the accuracy of volunteer-

generated data.

4.3 Data and Methods

4.3.1 Study Domain and Modeling Strategy

California is the most populous U.S. state with over 39 million residents and the one with

the most severe PM pollution, especially in metropolitan areas and the Central Valley [115].

California has a relatively dense regulatory air quality monitoring network and dense low-

cost sensors for tracking local air quality. By the end of 2018, there were 157 AQS stations

providing PM2.5 measurements and 2,090 outdoor sensors from PurpleAir, a commercial

low-cost sensor network, providing sub-hourly PM2.5 measurements within the state. Figure

6(a) shows our study domain with the locations of AQS and PurpleAir monitors. To take

advantage of the dense ground monitors and high-resolution satellite aerosol data, we defined
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a grid at a 1-km resolution for PM2.5 modeling. The entire study domain consists of 493,561

grid cells. A brief workflow of our two-step modeling approach is shown in Figure 6(b).

Figure 6: (a): The study domain, California, with the locations of AQS (red), PurpleAir
(blue), and paired AQS/PurpleAir monitors (green). The latitude/longitude range of Califor-
nia is [32◦30’N, 42◦N] and [114◦8’W, 124◦24’W]. (b): The workflow of the two-step approach
including spatially varying PurpleAir calibration and weighted PM2.5 prediction.

4.3.2 Data

4.3.2.1 PM2.5 Measurements

PurpleAir is a citizen-based, real-time low-cost PM sensor network started in 2015 (https:

//www.purpleair.com/). By the end of 2018, PurpleAir had almost 7,000 sensors worldwide

with a growing rate of ∼30 sensors per day. PurpleAir provides minute-level indoor/outdoor

measurement for PM2.5 and other environmental parameters (humidity, barometric pressure,

and temperature). We obtained hourly PM2.5 measurements from 2,090 outdoor PurpleAir

sensors in 2018 in California (N = 5,842,404). Quality control was conducted for these

measurements to minimize the outliers (Section 7.2.1, Supporting Information). The raw

PurpleAir PM2.5 measurements appeared to bias substantially high against reference-grade

https://www.purpleair.com/
https://www.purpleair.com/
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measurements (Section 7.2.2, Supporting Information).

Reference-grade PM measurements were obtained from the EPA AQS regulatory monitor-

ing network (https://www.epa.gov/aqs). In 2018, 157 AQS stations provided 50,870 daily

PM2.5 measurements in California, and 109 of them provided 499,940 hourly PM2.5 measure-

ments. The hourly PM2.5 measurements from the AQS stations near the PurpleAir monitors

were used for PurpleAir evaluation and calibration. Daily PM10 measurements were also

obtained, which were utilized to generate an ancillary predictor, the PM2.5/PM10 ratio. This

predictor is a continuous surface interpolated from the PM2.5/PM10 ratio scatters at the lo-

cations of AQS stations, representing the distribution of the percentages of PM2.5 in PM10 in

the study domain. The interpolation was performed by ordinary kriging with month-specific

variograms fitted in a spherical model. The PM2.5/PM10 ratio was shown to be an important

predictor of ground-level PM2.5 in California due to relatively high coarse-particle loadings

[114].

4.3.2.2 Ancillary Data

Aerosol Optical Depth (AOD) is the integral of aerosol extinction of the solar beam along

the entire vertical atmospheric column, which is an important predictor of ground-level

PM2.5 [96, 116]. We adopted the satellite AOD retrievals from the Moderate Resolution

Imaging Spectroradiometer (MODIS) Multi-Angle Implementation of Atmospheric Correc-

tion (MAIAC) product (MCD19A2, https://lpdaac.usgs.gov/products/mcd19a2v006/)

[117]. MODIS aerosol retrievals have 40 – 50% missing values on average in California due

to cloud cover [118]. Therefore, AOD gap-filling was performed by following Bi et al. [96]

in which daily-level AOD prediction models were built with satellite-observed cloud frac-

tions and AOD-related meteorological parameters (humidity, visibility, downward shortwave

radiation, and wind speed and direction) to derive complete daily AOD surfaces.

Meteorological parameters were obtained from the North American Regional Reanalysis

(NARR) (http://www.emc.ncep.noaa.gov/) at a 32-kilometer (∼0.3◦) resolution [80] and

the North American Land Data Assimilation System (NLDAS) (https://ldas.gsfc.nasa.

gov/) at a 0.125◦ resolution [81]. The meteorological parameters used in PM2.5 modeling

https://www.epa.gov/aqs
https://lpdaac.usgs.gov/products/mcd19a2v006/
http://www.emc.ncep.noaa.gov/
https://ldas.gsfc.nasa.gov/
https://ldas.gsfc.nasa.gov/
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include visibility, 2-meter air temperature and specific humidity, planetary boundary layer

height, 10-meter zonal and meridional wind speeds, shortwave/longwave radiation flux down-

wards, aerodynamic conductance, convective available potential energy, convective precip-

itation, and total precipitation. These reanalysis data were aggregated from sub-daily to

daily to match the PM2.5 data.

The land-use and demographic parameters were obtained from 1) the 2011 National Land

Cover Database (NLCD) at a 30-meter resolution (https://www.mrlc.gov/), 2) the Ad-

vanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital

Elevation at a 1 arc-second resolution (https://asterweb.jpl.nasa.gov/), 3) the Land-

Scan ambient population in 2017 at a 900-meter resolution (https://landscan.ornl.gov/),

4) the Normalized Difference Vegetation Index (NDVI) from MODIS vegetation indices at

a 500-meter resolution (https://modis.gsfc.nasa.gov/), 5) the distances to the near-

est primary and secondary roads computed from the U.S. Census TIGER/Line® Shape-

files (https://www.census.gov/), and 6) active fire distributions computed from satellite-

retrieved active fire spots (https://firms.modaps.eosdis.nasa.gov).

4.3.3 PurpleAir PM2.5 Calibration and Weighted PM2.5 Modeling

4.3.3.1 Spatially Varying PurpleAir PM2.5 Calibration

The PurpleAir measurements were calibrated against the “gold-standard” AQS measure-

ments. Since both AQS and PurpleAir were existing networks, there were very few strictly

collocated AQS/PurpleAir sites in California during the time this analysis was conducted.

Instead, we matched a PurpleAir sensor to its nearest AQS station within a 500-m radius so

that each AQS/PurpleAir pair was within a 1-km modeling grid cell. The calibration was

conducted at the level of single PurpleAir sensors, i.e., the measurements from multiple Pur-

pleAir sensors around the same AQS station were treated separately rather than aggregated

together in calibration. A sensitivity analysis indicated that the selected AQS/PurpleAir

pairs were robust within a range between 100 to 1000 m without a significant change of the

number of pairs. During the study period, 54 PurpleAir sensors were matched to 26 AQS

stations, providing 128,777 paired hourly PM2.5 measurements.

https://www.mrlc.gov/
https://asterweb.jpl.nasa.gov/
https://landscan.ornl.gov/
https://modis.gsfc.nasa.gov/
https://www.census.gov/
https://firms.modaps.eosdis.nasa.gov
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Given the spatially varying agreement between paired AQS and PurpleAir measurements,

Geographically Weighted Regression (GWR) was conducted for the PurpleAir calibration.

GWR allows smoothed local relationships between AQS and PurpleAir measurements. Tem-

perature and relative humidity (RH) were used as covariates of the GWR calibration model

because these parameters are associated with the data quality of low-cost sensors [40, 105].

In addition, low-cost sensors may experience quality degradation over time [103, 119, 120],

thereby the total operating time of a sensor (the duration between the measurement time

and the installation time) were used to adjust the effect of sensor aging. Finally, the sensor

uptime (the time during which a sensor is in consecutive operation from the last boot time)

were used to adjust the potential impact of sensor’s operational stability on data quality. A

linear specification was used to describe the relationship between the bias of PurpleAir mea-

surements and four covariates (temperature, RH, operating time, and uptime) (see Section

7.2.3 of Supporting Information for the nonlinearity analysis of PurpleAir bias). The GWR

model can be expressed as:

AQS PM2.5i = β0(ui, vi) + β1(ui, vi)× PurpleAir PM2.5i + β2(ui, vi)× Ti+

β3(ui, vi)× RHi + β4(ui, vi)×Optimei + β5(ui, vi)× Uptimei + εi εi ∼ N(0, τ 2)
(4)

where β(ui, vi) indicates the vector of the location-specific parameter estimates and (ui, vi)

represents the geographic coordinates of location i. AQS PM2.5i and PurpleAir PM2.5i are

paired hourly PM2.5 measurements at location i. Ti, RHi, Optimei, and Uptimei represent

temperature, relative humidity, operating time, and uptime of the PurpleAir sensor at loca-

tion i. The error term εi is normally distributed with a mean of zero and an overall error

variance τ 2. The optimal hyperparameters of GWR, i.e., the kernel and bandwidth, were

chosen based on the corrected Akaike Information Criterion (AICc). In this analysis, the

optimal kernel was a Gaussian kernel and the optimal bandwidth was 5,401 nearest neigh-

boring points. All covariates were statistically significant at an alpha level of 0.05 in the

GWR calibration model. The GWR was fitted using the R package “GWmodel” version

2.0-7 [121]. In order to examine the impact of the number of collocated AQS stations for
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PurpleAir calibration, a sensitivity analysis was conducted with subsets of randomly selected

collocated stations (Table S4).

Besides the calibration, another generalized additive model (GAM) was built to quantify

the impacts of temperature, RH, operating time, and uptime on the bias of PurpleAir mea-

surements (Equation (5)). This model describes the relationships of the absolute bias of

PurpleAir measurements (against paired AQS measurements) and the four covariates. The

model can be expressed as:

|AQS PM2.5i − PurpleAir PM2.5i| = α0 + s(Ti) + s(RHi) + s(Optimei) + s(Uptimei) + εi

(5)

where i represents a specific paired record and s(·) indicates the smooth function with degrees

of freedom of 2 to minimize the random fluctuation in the estimated relationships.

4.3.3.2 Weighted PM2.5 Modeling With AQS and PurpleAir Data

After calibration, AQS and PurpleAir measurements were aggregated to daily, 1-km av-

erages for PM2.5 modeling. For the 1-km grid cells containing both AQS and PurpleAir

measurements, only the AQS measurements were selected to better represent the pollution

levels. A weighted Random Forest (RF) model was adopted to generate daily, 1-km PM2.5

predictions based on the aggregated daily measurements. Random forests are an ensemble

learning method combining the predictions from a multitude of decision trees [83]. RF pro-

vides variable importance measures to explain the relative importance and contribution of

each predictor. The RF algorithm has been increasingly applied to predicting ground PM2.5

levels [22, 96]. An advantage of using RF in this analysis is that it can assign an individual

weight to each dependent observation so that the high-quality AQS measurements could

have a higher weight than the PurpleAir measurements [122]. An observation with a higher

weight will be selected with a higher probability in the samples for building decision trees,

therefore having a greater influence on the predictions.

We followed Hu et al. [22] and Bi et al. [96] to perform variable selection and model evalua-
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tion based on RF variable importance and random cross-validation (CV). The independent

variables used in the prediction models are shown in Table 2. Two major RF hyperparam-

eters, the number of decision trees (ntree) and the number of predictors randomly tried at

each split (mtry), were tuned based on CV performance. In this analysis, the optimal values

of ntree and mtry were 500 and 5, respectively. Apart from the RF model with individual

weights (refer to as “the weighted model” hereinafter), two reference models were built: one

based solely on the AQS measurements (a.k.a. the AQS-based model) and another based on

the AQS and PurpleAir measurements without weighting (a.k.a. the non-weighted model).

We used 10-fold random, spatial, and temporal CV to evaluate these models. The 10-fold

spatial CV procedure creates validation sets according to the locations of the measurements

(i.e., dropping 10% of all locations) and the temporal CV creates validation sets according

to Julian days. R2 and root-mean-square prediction error (RMSPE) were the major gauging

metrics of CV. It is worth noting that CV was only performed on AQS measurements not

used in calibrating PurpleAir to ensure the CV only evaluates out-of-sample model predic-

tion performance. This avoids the issue that calibrated PurpleAir measurements will likely

share similar features of matched AQS monitors.
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Table 2: Independent variables used in the PM2.5 prediction models (s: spatially varying; t:
temporally varying).

