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Abstract 
 

Single-cell-level Studies of Phenotypic Diversity in Bacteria  

By Emrah Simsek 

 

Bacteria have an amazing ability to adapt to unfavorable conditions, which is why they are all over 

the Earth. Population diversification is a well-known mechanism for adaptation. Importantly, an 

isogenic population can exhibit phenotypic diversity without changing their genotypes. My 

dissertation aims at elucidating the origins and implications of phenotypic diversity under three 

prevalent environmental conditions; nutrient fluctuations, antibiotic exposure, and restricted 

motility due to surface association. 

 

We first characterized at the single-cell resolution the metabolic activities and growth kinetics of 

starved Escherichia coli cells subject to nutrient upshift. We observed a subpopulation of cells 

which resumed the growth long after the upshift. By characterizing their metabolic states, we 

showed that they exhibit active substrate uptake and catabolism but inactive anabolism. We 

showed that oxidative stress is an innate factor leading to these partial metabolic activities. We 

observed that cells with partial metabolic activities spontaneously restored their anabolism and 

grew. This growth resumption indicates that these cells were not dead but dormant. 

 

We next quantified the temporal dynamics of the growth recovery of dormant cells in the face of 

bactericidal antibiotics. When a genetically-identical population faces a bactericidal antibiotic, a 

majority of cells dies quickly but a small fraction called persisters survives. Dormancy is the 

generally accepted mechanism for emergence of these persisters. When we characterized the time 

points at which these persister cells exit from dormancy, we found their temporal probability 

distribution exhibits a power-law decay. We explained this power-law decay by using 

heterogeneous Poisson processes. We showed how this explanation is consistent with a myriad of 

biomolecular pathways previously identified for entering and exiting dormancy. 

 

Finally, we developed two visualization tools for studying the origins and implications of non-

genetic population diversification in the context of surface associated-life of bacteria. These tools 

enabled characterization of surface-associated Proteus mirabilis bacteria at a wide range of scales 

from the single cell (m) to the colony level (cm). Applying these tools to a few examples, we 

demonstrated how these tools could be useful. 
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Chapter 1: Introduction 

 

1.1. Motivation.  

 
The ability to adapt to unfavorable conditions is essential to survival of all living organisms. 

Bacterial populations have adapted to virtually every niche on Earth from soil and sea to the 

surfaces deep under the ocean, and from the gut of animals to the extremely cold Arctic and hot 

water springs near volcanos, making them the second largest taxon (after plants) in terms of 

biomass on Earth; a ~13 % of the total biomass on Earth is bacteria (~70 Gt C bacteria and ~550 

Gt C total biomass) [1]. Many of these niches are thought to have unfavorable features such as 

limited or fluctuating nutrient levels [2] and antibiotic agents [3, 4]. In order to escape from 

antibiotic agents or move toward nutrients, bacteria can utilize a form of motility known as 

chemotaxis [5-7]. However, in natural ecosystems, planktonic bacteria are often substantially 

outnumbered by their surface-associated counterparts [7-9]. Mainly due to restricted hydration, 

surface attachment is expected to impede bacterial motility on surfaces like soil [10-12] and 

hydrogels [13]. This may exacerbate the challenge imposed by growth inhibitory factors when 

motility is the only option to escape from them. Notwithstanding, the ubiquity and abundancy of 

bacteria on Earth indicate that bacteria can overcome this challenge. This makes bacterial 

populations an attractive model system for studying how populations adapt to unfavorable 

environmental conditions.  

 

Bacteria are thought to have significant environmental roles such as nutrient cycling [14]. 

Although the free-living form is dominant [15], many bacterial species adopt a symbiotic life with 

other multicellular organisms, such as bacteria in human body performing indispensable functions 
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in the human gut [16]. Indeed, a human body contains nearly as many bacterial cells as its own 

human cells [17]. The recently postulated hologenome concept considers every such multicellular 

host and the microbes it harbors as a single and unique biological entity in the light of the 

accumulating evidence that symbiotic microbes contribute to the physiology, behavior, origin and 

evolution of species [18]. On the other hand, some bacteria may also pose risks for human health 

causing chronic infections [19] which may in certain cases even lead to cancer development [20]. 

Collectively, a better understanding of how bacterial populations adapt to and survive unfavorable 

conditions is a necessity.  

 

Population diversification is a widespread phenomenon that allows bacterial populations to adapt 

to unfavorable environments [21, 22]; with diversity, there will likely be some individuals that are 

well suited for a given environment. Such population diversifications have also been demonstrated 

in laboratory environments where different subpopulations specialize on different tasks rendering 

a more efficient utilization of the resources available in the environment [23-28]. Additionally, in 

order to cope with environmental challenges such as nutrient scarcity, antibiotic agents, and 

restricted mobility due to surface association, diversification of bacterial populations through 

changing their genetic composition has been well documented [29-46].  

 

One important mechanism of population diversification is phenotypic heterogeneity, i.e., an 

isogenic population of bacteria can exhibit very different phenotypes [25, 47-50]. This phenotypic 

heterogeneity can have significant effects on ecological dynamics of populations and species [51]. 

For example, non-genetic phenotypic diversification plays a critical role in population survival 

through catastrophic environmental changes [52, 53] and promotes sustenance of microbial species 
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[54, 55]. In clonal populations, phenotypic heterogeneity can be exogenously triggered due to 

heterogeneities in the microenvironments of their constituent cells [56-59]. On the other hand, a 

generic endogenous source of non-genetic phenotypic heterogeneity is the inherent stochasticity 

of a bacterial cell as a system of biochemical reactions. The molecules participating in key 

regulatory reactions inside of a cell are usually present in low (< 100) copy numbers [60] which 

can cause large fluctuations in the reaction rates [61]. A result of this and possible additional 

factors such as the chromosomal position of a gene [62] is the phenotypic variation in gene 

expression [63-66]. Such phenotypic variation can allow clonal cells to exhibit different responses 

to the same environmental stimulus [67]. This can increase the net fitness of a population in 

fluctuating environments [68]. When complemented by an appropriate genetic wiring (i.e., 

effectively a positive feedback) the stochasticity in gene expression can yield multiple stable 

phenotypes within a genetically-identical population [69-71]. In some cases, cellular stochasticity 

also allows cells to abruptly switch between alternative phenotypes [72, 73], and this can serve as 

a survival strategy in fluctuating environments [74]. Random partitioning of cellular components 

at cell division is another well-recognized stochastic mechanism for the emergence of cell-to-cell 

variation [75-77], which was also shown to contribute to cell survival under fluctuating 

environments [78]. In summary, the noisy nature of the way a bacterial cell operates intrinsically 

yields chances for the emergence of a non-genetic population diversification even in constant and 

uniform environments, and the diversity generated in this way can allow survival of a population 

in the case of an environmental shift. 

 

Quantitative analyses of non-genetic phenotypic heterogeneity are highly important because they 

can reveal dynamic features of the mechanisms that generates the heterogeneity and enable a priori 
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prediction of dynamics of a population as it adapts to unfavorable environmental conditions. This 

can also help elucidating microbial survival strategies. Although non-genetic phenotypic 

heterogeneity as an adaptation mechanism has been suspected since long time ago, its direct 

characterization has only become possible by the advances in single-cell-level microscopy and 

fluorescent reporters for cellular events and cell physiology in the last nearly two decades [79, 80]. 

Hence, our quantitative understanding about the temporal dynamics of non-genetic population 

diversification near unfavorable environments is limited. Likewise, little is known about the 

underlying cellular and environmental factors and implications of non-genetic population 

diversification in bacterial populations. Therefore, this dissertation focuses on a quantitative 

characterization of phenotypic heterogeneity and its implications as genetically identical bacterial 

populations adapt to three prevalent environmental challenges; nutrient fluctuations, transient 

antibiotic exposure, and surface-associated growth. We identify and discuss key environmental 

and cellular factors underlying the observed phenotypic variations. 

 

1.2. Methodology.  

In this dissertation, origins of phenotypic diversity and its implications on the adaptation dynamics 

of bacterial populations to unfavorable environments are quantitatively studied. This extensively 

involved optical microscopy, image analysis and mathematical modeling as well as both modern 

and conventional microbiology and molecular genetics techniques. Since the scope of this 

dissertation and the work it entails are highly interdisciplinary, in this section a brief introduction 

to the most essential techniques is provided for the general reader. 
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1.2.1. The plate count method. 

The most commonly employed conventional technique for probing bacterial population dynamics 

is called the “plate count method” or the “colony forming unit (CFU) assay” (Fig. 1. 1). This 

method relies on growing single cells into visible colonies. It was originally devised by Robert 

Koch more than a century ago for isolating single clones of bacteria [81] and has been widely used 

in microbial research and public health sectors since then [82-85].  

 

In this method, a fixed volume of cells from a culture growing in a medium of interest is collected 

and spread on a nutrient rich semi-solid (agar) medium in a Petri dish. Importantly, the cells are 

spread after appropriate dilutions so that single bacteria would be sparsely distributed on the 

surface of the semi-solid medium. Then, the dish is incubated overnight with the idea is that each 

live cell seeded on the plate will grow into a visible colony. The next day, the number of visible 

colonies on the plate is counted. Technically, these colonies are called colony forming units, CFUs. 

Finally, the number of CFUs per unit volume is determined. In order to obtain the dynamics of the 

bacterial population, this procedure is repeated at various time points, and the resultant number of 

CFUs per unit volume is plotted as a function of time. 

 

In this method the intrinsic assumption is that life equals reproductive ability; every live cell in the 

culture will grow into a visible colony when incubated on the nutrient rich semi-solid medium. In 

order to study the bacterial population dynamics in the presence of a certain unfavorable 

environmental feature such as antibiotics, in this method the unfavorable feature is included in 

only the cell culture and not in the nutrient rich semi-solid medium. Resultantly, a plot of CFU/ml 
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versus time reports on the survival kinetics of the bacterial population in the presence of that 

particular type of unfavorable environmental feature.  

 

The plate count method is of very high throughput as it requires the investment of only about 30 

min of time per each time point enquired, and the next day hundreds of colonies can be counted 

within several minutes. However, it has fundamental limitations for studying phenotypic 

heterogeneity within populations. First of all, this method does not allow visualization of either 

the dynamics within colonies or the physiological states of single cells. More importantly, while it 

is true that every cell that grows into a visible colony must be alive, the reciprocal of this is not 

necessarily true: not every non-colony-forming cell is dead. Indeed,  it has been known for long 

that bacterial cells can lie dormant for extended periods of time without growing and then exit 

from dormancy and grow at future times [86]. 

 

 

Figure 1. 1. A schematic illustration of the plate count method. 

A fixed volume of cells from a culture growing in the medium of interest is collected and spread on a 

nutrient rich agar plate after appropriate dilutions so that single bacteria would be sparsely distributed on 

the plate. Then, the plate is incubated overnight with the idea is that each live cell seeded on the plate will 

grow into a visible colony. The next day the number of visible colonies on the plate is counted. Technically, 

these colonies are called colony forming units, CFUs). Finally, the number of CFUs per unit volume is 

determined. In order to obtain the dynamics of the bacterial population, this procedure is repeated at various 
time points, and the resultant number of CFUs per unit volume is plotted as a function of time. Not drawn 

to scale. 
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1.2.2. Optical microscopy and fluorescent reporters for studying living single cells. 

Bacterial cells are of the sizes on the order of a micrometer. Hence, employment of optical 

microscopy is generally sufficient for single-cell-level investigation of bacteria unless some 

intricate sub-cellular features are studied in particular.  

 

Bright field microscopy is the simplest version of light microscopy where differential transmission 

of light through an object compared to its surrounding medium is used in order to visualize it. 

However, all bacterial growth media are water-based, and bacterial cells have nearly the same 

density as water [87]. This requires often a deadly staining of bacterial cells in order to be 

visualized by bright field microscopy. 

 

On the other hand, bacterial cells have refractive indices that are significantly greater than that of 

water [88]. Hence, phase contrast microscopy, which visualizes an object basically by just relying 

on the difference in the refractive indices of the object versus its surrounding medium [89], can be 

used for imaging single live bacterial cells without the requirement of any staining. Phase contrast 

microscopy uses a whitish light source; hence it is not expected to significantly influence the 

physiology of bacterial cells.  

 

For a basic single-cell-level investigation with phase contrast microscopy, a small aliquot from a 

bacterial culture is sandwiched between two cover glasses and then imaged. In order to image the 

same living single bacteria for long periods of time (hours to days), a variant of this method is 

employed where one of the cover glasses is replaced with a semi-solid (agar or agarose gel) pad. 

As a result, single bacteria are physically confined and can be visualized with a phase contrast 
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microscope through the cover glass (Fig. 1. 2). For an even longer term of observation or when the 

medium surrounding the cells need to be constantly replenished, more sophisticated devices called 

microfluidic chips can be employed [80]. 

 

 

 
 

 
Figure 1. 2. A schematic illustration of a basic method for live cell imaging. 

An aliquot from a culture of bacteria is sandwiched between a cover glass and a semi-solid (agar or agarose 

gel) pad. Single bacteria are then visualized through the cover glass using phase contrast microscopy. Not 

drawn to scale. 
 

 

Often this method is combined with fluorescence microscopy for the use of certain fluorescent 

reporters for assaying cellular processes such as respiration [90], substrate uptake [91], and gene 

expression [92], etc. A fluorescent reporter molecule of interest gets excited by light at a certain 

range of wavelengths, and responds in turn by emitting light at wavelengths in a range shifted 

towards the red. A fluorescence microscope is equipped with an appropriate light source and a 

filter set in order to achieve a specific excitation of the fluorescent molecule of interest and collect 

the spectrum of light it emits in turn. Typically, the fluorescence signal detected is linearly 

proportional to the concentration of the fluorescent molecules within a specimen [93].  

 

Cells are primarily made of proteins, and proteins dominantly control the processes inside the cells 

[94]. Genes are designated DNA units that carry the genetic code for all the proteins that a cell is 
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capable of synthesizing. A typical bacterial cell contains more than a thousand genes which means 

being capable of synthesizing a roughly equal numbers of proteins [94]. However, a cell does not 

need those proteins all at the same time. Hence, they have mechanisms to control when and to 

what extent a gene will be expressed. Timing and magnitude of the expression of genes are 

primarily controlled by a designated DNA sequence in their upstream called promoter. According 

to the central dogma of protein synthesis, the enzyme called RNA polymerase binds to the 

promoter and then transcribes the information pertaining the gene into an intermediary structure 

called the messenger RNA. The messenger RNA is then translated into proteins by the virtue of 

an enzyme complex called ribosome. This process is called “gene expression”. 