Prediction Variables
MAIAC AOD Ancillary variables
- Gap-filled Terra AOD(s,t) - PM2.5/PM10 ratio(s,t)

- Gap-filled Aqua AOD(s,t) - Day of year(t)

Land-use variables - Month(t)

- Elevation(s) Meteorological variables
- Population(s) - Visibility(s,t)

- NDVI(s,t) - 2-meter air temperature(s,t)

- Nearest distance to roads(s) - 2-meter specific humidity(s,t)

- Percentage of shrublands(s) - Planetary boundary layer height(s,t)

- Percentage of herbaceous areas(s) - Longwave radiation flux downwards(s,t)

- Percentage of developed areas(s) - Shortwave radiation flux downwards(s,t)

- Percentage of cultivated areas(s) - 10-meter zonal wind speed(s,t)

- Percentage of forests(s) - 10-meter meridional wind speed(s,t)

- Percentage of water bodies(s) - Aerodynamic conductance(s,t)

- Percentage of wetlands(s) - Convective available potential energy(s,t)

- Percentage of barren lands(s) - Convective precipitation(s,t)

- Active fire distribution(s,t) - Total precipitation(s,t)

Although the systematic bias of PurpleAir data could be reduced by calibration, these mea-

surements still had substantial residual errors which might adversely impact the accuracy of

PM2.5 predictions. We assigned lower weights to PurpleAir measurements in the prediction

process according to their estimated residual errors to mitigate such influences. Similar to

the bias, we assumed that the residual errors in calibrated PurpleAir measurements would

vary under different environmental conditions. Accordingly, the study domain was parti-

tioned into several sub-domains based on selected variables using Hierarchical Agglomerative

Clustering (HAC) [123]. The domain partitioning aimed to obtain distinct PM2.5 pollution

conditions under which the PurpleAir residual errors would vary. The selected variables

were the top-10 predictors with the highest importance values in the AQS-based prediction

model (Table S5). HAC performs “bottom-up” clustering, i.e., each unclassified item starts

in its own cluster and the two most similar items are merged into a new cluster. This step is

iterated until all items are aggregated into a single cluster to form a hierarchical structure.

Hierarchical clustering has no hidden assumptions about the distribution of underlying data,
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which was suitable in our case as we had little a priori understanding of the 10-variable fea-

ture space. The number of clusters (K) was determined with the R package “NbClust” [124].

“NbClust” provides 30 indices for determining K and the optimal K can be decided through

the majority vote of these indices. The optimal K of our feature space was determined to

be 3. Month-specific clustering was conducted as a sensitivity test which showed that our

three-cluster partitioning was robust over time.

Weights assigned to calibrated PurpleAir measurements reflected their relative importance

to AQS measurements in the PM2.5 prediction process. All calibrated PurpleAir measure-

ments in each sub-domain were given the same weight determined using a three-parameter

formula (Equation (6)). First, the mean PurpleAir residual variance in each sub-domain

(τ 2
j ), measured by the variance of the differences between paired PurpleAir and AQS mea-

surements, represents the overall PurpleAir residual error in the sub-domain. Secondly, the

error associated with the prediction model structure (σ2) was estimated as the CV mean

squared prediction error (MSPE) of the AQS-based model. σ2 was the same across different

sub-domains. The proportion of the model structure error (σ2 in the total possible variance

(σ2 + τ 2
j ) served as the upper bound of the weight. Finally, in addition to the uncertainty

related to the low-cost sensing technology, other factors such as the lack of a consistent

siting plan for spatial representativeness can also influence the quality of PurpleAir mea-

surements. To summarize the impact of these unquantifiable circumstances, we included

a data-driven scale factor (ρ) with a range of (0, 1) in the weighting formula. Its value

was tuned based on CV RMSPE and was determined to be 0.23 in this analysis (Section

7.2.4, Supporting Information). Intuitively, as the overall residual error and unquantifiable

uncertainty in calibrated PurpleAir measurements decrease, the weight of the PurpleAir

measurements increases within (0, 1) in the prediction model. As a reference, the weight of

the “gold-standard” AQS measurements was fixed to 1.

wj = ρ · σ2

σ2 + τ 2
j

σ2 > 0 τ 2
j > 0 j = 1, 2, 3 (6)
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4.4 Results

4.4.1 PurpleAir PM2.5 Calibration

4.4.1.1 Evaluation of Uncalibrated PurpleAir Measurements

A linear regression of uncalibrated PurpleAir measurements against AQS had an R2 of 0.74

and a slope of 0.61. This R2 was slightly lower than the R2 values reported by previous

studies [42, 125]. Our relaxed pairing strategy between AQS and PurpleAir might lead to

this lower agreement. Figure 7(a) shows that uncalibrated PurpleAir PM2.5 measurements

tracked well with AQS in time but detected more spikes and biased high against AQS by 1.9

µg/m3. These spikes might be caused by high-level local pollution in the microenvironment

near the PurpleAir sensors such as cigarette smoke, barbecues, fireplaces, and idling trucks

[110] as most PurpleAir sensors have been installed in residential areas by citizens.

When evaluating PurpleAir sensors at the locations of 21 AQS stations with more than

70 paired PM2.5 measurements, a clear variation of the AQS/PurpleAir agreement was ob-

served. Figure 7(b) shows the box plots of the differences between PurpleAir and AQS data

at each AQS site. The site-specific R2 between PurpleAir and AQS ranged from 0.03 to

0.93. The site-specific slope also had a large variation from 0.06 to 1.23. These substantial

variations emphasize the necessity of calibrating and assigning lower weights to PurpleAir

measurements in a spatially varying manner. Figure 7(b) also shows that the variation of

the AQS/PurpleAir agreement was not correlated with their actual distance (correlation

coefficient < 0.001), suggesting that 500 m was a reasonable distance for pairing AQS and

PurpleAir. As shown in Figure 7(b), some paired AQS/PurpleAir measurements had large

differences (> 50 µg/m3). No temporal patterns among these large differences were found.

High-level local pollution in the microenvironment of PurpleAir sensors is believed to be a

potential reason for these occasional inconsistencies.
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Figure 7: (a): Time series of paired AQS (red) and PurpleAir (blue) hourly measurements
with their mean values (dashed lines). The paired measurements were only available from
January to August of 2018. (b): Box plots of the differences between paired AQS and
PurpleAir hourly measurements (PurpleAir minus AQS) at the locations of 21 AQS stations
with more than 70 paired hourly PM2.5 measurements (in ascending order of mean distance).

4.4.1.2 Spatially Varying PurpleAir PM2.5 Calibration

The GWR slopes of PurpleAir (β1 in Equation (4)) averaged 0.64 with an interquartile range

(IQR) of 0.02. The largest slope was 0.67 near the U.S.-Mexico border in Southern Califor-

nia and the smallest was 0.62 near the coast of Northern California (Figure S3). Although

the individual slopes of the AQS/PurpleAir pairs varied significantly across the domain, the

calibration slopes had a narrower range because the GWR model fitted the paired measure-

ments in a wider area at each location and other covariates also worked to remove much
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of the variation. This is a conservative strategy for mitigating the influence of few paired

measurements with extreme coefficients on the calibration model. After calibration, the

overall systematic bias of PurpleAir decreased from 1.9 µg/m3 to ∼0 µg/m3. The overall

PurpleAir residual error was also reduced to some degree, reflected in a decreased standard

deviation of the AQS/PurpleAir differences from 8.18 µg/m3 to 5.20 µg/m3 (i.e., a 36%

decrease). The calibration model had a 10-fold CV R2 of 0.78 which is higher than the R2

of 0.74 between AQS and uncalibrated PurpleAir data, again indicating the improvement of

the overall precision of PurpleAir data. Table S4 shows the results of the sensitivity anal-

ysis based on randomly selected subsets of collocated AQS stations. When keeping 90% of

the collocated AQS stations (23 stations), the calibrated PurpleAir data only had negligible

changes. However, when keeping ∼80% of the collocated stations (20 stations), although the

hourly-level mean absolute difference between the fully calibrated data and the calibrated

data based on the subset of collocated stations was still minor (0.35 µg/m3), the maximum

absolute difference started becoming significant (> 10 µg/m3).
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4.4.1.3 PurpleAir Sensor Bias and Influential Factors

Figure 8: The GAM-fitted relationships with 95% confidence intervals between the absolute
differences of paired AQS/PurpleAir hourly measurements and (a) temperature, (b) RH, (c)
sensor operating time, and (d) sensor uptime after controlling for other three factors.

Figure 8 shows the GAM-fitted relationships of the AQS/PurpleAir absolute differences and

temperature, RH, operating time, and uptime, respectively. The 95% confidence intervals

(CIs) of the relationships are shown as the shaded area. In the paired data, temperatures

ranged from -1.8◦C to 52.6◦C with an average of 22.4◦C. Temperature was associated with

the smallest absolute bias at ∼20◦C after adjusting for other covariates (Figure 8(a)). The

bias significantly increased when temperature became higher. At 50◦C, the absolute bias

was ∼1.5 times (∼2.5 µg/m3) higher than at 20◦C. In contrast, a lower temperature was

only associated with a minor increase of bias. RH measures ranged from 0% to 90.1% with

an average of 38.8%. RH was positively associated with the absolute bias after adjusting for

other covariates (Figure 8(b)). Specifically, the absolute bias was relatively stable at RH <



45

25% but increased exponentially at RH > 25%. At 90%, the absolute bias was ∼3 times (∼9

µg/m3) higher than at 25%. Operating times ranged from 1 to 690 days with an average of

198 days. After controlling for temperature, RH, and uptime, the absolute bias showed a

U-curve with a minimum value at ∼280 days (∼9 months) (Figure 8(c)). As the operating

time became shorter or longer, the bias increased, and the rate of increase was faster for a

longer operating time. A sensor with an operating time of 700 days (∼23 months) had a ∼2

times (∼5 µg/m3) higher absolute bias than a sensor with an operating time of 280 days.

Sensor uptimes ranged from 1 to 67,964 minutes (∼47 days) with an average of 4,881 minutes

(∼3.5 days). After adjusting for temperature, RH, and operating time, the absolute bias

peaked at ∼23,000 minutes (∼16 days) and became smaller when the uptime was shorter

or longer (Figure 8(d)). However, the derived relationship about the uptime had a large

uncertainty.

4.4.2 Weighted PM2.5 Modeling

4.4.2.1 Residual Errors and Weights

The clustered sub-domains correspond well with the topographic, meteorological, and land-

cover features in California (Figure S4): 1) the first sub-domain consisting of agricultural,

humid, and developed areas where most of the population resides, 2) the second sub-domain

consisting of mountainous areas such as the Sierra Nevada, and 3) the third sub-domain

mainly consisting of the arid areas in the state. The estimated mean residual variances

(τ 2
j ) and the corresponding weights of PurpleAir (wj) in the sub-domains are summarized

in Table 3. The residual variances were distinct in different sub-domains, varying from 11.2

to 50.0. The variance was smallest in arid areas and largest in mountainous areas, and was

modest in agricultural/developed areas. The domain-specific weights of PurpleAir ranged

from 0.10 to 0.17.
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Table 3: Numbers of paired AQS/PurpleAir hourly measurements, mean PurpleAir resid-
ual variances, and PurpleAir weights in three clustered sub-domains. The weights were
calculated based on an AQS-based CV MSPE (σ2) of 33.4 and a scale factor (ρ) of 0.23.