 

Most bacteria can be genetically manipulated for fusing a gene encoding a fluorescent protein 

(such as a green fluorescent protein gene) next to a gene of interest such that the expression of the 

gene will be coupled to the expression of the fluorescent protein [95]. This coupling can be at the 

mRNA transcription level as well as the translation (protein production) level depending on the 

details of the genetic manipulation employed [95]. It is important to note that such fluorescent 

protein gene fusions need to be carefully tailored based on the specific purpose. In the least 

sophisticated cases, increasing intracellular fluorescent protein signals will reflect an active 

transcription state for the expression of the gene of interest. By employing externally controllable 

synthetic promoters, a similar design can also be utilized for testing the ability of cells to synthesize 

proteins independently of any inherent control over the promoter activities [96]. With the 

multiplicity of the fluorescent proteins with distinct excitation/emission spectra [97], the 

expression of more than one genes simultaneously can be visualized in live cells. However, the 

limitation of employing fluorescence microscopy in live cell imaging is that often the light used to 
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excite the fluorophore of choice excites some sub-cellular components as well. This in turn may 

cause a significant alteration of cell physiology [80]. A cell’s physiological state is in general 

tightly linked to how fast it grows. Therefore, at a minimum, one needs to confirm that the growth 

rate of cells does not significantly change when fluorescence microscopy is involved. Generally, 

minimizing the power of excitation light, light exposure time, and frequency of imaging are 

sufficient solutions. 

 

Once phase contrast and fluorescence images of the samples are obtained, the images are processed 

for identification of the cells, and then the intracellular fluorescence intensities are measured. 

Although specific circumstances may require an ad hoc customization of the image analysis, there 

are several freely-available software, such as the Image J developed by the National Institute of 

Health of the U.S. [98], for a generic identification and analysis of bacterial cells in microscopy 

images. Image analyses processes can often be at least semi- automatized. 

 

 

1.2.3. Mathematically representing cellular processes using ordinary differential equations. 

The physiological processes inside a living cell are indeed biochemical reactions. The most 

biochemical reactions are categorized into one of the three elementary types of reactions called a 

zeroth, first, or a second order chemical reaction (See Fig. 1. 3 for a graphic illustration).  

 

In a zeroth order reaction, a chemical of interest (C) emerges from nothing at a constant rate 

defined as k0. In this case, the time scale of the emergence of C is set by 1/k0. This means that, 

when a zeroth order reaction is assumed, over the timescales on the order of 1/k0 the cell of interest 

has no control over the intracellular production of C. Zeroth order reactions are typically used for 
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modeling a constant influx of a chemical from outside to the inside of a cell or the synthesis of C 

from another chemical whose concentration does not change much over time scales on the order 

of 1/k0. 

 

In a first order reaction, another chemical (B) is converted to the chemical C at a constant rate k1. 

A first order reaction is typically used for modeling the degradation or efflux of a chemical. Lastly, 

in a second order reaction two chemicals, say A and D, come together at a rate constant k2 and 

jointly get converted to the chemical C.  

 

 

 

 
Figure 1. 3. A graphic illustration of the most typical types of biochemical reactions inside of a cell. 

The physiological processes inside a living cell are indeed biochemical reactions. The most biochemical 

reactions can be modeled as a zeroth, first, or a second order chemical reaction occurring at a constant rate. 

Illustrated here is the production of a chemical C via its influx at a rate k0, by the conversion of another 

chemical B at a rate k1, and by the joint conversion of two other chemicals A and D at a rate k2. Not drawn 

to scale. 

 

 

The bottom line in all these types of reactions is the conversion of mass from one chemical form 

to another per unit time in a given volume, and this is defined by the law of mass action, whose 

foundations rely on the original work by two late Norwegian chemists Cato M. Guldberg and Peter 
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Waage and a Dutch physical chemist Jacobus Henricus van 't Hoff in the mid- to late 1800s. 

According to the law of mass action, for the examples given above, per unit time, in the zeroth 

order reaction the concentration of C increases by k0. For the first order reaction, per unit time, the 

concentration of C increases by k1 times the concentration of B, while the concentration of B 

decreases by the same amount. Finally, in the second order reaction, per unit time, the 

concentration of C increases by k2 times the concentration of A times the concentration of D, while 

the concentration of both A and D decreases by the same amount. As exemplified below, these 

changes are mathematically defined in terms of a set of coupled ordinary differential equations 

where brackets ([]) are used to denote the concentration of the chemicals. 

 

                             
𝑑[𝐶]

𝑑𝑡
= 𝑘0 + 𝑘1[𝐵] + 𝑘2[𝐴][𝐷] 

𝑑[𝐵]

𝑑𝑡
= − 𝑘1[𝐵] 

       
𝑑[𝐴]

𝑑𝑡
= − 𝑘2[𝐴][𝐷] 

       
𝑑[𝐷]

𝑑𝑡
= − 𝑘2[𝐴][𝐷] 

 

For the reasons described earlier in this chapter, inside of a cell chemical processes are inherently 

stochastic mainly due to thermal fluctuations. Hence, the changes in the concentration of a 

chemical for a single cell may deviate from the prediction based on the law of mass action. 

Notwithstanding, an averaging over a large population of cells (typically, more than 100 cells) 

yields results highly comparable with those predicted by the law of mass action [99]. 
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Lastly, in order to consolidate our understanding with regards to this subsection, let us consider a 

model situation where the production of a fluorescent protein P is externally induced by addition 

of a substance that can specifically activate the (synthetic) promoter that controls the expression 

of the gene encoding P. Here, the concentration of the protein and its associated messenger RNA 

are denoted by [P] and [R], respectively. We assume that the copy number of the gene encoding 

the fluorescent protein P does not change over the timescales for which we model how [P] and [R] 

change. Therefore, the elementary reactions governing the production of this protein are listed as 

below. 

𝜙
𝛼𝑅
→ 𝑅 

𝑅
𝛼𝑃
→ 𝑃 

𝑅
𝛽𝑅
→ 𝜙 

𝑃
𝛽𝑃
→ 𝜙 

 

Here, 𝛼𝑅 and 𝛼𝑃 are the rate constants for production of R and P, respectively. 𝛽𝑅 and 𝛽𝑃 are the 

first order rate constants that overall represent biochemical events such as degradation and dilution 

by cell growth that negatively affect [R] and [P] levels, respectively. Hence, the set of coupled 

ordinary differential equations below describes how the average [P] and [R] change over time 

following the induction. 

 
𝑑[𝑅]

𝑑𝑡
= 𝛼𝑅 − 𝛽𝑅[𝑅] 

 

      
𝑑[𝑃]

𝑑𝑡
= 𝛼𝑃[𝑅] − 𝛽𝑃[𝑃] 
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For example, under the conditions where 𝛽𝑅 = 𝛽𝑝 ≈ 0 this set of equations predicts [𝑅] ∝ 𝑡 and 

[𝑃] ∝ 𝑡2. Remembering that the concentration of a fluorescent protein is generally proportional to 

the intensity of fluorescence it emits [93], single-cell-level measurements of fluorescent protein 

levels can easily be achieved and compared with the prediction of models such as the one given as 

the example one considered here. 

 

1.3. Outline of Dissertation.  

This dissertation is comprised of five chapters in total. This first chapter is dedicated for a 

motivation of the research, a brief introduction to the research methodology employed for the 

general reader, and an outline of the dissertation. 

 

In the second chapter, we focused on nutrient fluctuations. We quantified the phenotypic 

composition of an isogenic population of starved Escherichia coli cells subject to nutrient upshift. 

Specifically, using optical microscopy and fluorescent reporters we characterized the metabolic 

activities (i.e., substrate uptake, catabolism, and anabolism) and growth responses of single cells 

during the nutrient upshift. Our results revealed a dynamically changing heterogeneity in the 

growth response of the population and indicated metabolic heterogeneity as a cellular variation 

driving such dynamic changes. Through genetic and chemical manipulations, we identified 

oxidative stress as an innate factor triggering the cellular variations observed in metabolic 

activities.  

 

The third chapter highlights a clinically important example of non-genetic phenotypic 

heterogeneity in bacterial populations called persisters, which confers a clonal population a chance 
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for evading antibiotic treatments. Previous studies have found that persisters survive antibiotic 

treatment by virtue of not growing during long periods of time (i.e., lag phase) under favorable 

conditions [100-104]. Here, using phase contrast microscopy we quantitatively analyzed the lag 

phase of an E. coli population at the single cell level. Our analyses suggested some dynamic 

features for the stochastic mechanisms that may yield persistence and enabled a priori prediction 

of population dynamics via a simple mathematical framework. Specifically, the distribution of the 

duration of lag phase (i.e., lag time) was well captured by an exponential decay for the majority of 

(i.e., normal) cells suggesting that the lag phase of normal cells is a Poisson process governed by 

a single rate constant kinetics. The lag time distribution of the remaining minor fraction (i.e., 

persisters) exhibited a long tail captured by a power-law decay with an exponent of nearly two. 

Using a simple quantitative argument, we demonstrated that this power-law decay can be 

explained by a wide variation of the rate constant for the Poisson process. This notion agrees well 

with the multiplicity of biomolecular pathways that have been identified for achieving persistence 

through dormancy. Developing a mathematical model based on the empirically obtained biphasic 

lag time distribution, we were able to quantitatively predict complex population dynamics under 

exposure to a widely used bactericidal antibiotic (ampicillin) without invoking any ad hoc 

parameters.  

 

In the fourth chapter, we developed tools that allow studying the origins and implications of non-

genetic population diversification across multiple spatial and time scales in surface associated-

bacterial populations using Proteus mirabilis bacterium as a model organism. As an isogenic 

population of P. mirabilis bacteria colonizes an agar surface, it adopts a strategy of periodic cycles 

between range expansions and cell growth/multiplication at the colony edge. Before each round of 
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range expansions, a striking example of non-genetic population diversification is observed; the 

cells in the outermost region of a colony make a decision whether to remain normal (immotile) 

and exploit the available territory or differentiate and activate a flagella-dependent-motility 

program known as “swarming” for exploring new territories. Here, we constructed a 

transcriptional fluorescent reporter gene fusion to the master regulator of motility in bacteria 

(flhDC operon) and demonstrated how this strain can be used to study the spatiotemporal pattern 

of the population diversification within a growing cell population. This can help identifying key 

cellular and environmental factors and their functional roles in swarming. Furthermore, we 

developed a Petri dish-based device compatible with dry-objective-optical microscopy. We 

demonstrated how this device can be used in order to visualize and link dynamic properties of 

swarming across a broad range of scales from the single-cell (m/s) to the colony level (cm/h).  

 

Finally, the fifth chapter of this dissertation discusses our novel findings presented in the chapters 

from two to four and their contributions to the understanding of origins and implications of non-

genetic phenotypic diversification as a way to adapt to unfavorable environments. Furthermore, a 

discussion of the broader implications of our findings is provided, and some relevant future 

research is recommended. 
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2.1. Abstract.  

 
Microorganisms adapt to frequent environmental changes through population diversification. 

Previous studies demonstrated phenotypic diversity in a clonal population and its important effects 

on microbial ecology. However, the dynamic changes of phenotypic composition have rarely been 

characterized. Also, cellular variations and environmental factors responsible for phenotypic 

diversity remain poorly understood. Here, we studied phenotypic diversity driven by metabolic 

heterogeneity. We characterized metabolic activities and growth kinetics of starved Escherichia 

coli cells subject to nutrient upshift at single-cell resolution. We observed three subpopulations 

with distinct metabolic activities and mapped them to three different growth phenotypes. One 

https://www.nature.com/articles/s41396-017-0036-2
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subpopulation was metabolically active and immediately grew upon nutrient upshift. One 

subpopulation was metabolically inactive and non-viable. The other subpopulation was 

metabolically partially active and did not grow upon nutrient upshift. The ratio of these 

subpopulations changed dynamically during starvation. A long-term observation of cells with 

partial metabolic activities indicated that their metabolism was later spontaneously restored, 

leading to growth recovery. Further investigations showed that oxidative stress can induce the 

emergence of a subpopulation with partial metabolic activities. Our findings reveal the emergence 

of metabolic heterogeneity and associated dynamic changes in phenotypic composition. In 

addition, the results shed new light on microbial dormancy, which has important implications in 

microbial ecology and biomedicine. 

 

2.2. Introduction. 

 
Microorganisms occupy virtually every niche on earth, most of which is scarce in nutrients. The 

lifestyle of microorganisms can be well characterized by long periods of nutrient deprivation 

intercepted by short periods of nutrient excess [2]. Population diversification is an important 

mechanism for populations to adapt to fluctuating environments [21, 22]; with diversity, there will 

likely be some individuals that are well suited for a given environment. Previous studies 

characterized how genetic composition in a population changes slowly through mutations and 

becomes diverse in environments where nutrients are limited and fluctuate [29-36]. In recent years, 

it became clear that a genetically-identical population can also diversify phenotypically [25, 40, 

48, 69, 104-111]. Phenotypic diversity can have significant effects on ecological dynamics of 

populations and species [51]; for example, it plays a critical role in population survival through 

catastrophic environmental changes [52], promoting sustenance of microbial species [54, 55]. 
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Because phenotypic diversity does not involve genetic mutation, it is expected to arise on short 

timescales, leading to dynamic changes in phenotypic composition in a population. However, these 

temporal dynamics have rarely been quantified. Furthermore, cellular variations responsible for 

phenotypic diversity and environmental factors triggering such cellular variations have not been 

well characterized. 

 

Metabolism is a central process by which cells derive components essential for basic cellular 

functions. Cell-to-cell variation in metabolism, if it exists, could result in phenotypic diversity. 

Recent studies of stochastic gene expression are supportive of the intriguing possibility of 

metabolic heterogeneity. For example, studies found that genetically-identical cells in the same 

environment may produce different amounts of metabolically-relevant proteins [23, 112-114]. 

Recent computational work suggested that such different protein expression could give rise to 

metabolic heterogeneity in E. coli cells [115]. A network model based on stochastic expression of 

lac enzymes in E. coli cells showed how stochastic gene expression could affect carbon 

metabolism [116]. Similarly, the direct measurements of metabolites in carbon metabolism 

revealed the coupling between metabolite pools and gene expression [117, 118]. Furthermore, a 

recent experimental study showed isogenic Klebsiella oxytoca cells might exhibit different N2 

fixation rates, meaning different metabolic activities [119].  

 

In this study, by examining starved E. coli cells subject to nutrient upshift, we characterized the 

emergence of metabolic heterogeneity and its effect on phenotypic composition in a population. 

Metabolism can be largely divided into three processes: i) bringing extracellular substrates into the 

cytoplasm (substrate uptake), ii) breaking down the substrates into smaller units (catabolism), and 
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iii) constructing macromolecules from the small units (anabolism). By visualizing 

accumulation/depletion of fluorescently-labeled substrates and production of fluorescent proteins 

in individual cells, we characterized these three metabolic processes at single-cell resolution. The 

results revealed that there exists significant cell-to-cell heterogeneity in these processes, and that 

this heterogeneity leads to diverse growth phenotypes, including dormancy. Also, we found that 

oxidative stress can induce metabolic heterogeneity and diverse growth phenotypes.  

 

2.3. Results.  

 

2.3.1. Cell-to-cell heterogeneity in metabolic activities and growth phenotypes. 

 
In nature, microorganisms are often starved of carbon [2]. Numerous studies have reported that 

when environmental microbial samples were plated on agar plates containing rich nutrients (e.g., 

LB), many cells did not form colonies [120, 121]. Known as ‘the great plate count anomaly’, this 

observation is a long-standing enigma in microbial ecology, largely because cellular states (e.g., 

metabolic states) of those cells that failed to form colonies are unclear and under intense debate 

[122-124]. When we performed a similar plating assay using carbon-starved cultures under well-

controlled laboratory conditions, we made the same observation. We grew E. coli cells in minimal 

medium with glucose and ammonium as the sole carbon and nitrogen sources and suspended them 

in medium without glucose (starvation medium) at the OD600 of ~0.4; upon suspension, cell growth 

stopped immediately (Fig. 2. 1).  
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Figure 2. 1. Growth curve before and after the onset of starvation. 

 

E. coli cells were grown to mid-exponential phase in N-C- minimal medium [125] supplemented with 20 

mM of glucose (the sole carbon source) and 20 mM of ammonium chloride (the sole nitrogen source). At 

time zero, cells were spun down and re-suspended in the same minimal medium without glucose, i.e., the 

onset of starvation. Cell growth stopped immediately (orange region). Here, we showed an exemplary 

growth curve from one experiment. We observed such abrupt cessation of growth in all our experiments.   

 

At different times during carbon starvation, we took a 100 l aliquot of the culture, diluted it (by 

103 - 106-fold) and plated it on LB agar plates; this exposure to LB represents nutrient upshift. 

Please see Methods for details and Fig. 2. 2 for a graphic illustration of our experimental procedure. 

 

As quantified in Fig. 2. 3A, the number of colony-forming units decreased over time. This decrease 

indicates that with longer starvation, fewer cells resumed growth upon nutrient upshift.  
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Figure 2. 2. A graphic representation of our experimental procedure. 

This illustration shows the procedure of our experiment. For biological repeats, this procedure was repeated 

independently (using independent cultures). E. coli cells were starved of glucose. A fixed volume of the 

starved culture was taken at various time during starvation. (A) For a conventional plate assay, the sample 

was spread on LB agar plates; see Methods for details. We had two or three technical replicates, which 

always gave very similar results. We also performed biological repeats at least twice for all experiments. 

(B) For a single-cell-level observation, cells were spread under a LB agarose pad, and observed using a 

microscope. See Methods for details. We performed initial tests to estimate technical variations by 

measuring the number of metabolically-active cells and 2NBDG signals in them. We found technical 

variations to be small. For example, the variations in the number of metabolically-active cells from four or 

five technical replicates were within 2%. Variations in 2NBDG signals from four or five technical replicates 

were within 5%. Thus, we no longer performed technical repeats. We did perform at least two biological 

repeats for all our experiments. Please note that single-cell-level measurements are low-throughput and 

labor-intensive. Our “one” experiment includes multiple measurements for different durations of starvation. 

Therefore, performing technical repeats in addition to biological repeats is prohibitively time-consuming. 

Also, see a quote from a recent article regarding replicate measurements, “Typically, biological variability 

is substantially greater than technical variability, so it is to our advantage to commit resources to sampling 

biologically relevant variables unless measures of technical variability are themselves of interest” [126]. 
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Figure 2. 3. Metabolic activities and growth of cells upon nutrient upshift.  

(A) We performed a conventional plate assay. E. coli cells were deprived of carbon (glucose) at time zero. 

At various time points during starvation, a fixed volume of the starved culture was taken, diluted 

appropriately, and spread on LB agar plates; see Methods for details. The number of colonies was counted 

after 24 hours of incubation, and colony forming unit (CFU) per ml was then determined. CFU/ml decreased 

over time (red circles, left axis). We also plotted the percentage of metabolically-active cells in a population 

(blue squares, right axis); a detailed description of the metabolically-active cells is provided below, in the 

caption to (C, D). Note that the scales of the left and right axes have the same fold change. CFU/ml and the 

percentage of metabolically-active cells decreased similarly over time. The error bars indicate one standard 
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deviation, which was obtained from at least two biological replicates. (B) We determined 1) the substrate 

uptake activity by intracellular accumulation of fluorescently-labeled substrates, 2NBDG, 2) the catabolic 

activity by intracellular depletion of 2NBDG upon inhibition of its transport, and 3) the anabolic activity 

by de novo synthesis of green fluorescent proteins (GFP) or red fluorescent proteins (mCherry). When 

2NBDG is available externally, metabolically-active cells would transport them, exhibiting strong 

intracellular 2NBDG signals (solid green curve in the white region). Active catabolism rapidly decomposes 

2NBDG molecules into non-fluorescent metabolites [127, 128]. Therefore, intracellular 2NBDG 

concentration is determined by both transport and catabolic activities, as described by Eq. 1-3. When 

2NBDG is removed from a culture, because 2NBDG uptake into cells would stop, intracellular 2NBDG 

signals are expected to decrease in metabolically-active cells (solid green curve in the shaded region); see 

Eq. 4. Also, these metabolically-active cells are expected to express fluorescent proteins, GFP or mCherry, 

when the expression is induced (solid red line). Conversely, metabolically-inactive cells are expected to 

exhibit neither 2NBDG uptake (dashed green line) nor production of fluorescent proteins (dashed red line). 

(C, D) We experimentally tested these expected patterns. We starved E. coli cells of carbon (glucose) for 

2.3 hours and subjected them to nutrient upshift; see text or Methods for details. We then monitored ~2500 

cells in four biological repeats. We observed subpopulations with different metabolic activities. 91.7 % ( 

5.9 %, one standard deviation from four biological replicates) of cells exhibited the pattern of active 

metabolism. These cells exhibited strong 2NBDG signals before nutrient upshift, but the signals decreased 

rapidly upon the shift (Movie). Typical changes in 2NBDG signals were plotted in Fig. 2. 3C (open 

symbols). In all of these cells, GFP intensity increased, indicating de novo protein synthesis; see Fig. 2. 3D 

(open symbols) for typical changes in GFP intensity. GFP intensity typically reached its saturation levels 

3-4 hours after nutrient upshift. We repeated this analysis by starving a culture for different periods of time 

and monitoring ~1500 cells in two independent experiments (i.e., biological repeats). We counted 

metabolically-active cells and plotted their percentage in panel A (blue squares). We also observed cells 

that exhibited the patterns of inactive metabolism: neither 2NBDG uptake (crosses in Fig. 2. 3C) nor 

production of fluorescent proteins (solid symbols in Fig. 2. 3D). The details of these metabolically-inactive 

cells were described in Fig. 2. 8. See Table 2.1 for the number of cells with different metabolic activities. 

 

 
Time 

(h) 

Metabolically 

active 

Metabolically 

partially 

active 

PI+ Lysed Moribunda Unidentifiedb Total  

2.3 1423 3 33 88 18 3 1568c 

20.3 988 9 83 143 45 5 1273 

47 713 53 184 413 48 10 1421 

91.6 305 38 185 860 28 18 1483 

140 103 13 118 959 17 6 1216 

 

Table 2. 1. The number of cells in each subpopulation. 

a Initially, these cells were metabolically active and exhibited clear boundaries. But soon after nutrient 

upshift, their boundaries became diffuse, meaning that they were lysed. We put such cells in the “Moribund” 

category.  
b These were a very low number of cells (or objects) with odd morphologies, and we were not sure if they 

were E. coli cells or debris. We put such cells in the “Unidentified” category.   
c For 2.3 hours starvation, we conducted two different sets of experiments. In one set, we tested our approach 

to measure metabolic activities (discussed in the early part of the Results section). In the other set, we 

utilized this approach to characterize population composition. 
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We sought to examine how metabolic activities of cells that grew were different from those that 

failed to grow. To measure metabolic activities of individual cells, we adopted the following 

approach, which was based on recent developments in single-cell-level fluorescence imaging [79, 

80]. First, we determined which cells have positive substrate uptake activity by monitoring the 

accumulation of fluorescently-labeled substrates in the cytoplasm. Glucose is the preferred carbon 

source for many microbes, including E. coli. When glucose molecules become available 

extracellularly, starved cells with positive substrate uptake activity will transport and accumulate 

them in the cytoplasm. This accumulation can be visualized using the fluorescently-labeled 

glucose molecules, 2-N-7-nitrobenz-2-oxa-1,3-diazol-4-yl amino-2-deoxyglucose (2NBDG), 

which would result in strong fluorescence signals inside cells [91, 127-130]; see the solid green 

curve in the white region in Fig. 2. 3B. Below, we discuss the expected functional form of this 

accumulation. 

 

Previous studies indicated that glucose analog 2NBDG is transported and degraded by glucose 

transporters and glycolytic enzymes, respectively [91, 127-130]. We denote the transport and 

intracellular degradation rates by  and β, respectively, and the intracellular 2NBDG concentration 

by N. Then, a change in N is given by   

 
dN

N
dt

 = −  .  (Eq.  1) 

The solution is  

  1 exp( )N t





=  − −  .  (Eq.  2) 

At the steady state ( / 0dN dt = ), N is determined by the dynamic balance between transport and 

degradation,  
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      sN



= ,                   (Eq.  3) 

where Ns is the steady state intracellular 2NBDG concentration.  

 

When we incubated starved cells with 10 µM of 2NBDG for various durations, we were able to 

detect intracellular 2NBDG signals already with ~5 min incubation (Fig. 2. 4A); therefore, in our 

experiments below, to ensure the reliable detection of signals, we pre-incubated cells with 2NBDG 

for ~25 min (see Fig. 2. 4 caption for details). Conversely, cells with no transport activity are 

expected to exhibit no 2NBDG signals (Fig. 2. 3B, dashed green line in the white region). 

 

 

 

 

Figure 2. 4. 2NBDG transport and degradation.  

(A) Previous studies indicated that the glucose analog 2NBDG is transported and degraded by glucose 

transporters and glycolytic enzymes, respectively [91, 127-130]. To experimentally demonstrate 2NBDG 

transport by starved cells, we suspended cells in starvation medium (minimal medium containing no 

glucose; see Methods) for ~2.3 hours and added 2NBDG to the medium at a final concentration of 10 µM. 

We then collected samples at various times and imaged them using a fluorescence microscope. For each 

time point, we analyzed and averaged intracellular 2NBDG signals of ~250 cells (we excluded cells with 

diffuse boundaries and cells stained by PI in the analysis; see the text and Fig. 2. 8 for the details of these 

cells). The temporal dynamics of intracellular 2NBDG signals are plotted in panel A (the addition of 

2NBDG defined the time zero). The signals increase immediately after 2NBDG addition, indicating 

2NBDG transport. The signals remain nearly constant after 15 min. (In the main text, to identify cells with 

active 2NBDG uptake, we pre-incubated cells with 2NBDG for 25 min. 25 min were chosen as the 

incubation time based on our data that the signals remain nearly constant after 15 min).  
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This immediate increase in the intracellular 2NBDG signal suggests the prior induction of glucose 

transporters. In our experiments, we initially cultured cells with glucose as the sole carbon source and 

abruptly starved cells of glucose. Growth on glucose leads to induction of glucose transporters [131], and 

glucose starvation results in further up-regulation of glucose transporters [132]. For example, Mlc (DgsA), 

a global regulator repressing the expression of glucose transporters is down-regulated during starvation, 

leading to up-regulation of transporters (e.g., see an increase in the amounts of Crr, glucose-specific 

phosphotransferase enzyme IIA component). Therefore, the production of glucose transporters during the 

prior growth on glucose and further upregulation of the production during glucose starvation can account 

for the immediate uptake of 2NBDG by starved cells.  

 

On a related note, we determined intracellular 2NBDG accumulation after induction of transporters because 

we wanted to measure the metabolic ability of glucose transport. If cells have low expression of glucose 

transporters, even if they are metabolically capable of transport, 2NBDG may not accumulate in cells to 

detectable levels. We did not want our measurement of the metabolic ability to be limited by low expression 

of transporters, which was why we adopted the experimental procedure that leads to full induction of 

glucose transporters (as described in the paragraph above).  

 

Whether intracellular 2NBDG represents carbohydrate storage is an interesting point. However, glycogen 

is the storage form of glucose (and carbohydrate in general) and is shown to accumulate only when growth 

is limited in the presence of an excess carbon source [133]. In our experimental condition, cells were starved 

of carbon. We added 2NBDG to the carbon-starved culture, but the concentration used (10 µM) was too 

low to support growth (Fig. 2. 5), meaning that cells still experienced severe carbon limitation. Therefore, 

it is unlikely that intracellular 2NBDG molecules get converted to glycogen as carbohydrate storage.  

 

(B) Previous studies have observed the steady maintenance of 2NBDG signals at a constant level in cells 

and attributed it to the dynamic equilibrium between transport and degradation [127, 128]. In the text, we 

mathematically described how the dynamic equilibrium leads to the steady maintenance of 2NBDG signals. 

The panel A showed that the intracellular 2NBDG signal reached its steady state after 15 min, being 

maintained at a constant level afterwards. This steady maintenance suggests active 2NBDG degradation in 

glucose-starved cells. Note that starved cells do not grow (Fig. 2. 1): hence, no dilution of 2NBDG by cell 

growth. To experimentally demonstrate 2NBDG degradation in starved cells, we spun these cells down and 

re-suspended them in starvation medium containing no 2NBDG. We then collected samples at various times 

and imaged them using a fluorescence microscope. For each time point, we analyzed and averaged 

intracellular 2NBDG signals of ~300 cells (we again excluded cells with diffuse boundaries and cells 

stained by PI in the analysis). The signals decreased over time, supporting 2NBDG degradation; see panel 

B (the re-suspension defines time zero). The data points and error bars in these plots (panels A and B) 

represent the mean and one standard deviation from two biological replicates. 
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Figure 2. 5. 2NBDG does not support growth. 

We suspended cells in glucose-free minimal medium (starvation medium), as described in the Methods. 

We added 10 M of 2NBDG to the culture (10 M is the concentration used in our experiments). As a 

positive control, we added 10 M of glucose. As a negative control, we added neither 2NBDG nor glucose. 

We then measured cell growth by measuring after one hour; refers to OD600 measured using a sample holder 

with an optical path length four times longer than that of a typical holder (18B-SOG-40, Starna Cells Inc). 

We observed no increase in the negative control and also with 2NBDG, but a significant increase with 

glucose. Thus, 2NBDG does not support cell growth. We performed two biological repeats and the error 

bar represents one standard deviation from the biological repeats.  

 

 

Active catabolism leads to the intracellular break-down of transported substrates into smaller units. 