Sub-Domain (j) N Mean Residual Variance (τ 2
j ) Weight (wj)

Agricultural/Developed 118,912 27.22 0.13
Mountainous 3,531 50.00 0.10

Arid 6,334 11.21 0.17

4.4.2.2 Modeling Performance and PM2.5 Predictions

Table 4 shows the CV performance of the prediction models. Figure S5 shows the CV scatter

plots of the models, indicating that the predictions from all models were slightly underes-

timated against AQS measurements with slopes of ∼1.1. The underestimation is mainly

because the RF algorithm is conservative for extreme values and in this analysis, extremely

high PM2.5 pollution levels tended to be predicted as lower values. The spatial and temporal

CV of the AQS-based model had baseline R2 values of 0.75 and 0.77, respectively, which were

lower than its random CV R2 of 0.83. The lower spatial/temporal R2 values reflect slightly

decreased abilities to extrapolate the PM2.5 estimates from the spatial/temporal ranges of

the training data to the entire domain/time span. The contribution of PurpleAir data is

shown by the higher random CV R2 values of both non-weighted and weighted models than

that of the AQS-based model. The spatial CV R2 values of both non-weighted and weighted

models also increased from 0.75 to 0.81. This change indicates that PurpleAir measure-

ments captured PM2.5 pollution in more microenvironments despite the network’s lack of

a coordinated siting strategy. The temporal CV R2 of the non-weighted model decreased

from the baseline value of 0.77 to 0.75 possibly due to the lack of sampling continuity of

PurpleAir. Unlike AQS, most of the PurpleAir sensors were newly installed during the study

period and maintained by untrained citizens so the operations were often intermittent. This

lack of sampling continuity could render the measurements less representative in time. The

weighted model had a spatial CV R2 higher than the baseline value and a temporal CV R2

comparable to the baseline value. The model also had the best random CV R2 of 0.86 and

the lowest RMSPE of 5.62 µg/m3. These results indicate that the weighting strategy could

not only result in higher spatial predictability provided by dense PurpleAir sensors but also
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maintain high temporal predictability provided by continuous AQS monitors.

Table 4: Cross-validation performance of three prediction models. CV was only performed
on AQS measurements not used in calibrating PurpleAir (N = 32,981).

Model Random CV R2 Spatial CV R2 Temporal CV R2 CV RMSPE

AQS-based 0.83 0.75 0.77 6.04
Non-weighted 0.85 0.81 0.75 5.95
Weighted 0.86 0.81 0.77 5.62

The PM2.5 prediction surfaces illustrate the contribution of PurpleAir and the weighting

strategy from a different angle. Figure 9 shows the annual mean PM2.5 distributions gener-

ated from the AQS-based and weighted models as well as their differences. The AQS-based

model had an averaged PM2.5 prediction of 9.4 µg/m3 and the weighted model had an av-

erage of 10.0 µg/m3. The weighted predictions were higher than the AQS-based predictions

in almost all areas except for the San Francisco Bay Area, Imperial Valley, and the desert

mountain ranges in Southeastern California. The higher predictions were mainly caused by

higher calibrated PurpleAir measurements. During the study period, the daily calibrated

PurpleAir PM2.5 measurements had an average of 12.1 µg/m3, higher than the daily AQS

measurements averaged 11.5 µg/m3. Figure 9(c) shows some hot-spots where the weighted

predictions were considerably higher than the AQS-based predictions. These hot-spots ap-

pear to spatiotemporally coincide with the California wildfires. The black points in Figure

9(c) label the locations of the four most destructive California wildfires in 2018 (Carr Fire,

Camp Fire, Mendocino Complex Fire, and Ferguson Fire). The extreme weather conditions

during the wildfire events, especially high air temperatures, might influence the quality of

PurpleAir sensors. However, when checking the temperature measurements from the Pur-

pleAir sensors near the wildfires, we found that the maximum measurement, 50.3◦C, was

still within the temperature range of the calibration model (Figure 8). This finding indicates

that the PurpleAir measurements near these wildfires were well calibrated and the observed

PM2.5 hot-spots are not likely caused by highly biased PurpleAir measurements due to high

temperatures. As shown in Figure S6, we infer that the density of PurpleAir sensors in

the study domain, allowing them to measure such episodic and high-level pollution events,

could be one of the reasons for their ability to better reflect the hot-spots. The utility of
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low-cost sensors under more extreme conditions still warrants future research. Figure S7

shows that the non-weighted predictions were higher in most of the study domain than the

weighted predictions. However, the larger impact of PurpleAir residual errors on the non-

weighted model reduced the credibility of its predictions. As PurpleAir measurements were

aggregated to daily-level data in this analysis due to the difficulty of current PM2.5 models

generating predictions at a finer temporal scale, the contribution of high temporal frequency

of PurpleAir data on PM2.5 predictions warrants further research with improved prediction

models.

Figure 9: (a) – (b): Annual mean PM2.5 distributions for the year of 2018 derived by (a) the
AQS-based model and (b) the weighted model. (c): Annual mean PM2.5 differences between
the weighted and AQS-based models (weighted minus AQS-based) with the locations of the
four most destructive wildfires in California in 2018.

4.5 Discussion

In this study, we conducted a spatially varying calibration and developed a down-weighting

strategy to integrate low-cost sensor data into high-resolution PM2.5 modeling in California.

To the best of our knowledge, this is the first time such a framework has been proposed

to enable PM2.5 prediction models to take advantage of a large volume of low-cost sensor

measurements while minimizing the adverse influence of their uncertainties.

Strict side-by-side collocation against reference-grade monitors has been reported in many

field calibration studies of low-cost sensors [101, 105, 107, 110]. Although it ensures ro-

bustness of calibration, a number of limitations prevent larger-scale implementation of this



49

method. Because side-by-side collocation in a field measurement campaign is costly and

time-consuming, it is usually restricted to a relatively small area such as a city [106, 107] or

a county [105]. Calibration coefficients fitted in a small area are difficult to apply in other

regions as the low-cost sensor bias may vary under different environmental conditions [40,

100, 104]. More importantly, strict collocation is difficult when both low-cost sensor and

regulatory networks are already established. Instead, we tested a less stringent collocation

strategy by matching a PurpleAir sensor to its nearest AQS station within a radius of 500

m so that each AQS/PurpleAir pair was within a 1-km modeling grid cell. The reason-

ability of our collocation strategy was bolstered by the fact that agreement between AQS

and PurpleAir data was not related to the actual distance between monitors within 500 m.

Furthermore, it allowed for sufficient collocated samples to conduct the calibration. As the

AQS/PurpleAir agreement was heterogeneous across the domain where the bias of PurpleAir

data was lower near the coastal area of Northern California and higher near the U.S.-Mexico

border, the PurpleAir calibration was performed with a GWR model in a spatially varying

manner. The calibration reduced the overall systematic bias of PurpleAir data from 1.9

µg/m3 to ∼0 µg/m3. The overall residual error of the measurements was also reduced by

36%. Results from the sensitivity analysis examining a reduced set of collocated AQS sta-

tions (Table S4) suggest that for a region the size of California, at least ∼20 well-distributed,

continuous reference-grade monitors (capable of providing hourly PM2.5 measurements) are

needed to effectively calibrate hourly-level PurpleAir measurements. Thus, our recommended

reference-grade monitor density is ∼5 stations per 100,000 km2. By the end of 2018, 37 states

in the Contiguous United States (CONUS) other than California had a density of contin-

uous AQS stations greater than 5 per 100,000 km2 (Table S6). Accordingly, the proposed

PurpleAir calibration framework may potentially be generalized to the majority of CONUS

states without deploying new reference-grade air quality stations. In fact, for the states with

a lower network density, an effective calibration could still be conducted by grouping with

surrounding states.

Due to the lack of detailed operational conditions of the PurpleAir sensors, assigning site-

specific weights was unrealistic. Instead, we clustered these sensors into groups and assigned

each group a single weight. We demonstrated a down-weighting approach to minimize the
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influences of residual errors and other factors affecting low-cost sensor measurements. The

population-level down-weighting formula consists of two parts: an explicit error-variance

ratio and a data-driven scale factor (ρ). The error-variance ratio accounts for the proportion

of the mean PurpleAir residual variance in the total possible error variance of the model.

As the residual error becomes smaller, this ratio becomes larger, and so does the weight.

The scale factor ρ was used as a proxy of the negative impacts of implicit factors of low-cost

sensors on modeling performance, such as sampling discontinuity and less representative

sensor siting [126]. Since the impacts of these implicit factors were unquantifiable, the

optimal ρ was determined by our model-fitting data within a range from 0 to 1. It is worth

noting that for a set of measurements with an overall quality close to the “gold-standard”

measurements, ρ may approach 1 (Section 7.2.4, Supporting Information). In this analysis,

the population-level weights were between 0.10 to 0.17, indicating that even though the bias

of PurpleAir measurements could be eliminated by a statistical calibration, the contribution

of PurpleAir measurements was still no more than 20% of that of AQS measurements in

achieving the best model-predicting performance of daily PM2.5 concentrations. Compared

to the non-weighted prediction model, the weighted prediction model had a higher random

CV R2 of 0.86, a higher temporal CV R2 of 0.81, and a lower RMSPE, indicating that the

weighting strategy was able to compensate the loss of predictability caused by the PurpleAir

residual errors. Through this study and its pilot study conducted in a region with insufficient

AQS stations [114], we found that the improvement of statistical metrics, such as the increase

of CV R2 values, can only partly reflect the contribution of low-cost sensors to the quality

of PM2.5 prediction, especially when CV is based solely on reference-grade measurements as

in this analysis. In the absence of high-quality and high-coverage measurements, we believe

that examining the spatial distribution of PM2.5 predictions (Figure 9 and Figure S7) is an

important complement to CV metrics to evaluate low-cost sensor data. As shown in this

analysis, despite the small improvement on CV metrics, small-scale pollution features are

able to be well captured by low-cost sensors. Another possible way to mitigate the influence

of low-cost sensor measurement errors on PM2.5 modeling is interpolating these discrete

measurements into continuous surfaces and treating the surfaces as an independent variable

in the model. We think our weighting strategy is advantageous because incorporating low-
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cost sensor measurements into the dependent variable will lead to a significantly larger

training sample capable of providing considerably more detailed spatiotemporal information

about the pollutant. In this analysis, PurpleAir provided ∼5 times more training samples

than AQS and these samples could help improve the model predictability and better measure

pollution hot-spots.

The dense and spatially extensive low-cost sensor measurements allowed us to analyze the

potential factors related to the bias and residual error of low-cost sensor measurements.

Increased temperature and RH were related to a near-exponentially increased PurpleAir data

bias. The observed influences of high temperature/humidity on low-cost sensor bias may be

related to the issues in electronic circuits and the hygroscopic growth of fine particulates

[109, 127, 128]. The sensor operating time was an influential factor of the bias as well, where

a PurpleAir sensor with an operating time of 2 years tended to have a ∼2 times higher bias

than a sensor with an operating time of 9 months. The increased bias over time may reflect

the aging effect of sensors [103, 119, 120]. A shorter operating time than 9 months was also

associated with a slightly increased sensor bias, suggesting a “break-in” or “warm-up” period

of the sensor. The mechanism of the “break-in” warrants further investigation. A longer

sensor uptime was in general associated with a lower sensor bias, indicating that stable

operation would generally result in better data quality. However, this relationship had a

large degree of uncertainty, probably because the sensor’s operational stability is associated

with many factors other than the sensor itself, such as the reliability of power supply. In

terms of the residual error, the mountainous areas had the highest estimated PurpleAir

residual error while the arid areas had the lowest. This difference indicates that 1) humidity

may still play a role in the residual errors of low-cost sensor data even after controlling it

in the calibration stage and 2) the change of PM2.5 composition in different land-use types

may differentially affect the accuracy of the formula the manufacturer of PurpleAir used to

convert light scatter to mass concentration. Given the limited information about the sensors

we were able to collect, the factors other than temperature, humidity, sensor operating time,

and uptime could not be analyzed. More in-depth analyses on the influential factors of sensor

data quality are needed but they are beyond the scope of this study.
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4.6 Conclusions

In this study, a two-step approach, i.e., spatially varying calibration and down-weighting

modeling, was developed to combine low-cost sensor data with regulatory measurements

to improve the quality of high-resolution spatiotemporal PM2.5 modeling. The proposed

approach was able to mitigate the negative impact of the high noises in low-cost sensor

measurements on PM2.5 prediction accuracy. Dense low-cost sensor measurements in the

study domain also showed their potential to help the prediction model better reflect PM2.5

hot-spots such as wildfires. This study demonstrated that the integration of low-cost sensors

with regulatory monitoring and other sources of information such as satellite remote sensing

can provide new insights into PM2.5 pollution. PurpleAir is a global monitoring network with

a rapid growth rate. All other supporting data in this analysis, including satellite, meteo-

rological, land-use, and demographic data, are not limited to our study domain. Therefore,

our two-step approach can be generalized to other regions to derive high-resolution PM2.5

exposure estimates. The proposed approach is also informative to other meteorological, geo-

graphical, and ecological citizen science applications to calibrate large volumes of low-quality

volunteer-generated data.
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5 Manuscript III: Temporal Changes in Short-Term

Associations Between Cardiorespiratory Emergency

Department Visits and PM2.5 in Los Angeles, 2005

to 2016

Jianzhao Bi, Rohan R. D’Souza, David Q. Rich, Philip Hopke, Armistead G. Russell, Yang Liu,

Howard H. Chang, and Stefanie Ebelt

5.1 Abstract

Background: Emissions control programs targeting certain air pollution sources may alter

PM2.5 composition, as well as the risk of adverse health outcomes associated with PM2.5.