Hence, we determined which cells are catabolically active by monitoring decomposition of 

2NBDG molecules. Previous molecular-level studies have shown that after 2NBDG molecules are 

transported into bacterial cells, active catabolism rapidly decomposes these 2NBDG molecules 

into non-fluorescent metabolites [129], while inactivation of catabolism abolishes decomposition 

[130]. When 2NBDG molecules are present in the environment, the intracellular 2NBDG 
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concentration will depend on both transport and catabolic activities; this dependence is described 

by Eq. (1-3) in and further discussed in Fig. 2. 4.  

 

Consider that after the steady state of intracellular 2NBDG concentration was established, 2NBDG 

molecules were abruptly removed from the environment. Then, 2NBDG transport would stop;  

= 0. With active degradation, the intracellular 2NBDG concentration would decrease. Eq. 1, 

together with  = 0, predicts an exponential decrease in 2NBDG concentration,    

exp( )sN N t=  −  .                                                             (Eq.  4) 

 
Here, we are particularly interested in knowing whether starved cells could readily catabolize 

nutrients when these nutrients became available. Thus, if we incubate starved cells with 2NBDG 

for 25 min (which would result in strong intracellular 2NBDG signals as observed in Fig. 2. 4) and 

suspend them in 2NBDG-free nutrient-rich medium, active catabolism would lead to a rapid 

decrease in intracellular 2NBDG signals (Fig. 2. 3B, solid green curve in the shaded region).   

 

Next, we determined protein anabolism by characterizing de novo synthesis of fluorescent 

proteins. We employed a strain in which the expression of green fluorescent protein (GFP) or red 

fluorescent proteins (mCherry) was driven by a synthetic promoter Ptet (the repressor of Ptet, TetR, 

is constitutively expressed in this strain) [96]. An inducer of the Ptet promoter, aTc, diffuses into 

cells rapidly [134], activating protein expression. Cells with active anabolism would synthesize 

fluorescent proteins, leading to an increase in fluorescence intensity (Fig. 2. 3B, solid red line in 

the shaded region). With inactive anabolism, fluorescence intensity would not increase (Fig. 2. 3B, 

dashed red line). We note that there exists a study that characterized protein anabolism during 

starvation using a similar approach [135]. Conversely, we are interested in anabolism in cells after 
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nutrients become available. Thus, our study focuses on protein anabolism after nutrient upshift 

(post-starvation).  

 

Next, we show experimental data confirming these predicted patterns for metabolically active or 

inactive cells. Following the procedure described above, we starved cells of glucose for 2.3 hours 

(at OD600 of 0.4), spread ~5 µl aliquot on LB agarose plates (i.e., nutrient upshift), and monitored 

~2500 cells using time-lapse microscopy in four independent experiments. 91.7 ( 5.9) % of cells 

showed the predicted pattern of active metabolism. First, when 2NBDG molecules became 

available extracellularly during starvation, these cells accumulated them intracellularly, exhibiting 

strong 2NBDG signals; compare the solid green curve in Fig. 2. 3B and Fig. 2. 4A. When we 

subjected the starved cells to nutrient upshift (i.e., LB medium containing no 2NBDG), their 

2NBDG signals decreased rapidly and became undetectable within 20 min (Supplementary 

Movie). In Fig. 2. 3C, we quantified 2NBDG signals for a few cells (open symbols), which again 

showed strong signals before and an immediate decrease after nutrient upshift: ~100-fold decrease 

in 30 min. This rapid decrease cannot be accounted for by dilution due to cell growth; even for 

cells that are actively growing in LB medium (whose doubling time is ~20 min), the dilution would 

lead to a nearly three-fold decrease over 30 min. Rather, the rapid decrease in 2NBDG signals 

indicates active 2NBDG degradation. This decrease in 2NBDG signals upon nutrient upshift 

agreed with the predicted pattern; compare Fig. 2. 3C (open symbols) and Fig. 2. 3B (solid green 

curve in the shaded region), indicating active substrate uptake and catabolism. The re-plot of 

2NBDG signals in a semi-log scale indicates that this decrease is exponential (Fig. 2. 6), as 

predicted by Eq. 4.  
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Figure 2. 6. Upon nutrient upshift, 2NBDG signals decay exponentially. 

Eq. 4 predicts that after nutrient upshift, 2NBDG levels decrease exponentially. To test this prediction, we 

re-plotted data from Fig. 2. 3C (panel A) and Fig. 2. 10A (panel B) in a semi-log graph. A linear decrease 

in 2NBDG signals after nutrient upshift (shaded region) in these semi-log plots indicates an exponential 

decay. 

 

Furthermore, the activation of protein production (using aTc as described above) led to an increase 

in fluorescence intensity (open symbols in Fig. 2. 3D), agreeing with the predicted pattern from 

active anabolism (solid red line in the shaded region in Fig. 2. 3B). All of these metabolically-

active cells recovered their growth within 100 min after nutrient upshift (see Fig. 2. 3 for the 

distribution of growth recovery time), indicating that active metabolism is associated with active 

cell growth.  
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Figure 2. 7. Lag time distribution of metabolically-active cells. 

In the main text, we described our experiments for cells starved for 2.3 hours; briefly, we subjected them 

to nutrient upshift, characterized their metabolic activities, and observed cells with active metabolism.  We 

determined the time points at which these metabolically-active cells resumed growth (~1000 cells were 

analyzed) and plotted the lag time distribution here. They all initiated their growth within 40 min after 

nutrient upshift. Their growth was slow initially but accelerated over time, growing at fast rates after 100 

min. We made a similar observation in two biological replicates. 

 

We also observed cells showing the predicted patterns of metabolic inactivity. These cells 

exhibited neither 2NBDG uptake (compare dashed green line in Fig. 2. 3B and crosses in Fig. 2. 

3C) nor production of fluorescent proteins (compare dashed red line in Fig. 2. 3B and solid symbols 

in Fig. 2. 3D). None of these cells resumed growth after nutrient upshift. These cells either had 

diffuse cell boundaries (i.e., loss of refractivity) or were stained by propidium iodide (PI), which 

are signs of the loss of viability. These cells were described in greater details in Fig. 2. 8. 
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Figure 2. 8. Detailed description of metabolically-inactive cells. 

In the main text, we described metabolically-active cells in a 2.3-hour-starved culture. Here, we focused 

our description on metabolically-inactive cells. For E. coli, propidium iodide (PI) was shown to be an 

excellent indicator of viability [136-139]; PI stains nucleic acids in non-viable cells [140-142]. We found 

that 2.6% of cells was stained by PI (PI+) (middle row in panel A). They showed neither 2NBDG uptake 

nor production of fluorescent proteins (thus, metabolically inactive). A long-term observation (~ three days) 

of these cells after nutrient upshift using a microscope revealed that none of these cells resumed growth. 

The percentage of these cells increased with longer starvation, peaking at ~13 % in the culture starved for 

47 hours and then remaining nearly constant afterwards (see red circles in panel B); the error bars indicate 

one standard deviation from at least two biological replicates. Normally, when observed with phase-contrast 

microscopy, an E. coli cell is refractile (i.e., it exhibits a dark area with a sharp boundary); e.g., see 

metabolically-active cells in the upper row in panel A. Lysis results in the loss of refractivity; lysed cells 
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exhibit poor phase-contrast with a diffuse boundary (see the bottom row in panel A). The loss of refractivity 

indicates the loss of cytoplasmic contents. These cells were not stained by PI; given that PI stains DNA and 

RNA [140-142], the lack of staining indicates the loss of DNA and RNA. Also, they exhibited neither 

2NBDG uptake nor production of fluorescent proteins (thus, metabolically-inactive). A long-term 

observation (~ three days) of these lysed cells after nutrient upshift confirmed that none of them resumed 

growth. We found 6.0% of cells in a population were lysed cells in a 2.3-hour-starved culture. Their 

percentage increased with longer starvation periods (panel B, green triangles); the error bars indicate one 

standard deviation from at least two biological replicates.  

 

In some experiments, by accident, we observed the lysis of PI+ cells that resulted in the loss of PI signals. 

For example, in one experiment with a three-day-starved culture, we observed 48 cells exhibiting strong PI 

signals at the beginning. During an eight-hour-long observation, 22 of them lost refractivity and 

subsequently lost intracellular PI signals (please note that this observation is not related to major findings 

of this work, and therefore we believe that obtaining exact statistics is not necessary). The image sequence 

in panel C visualizes this process for a representative cell; for further clarification, we included a temporal 

plot of PI signals. Considering that PI stains nucleic acids [140-142], this observation indicates that DNA 

and RNA get lost during cell lysis. Our observation above was made using cells starved for 2.3 h. 

When we starved cells for different durations and counted the number of metabolically-active 

cells, we found that their percentage decreased monotonically (blue squares in Fig. 2. 3A). 

Interestingly, this decrease was very similar to the decrease in the number of colony-forming units 

obtained from conventional plate assays above (compare red circles and blue squares in Fig. 2. 

3A), further supporting that active metabolism is a good indicator for a growth phenotype. The 

percentage of metabolically-inactive non-viable cells was plotted in Fig. 2. 8B, which showed a 

monotonic increase with longer starvation periods.   

 

2.3.2. Emergence of dormant cells with partial metabolic activities.  

 
In cultures starved longer, we observed the emergence of a subpopulation with a unique metabolic 

state. Cells in this subpopulation showed high 2NBDG intensity before nutrient upshift and a rapid 
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decrease in intensity after upshift (open triangles in Fig. 2. 10A), exhibiting the predicted pattern 

of active substrate uptake and catabolism. However, they did not produce fluorescent proteins. 

Thus, metabolically, they were partially active. Above, we described that metabolically-active 

cells resumed growth within 100 min after nutrient upshift. In contrast, these partially active cells 

did not resume growth in this time window; see Fig. 2. 9 for an exemplary image sequence. They 

exhibited clear cell boundaries and were not stained by PI, suggesting that they were viable. Their 

percentage was initially very low and peaked after nearly two days of starvation (Fig. 2. 10B).  

 

 

 

 

Figure 2. 9. An exemplary image sequence of a dormant cell. 

In the main text, we described our observation of metabolically-partially-active, dormant cells. Here, we 

showed an exemplary image sequence of such a cell from a two-day-starved culture. As a comparison, we 

also showed a metabolically-active cell that resumed growth immediately after nutrient upshift. The image 

color code is the same as in Fig. 2. 8. 
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Figure 2. 10. Characterization of metabolically-partially-active, dormant cells 

(A, B) We starved cells of glucose for different periods of time and monitored ~1500 cells in two biological 

replicates. We observed dormant cells exhibiting partial metabolic activities; see text for detail. The number 

of these cells varied depending on the duration of starvation and was always lower than 5% of a population 

(Fig. 2. 10B; the error bars indicate one standard deviation from two biological replicates). In all of these 

cells, 2NBDG signals decreased immediately upon nutrient upshift. In Fig. 2. 10A, we plotted exemplary 

changes in 2NBDG signals for WT cells starved for three days (triangles) and sodAsodB cells starved 

for eight hours (other symbols); the data showed a typical, rapid decrease in 2NBDG signals upon nutrient 

upshift. (C, D) We subjected a three-day-starved culture to nutrient upshift. Dormant cells did not produce 

fluorescent proteins for several hours or a day; see the initial plateau in the fluorescence intensity (Fig. 2. 

10C). Fluorescence intensity increased suddenly at later times (Fig. 2. 10C), indicating the spontaneous 

recovery of protein anabolism. This recovery was associated with growth resumption (Fig. 2. 10D). Note 

that we used ampicillin to avoid unrestricted growth of metabolically-active cells (see text). With 

ampicillin, cells elongate without division until they eventually lyse [143], which is why cells appear 

unusually long in the plot. Out of ~4500 cells monitored, we observed 24 cells exhibiting such late 

recoveries. We observed similar fractions in two biological repeats. 
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We wondered whether these cells were dormant. Dormancy refers to a reversible non-growth state 

[86], meaning that dormant cells can later revert back to a growth state. Thus, we wished to monitor 

these cells for longer periods of time. However, the metabolically-active cells that initiated growth 

early multiplied exponentially and overwhelmed the microscope field of view within a few hours 

(Fig. 2. 11).  

 

 

 

Figure 2. 11. Microscope field of view being overwhelmed by growing cells. 

In the main text, we stated that the microscope field of view was overwhelmed by exponentially growing 

cells within a few hours of plating. Here, we show an example. We plated 47 hour-starved cells on a LB 

agarose plate. After three to four hours, it was already difficult to track individual cells. Within five hours, 

the field of view was completely overwhelmed by cells.  

 

 

Thus, a long-term observation of non-growing cells with partial metabolic activities was 

challenging. To overcome this issue, we used an antibiotic, ampicillin, which selectively kills 

growing cells [144]. With ampicillin, growing cells elongate without dividing and eventually lyse 

[143]. Hence, the unrestricted exponential growth described above can be avoided. Our control 

experiments with and without ampicillin indicated no significant effects of ampicillin on our 

findings of metabolic activities (See Methods for detail). A long-term observation of the non-

growing cells with partial metabolic activities showed no production of fluorescent proteins in 
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them for several hours or a day after nutrient upshift; see the initial plateau in Fig. 2. 10C. However, 

at later times, protein productions suddenly began (Fig. 2. 10C), indicating spontaneous recovery 

of anabolic activities. This recovery was accompanied by growth resumption (Fig. 2. 10D). 

Therefore, these metabolically-partially-active cells were dormant cells, and they were capable of 

reverting to a growth state through metabolic recovery. These data show a unique metabolic state 

associated with dormancy. Also, they reveal metabolic heterogeneity underlying heterogeneous 

growth phenotypes.  

 

Taken together, our observations above indicate that a viable population can be divided into a 

metabolically-active subpopulation and a partially-active subpopulation. We determined the 

relative size of the latter subpopulation using the percentage of each subpopulation reported in Fig. 

2. 3A and Fig. 2. 10B. The fraction of cells with partial metabolic activities was initially negligible 

but increased with longer periods of starvation (Fig. 2. 13A), revealing a dynamic change in 

phenotypic composition with starvation.   

 

2.3.3. Oxidative stress induces the emergence of dormant cells with partial metabolic 

activities.  

 
Starvation induces complex physiological responses in cells [2], and thus, the mechanistic 

determination of how starvation results in the emergence of a subpopulation with partial metabolic 

activities is a challenging task. However, the observation that the duration of starvation has 

significant effects on the size of this subpopulation may guide us to identify innate factors involved 

in the emergence of this subpopulation. Importantly, the results described above showed that these 

factors must lead to the loss of anabolic activity, but not substrate uptake and catabolic activities. 
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Furthermore, this loss must be transient and its recovery lead to growth resumption. We next 

sought to find a potential factor that satisfies these specific requirements.  

 

Oxidative stress is a universal stress that most aerobic organisms experience to varying degrees. 