Objectives: We examined temporal changes in the risk of emergency department (ED)

visits for cardiovascular diseases (CVDs) and asthma associated with short-term increases

in ambient PM2.5 concentrations in Los Angeles, California. Methods: Poisson log-linear

models with unconstrained distributed exposure lags were used to estimate the risk of CVD

and asthma ED visits associated with short-term increases in daily PM2.5 concentrations,

controlling for temporal and meteorological confounders. The models were run separately for

three predefined time periods, selected based on the implementation of multiple emissions

control programs (EARLY: 2005 – 2008; MIDDLE: 2009 – 2012; LATE: 2013 – 2016). Two-

pollutant models with individual PM2.5 components and the remaining PM2.5 mass were also

considered to assess the influence of changes in PM2.5 composition on changes in the risk

of CVD and asthma ED visits associated with PM2.5 over time. Results: The relative risk

of CVD ED visits associated with a 10 µg/m3 increase in 4-day PM2.5 concentration (lag

0-3) was higher in the LATE period (rate ratio = 1.020, 95% confidence interval = [1.010,

1.030]) compared to the EARLY period (1.003, [0.996, 1.010]). In contrast, for asthma,

relative risk estimates were largest in the EARLY period (1.018, [1.006, 1.029]), but smaller

in the following periods. Similar temporal differences in relative risk estimates for CVD and

asthma were observed among different age groups. No single component was identified as an
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obvious contributor to the changing risk estimates over time, and some components exhibited

different temporal patterns in risk estimates from PM2.5 total mass, such as a decreased risk

of CVD ED visits associated with sulfate over time. Conclusions: Temporal changes in the

risk of CVD and asthma ED visits associated with short-term increases in ambient PM2.5

concentrations were observed. These changes could be due to changes in PM2.5 composition

(e.g., an increasing fraction of organic carbon and a decreasing fraction of sulfate in PM2.5).

Other factors such as improvements in healthcare and differential exposure misclassification

might also contribute to the changes.

5.2 Introduction

Fine particulate matter (PM2.5) is a well-established environmental health risk factor. Nu-

merous epidemiological studies have shown associations between long-term exposure to PM2.5

and the increased risk of cardiorespiratory diseases [1]. Growing evidence also shows the ad-

verse effects of short-term exposure to PM2.5 on cardiorespiratory diseases [2, 3]. Biological

hypotheses suggest that short-term PM2.5 exposure may lead to or exacerbate cardiovascular

diseases (CVDs) through neurogenic and inflammatory processes [4] and the acceleration of

the development of atherosclerosis [5]. The contribution of PM2.5 to oxidative stress and

allergic inflammation may lead to more immediate exacerbations of respiratory diseases,

especially asthma [6–9].

As a mixture of many chemical components, certain PM2.5 components may have higher tox-

icity than others for certain health outcomes [44, 45]. National-scale epidemiological studies

have indicated that the risk of adverse health outcomes associated with short-term increases

in PM2.5 concentrations varied by region and sub-populations, leading to the hypothesis that

the observed heterogeneity may be related to regional differences in PM2.5 composition [46–

49]. However, factors other than differences in PM2.5 composition such as different levels of

population susceptibility and differential exposure misclassification may also contribute to

the observed regional variation. In contrast, estimating temporal changes in PM2.5 health

associations in the same region is an approach to mitigate the influence of these other factors.

Few epidemiological studies have assessed temporal variation in the risk of cardiorespiratory
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disease outcomes associated with short-term increases in PM2.5 concentrations. For exam-

ple, recent work evaluated health effects of short-term exposure to PM2.5 in New York State

before, during, and after a period between 2005 and 2016 when major emission regulations

went into effect and significant emission changes occurred [53–55]. This series of studies

found that even with decreasing PM2.5 concentrations, the risk of cardiovascular [55] and

respiratory diseases [53, 54] was elevated after the implementation of emission policies and

an economic recession, which could be driven by temporal changes in PM2.5 composition and

increased toxicity of the PM2.5 mixture [56]. Changes in the acute response to PM2.5 over

time have also been observed in other regions. Abrams et al. [57] found a smaller risk of

cardiorespiratory emergency department (ED) visits associated with short-term increases in

PM2.5 concentrations after emissions control programs implemented during 1999 – 2013 were

fully realized in Atlanta, Georgia. Outside of the United States, Kim et al. [58] reported

an increased risk of asthma hospitalizations associated with short-term increases in PM2.5

concentrations in Seoul, South Korea from 2003 to 2011 when the Korean air quality stan-

dards had been strengthened. In summary, the observed temporal changes in PM2.5 health

associations reported by previous studies were inconsistent, and few studies also examined

temporal changes in associations between individual PM2.5 components and adverse health

outcomes.

Southern California has some of the highest PM2.5 levels in the United States, and the area

has implemented stringent control programs. These programs cover almost all controllable

emission sources, including on-road and off-road mobile emissions, stationary sources such

as fuel combustion, waste disposal, and industrial processes, and area-wide sources such

as solvent evaporation, to achieve the compliance of the National Ambient Air Quality

Standards (NAAQS) reducing PM2.5 and its major precursors (e.g., nitrogen oxides, sulfur

oxides, and volatile organic compounds) [129]. In addition, the great recession in the late

2000s may have also accelerated the emission reductions in southern California [130]. In

response, the air quality in southern California has significantly improved. The changes in

PM2.5 concentrations and composition in southern California provide a unique opportunity

to investigate whether the risk of acute cardiorespiratory health events associated with each

unit change in PM2.5 concentration, an indicator of its toxicity, has changed over time due
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to different source emissions and resulting mixtures. Therefore, we examined the temporal

variation in the risk of CVD and asthma ED visits associated with short-term increases

in PM2.5 concentrations over the period of 2005 to 2016 in Los Angeles, California. We

also similarly examined the temporal variation in the risk of CVD and asthma ED visits

associated with individual PM2.5 components.

5.3 Data and Methods

5.3.1 Study Population

ED visits data were provided by the California Office of Statewide Health Planning and

Development (OSHPD). The study population was restricted to ED patients who lived in

any ZIP code area located within 15 miles and visited an ED within 30 miles of the PM2.5

monitoring sites in downtown Los Angeles and a nearby community Rubidoux (a total of

147 hospitals) from January 1, 2005 to December 31, 2016. Figure S11 shows the study

domains. We included patients with a primary diagnosis (at time of ED visit) of CVD,

including ischemic heart disease, cardiac dysrhythmia, congestive heart failure, peripheral

vascular disease, and stroke (International Classification of Disease, ICD 9 = 410, 411, 412,

413, 414, 427, 428, 433, 434, 435, 436, 437, 440, 443, 444, 445, 447; ICD 10 = G45, I20,

I21, I22, I24, I25, I46, I47, I48, I49, I50, I63, I64, I65, I66, I67, I70, I73, I74, I75, I77, I79),

and asthma (ICD 9 = 493; ICD 10 = J45, J46). Multiple ED visits by the same patient on

the same day for the same outcome were only counted once. Overall, there were 1,172,516

ED visits for CVD and 522,379 ED visits for asthma over the study period. ED visits were

aggregated by day to obtain a daily count time-series for each outcome around each monitor-

buffer. The Institutional Review Board (IRB) at Emory University approved this study and

granted an exemption from informed consent requirements, given the minimal risk nature of

the study and the infeasibility of obtaining informed consent from individual patients.

5.3.2 Air Pollution and Weather

Daily average PM2.5 mass and component concentrations were retrieved from two air quality

monitoring stations in downtown Los Angeles (Air Quality System, AQS site ID: 06-037-
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1103) and Rubidoux (AQS site ID: 06-065-8001). These stations are both NCore Multipol-

lutant Monitoring Network sites (Figure S11). Major PM2.5 components that were monitored

included elemental carbon (EC), organic carbon (OC), nitrate, and sulfate. Trace compo-

nents were also monitored, and components with less than 20% of observations below the

minimum detection level (MDL) were selected for inclusion in this analysis, including iron

(Fe), sulfur (S), calcium (Ca), potassium (K), silicon (Si), zinc (Zn), bromine (Br), and cop-

per (Cu). PM2.5 mass concentrations were primarily measured using the Federal Reference

Methods (FRM) and Federal Equivalent Methods (FEM). Acceptable PM2.5 air quality index

& speciation mass (non-FRM/FEM) measurements were also used to increase data coverage.

Non-FRM/FEM measurements were linearly calibrated with the FRM/FEM measurements.

For EC and OC, linear adjustments were conducted to merge measurements from different

samplers and analytical methods [131]. At the two monitoring sites, PM2.5 mass concentra-

tions were generally sampled daily while component data were collected at 1-in-3 or 1-in-6

day intervals. Daily maximum 8-hour ozone concentrations (unit: parts-per-million, ppm,

10-6) at the two NCore stations were also acquired.

Meteorological data were retrieved from the California Irrigation Management Information

System (CIMIS) weather stations managed by the California Department of Water Resources

(https://cimis.water.ca.gov/). Meteorological variables included daily maximum air

temperature and mean dew-point temperature. These variables were observed at the daily

level at two CIMIS stations inside the two monitor-buffers.

5.3.3 Emissions and Time Periods

Emissions control programs implemented in southern California from 1990s onwards cov-

ered virtually all controllable air pollution sources. Key programs targeted on-road vehicle

emissions, such as Low Emission Vehicle (LEV I and II) starting in the early 1990s and the

heavy-duty diesel vehicle emission standard reductions and fuel reformulation programs in

the 2000s. Important programs also targeted off-road emissions from oceangoing vessels,

harbor craft, trains, and agricultural equipment in the 2000s and 2010s. Emissions from sta-

tionary point sources and area sources were controlled during these periods as well. These

https://cimis.water.ca.gov/
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programs directly led to the reduction of primary PM2.5 emissions and indirectly contained

the formation of secondary PM2.5 by controlling its precursors such as sulfur oxides (SOx),

nitrogen oxides (NOx) and volatile organic compounds (VOCs) [129].

Since these broad emissions control programs were often modified during implementation, we

relied on annualized emissions inventories to evaluate their cumulative effects and define time

periods for our epidemiological analysis corresponding to different periods of implementation.

Annualized emission data were retrieved from the California Emissions Projection Analysis

Model (CEPAM) 2016 SIP – Standard Emission Tool based on the California Air Resources

Board (CARB) 2012 inventory. The geographic area of the inventory is the South Coast Air

Basin (SoCAB) which captures almost all of the two monitor-buffers. During the period of

2005 – 2016, primary PM2.5 emission decreased steadily from ∼35 to ∼18 tons per day. The

source category with the most significant reduction was mobile sources. This emission trend

was in tandem with restrictive control programs targeting mobile sources in this period.

In comparison, the PM2.5 emission from stationary and area-wide sources remained almost

constant at ∼15 and ∼30 tons per day, respectively. Since the emissions control programs,

especially mobile sources-related programs, took effect over long time periods and their effects

were not always immediately fully realized, there were no clear-cut reference or intervention

intervals during our 2005 – 2016 study period. Therefore, we defined three equally separated

time periods, the EARLY (2005 – 2008), MIDDLE (2009 – 2012), and LATE (2013 – 2016)

periods, for our epidemiological analysis.

5.3.4 Statistical Analysis

5.3.4.1 Model Specification

Quasi-Poisson log-linear models were used to estimate the risk of CVD and asthma ED visits

associated with short-term increases in PM2.5 concentrations separately for the EARLY,

MIDDLE, and LATE periods. Rate ratios (RRs) with 95% confidence intervals (CIs) were

calculated based on per 10 µg/m3 increase in PM2.5 concentration to enable the comparison

of relative risk estimates between time periods.