Previous studies have shown that prolonged starvation inflicts oxidative stress to bacterial cells, 

and the stress leads to failure of cells to form visible colonies on nutrient-rich agar plates after 

overnight incubation [145-148]. These studies assumed that the failure to form visible colonies is 

due to viability loss. However, our observation above showed that prolonged starvation leads to 

the emergence of dormant cells, which can spontaneously resume growth at later times; thus, they 

are unlikely to form visible colonies after overnight incubation. Based on these results, we 

wondered whether oxidative stress could cause the emergence of dormant cells through transient 

inactivation of anabolism, meaning it could be a potential factor that satisfies the specific 

requirements put forth above. Below, we present the data supporting this argument.   

 

To test the effect of oxidative stress, we generated a strain prone to oxidative stress, and 

characterized its metabolic activities and growth resumption kinetics. The sodA and sodB genes in 

E. coli encode superoxide dismutases, enzymes that detoxify superoxide [149-152]. Deletion of 

these genes disables key defense mechanisms, and renders cells prone to oxidative stress, thereby 

amplifying the effect of oxidative stress; we refer to this double deletion mutant as the oxidative-

stress-prone strain. As discussed above, starvation inflicts oxidative stress to cells [145-148]. In 

the case of wild-type (WT) cells, as previously described, we had to starve cells for nearly two 

days to see a noticeable increase in the number of cells with partial metabolic activities (Fig. 2. 

10B and Fig. 2. 13A). However, in the oxidative-stress-prone strain, a shorter period of starvation 
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was expected to be sufficient. Thus, we starved a stress-prone population of carbon for eight hours 

and then spread them on LB agarose plates. We indeed observed many dormant cells with partial 

metabolic activities. These cells exhibited strong 2NBDG signals and a rapid decrease in signals 

upon nutrient upshift (Fig. 2. 10A) but did not produce fluorescent proteins (Fig. 2. 12). Thus, 

these cells are metabolically partially active. Importantly, these cells began protein production 

spontaneously at later times (several hours or a day after nutrient upshift), and this production was 

accompanied by growth recovery (Fig. 2. 12). Therefore, these cells with partial metabolic 

activities were dormant cells and could revert to a growth state.  

 

 

 

 

Figure 2. 12. Synthesis of green fluorescent proteins (GFP) in the oxidative-stress-prone cells. 

In the main text, we described dormant cells in a WT culture that was starved and subjected to nutrient 

upshift. They did not grow due to inactive anabolism for an extended period of time. Later, their anabolism 

was restored (judged from an increase in GFP intensity) and their growth was recovered. See Fig. 2. 10C 

and Fig. 2. 10D. When we used the oxidative-stress-prone strain (ΔsodAΔsodB mutant), we observed a 

much higher fraction of such cells. See the main text and Fig. 2. 13B for details. The figure here shows four 

representative cells. They did not produce fluorescent proteins for several hours or a day after nutrient 

upshift; see the initial plateau in GFP intensity (panel A). At later times, GFP intensity began to increase, 

i.e., the recovery of anabolism. This recovery was accompanied by growth resumption; see panel B.To 

demonstrate the abundance of such dormant cells in the stress-prone population, we plotted the distribution 

of time points at which cells resumed growth, i.e., lag time distribution (blue in Fig. 2. 13B); as a control, 

we plotted the lag time distribution for the WT population subjected to the same condition (red in Fig. 2. 

13B).  



 41 

  

 

Figure 2. 13. Effects of oxidative stress on the emergence of metabolically-partially-active, dormant 

cells. 

(A) Our observations indicated that a viable population could be divided into a metabolically-active 

subpopulation and a partially-active subpopulation. When we calculated the relative size of the partially-

active subpopulation using the percentage of each subpopulation reported in Fig. 2. 3A and Fig. 2. 10B, we 

observed that its size was initially negligible, but increased with longer periods of starvation. (B) We 

examined the metabolic activities and growth of oxidative-stress-prone cells (sodAsodB); see text. We 

starved these cells and WT cells (as a control) for eight hours, subjected them to nutrient upshift, determined 

the time points at which cells resumed growth (lag time), and plotted the lag time distribution. ~350 WT 

cells and ~250 stress-prone cells were analyzed. We performed two biological repeats and these 

distributions were reproducible. We re-plotted these distributions as scatter plots in a semi-log scale in Fig. 

2. 14. 
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The stress-prone cells exhibited a much wider distribution than WT cells; its tail stretched 

significantly farther, showing an increase in the fraction of dormant cells (see Fig. 2. 14 for further 

discussion).  

 

 

 

Figure 2. 14. Re-plot of lag time distribution from Fig. 2. 13B. 

We re-plotted the lag time distribution of the WT strain and oxidative-stress-prone strain (Fig. 2. 13B) as a 

scatter plot in a semi-log scale. For the WT strain (upper panel), the distribution exhibits a linear decrease 

in a semi-log plot (red dashed line), indicating an exponential decay. Below, we briefly demonstrate the 

meaning of an exponential decay. We consider a system with N0 constituents which decay with a single 

kinetic constant, β. Then, the number of constituents in the system, N, decreases in the following manner, . 

The solution is , meaning that N decays with single exponential kinetics. Thus, a single decay process can 

account for the exponential decay in the WT distribution. For the stress-prone strain (lower panel), the 

distribution initially followed a linear line (blue dashed line), but deviated from it after ~500 min, suggesting 

that its growth resumption is governed by multiple processes.  
 

 

We quantified this tail by determining what fraction of cells in a population have the lag time 

greater than 100 min. The fraction was more than 10-fold higher in the stress-prone population 

(63.6 ±16.2%) compared to the WT population (4.6 ± 4.6 %); the error represents one standard 

deviation from two biological replicates. Next, we performed another experiment in which we 
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exogenously induced oxidative stress in WT cells by using H2O2. As shown in Fig. 2. 15, the 

fraction of cells with the lag time greater than 100 min increased dramatically with H2O2 treatment, 

consistent with our finding above for the oxidative-stress-prone strain.   

 

 

 

 

Figure 2. 15. The emergence of dormant cells by H2O2 treatment. 

In the main text, to show that oxidative stress induced the emergence of dormant cells, we plotted the lag 

time distribution for the sodA sodB double knockout mutant and WT strain (Fig. 2. 13B). We observed a 

long tail in the distribution for the mutant. We then quantified this tail by determining what fraction of cells 

had lag time greater than 100 min. Here, to further show the effect of oxidative stress on the emergence of 

dormant cells, we applied oxidative stress externally using H2O2. We starved WT cells briefly 

(approximately one hour) and added H2O2 to the culture at a final concentration of 0 mM (control) or 2.5 

mM. Then, after one hour of H2O2 treatment, we transferred cells to a LB agarose plate containing no H2O2. 

We monitored the growth of ~500 cells and ~ 200 cells for 0 mM and 2.5 mM H2O2, respectively, using a 

microscope. Then, similarly to what we did above, we determined what fraction of cells had the lag time 

greater than 100 min. The plot shows that the fraction was zero for 0 mM and increased significantly with 

2.5 mM H2O2. The error bar represents one standard deviation from two biological replicates. 

 

We further probed the effects of oxidative stress using a conventional colony formation assay. We 

starved oxidative-stress-prone cells and WT cells for eight hours, plated them, and recorded the 

time at which individual colonies became visible to the naked eye. Then, we compared their time 

distributions of the colony formation. The distribution for the WT cells was narrow (Fig. 2. 16, red 

columns), showing that all WT cells formed visible colonies within ~12 hours after plating. The 

distribution for the oxidative-stress-prone cells were much wider, with its tail stretching to ~50 
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hours (Fig. 2. 16, blue columns); this means that some cells formed visible colonies ~50 hours 

after plating. This long tail in the time distribution agrees with our single-cell-level data above. 

Collectively, these data reveal that oxidative stress leads to the emergence of dormant cells through 

transient inactivation of anabolism.  

 

 

Figure 2. 16. Wide distribution of colony formation time for the oxidative-stress-prone cells. 

The wild-type strain and sodAsodB strain were starved for 8 hours and then plated on LB agar plates. 

Subsequently, we recorded the time at which visible colonies were newly formed (~500 colonies were 

examined for each strain). Compared to the wild-type strain, the sodAsodB strain exhibited a much wider 

distribution, with its tail stretching to ~50 hours. We observed similar distributions in two biological 

replicates. 
 
 

2.4. Discussion. 

 
Population diversification is a critical adaptation mechanism to changing environments [21, 22]. 

Previous studies of genetic diversity extensively characterized how genetic composition in a 
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population changes slowly. In this study, we characterized the metabolic heterogeneity and its 

effect on phenotypic diversity in a clonal population. The results revealed the dynamic changes in 

phenotypic composition in a clonal population, cellular variations driving such changes (metabolic 

heterogeneity), and a factor triggering such cellular variations (oxidative stress).      

 

Importantly, our findings provide a fresh metabolic perspective of dormancy. Dormant bacteria 

are common in nature, having significant ecological consequences [86]. However, our 

understanding of dormancy remains limited. For example, although it has been generally assumed 

that dormant cells are metabolically inactive [153], their metabolism has not been characterized. 

Our study reveals a metabolic state of dormant cells; dormant cells are metabolically partially 

active, exhibiting active substrate uptake and catabolism but inactive anabolism. This 

understanding sheds new light on their maintenance of viability. Dormant cells are ecologically 

important because they can remain viable for long. For example, due to this property, they can 

contribute to recovery of a microbial population after disturbance [52, 55]. However, bacteria, just 

to stay viable, must take up and catabolize nutrients. This “maintenance requirement” arises due 

to the fact that it takes substrates and energy to repair chemical wear and tear of cellular materials, 

maintain the membrane potential, and fulfill other non-growth-related functions [154, 155]. 

Previously, with the assumption of inactive metabolism, it was not clear how dormant cells could 

meet this maintenance requirement. Yet, our findings of active substrate uptake and catabolism in 

dormant cells suggest how this maintenance requirement could be satisfied. Also, our results 

showed that oxidative stress induces dormancy. Oxidative stress is a common stress that most 

aerobic microbes experience in nature, and thus could contribute to the common occurrence of 

dormancy.  



 46 

Oxidative stress induces complex cellular responses in cells, and studies have extensively 

characterized how oxidative stress leads to changes in gene expression [152, 156, 157]. For 

example, one study showed that oxidative stress increases the expression of the efflux pump 

AcrAB, and the increased expression leads to extrusion of toxic compounds, resulting in better 

survival of cells [158]. Another study showed that oxidative stress activates OxyR and phage-

shock responses, enhancing bacterial survival in stress conditions [159]. Our findings reveal that 

oxidative stress also has significant effects on metabolic activities and thereby on phenotypic states 

of cells.  

 

Our findings raise a concern about the colony formation assay, one of the most frequently 

performed techniques in microbial research. In this assay, microbial samples are spread on a 

nutrient-rich agar plate, and then the number of viable colonies formed after overnight incubation 

is counted to determine the number of viable cells in the original samples. This assay is routinely 

used to determine microbial soil contamination or the presence of pathogens in drinking water. 

Studies of microbial dynamics critically rely on this assay as well. Our finding showed how cells 

with partial metabolic activities are viable but fail to grow in nutrient-rich conditions. In fact, when 

environmental microbial samples are plated on agar plates containing rich nutrients (e.g., LB), 

many cells fail to grow to form colonies, a long-standing problem known as “great plate count 

anomaly” [120, 121]. Our findings provide a fresh metabolic perspective on this problem and also 

prompt a cautious interpretation of assay results.  

 

Lastly, we want to emphasize that phenotypic diversity can have significant effects on evolutionary 

dynamics and vice versa. For example, recent studies of experimental evolution showed that 
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phenotypic diversity may evolve under fluctuating selection [160] and further accelerates 

evolutionary adaptation to various other environmental challenges [161, 162]. Therefore, our 

findings would be useful for understanding the evolution of microbes in nutrient-limiting 

conditions, e.g., emergence of mutants expressing the growth advantage in stationary phase 

(GASP) during long-term starvation conditions [30, 32]. 

 

2.5. Methods. 

 
Strain and Culture 

The strains used in this study are derived from E. coli K12 strain NCM3722 [163-165]; see Table 

2.2 for the strains used. We cultured cells in N-C- minimal media [125], supplemented with 20 

mM glucose (the sole carbon source) and 20 mM ammonium chloride (the sole nitrogen source). 

We starved these cells of carbon by suspending them in the same medium but without glucose 

(starvation medium). At the times indicated, starved cells were collected and plated on Luria-

Bertani (LB) solid medium for CFU assays (see Methods) or for microscope experiments (see 

below); this exposure to LB represents nutrient upshift. All cell cultures were performed at 37°C. 

We further described the details of strains and cultures below.  

 

Microscope experiments required immotile strains; thus, NMK52 (NCM3722, motA) or its 

derivatives were used [166]. To make deletion strains, single gene deletion alleles (from the Keio 

deletion collection [167, 168]) were transferred to our NCM3722 strains using P1 transduction 

[169]. The Kmr gene was flipped out by transformation of pCP20 [167, 168]. 
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For batch cultures, cells were cultured at 37°C with shaking at 250 rpm in a water bath (New 

Brunswick Scientific). To monitor their growth, the optical density (OD600) of the culture was 

measured using a Genesys20 spectrophotometer (Thermo-Fisher) with a standard cuvette (16.100-

Q-10/Z8.5, Starna Cells Inc).  

 

Our typical experimental procedure was as follows. Cells were taken from −80°C stocks and first 

cultured in 5 ml LB medium at OD600 of ~0.001 (seed culture). Note that cells enter stationary 

phase at OD600 of 2 or higher. At OD600 of ~0.5 (before cells entered stationary phase), we re-

suspended cells in 5 ml minimal growth medium at very low densities (typically lower than OD600 

of ~0.0001) and cultured them overnight (pre-culture). The inoculation with such low densities  

ensured that cells were growing exponentially the next morning; typically, the OD600 of the pre-

culture the next morning was 0.2 − 0.5. Then, the pre-culture was diluted in pre-warmed, 5 ml 

minimal growth medium (experimental culture) to OD600 of ~0.01 (20 − 50 times dilution) and 

allowed to grow exponentially to OD600 of ~0.6. Then, cells were re-suspended in 5 ml starvation 

medium. We emphasize that cells had been kept in exponential growth phase throughout the 

procedure (for ~25 doublings), until they were suspended in starvation medium. After cells were 

suspended in starvation medium, 100 µl of the starved culture was collected for microscope 

experiments (see below) or for CFU assays (see below).  

 

It is a typical practice in the field to use LB solid medium for CFU assays, even when cells were 

grown and starved in minimal medium. We followed this practice for our CFU assays and also 

microscope experiments. For one condition (two-day starvation), we repeated the microscope 

experiments by replacing the LB solid medium with a minimal solid medium containing glucose 
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(the sole carbon source). Cells elongated slower with the minimal solid medium. When we 

examined their growth resumption and determined the percentages of viable cells that resumed 

growth within 100 minutes after nutrient upshift, the results were similar with LB solid and 

minimal solid media (93.1% with LB medium and 96.0% with minimal medium). 

 

The data in Fig. 2. 13B and Fig. 2. 16 were obtained from experiments that involved the 

comparison of the WT strain (NMK52) and the ∆sodA∆sodB double deletion strain (NMK223 or 

NMK256). However, the latter cells do not grow in minimal medium [170, 171]. Thus, for these 

experiments, both WT and deletion strains were cultured in LB medium. Subsequently, cells were 

washed and re-suspended in the starvation medium. 

 
Table 2. 2. Bacterial strains used in Chapter 2. 

Strain Genotype Derived from Comment Reference 

NCM3722 - - E. coli K-12 wild-type 

strain 

[163, 164]  

NMK52 ∆motA NCM3722 motA deletion [166]  

NMK141 ∆motA, 

pTet-gfp (intC),  

pCon-tetR-lacIq (attB) 

NMK52 pTet driving the 

expression of gfp at the 

intC locus, pCon driving 

the expression of tetR at 

the attB locus 

Stock of 

Laboratory 

of Minsu 

Kim 

NMK145 ∆motA, 

pTet-mCherry (ycaD),  

pCon-tetR-lacIq (attB) 

NMK52 pTet driving the 

expression of mCherry 

at the ycaD locus, pCon 

driving the expression of 

tetR at the attB locus 

Stock of 

Laboratory 

of Minsu 

Kim 

NMK223 ∆motA, ∆sodA, ∆sodB NMK52 motA, sodA, and sodB 

deletion 

This study 

NMK256 ∆motA, ∆sodA, ∆sodB, 

pTet-gfp (intC),  

pCon-tetR-lacIq (attB) 

NMK141  This study 
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Microscope experiments  

Our typical procedure for a microscope experiment is as follows (also see Fig. 2. 2 for the graphic 

illustration of the experimental procedure). At the times indicated, 100 µl of a culture was collected 

and transferred to a 1.5 ml Eppendorf tube. 2NBDG (Thermo-Fisher) was added into this aliquot. 

We prepared a 2NBDG stock solution by dissolving it in N-C- medium (stock concentration: 0.5 

mM) and added it to the aliquot at a final concentration of 10 µM; this concentration of 2NBDG 

does not support cell growth (Fig. 2. 5). In some cases (Fig. 2. 8), to visualize dead cells, PI 

(Thermo-Fisher) was added to the aliquot at a final concentration of 10 µM (its stock solution was 

prepared by dissolving it in N-C- medium at a concentration of 2 mM). After incubation for 25 

min in the dark at 37°C, a 5-8 µl aliquot from this sample was spread onto a pre-warmed 35 mm 

glass-bottom Petri dish (InVitro Scientific). Then, the dish was moved into a pre-warmed (at 37°C) 

inverted microscope (Olympus IX83). A pre-warmed (~1.6 cm2  1 mm) LB agarose pad was 

gently placed on top (i.e., nutrient upshift). The microscope has an automated mechanical XY 

stage and auto-focus and is controlled by MetaMorph software (Molecular Devices). Furthermore, 

it is housed in a microscope incubator (InVivo Scientific) which maintains the temperature of 

samples at 37°C during experiments. An oil immersion 60 objective was used to obtain phase-

contrast and fluorescence images of cells. FITC and TRITC filter sets (Olympus) were used to 

collect fluorescence signals. Images were captured using a Neo 5.5 sCMOS camera (Andor). In 

some experiments, there were minor variations in the procedure. In some experiments, there were 

minor variations in the procedure. We described these variations below.   

 

For experiments requiring long-term observations of cells, to selectively kill growing cells, 

ampicillin (BioBasic) was added to an LB agarose pad at a final concentration of 100 µg/ml. For 
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experiments involving the expression of GFP from the synthetic promoter Ptet, anhydrotetracycline 

hydrochloride (aTc; Sigma-Aldrich) was added to the pad. The final concentration of aTc was 100 

ng/ml; this concentration of aTc had no significant effects on cell growth; see Fig. 2. 17. aTc 

diffuses into cells rapidly within a couple of seconds [134]. 

 

    A 

 

 

 

 

 

 

 

 

B 

 

 

 

 

 

 

 

 

 

Figure 2. 17. No significant effects of aTc on cell growth. 

In our experiments, to induce the expression of fluorescence proteins, we added 100 ng/ml of aTc to growth 

medium. (A) To test the effects of this concentration of aTc on cell growth, we first measured the batch 

culture growth with 100 ng/ml of aTc and without aTc. We cultured E. coli cells in LB medium with aTc 

(black squares) and without aTc (red circles) and measured their OD600 as a function of time. Their growth 

curves were almost identical (panel A). This experiment was repeated independently four times, and such 

identical growth curves were reproducible. (B) Next, we examined how 100 ng/ml of aTc affects the growth 

resumption of starved cells upon nutrient upshift, by comparing the fraction of cells that resumed growth 
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within 100 min. (A different time window may be used for comparison. Our choice of 100 min was 

motivated by our early observation, which was discussed in the main text, that all metabolically-active cells 

resumed growth within 100 min after nutrient upshift.) Following the experimental procedure described in 

the main text, we starved cells of glucose for three days and spread them on LB agarose plates with and 

without 100 ng/ml of aTc. We monitored ~3000 cells (for each experiment) using time-lapse microscopy 

and determined which cells resumed growth within 100 min after nutrient upshift; see the Methods for 

detail. Their percentages were reported in panel B, 34.7 ± 3.7 % without aTc and 29.6 ± 3.8 % with aTc; 

we performed two biological repeats and the error bars reflect one standard deviation from these biological 

replicates. As shown in the figure, the error bars overlap. The t test shows that the two-tailed p value is 

equal to 0.3060, indicating that the difference in the percentage with and without aTc is not statistically 

significant. These results, taken together, show negligible effects of 100 ng/ml aTc on cell growth.  

 

 

To characterize the relative fractions of metabolically active and partially active cells (Fig. 2. 3A 

and Fig. 2. 10B), we delayed nutrient upshift by placing an additional layer of agarose pad under 

an LB agarose pad. This additional pad was made by using starvation medium containing 2NBDG. 

It typically took 10 min for LB to diffuse through the pad and reach cells, which allowed us to 

assess intracellular 2NBDG signals before nutrient upshift.  

 

To characterize the 2NBDG degradation in cells (Fig. 2. 3C and Fig. 2. 10A), 600 µl of a culture 

was mixed with 2NBDG at final concentration of 10 µM and loaded onto a glass bottom 35 mm 

Petri dish (InVitro Scientific). The dish was then put on a microscope stage and incubated for ~45 

minutes at 37°C. Then, 1800 µl of pre-warmed LB broth medium was gently added (which defined 

time zero). During this incubation period and after the addition of LB, intracellular 2NBDG signals 

of individual cells were measured.  

 

We note that the inducer aTc is light-sensitive. Therefore, our samples containing aTc were kept 

in the dark most of the time, except for brief periods of imaging. The samples were imaged three 

times per hour for the first two hours and once per hour later, with an exposure time of 300 ms or 

less. Therefore, we believe that aTc degradation by light was minimal. This is further supported 
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by our data. We added aTc to our sample at time zero. The data presented in Fig. 2. 10C and Fig. 

2. 12A show that de novo synthesis of fluorescent proteins still occurred after ~ 20 hours, meaning 

that aTc was present and activated the Ptet promoter. 

 

Image analysis  

Image analysis was performed using MicrobeJ [172], a freely available plug-in for the ImageJ 

software [98]. This program can automatically segment cell boundaries from phase-contrast 

microscope images (“segmentation”) and measure the cell length (“shape descriptors”). Also, it 

can measure intracellular fluorescence intensities (“intensity”). To obtain a lag-time distribution, 

we ran this program for time-lapse images, obtained cell sizes at different times, and determined 

the time points at which cell sizes changed. We confirmed these time points by re-examining them 

manually. In some cases, we simply had to determine how many cells resumed growth within a 

certain time window (e.g., Fig. 2. 15 and Fig. 2. 17). Then, we placed two images, one at time zero 

(the first image taken after nutrient upshift) and the other at the end of the time window, side by 

side. We visually compared the sizes of cells in these two images and determined which cells 

became larger.   

 

Colony-forming unit (CFU) assay 

 

At the times indicated, we collected 100 µl of starved cultures, diluted it serially (103 ~ 106-fold 

dilution depending on the time of starvation), and spread it on an LB agar plate. The dilution factor 

was determined such that the number of colonies on each plate (100 × 15 mm Petri dish) was 

between 50 and 250. After plating, the plates were incubated at 37°C overnight. From the number 

of visible colonies on the LB agar plates the next day, the number of CFU per milliliters (ml) was 
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determined. To obtain the data presented in Fig. 2. 16, we determined the time points at which 

visible colonies were formed. We were able to detect colonies reliably when colonies grew to be 

of a diameter of at least 0.5 mm. Hence, when colonies grew to become the diameter of ~0.7 mm, 

we marked it as the time of colony formation. 

 

In this study, we characterized the metabolic activities and growth resumption of starved cells 

subjected to nutrient upshift. To monitor cells for long periods of time, we added ampicillin. Here, 

to examine if ampicillin has any significant effects on our findings, we compared the metabolic 

activities and growth resumption of three-day starved cells with and without ampicillin.  

 

In both cases, we observed the same predicted patterns of 2NBDG molecules and fluorescent 

proteins in metabolically-active cells. With and without ampicillin, these cells exhibited a rapid 

decrease in 2NBDG signals, and an increase in fluorescence intensity of fluorescent proteins, soon 

after nutrient upshift. In both cases, these cells resumed growth within 100 min after nutrient 

upshift. Their percentage in the populations were similar as well, 32.2 (±2.5) % without and 28.4 

(±3.8) % with ampicillin. The t test shows that the two-tailed p value is equal to 0.3589, indicating 

that the difference in the percentage with and without ampicillin is not statistically significant. 

Therefore, ampicillin had little effects on metabolic activities of these cells, their growth 

resumption, and their percentages. 

 

Also, the patterns of 2NBDG molecules and fluorescent proteins in metabolically partially active 

cells were the same with and without ampicillin, i.e., a rapid decrease in 2NBDG signals, but no 

increase in fluorescence intensity of fluorescent proteins, after nutrient upshift. None of these cells 
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resumed growth within 100 min after nutrient upshift. Their percentages in the populations were 

similar, ~4 %. However, without ampicillin, we could not quantify their percentage accurately nor 

follow their metabolic activities long enough to make thorough comparisons, because the 

metabolically-active cells that initiated growth early overwhelmed the microscope field of view 

soon (which is why we had to use ampicillin). Yet, within our observation time window (nearly 

three hours), metabolic activities of these cells and their fractions were similar. 

 

Given that ampicillin targets cell wall synthesis and that no significant difference was observed in 

our control experiments with and without ampicillin, we do not believe ampicillin has significant 

effects on our findings of metabolic activities.   

 

2.6. Movie Caption.  

 
The supplementary movie is available at The ISME Journal’s website  

We starved E. coli cells of glucose for 2.3 hours and added 10 M of 2NBDG into the culture (10 

M of PI was also added to stain dead cells). After 15 min, the cells exhibited strong 2NBDG 

signals (Fig. 2. 4). We then spread them on LB agarose plates (nutrient upshift) and monitored 

them using a time-lapse fluorescence microscope. A time-lapse image sequence is shown here. 

2NBDG and PI signals are presented as green and red colors, respectively, using a linear 

adjustment function (meaning that signal intensity and brightness were linearly mapped); the same 

adjustment function was used for the whole image sequence. This image sequence shows a rapid 

change in 2NBDG signals after nutrient upshift. We had to visualize a very large change in 

2NBDG signals (~100-fold, Fig. 2. 3C) using one adjustment function. Consequently, small 

https://static-content.springer.com/esm/art%3A10.1038%2Fs41396-017-0036-2/MediaObjects/41396_2017_36_MOESM2_ESM.mov


 56 

changes in 2NBDG signals at later time points (e.g., after about ten minutes) are not visually 

discernable in this sequence.   
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3.1. Abstract.  

 
Genetically-identical microbial cells respond to stress heterogeneously, and this phenotypic 

heterogeneity contributes to population survival. Quantitative analysis of phenotypic heterogeneity 

can reveal dynamic features of stochastic mechanisms that generate heterogeneity. Additionally, 

it can enable a priori prediction of population dynamics, elucidating microbial survival strategies. 

Here, we quantitatively analyzed the persistence of an Escherichia coli population. When a 

population is confronted with antibiotics, a majority of cells are killed but a subpopulation called 

persisters survives the treatment. Previous studies have found that persisters survive antibiotic 

treatment by maintaining a long period of lag phase. When we quantified the lag time distribution 

of E. coli cells in a large dynamic range, we found that normal cells rejuvenated with a lag time 
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distribution that is well captured by an exponential decay [exp (-kt)], agreeing with previous 

studies. This exponential decay indicates that their rejuvenation is governed by a single rate 

constant kinetics (i.e., k is constant). Interestingly, the lag time distribution of persisters exhibited 

a long tail captured by a power-law decay. Using a simple quantitative argument, we demonstrated 

that this power-law decay can be explained by a wide variation of the rate constant k. Additionally, 

by developing a mathematical model based on this biphasic lag time distribution, we quantitatively 

explained the complex population dynamics of persistence without any ad hoc parameters. The 

quantitative features of persistence demonstrated in our work shed new insights into molecular 

mechanisms of persistence and advance our knowledge of how a microbial population evades 

antibiotic treatment.  

 

3.2. Introduction. 

  

Many stochastic systems, although they may consist of completely different microscopic 

components, can exhibit quantitatively similar fluctuations, which suggests the universality in 

stochastic processes. For example, a wide variety of seemingly unrelated stochastic processes, e.g., 

radioactive decay, the number of car accidents at a given site, etc. can be captured by the Poisson 

dynamics, thus sharing similar features, e.g., exponential time distribution of the events [173, 174]. 

Importantly, demonstrating such quantitative features can provide a new understanding of dynamic 

mechanisms that generate system-level fluctuations, enabling a priori prediction of fluctuations. 

Furthermore, demonstrating such quantitative features can reveal connections between seemingly 

unrelated phenomena that share similar features.  
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A microbial cell is a stochastic system because biochemical reactions inside of it are inherently 

stochastic [65, 114, 175-179]. Due to this inherent stochasticity, genetically-identical cells can 

exhibit a great deal of phenotypic heterogeneity [25, 47-50]. From a clinical perspective, the most 

important example of phenotypic heterogeneity is a phenomenon known as persistence [180-182]. 

As first reported by Joseph Bigger [183], when a clonal bacterial population is exposed to a 

bactericidal drug, a majority of cells die quickly while a minority called persisters survives for 

long periods of time, resulting in complex population survival dynamics.  