Poisson models were specified with distributed lags to reflect cumulative effects of PM2.5
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exposure over four days (lag 0-3) and over eight days (lag 0-7) (lag 0 is the same day,

and lag 1 is the previous day, etc.), which was motivated by previous studies suggesting

that the effect of PM2.5 may occur over multiple days [53–55]. Models were also controlled

for meteorology, via moving averages (MAs) of daily maximum air temperature and mean

dew-point temperature using cubic splines with 4 degrees of freedom. The MAs of air

temperature and dew-point temperature corresponded to the distributed lags of exposure

(i.e., MA of lag days 0-3 or lag days 0-7). Cubic splines for calendar date using 6 (for CVD)

or 12 (for asthma) knots per year were included to control for long-term time trends and

seasonality. The degrees of freedom of temperature and time splines were determined based

on model specification in previous studies on short-term associations between PM2.5 and

cardiorespiratory disease outcomes [132, 133]. Indicator variables for day-of-week (Monday

through Sunday) and holidays (0 = non-holidays, 1 = federal and Federal Reserve Board

holidays) were also included. As data were not available for some hospitals over the entire

study period (N = 31), an indicator variable was included for these hospitals to account for

any changes to ED visit totals attributable to hospital data availability. For asthma, the ED

visit counts for influenza were used as an additional confounder to control for viral-induced

asthma in flu seasons [134]. The distributed lag model can be expressed as:

log(E(Yt)) = α +
D∑

q=0

βt−qPM2.5(t−q) + [confounders] D = 3 or 7 (7)

where E(Yt) is the expectation of the ED visit counts on day t, PM2.5(t−q) is the PM2.5

concentration q days before day t, and the sum of βt−q is the main parameter of interest for

distributed lagged associations.

The relative risk estimates of each outcome (CVD and asthma), lag structure (lags 0-3 and

0-7), and time period (EARLY, MIDDLE, LATE) were estimated separately for Los Angeles

and Rubidoux. The effects for each model specification were then pooled together across

sub-domains by inverse-variance weighting. Statistical significance of the difference between

the RR estimates in two time periods was estimated with the assumption that the logarithms

of two RRs were independent and normally distributed.
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5.3.4.2 Factors Influencing PM2.5 Health Associations Over Time

In order to assess and account for changes in population age structure over time as a potential

factor contributing to observed differences in PM2.5 health associations between time periods,

we conducted age-stratified analyses, in which Poisson models were run by age group (ages 1-

18, 19-64, and 65+). We anticipated that within these groupings, the relative risk estimates

of CVD and asthma ED visits associated with PM2.5 should remain similar across time

periods. Any remaining differences in relative risk estimates between time periods should be

due to external factors (such as changes in PM2.5 composition).

In addition, to examine whether changes in PM2.5 composition contributed to the observed

differences in PM2.5 health associations between time periods, we considered two-pollutant

models that included (one by one) individual PM2.5 components and the remaining propor-

tion of PM2.5 mass (calculated as PM2.5 − a specific PM2.5 component). In this manner,

the health associations for individual PM2.5 components controlling for the remaining PM2.5

mass were estimated. Since the component data were observed every 3 or 6 days, moving av-

erages with available observations over four days (i.e., MA 0-3) and over eight days (i.e., MA

0-7), instead of distributed lags, were calculated to reflect multiple-day cumulative effects of

exposure. Although the moving average method might potentially lead to higher exposure

misclassification, this approach considerably increased data coverage and statistical power.

The two-pollutant model can be expressed as:

log(E(Yt)) = α + β1 × componentt + β2 × (PM2.5 − component)t + [confounders] (8)

where E(Yt) is the expectation of ED visit counts, and componentt and (PM2.5 − component)t

denote the moving averages of a specific component and the remaining PM2.5 mass from day

t to previous 3 or 7 days, respectively. The confounders here are the same as which in

Equation (7). In this two-pollutant model, β1 reflects the log-ratio estimate of a PM2.5 com-

ponent controlling for the remaining PM2.5 mass, and β2 reflects the log-ratio estimate of

the remaining PM2.5 mass controlling for the specific component. We anticipated that the
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health associations for specific PM2.5 components (controlling for the remaining PM2.5 mass)

should remain similar between time periods (assuming no other external factors contribut-

ing to changes in associations), given that individual PM2.5 components are less complex in

terms of composition than the PM2.5 mixture and as such their toxicity should be less variant

over time. We also anticipated that if the health associations for the remaining PM2.5 mass

(controlling for the specific component) corresponded to the temporal pattern displayed by

PM2.5 total mass, then this specific component may not influence the changing PM2.5 toxicity

over time.

5.3.5 Sensitivity Analysis

Sensitivity analysis was conducted to examine the robustness of the relative risk estimates

across time periods. For meteorological confounding, we tested different degrees of freedom

of the cubic splines of daily maximum air temperature and mean dew-point temperature (df

= 2 – 6). We also examined the addition of cubic splines of daily minimum air temperature

(df = 4). For long-term time trends, different annual knots were tested (df = 4 – 8 for

CVD and 10 – 14 for asthma). Additionally, we evaluated associations between tomorrow’s

pollutant levels (lag -1) and today’s ED visits controlling for today’s pollutant (lag 0).

Tomorrow’s pollutant levels should not be associated with today’s ED visits as cause must

precede effect [135]. Furthermore, we redefined three time periods by 1) moving the year of

2008 to the MIDDLE period and 2) moving the year of 2012 to the LATE period to test the

sensitivity of the risk estimates on interval separation. Finally, we evaluated the potential

for confounding by exposure to ozone collocated with PM2.5 by adding daily maximum 8-

hour ozone concentrations as an additional confounder, as there is a large body of research

showing the risk of cardiorespiratory disease outcomes associated with short-term increases

in ozone concentrations [136, 137].
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5.4 Results

5.4.1 PM2.5 Concentrations

Figure 10: Box plots of (a) mass concentrations of PM2.5 and four major components and
(b) percentages of four major components in PM2.5 total mass during the three time periods
(EARLY: 2005 – 2008; MIDDLE: 2009 – 2012; LATE: 2013 – 2016). The measurements are
the averages of two sub-domains. The box shows the 25th, 50th, and 75th percentiles and the
circle shows the mean value.
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Figure 10(a) shows the means, medians, and 25th/75th percentiles of the concentrations of

PM2.5 total mass and four major components (OC, EC, sulfate, and nitrate) during the three

time periods (averages of two sub-domains). The concentrations of PM2.5 and four major

components decreased over time. The mean PM2.5 concentration dropped by 26% from 16.6

µg/m3 in the EARLY period to 12.2 µg/m3 in the LATE period. The mean concentrations

of OC, EC, sulfate, and nitrate dropped by 26%, 36%, 42%, and 58%, respectively. For

most components, the largest drop in concentration occurred between the EARLY and the

MIDDLE period, indicating that in addition to emissions control programs, the 2008 eco-

nomic recession may have also played an important role in the decreased pollution levels.

The mean concentrations of other trace PM2.5 components across time periods are shown

in Figure S12. The trace components with a decreasing trend in concentration over time

included Ca, Cu, Fe, Si, S, and Zn. The concentration of Br remained about the same while

the concentration of K increased slightly over time.

Figure 10(b) shows the percentage changes of four major PM2.5 components over the time

periods. The percentage changes of PM2.5 components in PM2.5 total mass over time were

analyzed with the reconstructed PM2.5 mass, i.e., the sum of the masses of 12 components.

The percentages of EC and nitrate in PM2.5 total mass were similar over time with means

of ∼11% and ∼30%, respectively. The percentage of sulfate in PM2.5 decreased from 20%

in the EARLY period to 15% in the LATE period. A decreased percentage of sulfate over

time may reflect the effectiveness of emissions control programs on on-road mobile sources,

stationary sources, and changes at the Ports of Long Beach and Los Angeles in fuels and

in-port electrification, in which the emission of a major precursor of sulfate, SOx, had a

significant reduction [129]. In contrast, the percentage of OC in PM2.5 increased from 28%

in the EARLY period to 33% in the LATE period. The increased percentage of OC over time

echoes a previous finding that there was a slight increase in secondary organic aerosols (SOAs)

as NOx emissions decreased in Los Angeles because non-methane organic gas (NMOG) that

previously reacted with NOx was now available to form more SOAs [138]. Figure S13 shows

the percentage changes of 8 trace components over the time periods. The components

contributing to an increasing fraction of PM2.5 mass over time included Br, Ca, Cu, Fe,

K, and Si as the total PM2.5 mass concentration declined. The percentage of Zn in PM2.5
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remained about the same over time.

5.4.2 Emergency Department Visits Data

Table 5: Summary statistics for two health outcomes (CVD and asthma), PM2.5 composition
(total mass, four major components, and eight trace components), and weather parameters
(daily maximum air temperature and mean dew-point temperature) in Los Angeles and
Rubidoux during the three time periods.

Los Angeles Rubidoux
EARLY MIDDLE LATE EARLY MIDDLE LATE

(2005 – 2008) (2009 – 2012) (2013 – 2016) (2005 – 2008) (2009 – 2012) (2013 – 2016)
CVD Cases
N 277,710 292,657 308,303 77,723 104,375 111,748
Age (years) 66.2 (55.0, 80.0)* 66.4 (55.0, 80.0) 66.1 (55.0, 79.0) 61.9 (50.0, 76.0) 61.9 (51.0, 75.0) 62.7 (52.0, 75.0)
Gender (% male) 49.1 49.4 51.3 49.0 50.8 52.0
Race (% white) 51.0 47.8 49.2 65.7 61.4 57.3
Asthma Cases
N 124,577 130,657 133,717 36,085 48,899 48,444
Age (years) 28.8 (7.0, 47.0)* 29.0 (7.0, 48.0) 29.2 (8.0, 47.0) 25.8 (7.0, 42.0) 26.1 (7.0, 43.0) 27.1 (8.0, 44.0)
Gender (% male) 47.1 47.8 49.4 48.3 48.8 49.5
Race (% white) 38.1 36.8 39.8 54.8 53.5 49.0

Pollutants (µg/m3)
Total PM2.5 16.58 (9.55)** 12.96 (6.73) 12.21 (6.47) 18.76 (11.90) 13.88 (8.70) 12.48 (7.80)
EC 1.40 (0.79) 1.17 (0.68) 0.90 (0.48) 1.22 (0.80) 1.01 (0.70) 0.80 (0.52)
OC 3.68 (1.69) 2.87 (1.34) 2.73 (1.18) 3.51 (1.84) 2.62 (1.34) 2.56 (1.22)
Nitrate 5.43 (5.73) 3.74 (3.40) 3.15 (3.31) 7.02 (6.34) 5.09 (4.58) 3.74 (3.85)
Sulfate 3.37 (2.91) 1.97 (1.57) 1.43 (1.09) 2.52 (1.94) 1.63 (1.23) 1.26 (1.08)
Fe 0.21 (0.17) 0.20 (0.14) 0.18 (0.11) 0.17 (0.13) 0.14 (0.10) 0.15 (0.09)
S 1.08 (1.01) 0.67 (0.52) 0.52 (0.38) 0.83 (0.64) 0.55 (0.41) 0.44 (0.33)
Ca 0.08 (0.05) 0.07 (0.05) 0.06 (0.04) 0.14 (0.15) 0.08 (0.05) 0.08 (0.06)
K 0.12 (0.61) 0.08 (0.28) 0.09 (0.32) 0.12 (0.33) 0.09 (0.22) 0.11 (0.45)
Si 0.12 (0.14) 0.12 (0.11) 0.11 (0.08) 0.18 (0.19) 0.14 (0.11) 0.16 (0.15)
Zn 0.02 (0.02) 0.01 (0.01) 0.01 (0.01) 0.02 (0.02) 0.01 (0.01) 0.01 (0.01)
Br 0.01 (0.00) 0.00 (0.00) 0.01 (0.00) 0.00 (0.00) 0.01 (0.00) 0.01 (0.00)
Cu 0.02 (0.02) 0.01 (0.01) 0.01 (0.01) 0.01 (0.02) 0.01 (0.01) 0.01 (0.01)
Weather (◦C)
Maximum Temp 25.0 (19.7, 30.2)* 24.9 (19.9, 29.4) 26.4 (21.8, 30.9) 25.5 (19.6, 31.6) 25.2 (19.7, 30.8) 26.2 (21.3, 31.4)
Dew-Point Temp 8.7 (5.2, 13.3) 8.7 (5.1, 13.3) 9.2 (5.2, 14.1) 6.0 (2.2, 11.1) 5.9 (2.4, 11.0) 6.3 (2.0, 11.6)

*Mean (25th, 75th Percentiles)
**Mean (Standard Deviation)

Table 5 summarizes the characteristics of ED patients and numbers of ED visits by health

outcome (CVD and asthma), sub-domain (Los Angeles and Rubidoux), and period (EARLY,

MIDDLE, and LATE). ED visit totals for CVD and asthma increased by 15% and 12%,

respectively, from the EARLY to LATE period in the study domains. Three time periods

had similar age structures for two health outcomes. Patients with CVD had a mean age of

65 years (25th, 75th percentiles = [54 years, 79 years]) and those with asthma had a mean

age of 28 years (25th, 75th percentiles = [7 years, 46 years]). There was a relatively even

split between genders in the CVD and asthma patient populations, with a slight increase in

percentage of male patients over time. Patients with CVD and asthma were predominantly

white. The structure of race/ethnicity was stable over time. Overall, the characteristics

of the ED patients remained relatively consistent over the study period and the increased



65

ED visit numbers might be related to the increased population in Los Angeles (https:

//data.census.gov/).