 

To better understand these population dynamics, extensive studies have focused on molecular 

mechanisms of persistence. While a large number of genes that can alter the levels of persistence 

have been identified, there is a substantial controversy regarding how these genes are activated 

and how they contribute to persistence [184-189]. As such, with the current knowledge of 

molecular mechanisms alone, we cannot predict the population dynamics of persistence, e.g., what 

percentage of cells in a population is persisters and how their percentage changes over time.  

 

Various theoretical modeling efforts have been made to understand the population dynamics of 

persistence [104, 190-193]. These models typically contain coupled differential equations with 

parameters describing the dynamics of antibiotic killing and switching between normal and 

persister cells. To explain the complexity of population dynamics of persistence, some models 

introduced additional processes, e.g., two different types of persisters or dependence of switching 

on substrate/antibiotic concentrations, etc. The parameter values associated with these processes 

were often determined by fitting the models to population dynamics data. But, the number of free 
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parameters in some of these models raises concerns about overfitting. More importantly, the 

quantitative signature governing persistence has rarely been discussed in these studies.  

 

Single-cell-resolution imaging was proven to be a valuable tool for studying persistence. It was 

shown that when cells in stationary-phase (hence non-dividing) were suspended in a fresh growth-

permissive medium, a majority of cells rejuvenate and resume growth immediately, but a small 

subpopulation maintains the non-dividing state (i.e., lag phase) for an extended period of time 

[101, 103, 104, 106, 194]. Because a non-dividing state confers cells tolerance to antibiotics, this 

subpopulation can survive antibiotic treatment, contributing to persistence. Collectively, these 

studies established that lag phase plays a critical role in persistence. 

 

In this work, we quantitatively characterized a large dynamic range of lag time distribution of 

E. coli cells, demonstrating its intricate quantitative feature. Additionally, we show that this 

quantitative feature alone can account for the population dynamics of persistence without ad hoc 

parameters. We then discuss the population structure that gives rise to the observed quantitative 

feature, the connection between this quantitative feature and the current molecular understanding 

of persistence, and the clinical implication of this quantitative feature.  

 

3.3. Results and Discussion. 

 

3.3.1. Multiphase population dynamics of isogenic bacteria exposed to an antibiotic. 

 
We first characterized the population dynamics of persistence by measuring a time-dependent 

killing curve of a population exposed to an antibiotic. The stationary phase was shown to play an 
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important role in persister generation; e.g., maintaining a culture in the exponential phase for an 

extended period of time eliminates persisters [195]. Thus, to enrich persisters in a culture, most 

studies kept cells in stationary phase before suspending them in fresh medium containing an 

antibiotic [101, 104, 106, 196, 197]. In our experiments, we kept cells in stationary phase for three 

days and suspended them in fresh LB medium containing ampicillin (100 g/ml); the moment of 

suspension defines time zero. To measure a time-dependent killing curve, we performed a colony-

forming unit (CFU) assay at different times by spreading a small volume of the culture onto an LB 

agar plate containing no ampicillin. We then incubated the plates overnight, enumerated CFUs, 

and determined NCFU (the number of CFUs at time t normalized by the number of CFUs at time 

zero). Agreeing with previous studies, a complex multiphase killing curve was observed (Fig. 3. 

1) [100, 104, 198-200]. Importantly, the long tail of the curve indicates persistence. 

 

 
 

Figure 3. 1. Time-dependent killing curve of a population exposed to ampicillin. 

Stationary phase cells were suspended in fresh LB medium containing 100 g/ml of ampicillin (time zero). 

A colony-forming unit (CFU) assay was performed at different times. NCFU represents normalized CFU, 

i.e., the number of CFUs at time t divided by the number of CFUs at time zero. Agreeing with previous 

studies [100, 104, 198, 199], a complex multiphase killing curve was observed. The long tail of the curve 

indicates persistence. For each time point t, at least two biological replicates were performed, and their 
mean (data points) and standard deviation (error bars) were shown. Within each biological replicate, at least 

four technical replicates were performed, and their average was used for the plot. 
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3.3.2. Single-cell-level observation of lag time. 

 
Previous studies have shown that a long lag phase of a minority of cells contributes to persistence 

[101, 103, 104, 106].  Thus, we used single-cell time-lapse microscopy to determine the periods 

of lag phase (lag time) of individual cells. We prepared a culture as described above and 

determined how long it takes for cells from a stationary phase culture to rejuvenate and resume 

growth in fresh LB medium. Fig. 3. 2a shows a rejuvenation probability distribution, which is also 

called a lag time distribution in the field (these two terms are used interchangeably in this chapter).  

 

 
 

 

Figure 3. 2. Rejuvenation probability distribution (or lag time distribution). 

(a) Using time-lapse microscopy, we determined the time points at which cells from stationary phase 

rejuvenate and resume growth upon suspension to fresh LB medium (~ 12800 cells were analyzed in three 

independent experiments). The rejuvenation probability initially decreased rapidly over time (green region), 

and this initial decrease was well approximated by an exponential decay (linear line). After a rapid decrease 

of nearly three orders of magnitude, the decrease slows down dramatically, deviating from the exponential 

decay (to the right of the green shaded region). In the inset, we re-plotted this late regime in a log-log scale. 

A linear decrease in a log-log scale suggests a power-law decay. (b) In statistical studies, it is common to 

use logarithmic data binning to visualize a power-law decay of a distribution [201]. The data shown in the 

inset (Fig. 3. 2a) were replotted after logarithmic binning. The power law exponent is approximately −2 

(the red line has a slope of −2). Note that the values of all our raw data as well as processed data 

(logarithmically binned) are provided in Appendix. This biphasic decay, f (), was mathematically 

formulated in Eq. 1. The parameter values in Eq. 1 were determined using the experimental data as 

described in the Methods section (0 = 93 min, k = 0.063 min-1 and  = −2.1, A1= 0.0622 min-1 and A2= 2.42 

min1.1).  



 63 

The rejuvenation probability decreased rapidly in the first 100 minutes, and this decrease was well 

approximated by an exponential decay (linear line in green shaded region in Fig. 3. 2a). This 

exponential decay agrees with previous observations in other studies; see Fig. 3. 3. 

 

 

Figure 3. 3. Early, exponential decay of lag time distribution 

We observed an exponential decay in the early part of lag time probability distribution (Fig. 3. 2). Previous 

population dynamic modeling studies often assumed that lag time distribution of bacterial cells exhibits an 

exponential decay [202, 203]. Other experimental studies investigated two or three orders of magnitude 

decrease of lag time distribution (the range comparable to that of our early part of distribution where we 

observed an exponential decay). Here, we re-plotted the data of these experimental studies and fit them 

with an exponential function, which shows that an exponential decay is a good approximation.  (a) In the 

studies by Şimşek and Kim [204], E. coli cells were starved of carbon for eight hours, and then suspended 

in LB medium. Lag times of individual cells were determined by microscopy at 37 C. The red straight line 

in a semi-log scale indicates an exponential decay with R2 = ~ 0.917. The data were reproduced from Supp. 

Fig. 13. (b) In the study by Levin-Reisman et al. [205], E. coli cells were starved and suspended in a 

complex medium. Lag times of individual cells were determined by microscopy at 32 C. The red straight 

line in a semi-log scale indicates an exponential decay with R2 = ~ 0.802. The data were reproduced from 

Fig. 1d. (c) In the study by Kutalik et al. [206], Listeria innocua cells were starved and suspended in 

complex medium. The time to the first division of individual cells was determined by microscopy at ambient 

temperature. The red straight line in a semi-log scale indicates an exponential decay with R2 = ~ 0.802. The 

data were reproduced from Fig. 4 (upper panel). (d) In the study by Francois et al. [207],  Listeria 
monocytogenes cells were starved and suspended in complex medium. The time to the first division of 

individual cells was determined by optical density measurements using microtiter plates at 30 C. The red 

straight line in a semi-log scale indicates an exponential decay with R2 = 0.775. The data were reproduced 
from Fig. 2 (upper left panel). 
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What distinguishes our dataset from others’ is its large dynamic range. The aforementioned studies 

of lag time distribution characterized two or three orders of magnitude of decrease in the 

distribution, thus focusing mostly on rejuvenation of normal cells. Although recent single-cell-

level studies directly observed a minority of cells with a long lag phase (i.e., persisters) [100, 101, 

103, 104, 106],  these studies have not thoroughly quantified the lag time distribution of these 

cells. In this work, by tracking a large number of cells (~ 12800 cells in three independent 

experiments), we quantified a large dynamic range of rejuvenation probability. We observed that 

after the initial exponential decay of rejuvenation probability (by nearly three orders of 

magnitude), the decrease slows down dramatically, deviating from the exponential decay (to the 

right of the green shaded region in Fig. 3. 2a). Interestingly, when we re-plotted the data in the 

second regime in a log-log scale, we observed a linear decrease (Fig. 3. 2a, inset), suggesting a 

power-law decay. In many statistical studies, it is common to use logarithmic data binning to show 

a power-law decay of a distribution [201]. When we binned our data logarithmically, we again 

observed the same linear trend (Fig. 3. 2b); note that the values of all our raw data as well as 

processed data (logarithmic binned) are provided in Appendix. The power law exponent was found 

to be approximately −2 (Fig. 3. 2b line). Power law distribution is a widespread feature in many 

stochastic processes, observed in physics, ecology, earth sciences and social sciences (e.g., self-

organized criticality, earthquake, word usage, etc.) [201]. Typically, these empirical distributions 

exhibit a power-law decay only in the tail; it is rare that distributions follow a power-law decay 

for all their values. This is the case for the rejuvenation probability observed in our study as well.   

Collectively, our single-cell-level data above indicate that the rejuvenation probability, f (), is 

biphasic and well captured by  
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where k, 0, and  are respectively the rate constant in the initial exponential decay, the time at 

which the probability distribution transitions to a power law decay, and the power law exponent.  

A1 and A2 are normalization constants that are related to the proportion of normal and persister 

cells. The actual values of these parameters were determined from the experimental data as 

described in the Methods section and provided in the caption for Fig. 3. 2 and Table 3.1.    

 

Parameter Empirical Best fit 

k 0.0630 min-1 0.105 min-1 

 -2.1 -2 

  102 min 100 min 

0 93 min 47 min 

A1 0.0622 min-1 0.10211 min-1 

A2 2.42 min1.1 1.6219 min 

 

Table 3. 1. Empirically determined and best fit parameters for modeling the time-dependent killing 

curve 

Our mathematical model for describing the time-dependent killing curve is given by Eq. (1-3) in the main 

text. The parameters of this model presented above were determined empirically (second column) and from 

the best fit (third column) as described in detail in Methods. 

 
 

3.3.3. Time delay of ampicillin killing. 

 
Having quantitatively characterized the temporal distribution of rejuvenation probability, we 

sought to use this distribution to better understand the complex time-dependent killing curve (Fig. 
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3. 1). Importantly, persisters are different from antibiotic-resistant cells in that once persisters 

rejuvenate and resume growth, they are killed by antibiotics. Therefore, to understand the time-

dependent killing curve, we must know how quickly growing cells are killed by ampicillin. 

Propidium iodide (PI) staining was previously shown to be an excellent indicator of dead E. coli 

cells [136-139, 204]. We additionally confirmed that PI is a good indicator for cell death by 

ampicillin; when we incubated cells with ampicillin and PI for 80 min and spread them on an LB 

agar plate containing no ampicillin, none of the PI stained (PI+) cells grew (see Methods for detail). 

One issue of PI is the loss of nucleic acids upon lysis by ampicillin. PI stains nucleic acids, but 

lysis results in the loss of cytoplasmic contents, including nucleic acids [136-139, 204].  Hence, 

lysed cells are, although they are clearly dead, not stained by PI. On the other hand, we can 

distinguish lysed cells by their refractivity; when observed via phase-contrast microscopy, a live 

E. coli cell is normally refractile (i.e., it exhibits a dark area with sharp boundaries) whereas lysed 

cells exhibit poor phase-contrast with diffuse boundaries [204]. Therefore, we tracked PI-staining 

and lysis to evaluate ampicillin killing. We found that on average it takes 102 min for ampicillin 

to kill growing cells (see Fig. 3. 4). We denote this time delay of killing by ∆ (= 102 min). A 

similar time delay of ampicillin killing was observed in previous studies [143].  
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Figure 3. 4. Time delay of ampicillin killing. 

As described in the main text, we evaluated the time of ampicillin killing by exposing growing cells to 

ampicillin (100 µg/ml final concentration) and tracking propidium iodide (PI)-staining or the loss of cell 

refractivity (whichever comes first). Here, we plotted the distribution of ampicillin killing time, which 

showed that on average, it takes ∆ = 102 min for ampicillin to kill growing cells. The distribution was 

obtained from two biological repeats. ~ 200 cells were examined within each biological repeat. Average 

killing time varied by less than 7 % across the two biological repeats when separately analyzed. 

 
 

3.3.4. Mathematical framework bridging lag time distribution and time-dependent killing 

curve.  

 
To quantitatively understand the population dynamics of persistence, one could model switching 

between normal and persister cells using ordinary differential equations. More realistic models can 

be constructed by including the dependence of switching rates on various factors such as substrate 

concentration, e.g., see [192]. One potential problem of this approach, however, is overfitting; 

although a model may fit a curve, fitting itself may not justify the underlying assumption of the 

model. Here, we take an alternative approach. We believe that our single-cell studies above have 

identified the central kinetics underlying persistence (i.e., the biphasic decay of rejuvenation 

probability distribution). If these kinetics govern persistence as we believe, they must be able to 

account for the time-dependent killing curve without any ad hoc parameters.  
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To do so, we must clarify the relationship between rejuvenation probability and a time-dependent 

killing curve. As discussed above, a time-dependent killing curve is measured by performing CFU 

assays at different times, that is, a small volume of a sample was taken from a culture growing in 

LB with ampicillin and spread on an LB plate (without ampicillin) at time t. Thus, the CFU data 

report the number of viable cells at the time t. Given the time delay of ampicillin killing ∆ (as 

shown above), the cells that had rejuvenated and resumed growth any time before t − ∆ would be 

killed, failing to form colonies. Mathematically put, the fraction of dead cells at time t is then equal 

to
0

( )

t

f d 
−

 , where ( )f  is the rejuvenation probability. Conversely, the fraction of viable cells 

capable of forming colonies on a LB plate when assayed at time t, g(t), is given by 

 
0

( ) 1 ( )

t

g t f d 
−

= −    (Eq. 2) 

Because we already know the function of rejuvenation probability ( )f   (Eq. 1), we can calculate 

g(t). The result was plotted as a black line in Fig. 3. 5. In the same figure, we replotted the empirical 

time-dependent killing curve (from Fig. 3. 1) as black points, which shows a good agreement. 