5.4.3 Relative Risks Associated With PM2.5 Total Mass

Table 6: Rate ratios (95% confidence intervals) of PM2.5 and CVD and asthma ED visits
(per 10 µg/m3 increase in PM2.5 concentration).

Outcome Lag Period
Rate Ratio Difference of Rate Ratios Between Two Periods

(95% Confidence Interval) (95% Confidence Interval)

CVD

0-3
EARLY 1.003 (0.996, 1.010) MIDDLE − EARLY 0.0058 (-0.0054, 0.0170)

MIDDLE 1.009 (1.000, 1.018)* LATE − MIDDLE 0.0112 (-0.0021, 0.0246)
LATE 1.020 (1.010, 1.030)* LATE − EARLY 0.0170 (0.0049, 0.0292)*

0-7
EARLY 0.991 (0.981, 1.002) MIDDLE − EARLY 0.0190 (0.0027, 0.0354)*

MIDDLE 1.010 (0.998, 1.023) LATE − MIDDLE 0.0223 (0.0023, 0.0423)*
LATE 1.033 (1.017, 1.049)* LATE − EARLY 0.0413 (0.0227, 0.0599)*

Asthma

0-3
EARLY 1.018 (1.006, 1.029)* MIDDLE − EARLY -0.0311 (-0.0497, -0.0125)*

MIDDLE 0.986 (0.972, 1.001) LATE − MIDDLE 0.0171 (-0.0046, 0.0388)
LATE 1.003 (0.988, 1.020) LATE − EARLY -0.0140 (-0.0336, 0.0056)

0-7
EARLY 1.036 (1.018, 1.056)* MIDDLE − EARLY -0.0553 (-0.0846, -0.0260)*

MIDDLE 0.981 (0.959, 1.003) LATE − MIDDLE 0.0173 (-0.0179, 0.0525)
LATE 0.998 (0.971, 1.025) LATE − EARLY -0.0380 (-0.0704, -0.0056)*

*Statistically significant at an alpha level of 0.05

Table 6 and Figure 11(a) show the rate ratios (RRs) and 95% confidence intervals (CIs) for

the associations of CVD ED visits and PM2.5 total mass during the three time periods. Both

lags 0-3 and 0-7 showed a similar increasing trend over time, where the risk estimates of CVD

ED visits associated PM2.5 were smaller in the EARLY period and larger in the later periods.

For lag 0-3, the RR in the LATE period (1.020, 95% CI = [1.010, 1.030]) was significantly

larger than that in the EARLY period (1.003, [0.996, 1.010]) (Table 6). For lag 0-7, all three

period-specific RRs were significantly different. Figure 11(b)–(c) show the age-specific risk

estimates of CVD ED visits associated with PM2.5 during the three time periods. The age

groups only included ages of 19-64 and 65+ because there were very few ED visits for CVD

under the age of 18 (< 2 visits per day on average). The two age groups showed a similar

trend in RR across time periods as the all-age analysis where the RRs increased significantly

over time.

https://data.census.gov/
https://data.census.gov/
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Figure 11: Relative risk estimates of CVD ED visits associated with each 10 µg/m3 increase
in PM2.5 mass concentration of (a) all patients, (b) patients of ages 19-64, and (c) patients
of ages 65+, shown as rate ratios (dots) and 95% confidence intervals (whiskers).

Table 6 and Figure 12(a) show the RRs with 95% CIs for the associations of asthma ED

visits and PM2.5 total mass during the three time periods. Both lag structures showed a

similar pattern over time, where in contrast to the results for CVD the EARLY period had

the largest and significant RRs (lag 0-3: 1.018, [1.006, 1.029]; lag 0-7: 1.036, [1.018, 1.056])

compared to the following two time periods. Figure 12(b)–(c) show the age-specific risk

estimates during the three time periods for ages of 1-18 and 19-64, respectively. The RRs in

the elderly group (ages 65+) had large 95% CIs because of a small sample size (∼10 visits

per day on average) and are not shown in the figure. Adult groups (ages 1-18 and 19-64)

had a similar trend in RR to the all-age analysis where the RRs were largest in the EARLY

period. For children (ages 1-18), the risk estimates of asthma ED visits associated with

PM2.5 were similar in the EARLY and LATE periods, and smaller in the MIDDLE period,

while the 95% CIs were large.



67

Figure 12: Relative risk estimates of asthma ED visits associated with each 10 µg/m3 increase
in PM2.5 mass concentration of (a) all patients, (b) patients of ages 1-18, and (c) patients of
ages 19-64, shown as rate ratios (dots) and 95% confidence intervals (whiskers).

5.4.4 Relative Risks Associated With PM2.5 Components

For each PM2.5 component, we ran a two-pollutant model that included the PM2.5 component

of interest and the remaining PM2.5 mass (i.e., PM2.5 − that specific PM2.5 component). Due

to sparser observations and the use of moving averages, PM2.5 component concentrations had

less temporal variation, resulting in larger uncertainties than that of PM2.5 total mass.

Figure 13 shows the relative risk estimates of CVD ED visits associated with each 10 µg/m3

increase in PM2.5 component concentration, controlling for the remaining PM2.5 mass. OC

and nitrate showed a similar increasing trend in RR over time to PM2.5 total mass (Figure

11(a)). EC, Fe, and Ca showed small RRs which tended to be less than 1.0 in the EARLY

period and close to 1.0 in the following periods. Sulfate and S had a high correlation (r =

0.95) during the study period so they had a similar pattern, where the RRs were largest

and significant in the EARLY period and close to 1.0 in the later periods. The relative risk

associated with Si was less than 1.0 and not significant. K had a unique pattern where the

MIDDLE period tended to have the largest risk though with a large uncertainty. Figure 14

shows the relative risk estimates of asthma ED visits associated with each 10 µg/m3 increase

in PM2.5 component concentration, controlling for the remaining PM2.5 mass. Nitrate, OC,
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and EC showed a similar pattern to PM2.5 total mass where the EARLY period had the

largest RRs. For sulfate, S, and K, the MIDDLE-period RRs tended to be largest and

significant. Associations of Zn, Br, and Cu with CVD and associations of Fe, Ca, Si, Zn,

Br, and Cu with asthma were consistent with the null (RR = 1.0), with large uncertainties

in risk estimates, which are not shown in the results.

Figure 13: Relative risk estimates of CVD ED visits associated with each 10 µg/m3 increase
in PM2.5 component concentration, controlling for the remaining PM2.5 mass, shown as rate
ratios (dots) and 95% confidence intervals (whiskers).

Overall, this analysis demonstrated temporal variation in the risk of CVD and asthma ED

visits associated with short-term increases in PM2.5 component concentrations. Given that

these PM2.5 components are less complex in terms of composition than the PM2.5 mixture

and that their toxicities should be less variant over time, the observed temporal variation

in relative risk suggest that these components might still be proxies of some complex mix-

tures.
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Figure 14: Relative risk estimates of asthma ED visits associated with each 10 µg/m3 increase
in PM2.5 component concentration, controlling for the remaining PM2.5 mass, shown as rate
ratios (dots) and 95% confidence intervals (whiskers).

5.4.5 Relative Risks Associated With the Remaining PM2.5 Mass

Figure S14 shows the relative risk estimates of CVD ED visits associated with each 10 µg/m3

increase in the remaining PM2.5 mass concentration (i.e., β2 in Equation (8)). Apart from

nitrate, the remaining PM2.5 mass for all other components showed a similar pattern to

PM2.5 total mass. For nitrate, all RRs were close to 1.0 and not statistically significant,

which might be caused by unstable estimated coefficients due to a high correlation between

PM2.5 total mass and nitrate (r = 0.88). Figure S15 shows the relative risk estimates of

asthma ED visits associated with increased remaining PM2.5 mass concentrations. Similarly,



70

the remaining PM2.5 mass was similar to PM2.5 total mass in terms of the temporal trend

of RRs, and some variation might happen by chance (e.g., OC) or due to a high correlation

with PM2.5 total mass (e.g., nitrate). In general, for all formulations of remaining PM2.5

mass, the temporal trends in relative risk were similar to that of PM2.5 total mass, thus

indicating that no single PM2.5 component (when removed from the PM2.5 mixture) was an

obvious contributor to those trends.

5.4.6 Sensitivity Analysis

With different degrees of freedom (df = 2 – 6) of cubic splines of daily maximum air tem-

perature and mean dew-point temperature, the relative risk estimates of CVD and asthma

ED visits associated with PM2.5 were consistent (Figure S16). When adding daily minimum

air temperature (df = 4) as another confounder, most of the risk estimates were stable apart

from the risk of CVD ED visits in the MIDDLE period (Figure S17). However, the RRs

were still within the original 95% CIs, indicating that the change might occur by chance.

Figures S18 and S19 show that the risk estimates were consistent with different annual knots

in time splines and in redefined time periods, respectively. After controlling for ozone, the

risk estimates remained consistent (Figure S20). Finally, there were no significant associa-

tions between tomorrow’s pollutant levels (lag -1) and today’s ED visits when controlling for

today’s pollutant levels (lag 0), and the lag 0 RRs and 95% CIs remained about the same

before and after adding tomorrow’s pollutant levels.

5.5 Discussion

In this study, we analyzed temporal changes in the risk of CVD and asthma ED visits as-

sociated with short-term increases in PM2.5 concentrations in Los Angeles, California. This

study focused on the period of 2005 – 2016 during which comprehensive emissions control

programs and economic drivers influenced air quality in the region. Similar to previous stud-

ies on short-term associations between PM2.5 and CVD [139] and asthma [140, 141] health

events, a significantly increased risk of CVD and asthma ED visits associated with increases

in PM2.5 concentrations were observed. More importantly, we also observed temporal varia-



71

tion in the relative risk with changes in PM2.5 concentrations and composition.

For CVD ED visits, the relative risk estimates were significantly larger in the LATE (2013 –

2016) compared to the EARLY (2005 – 2008) period. The estimated 4-day exposure (lag 0-3)

RR increased from 1.003 to 1.020 and 8-day exposure (lag 0-7) RR increased from 0.991 to

1.033 per 10 µg/m3 increase in PM2.5 concentration between the EARLY and LATE periods.

For asthma ED visits, the largest RRs were found in the EARLY period (lag 0-3 RR = 1.018;

lag 0-7 RR = 1.036) while the RRs were smaller in the following periods. In general, there

were significant temporal trends for the risk of CVD and asthma ED visits associated with

short-term increases in PM2.5 concentrations, and the trends were similar for different lag

days and age groups.

The temporal variation in PM2.5 relative risks could be a result from a number of factors,

among which changes in PM2.5 composition could be an important one. With two-pollutant

models, we investigated the hypothesis that changes in PM2.5 relative risks were associated

with changing fractions of individual PM2.5 components in PM2.5 total mass over time.

We hypothesized that if the relative risk of CVD and asthma ED visits associated with a

PM2.5 mixture without a certain PM2.5 component was similar across time periods, then

this would be support to show that the component in question was a contributor to the

observed temporal variation in relative risk. However, we found that the remaining PM2.5

mass without individual components had similar temporal variation in relative risk to PM2.5

total mass, indicating that the observed temporal variation might not be caused by any

single component. Another possibility is that the observed temporal variation could result

from changing fractions of a group of PM2.5 components acting on different physiological

mechanisms. To examine this hypothesis, a multi-pollutant model should be used to analyze

the overall association between multiple PM2.5 components and a health outcome. However,

due to high correlations between different PM2.5 components, multicollinearity could inflate

the uncertainty of risk estimates [142]. Subtracting multiple components from the total

PM2.5 could be another way to assess the hypothesis, but as these components had distinct

measurement uncertainties, the cumulative error in the generated remaining PM2.5 mass

concentrations could make the risk estimates unreliable. Given these limitations, novel and
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robust statistical approaches for mixtures are needed to further analyze the combinations of

PM2.5 components affecting PM2.5 relative risks [143].

Despite the fact that no single component was identified as an obvious contributor to the

temporal variation in the risk of CVD and asthma ED visits associated with short-term in-

creases in PM2.5 concentrations, the component-specific risk estimates still exhibited unique

temporal patterns, some of which were different from the pattern of PM2.5 total mass. For

example, the risk of CVD ED visits associated with increased OC concentrations had an

increasing trend over time, which coincided with the increasing percentage of OC in PM2.5

total mass. An increasing percentage of OC might include both reactive oxygen species and

species with oxidative potential, which could potentially lead to increased oxidative stress

and exacerbate cardiorespiratory diseases [144]. Previous studies conducted in New York

State also suggested that secondary OC could be a key component leading to temporal

changes in the risk of adverse health outcomes associated with PM2.5 as oxidative stress is

associated more with secondary organic aerosols [53–55]. However, even though increased

oxidative stress could be a plausible explanation for the larger risk of CVD ED visits asso-

ciated with PM2.5 over time, it is difficult to explain the smaller risk of asthma ED visits

over time. The inconsistent patterns in different health outcomes indicate that 1) it is pos-

sible that secondary OC may have different effects on CVD and asthma, 2) there could be

other unmeasured factors leading to different risks of different health outcomes associated

with OC, or 3) confounding from co-exposure to other pollutants that impact CVD and

asthma not fully captured by the model. Besides, due to the lack of source-specific mea-

surements or predictions for secondary OC levels in Los Angeles, we were not able to fully

examine its role on the observed temporal variation in relative risk in this study. Additional

source apportionment research is needed to further analyze secondary OC and its health

effects.

In southern California, sulfate could be a proxy of pollution mixtures related to the com-

bustion of sulfur-containing fuel from motor vehicles, locomotives, ships, and off-road diesel

equipment. Residual oil would be a prevalent sulfate source in this region especially at

the early end of the study period when the ships started to be forced to switch to lower
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sulfur-containing fuel. Rich et al. [145] found that residual oil particles and exhaust gas

from spark-ignition and diesel vehicles were associated with increased rates of CVD hospi-

talizations over the next day. In this analysis, the risk of CVD ED visits associated with

increased sulfate concentrations was large and significant in the EARLY period and de-

creased over time. Since these fuel combustion sources had been well-controlled due to the

emissions control programs during the study period [129], it is expected that their adverse

effects on CVD could be mitigated. However, sulfate was associated with asthma ED visits

in a different manner, where the MIDDLE period (2009 – 2012) seemed to have the largest

risk. Again, this inconsistency may be caused by different effects of sulfate on different

health outcomes, other unmeasured time-variant factors, or confounding from co-exposure

to uncaptured pollutants.

The temporal trends in the risk estimates of both CVD and asthma ED visits associated with

increased K concentrations were similar, where the largest risk was in the MIDDLE period.

K has been extensively used as an indicator of biomass burning [146], and the MIDDLE

period had the lowest mean K concentration associated with fewer wildfire events in southern

California. This pattern indicates that the risk associated with emission sources containing

K was largest when there were fewer wildfire events and lower K concentrations, which was

not expected. Therefore, further research is needed to confirm this health association.

Based on the observed evidence, we infer that other measured or unmeasured time-variant

factors, in addition to changes in PM2.5 composition, may also play an important role in

the change in PM2.5 relative risks over time. Asthma may be exacerbated by respiratory

infections such as influenza, which can cause inflammation of the airways [134]. Although

we controlled for the ED visit counts for influenza in the asthma models, it was still pos-

sible that the control was insufficient due to potential under-detection and under-diagnosis

of influenza [147, 148]. Exposure misclassification could be another potential factor. If the

PM2.5 measurements at the monitoring stations were a more representative of population

exposures within the respective monitor-buffers in some periods than others, there would be

a smaller estimation bias in these periods. However, we would expect for such differential

exposure misclassification to affect the risk of both CVD and asthma ED visits and thus
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should not be a major factor influencing the observed differences in temporal patterns of

two health outcomes. Other time-variant factors such as changes in population vulnerabil-

ity (e.g., socioeconomic conditions, underlying diseases) and health care accessibility could

also be potential effect modifiers for short-term PM2.5-cardiorespiratory associations. A full

investigation for these factors needs detailed community-level information, which warrants

further research.

While previous studies reported that PM2.5-cardiorespiratory disease associations may vary

by region and sub-populations [51, 149], this study provides further evidence that these as-

sociations may also vary by time, and changes in PM2.5 composition related to emissions

control programs and economic changes could be an important driving factor. Apart from

those already mentioned, there were several additional limitations in this study. First, the

remaining PM2.5 mass concentrations generated by subtracting the mass of individual com-

ponents from PM2.5 total mass might have some uncertainty due to different measurement

errors in different PM2.5 components. This uncertainty might bias the estimated health

associations of both the component and remaining PM2.5 parts. In addition, our exposure

assignment relying on central air quality stations might have resulted in exposure misclassifi-

cation, which was a combination of Berkson and classical error, leading to underestimates of

risk. The moving average method dealing with temporal sparsity in the component measure-

ments was another possible source of exposure misclassification. Exposure misclassification

could result in a bias toward the null and underestimated health associations [150]. Finally,

the diagnosis classification codes changed on October 1, 2015, from ICD-9 to ICD-10, might

be additional potential concern. However, all ICD-9 and ICD-10 codes were carefully re-

viewed to ensure consistency of disease groups, and any outcome misclassification should be

minimal.

5.6 Conclusions

In this study, we observed temporal changes in the risk of CVD and asthma ED visits as-

sociated with short-term increases in PM2.5 mass and component concentrations. These

temporal changes could be due to changes in the PM2.5 mixtures such as the increasing
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fraction of OC and decreasing fraction of sulfate in PM2.5 total mass resulted from com-

prehensive emissions control programs and economic changes. However, the evidence at the

single-component level was not clear. Other factors such as improvements in healthcare and

differential exposure misclassification might also contribute to the temporal changes. The

complex relationship between changes in the PM2.5 mixture and different health outcomes

warrants further validations in other geographical regions.
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6 Conclusions and Future Directions

In this work, advanced exposure prediction methods were proposed to improve high-resolution

PM2.5 exposure assessment based on novel measurement data. Even though we focused more

on PM2.5 total mass in this work, these advanced methods can be further applied to the as-

sessment of high-resolution PM2.5 component exposure with the next generation of satellite

monitors and low-cost sensors capable of providing more reliable PM2.5 component measure-

ments. The improved PM2.5 exposure data are promising to be utilized in the future health

analysis to further improve our understanding of the influence of PM2.5 composition on its

overall toxicity.

In Aim 1, an AOD gap-filling model and a PM2.5 prediction model based on the random

forest algorithm were developed to estimate fully covered and high-resolution ground PM2.5

concentrations in New York State in 2015. By introducing the MODIS snow/cloud fractions

into the gap-filling process, a 100% gap-filled AOD data set was generated with an excellent

modeling performance. The 1-km PM2.5 predictions derived from the gap-filled AOD could

reflect detailed emission patterns and small-scale terrain-driven features. This study was the

first attempt where both snow and cloud parameters had been introduced into the AOD gap-

filling process. It is necessary for future applications to adopt more physical characteristics

of snow and cloud and to explore more suitable strategies to introduce these parameters into

the gap-filling process. The methodology of this study can be generalized to other regions

with extensive snow/cloud cover and large proportions of missing satellite AOD data to

estimate PM2.5 exposures that previously could not be obtained.

In Aim 2, a two-step approach, i.e., spatially varying calibration and down-weighting model-

ing, was developed to combine low-cost sensor data with regulatory measurements to improve

the quality of high-resolution spatiotemporal PM2.5 modeling. The proposed approach was

able to mitigate the negative impact of the high noises in low-cost sensor measurements on

PM2.5 prediction accuracy. Dense low-cost sensor measurements in the study domain also

showed their potential to help the prediction model better reflect PM2.5 hot-spots such as

wildfires. This study demonstrated that the integration of low-cost sensors with regulatory
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monitoring and other sources of information such as satellite remote sensing can provide new

insights into PM2.5 pollution. The two-step approach can be generalized to other regions to

derive high-resolution PM2.5 exposure estimates. The proposed approach is also informative

to other meteorological, geographical, and ecological citizen science applications to calibrate

large volumes of low-quality volunteer-generated data.

In Aim 3, significant temporal changes in the rates of ED visits for CVD and asthma associ-

ated with changes in PM2.5 concentrations and composition were observed. These temporal

changes could be due to changes in PM2.5 mixtures, such as increasing OC and decreas-

ing sulfate, resulted from comprehensive emissions control policies and economic changes,

although the evidence at the single-component level was not clear. Other factors, such as

improvements in healthcare facilities and urban environments, exposure misclassification,

and residual confounding, might also contribute to the changes. The complex relationship

between changing PM2.5 mixture and different health outcomes warrants further research in

other geographical regions.
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7 Appendices

7.1 Manuscript I Supplemental

Table S1: Selection criteria for cloud-, snow-, and water/ice-related AOD missingness by
MAIAC AOD Quality Assessment (QA) flags. The digits between the parentheses are the
QA flags of the corresponding masks.

Cloud QA Flags

1. MAIAC Cloud Mask
a. Possible cloudy (010)
b. Cloudy (011)
c. Cloud shadow (101)
d. Fire hot-spot (110)
e. Water sediments (111)

2. MAIAC Adjacency Mask
a. Adjacent to cloud (001)
b. Surrounded by more than 8 cloudy pixels (010)
c. Single cloudy pixel (011)

3. AOT Quality FLAG
a. Possible cloud contamination (1)

Snow QA Flags

1. Land Water Snow/Ice Mask
a. Snow (10)

2. Adjacency Mask
a. Adjacent to snow (100)
b. Snow was previously detected for this pixel (101)

Water/Ice QA Flags
1. Land Water Snow/Ice Mask

a. Water (01)
b. Ice (11)
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Table S2: 10-fold overall, spatial, and temporal CV R2 for the PM2.5 predictions from 2002
to 2012. The PM2.5 convolutional layer is the most important variable during these years.
Land-use terms are also among the top important variables.

Year Overall CV R2 Spatial CV R2 Temporal CV R2

2002 0.86 0.85 0.80
2003 0.85 0.83 0.82
2004 0.87 0.85 0.85
2005 0.86 0.83 0.83
2006 0.88 0.83 0.85
2007 0.88 0.84 0.86
2008 0.86 0.82 0.84
2009 0.84 0.77 0.82
2010 0.88 0.82 0.86
2011 0.83 0.75 0.81
2012 0.81 0.72 0.80



80

Table S3: The cross-validation performance of three PM2.5 prediction models with different
AOD predictors. The full model used gap-filled AOD based on both cloud and snow cov-
ers. The cloud-only model used gap-filled AOD based solely on cloud cover. The no-AOD
model did not used AOD as predictors. All three models had nearly the same performance.
However, cross-validation alone could not fully reflect the contribution of AOD to PM2.5 pre-
diction accuracy. The influences of were mainly reflected in the changes of PM2.5 distribution
patterns.

Model N Overall CV R2 Spatial CV R2 Temporal CV R2 RMSE

Full 25,599 0.82 0.74 0.81 2.16 µg/m3

Cloud-only 25,599 0.82 0.74 0.81 2.15 µg/m3

No-AOD 25,599 0.83 0.74 0.81 2.13 µg/m3
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Figure S1: PM2.5 spatial distributions in different seasons of 2015: (a) PM2.5 distribution in
spring; (b) PM2.5 distribution in summer; (c) PM2.5 distribution in fall; (d) PM2.5 distribution
in winter.
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Figure S2: Differences between the full-model and original PM2.5, which had an absolute
mean of 0.98 µg/m3 with an IQR from 0.77 to 1.20 µg/m3 and an absolute maximum of 2.29
µg/m3.
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7.2 Manuscript II Supplemental

7.2.1 Quality Control for PurpleAir PM2.5 Measurements

Each PurpleAir sensor consists of two identical laser particle counters providing two sets of

PM readings (Channel A & Channel B). PurpleAir PM2.5 data were cleaned based on the

dual-channel readings. We first discarded all hourly records with only one channel’s reading

since the outliers were hard to be identified based on a single channel. Additionally, there

were apparent outliers with PM2.5 levels greater than 3,000 µg/m3 in both channels, which

were also discarded. The discarded records accounted for ∼3% of the total records. The

remaining records (N = 5,658,772) still had a large dual-channel discrepancy with an R2

of 0.32 and a slope of 0.60. We then used the absolute percentage bias (APB) computed

from dual-channel readings (Equation (S1)) to further filter out the outliers. In Equation

(S1), PM2.5A denotes Channel A’s reading and PM2.5B denotes Channel B’s reading. A

percentage threshold of APB was determined according to the improvement of overall dual-

channel agreement. When setting the threshold to be 5%, i.e., removing the records with

top-5% largest APB values, all apparent outliers disappeared (Figure S8). The remaining

data (N = 5,375,833) had an excellent dual-channel agreement with an R2 of 0.98 and a slope

of 0.997. The final PurpleAir PM2.5 measurements were the average of the dual-channel

readings.

APB =

∣∣∣∣PM2.5B − PM2.5A

PM2.5A

∣∣∣∣× 100% (S1)

7.2.2 Evaluation of PurpleAir PM2.5 Measurements

The evaluation of PurpleAir was performed based on the paired hourly PM2.5 measurements

(N = 137,068). The hourly AQS measurements averaged 11.1 µg/m3 with an interquartile

range (IQR) of 9.8 µg/m3 (25th, 75th percentiles: [5.0 µg/m3, 14.8 µg/m3], maximum: 369.0

µg/m3), while the corresponding PurpleAir measurements averaged 13.0 µg/m3 with an IQR

of 14.8 µg/m3 (25th, 75th percentiles: [2.8 µg/m3, 17.6 µg/m3], maximum: 448.5 µg/m3).

Compared to AQS, PurpleAir measured a higher overall PM2.5 level by 1.9 µg/m3 and
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significantly higher peak values. Previous low-cost sensor evaluation studies based on the

same sensor (Plantower PMS, Beijing Plantower Co., Ltd) also found that it tended to

overestimate PM2.5 compared to reference-grade monitors [42, 151]. For example, Kelly et al.

[42] reported that PMS overestimated PM2.5 concentrations when exceeding 10 µg/m3 during

several cold-air pools (CAPs) in winter. Badura et al. [151] reported that the raw outputs

from PMS overestimated collocated tapered element oscillating microbalance (TEOM) data

by a factor of 3.5 during a half-year field campaign.

7.2.3 Nonlinearity of PurpleAir Systematic Bias

The nonlinearity of PurpleAir systematic bias was examined by locally weighted scatter-plot

smoothing (LOWESS). LOWESS fits a low-degree polynomial at each point of the data set

where the data near the point are given higher weights [152]. LOWESS is a non-parametric

strategy for finding a curve of best fit without assuming the distribution of the data. An

important hyperparameter of LOWESS is the smoothing span controlling the degree of

smoothing. This hyperparameter was tuned with 10-fold cross-validation. A smoothing

span of 10% was the optimal value in our case. The LOWESS showed an almost linear curve

coinciding with the curve of linear regression (Figure S9), reflecting that linear calibration

was satisfactory for PurpleAir.

7.2.4 Validation of Scale Factor

The scale factor ρ was mainly used as a proxy of implicit factors which may impact the

prediction quality and further reduce the relative importance of PurpleAir in the model.

This factor was set to be a multiplicative term within a range of [0, 1]. Intuitively, for a set

of perfect measurements, i.e., the data quality is identical to reference-grade data, this data-

driven scale factor should be close to 1. In order to validate this assumption, we pretended

the PurpleAir measurements had a perfect quality and used them as ground truth with

AQS measurements in the model with 10-fold CV. The trend of CV RMSPE with different

ρ values is shown in Figure S10(a). We can see that CV RMSPE reaches its minimum

when ρ is closer to 1. This result indicates the reasonability of our assumption, i.e., ρ is

a physically meaningful parameter with the value closer to 1 for a perfect data set such as
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reference-grade data and closer to 0 for a data set with large uncertainty such as low-cost

sensor measurements. The optimal ρ value of the weighted prediction model was tuned with

the 10-fold CV (Figure S10(b)). The CV RMSPE shows a U-curve with a minimum at the

value of ∼0.23. The range of CV RMSPE is as large as 0.2 µg/m3, indicating the large

influence of this scale factor on the model performance.
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Table S4: Summary statistics of the absolute differences between fully calibrated PurpleAir
data and the calibrated data based on subsets of collocated AQS/PurpleAir sites. The total
number of collocated AQS/PurpleAir sites was 26 and the subsets were randomly selected
from these 26 sites with different proportions from 90% to 10%. This analysis was based on
a subset of 10,000 randomly selected PurpleAir measurements.

Proportion*
Mean Q1** Median Q3** Max

(µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3)
90% 0.02 0.00 0.01 0.02 0.77
80% 0.35 0.02 0.08 0.44 11.51
70% 0.47 0.07 0.20 0.52 12.58
60% 0.84 0.32 0.65 1.10 13.39
50% 1.06 0.37 0.76 1.34 20.26
40% 1.75 0.72 1.43 2.29 20.70
30% 1.87 0.83 1.62 2.50 20.40
20% 2.26 1.04 2.03 3.11 19.59
10% 2.35 1.01 2.02 3.22 23.49

Raw*** 4.59 1.13 2.51 4.89 158.62
* The (gross) proportion of collocated AQS sites being kept

** The 25th and 75th percentiles
*** Uncalibrated PurpleAir data
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Table S5: The ten-most important variables of the AQS-based model, based on which the
HAC was performed.

PM2.5-Related Variables Used in HAC
1 PM2.5/PM10 ratio
2 Elevation
3 Visibility
4 Gap-filled Aqua AOD
5 10-meter meridional wind speed
6 Gap-filled Terra AOD
7 Percentage of shrublands
8 2-meter specific humidity
9 Population
10 Nearest distance to roads
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Table S6: Numbers and densities of continuous AQS stations (providing hourly PM2.5 mea-
surements) in 47 states of the Contiguous United States (CONUS) (without California). The
rows in green are the states with densities of AQS stations > 5 per 100,000 km2.

Rank CONUS State N of AQS State Area (km2) N of AQS per 100,000 km2

1 Rhode Island 5 4,001 124.97
2 Delaware 5 6,446 77.57
3 Massachusetts 16 27,336 58.53
4 Connecticut 8 14,357 55.72
5 New Jersey 12 22,591 53.12
6 Maryland 11 32,131 34.24
7 Washington 61 184,661 33.03
8 Pennsylvania 39 119,280 32.70
9 New Hampshire 6 24,214 24.78
10 Florida 39 170,312 22.90
11 Ohio 26 116,098 22.40
12 New York 30 141,297 21.23
13 Indiana 19 94,326 20.14
14 Vermont 4 24,906 16.06
15 Tennessee 16 109,153 14.66
16 North Carolina 20 139,391 14.35
17 Illinois 21 149,995 14.00
18 Kentucky 14 104,656 13.38
19 South Carolina 11 82,933 13.26
20 Wisconsin 18 169,635 10.61
21 Alabama 14 135,767 10.31
22 Idaho 22 216,443 10.16
23 Oklahoma 18 181,037 9.94
24 Minnesota 22 225,163 9.77
25 Georgia 15 153,910 9.75
26 Maine 8 91,633 8.73
27 Virginia 9 110,787 8.12
28 Louisiana 10 135,659 7.37
29 Missouri 13 180,540 7.20
30 Arizona 21 295,234 7.11
31 Iowa 10 145,746 6.86
32 Utah 15 219,882 6.82
33 Michigan 17 250,487 6.79
34 Mississippi 8 125,438 6.38
35 Texas 44 695,662 6.33
36 Colorado 17 269,601 6.31
37 North Dakota 11 183,108 6.01
38 Montana 19 380,831 4.99
39 Wyoming 12 253,335 4.74
40 Nevada 13 286,380 4.54
41 South Dakota 8 199,729 4.01
42 Arkansas 5 137,732 3.63
43 West Virginia 2 62,756 3.19
44 New Mexico 9 314,917 2.86
45 Oregon 6 254,799 2.35
46 Kansas 5 213,100 2.35
47 Nebraska 2 200,330 1.00
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Figure S3: The spatial distribution of GWR slopes.
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Figure S4: Three clustered sub-domains with the locations of AQS/PurpleAir pairs (black
points): 1 – agricultural/developed areas, 2 – mountainous areas, and 3 – arid areas.
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Figure S5: 10-fold CV scatter plots of (a) the AQS-based model, (b) the non-weighted model,
and (c) the weighted model.
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Figure S6: Locations (with annual mean PM2.5 levels) of (a) AQS and (b) PurpleAir sites
and the annual mean PM2.5 distributions derived by the (a) AQS-based and (b) weighted
models in the region of Ferguson Fire in 2018.
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Figure S7: (a): Annual mean PM2.5 distribution for 2018 from the non-weighted model.
(b): Annual mean PM2.5 differences between the non-weighted and weighted predictions
(non-weighted minus weighted).
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Figure S8: Scatter plots of PurpleAir dual-channel hourly measurements (a) before and (b)
after removing the 5% largest absolute percentage biases (APBs).
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Figure S9: LOWESS (green) and linear (red) fitting curves of the paired AQS/PurpleAir
hourly measurements (black scatters).
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Figure S10: (a): The trend of the 10-fold CV RMSPE with ρ within a range of [0, 1] when
assuming PurpleAir measurements were precise. (b): The trend of the 10-fold CV RMSPE
with ρ within [0, 1] in the real case. The blue curve is the smoothed fitting curve, showing
the minimum of CV RMSPE at a ρ value of ∼0.23.
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7.3 Manuscript III Supplemental

Figure S11: Study domains with Los Angeles and Rubidoux 15-mile monitor-buffers.
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Figure S12: Box plots of mass concentrations of eight PM2.5 trace components during the
three time periods (EARLY: 2005 – 2008; MIDDLE: 2009 – 2012; LATE: 2013 – 2016). The
measurements are the averages of two sub-domains.
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Figure S13: Box plots of percentages of eight PM2.5 trace components in PM2.5 total mass
during the three time periods (EARLY: 2005 – 2008; MIDDLE: 2009 – 2012; LATE: 2013 –
2016). The measurements are the averages of two sub-domains.
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Figure S14: Relative risk estimates of CVD ED visits associated with each 10 µg/m3 increase
in the remaining PM2.5 mass concentration. As a reference, (a) shows the risk estimates
associated with PM2.5 based on the moving average of exposure.
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Figure S15: Relative risk estimates of asthma ED visits associated with each 10 µg/m3

increase in the remaining PM2.5 mass concentration. As a reference, (a) shows the risk
estimates associated with PM2.5 based on the moving average of exposure.
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Figure S16: Relative risk estimates of CVD and asthma ED visits associated with each 10
µg/m3 increase in PM2.5 concentration with different degrees of freedom (df = 2 – 6) of the
cubic splines of daily maximum air temperature and mean dew-point temperature.
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Figure S17: Relative risk estimates of CVD and asthma ED visits associated with each 10
µg/m3 increase in PM2.5 concentration with and without the control for daily minimum air
temperature.
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Figure S18: Relative risk estimates of CVD and asthma ED visits associated with each 10
µg/m3 increase in PM2.5 concentration with different annual knots in the time splines.
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Figure S19: Relative risk estimates of CVD and asthma ED visits associated with each 10
µg/m3 increase in PM2.5 concentration in different redefined time intervals (Redefined 1:
moving the year of 2008 to the MIDDLE period; Redefined 2: moving the year of 2012 to
the LATE period).
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Figure S20: Relative risk estimates of CVD and asthma ED visits associated with each 10
µg/m3 increase in PM2.5 concentration with and without the control for collocated short-term
ozone exposure.
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