Importantly, our mathematical model highlights three different phases. First, for t less than ∆ (= 

102 min), there would not be enough time for ampicillin to kill cells. Thus, g(t) is 1 (green region 

in Fig. 3. 5).  
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Figure 3. 5. Comparing the model prediction of a time-dependent killing curve with experimental 

data. 

We mathematically related the rejuvenation probability distribution (f ) and the fraction of viable cells (g) 

in Eq. 2. Using the rejuvenation distribution f (which was fully specified in Eq. 1 and Fig. 3. 2 caption), we 

calculated the fraction of viable cells g and plotted the result as a black line. The empirical time-dependent 

killing curve (from Fig. 3. 1) was replotted as black points, which shows a good agreement. Importantly, 

our mathematical model highlights three different phases as marked by different shades. See text for details. 

Here, the parameter values used to compute g were previously obtained using the data plotted in Fig. 3. 2. 

We then varied these parameter values to find the best fit. The best-fit curve (grey dashed line) looked 

similar to the original prediction based on empirically determined parameter (black solid line). Also, the 

best fit parameter values are similar to those determined empirically (see Table 3.1).  

 

A majority of cells rejuvenate and resume growth within the first 105 min (Fig. 3. 2 caption), but 

these cells are killed by ampicillin after a time delay ∆, leading to a rapid decay of NCFU between 

∆ (= 102 min) and ∆ (= 102) + 105 min (red region in Fig. 3. 5.). The rejuvenation probability 

exhibits a long tail after 105 min (Fig. 3. 2b), leading to a long stretch of NCFU after ∆ (= 102) + 

105 min (blue region in Fig. 3. 5). Thus, the rejuvenation probability can account for the complex 

time-dependent killing curve without ad hoc parameters.  
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Here, all the parameter values in this model were determined empirically from single-cell-level 

experiments (Fig. 3. 2) and thus would be affected by experimental error. Next, by allowing the 

parameter values to vary, we searched for the best fit of the model to the killing curve. The best-

fit curve (grey dashed line in Fig. 3. 5) agreed with the experimental killing data (black points) 

marginally better than the original prediction (black solid line), although they are very similar. The 

parameter values from the fitting are found to be similar to those used originally (determined 

empirically from single-cell-level data); see Table 3.1.   

 

3.3.5. Quantitative mechanisms for exponential or power-law decays in rejuvenation 

probability. 

 
An exponential decay distribution is common in natural phenomena (e.g., radioactive decay [174]). 

An exponential decay indicates first-order kinetics with a single rate constant. To demonstrate this 

point, we consider non-growing cells rejuvenating and resuming growth at a constant rate of k. 

Then, the number of non-growing cells at a given time N(t) is governed by  

 
( )

( )
dN t

kN t
dt

= − .    (Eq. 3) 

The solution of Eq. 3 is 

 ( ) exp( )N t k t −  .  (Eq. 4) 

The rejuvenation probability we measured in our experiments refers to the number of cells 

resuming their growth during a given time interval t, ( )N t , which is given mathematically by 

 
( )

( ) exp( )
N t

N t k k t
t


= −   − 


.  (Eq. 5) 
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Eq. 5 indicates that a homogeneous population that resumes growth with a single rejuvenation 

constant k exhibits an exponential decay in rejuvenation probability distribution.  

 

How can we understand the power-law decay in the later part of the distribution (Fig. 3. 2b)? The 

mathematical derivation shown above (Eq. 3-5) clearly indicates that a homogeneous population 

with a single rejuvenation constant cannot exhibit a power-law decay. To quantitatively understand 

a power-law decay, we then consider a heterogeneous population. For the sake of simplicity, we 

first consider a population consisting of two subpopulations with two different rejuvenation 

constants 
1k and 

2k . In this case, using Eq. 5, we can write that the number of cells resuming their 

growth at a specific time t, ( )N t , is given by    

 1 1 2 2( ) exp( ) exp( )N t k k t k k t  −  +  −   . (Eq. 6) 

Extending this formula, for a large number of such subpopulations, we have  

 
1

( ) exp( )
n

i i

i

N t k k t
=

  −   , (Eq. 7) 

or 

 
0

( ) exp( )N t k t k dk


  −    . (Eq. 8) 

Since 0 0
exp( ) exp( )

d
k t k dk t k dk

dt

 

 −   = −  −   
 and 0

exp( ) 1/t k dk t


−   =
, Eq. 8 becomes 

 

      
2

1
( )N t

t
       (Eq. 9) 
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Thus, for a heterogeneous population in which cells rejuvenate with various rate constants, the 

rejuvenation probability is expected to exhibit a power-law decay with exponent of −2, as we 

observed in our experiments (Fig. 3. 2b).  

 

3.3.6. Power-law decay provides a quantitative framework for understanding complex 

molecular processes underlying persistence. 

 
How can we relate this power-law nature of rejuvenation probability distribution to the current 

molecular understanding of persistence? Molecular mechanisms of persistence have been 

extensively characterized [181, 208, 209]. Previous studies of persisters have shown that toxin and 

antitoxin systems cause persistence [104, 210-213], but increasing evidence supports that there are 

many other genes that lead to persistence, such as phoU, tolC, oxyR, etc [159, 214-216]. 

Additionally, various errors in the cell replication cycle or metabolism as well as cells’ stress 

response to such errors lead to the non-dividing state of persisters [217-223]. Collectively, these 

studies indicate that a myriad of different molecular processes can contribute to generation and 

rejuvenation of persisters. For example, some cells could enter a non-dividing state because of 

toxin overproduction and rejuvenate when toxins get degraded (by antitoxins). Some cells could 

enter a non-dividing state due to glitches in DNA replication and rejuvenate when the glitches are 

repaired. As such, a persister subpopulation is a diverse collection of various cells whose growth 

was transiently halted by different mechanisms [224]. Since different persister cells enter and exit 

a lag phase through different mechanisms, rejuvenation kinetics of persisters are expected to be 

highly heterogeneous, meaning a wide variation of rejuvenation constants within a persister 

subpopulation. As our derivation above (Eq. 6-9) shows, such a wide variation of rejuvenation 

constants would lead to a power-law decay in rejuvenation probability. Therefore, our findings of 
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a power-law decay in rejuvenation probability distribution agree with previous findings that a 

myriad of mechanisms generate persisters. More importantly, this quantitative feature provides a 

coherent framework for a systems-level understanding of these complex molecular mechanisms. 

 

3.3.7. Further implication of a power-law decay.  

 
In statistics and probability, a long tail in a probability distribution indicates a large number of 

occurrences far from the central part of the distribution. A power-law distribution is a classic 

example of a long-tailed distribution. This is why a power-law decay in rejuvenation probability 

distribution leads to a long stretch in the time-dependent killing curve (Fig. 3. 5). In fact, we 

quantitatively explained this stretch with the power-law distribution without invoking any ad hoc 

parameters (Fig. 3. 5).  

 

From a clinical point of view, this long tail distribution is problematic because it indicates that 

some persister cells rejuvenate and resume growth after maintaining a very long period of lag 

phase. Unfortunately, many conventional antibiotics have little efficacy for these cells during lag 

phase, killing them only once they rejuvenate. Therefore, for infections containing persister cells, 

an extended antibiotic treatment is required for eradication. This is why for infections by agents 

with a high number of persisters, e.g., Mycobacterium tuberculosis, antibiotic treatment lasts more 

than six months (still then, the chance of eradication is not 100 %). Therefore, our observation of 

a power-law decay in rejuvenation probability further highlights the need to develop new 

antibiotics that can directly target persister cells, supporting current efforts in the field to identify 

chemicals that kills persister cells [225].   
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3.4. Methods.  

 
Strain and Cell Culture 

 

We used an E. coli K12 NCM3722 motA strain [166]. For batch cultures, cells were cultured at 

37 °C with shaking at 250 r.p.m. in a water bath (New Brunswick Scientific). To monitor growth 

in batch cultures, the optical density (OD600) of the culture was measured using a Genesys20 

spectrophotometer (Thermo-Fisher) with a standard cuvette (16.100-Q-10/Z8.5, Starna Cells Inc). 

Our typical experimental procedure was as follows. Cells were taken from -80 °C stocks and first 

cultured in an LB medium for 4 - 6 hours (seed culture). Then, they were transferred to N-C- 

minimal medium (pH = 7) [125] supplemented with 40 mM of ammonium chloride and 40 mM of 

glucose (glucose minimal medium) at very low densities (typically lower than OD600 of ~ 0.0001) 

and cultured overnight (pre-culture). The low densities were used to ensure that the cells were 

growing exponentially the next morning. These cells were then diluted (20 ~ 50 times) and sub-

cultured in pre-warmed fresh glucose minimal medium (experimental culture). The cells grew 

exponentially for at least four more doublings before they were spun down and re-suspended in 

the same type of minimal medium without glucose (i.e., starvation medium). On the third day of 

the starvation, a small volume of the culture was transferred to fresh pre-warmed LB medium 

containing ampicillin (BioBasic) to measure a time-dependent-killing curve experiments or for the 

microscope experiments as described below.  

 

Microscopy 

 

All our single-cell-level observations were made using an inverted microscope (Olympus IX83). 

The microscope had an automated mechanical XY stage and auto-focus, which were controlled by 

MetaMorph software (Molecular Devices). The microscope is housed in an incubator (InVivo 
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Scientific) which ensured maintenance of a desired temperature in the experiments (37 C). Images 

were captured using a Neo 5.5 sCMOS camera (Andor). 

 

Image analysis  

 

Image analysis was performed using MicrobeJ, a freely available plug-in for the ImageJ software 

[172]. This plug-in can automatically segment cell boundaries from phase-contrast microscope 

images (“segmentation”) and measure the cell length (“shape descriptors”).  

 

Colony forming unit (CFU) assay for experimentally determining time-dependent-killing curve 

 

For Fig. 3. 1, CFU assays were performed to determine a time-dependent killing curve of a 

bacterial population exposed to ampicillin. On the third day of starvation (67.7 - 70.5 hours), cells 

were transferred to a fresh pre-warmed rich (LB) medium with 100 µg/ml ampicillin (time zero), 

and incubated at 37 °C. At different time points t, a fixed volume was spread on LB agar plates 

(100 × 15 mm Petri dish) containing no ampicillin after appropriate serial dilutions. The plates 

were then incubated at 37 °C overnight. Next morning, we counted visible colonies (which varied 

between 30 – 300) on the LB agar plates and determined the CFUs per milliliter. For each time 

point t, at least two biological replicates were performed, and their mean (data points) and standard 

deviation (error bars) were reported in Fig. 3. 1. Within each biological replicate, at least four 

technical replicates were performed, and their average was used. 
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Single-cell level observation of lag time 

 

For Fig. 3. 2, on the third day of starvation (70.1 - 73.7 hours), a 5 µl aliquot of cells was spread 

onto a pre-warmed 35 mm glass-bottom Petri dish (InVitro Scientific). Then, a pre-warmed LB 

agarose pad with an approximate volume of 2.4 ml containing ampicillin (100 µg/ml final 

concentration) was gently placed on top of the cells such that the pad covered the entire bottom 

surface of the dish. The dish was then sealed with parafilm to limit water evaporation and 

immediately moved to a pre-warmed (37 °C) microscope for time-lapse imaging. An oil immersion 

60 objective was used to acquire phase-contrast images of the cells.  

 

The lag time of individual cells (Fig. 3. 2) was measured using a time-lapse microscopy. Cells 

were imaged at different time points, their size was calculated using MicrobeJ, and the duration 

for which a cell maintained its size was used to determine its lag time. To visualize a power law, 

it is common to bin data logarithmically [201]. We logarithmically binned the data shown in Fig. 

3. 2a to produce Fig. 3. 2b. Briefly, defining the bottom of the lowest bin and the ratio of the widths 

of successive bins as xmin and a, the kth bin extends from xk–1 = xmin ak–1 to xk = xmin ak . Importantly, 

Fig. 3. 2b represents probability distribution, and thus the number of observations made within 

each bin was normalized by the bin width. For triangles, xmin = 70 min and a = 2.  For rectangles, 

xmin = 140 min and a = 1.5.   

 

Single-cell level determination of time delay in ampicillin-killing of growing cells 

To determine the time delay (Fig. 3. 4), cell culture was first maintained in exponential growth 

phase for at least nine doublings until it reached OD600 = 0.2 - 0.3 in LB broth, and then a 4 µl 
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aliquot was spread onto a pre-warmed 35 mm glass-bottom Petri dish (InVitro Scientific). Then, a 

pre-warmed LB agarose pad with an approximate volume of 2.4 ml containing ampicillin (100 

µg/ml final concentration) was gently placed on top of the cells such that the pad covered the entire 

bottom surface of the dish. The dish was then sealed with parafilm to limit water evaporation and 

immediately moved to a pre-warmed microscope for time-lapse imaging at 37 °C. In this 

experiment, the LB agarose pad contained also propidium iodide (PI, Thermo-Fisher) at 4 µM of 

final concentration. An oil immersion 60 objective was used to acquire phase-contrast and red 

fluorescence images of the cells. Then, the distribution of time at which a cell got stained by PI or 

lost refractivity in its phase contrast image (i.e., lysed) (whichever comes first) was determined.  

 

We additionally confirmed that PI is a good indicator for cell death by ampicillin; when we 

incubated cells with ampicillin and PI for 80 min and spread them on an LB agar plate containing 

no ampicillin, none of the PI stained (PI+) cells grew. A total number of ~25 PI+ ampicillin-

affected cells were examined in five biological replicates. 

 

Determination of values of 0, k,  , A1 and A2   

Fig. 3. 2a shows a semi-log plot of lag time probability distribution. Data below 105 min were 

fitted to a linear function, yielding k = 0.0630 min-1 (R2 ~ 0.907). Fig. 3. 2b shows a log-log plot. 

This dataset was fitted to a linear function, yielding  = –2.10 (R2 ~ 0.977). 0, A1 and A2 were 

determined using the following three equations. First, because the lag time probability distribution 

is continuous, 0

1 2 0

k
A e A

 −
=  in Eq .1. Second, its cumulative probability is equal to 1, i.e.  
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1kAe d A d


 


  


− + =  . Here, 

0

1
0

kA e d


 −

 is equal to the fraction of normal cells, which we 

empirically found to be 0.984926 (from the data presented with triangles and squares in Fig. 3. 

2a); thus 
0

1
0

0.984926kA e d


 − = . Solving these three equations, we obtained 0 = 93 min, A1 = 

0.0622 min-1 and A2 = 2.42 min1.1.  

 

Determination of these parameters by fitting the time-dependent killing curve 

The following ranges for the model parameters were explored using a custom-built MATLAB 

code; k (1/min) = [0.010, 0.200] with 0.001 increments,  = [-3.00, -1.51] with 0.01 increments, ∆ 

(min) = [60, 200] with increments of one, and 0 (min) = [10, 270] with increments of one. For 

each set of parameters (k, , ∆, 0),  
0

0
1 2

0
1kAe d A d


 


  


− + =   and 0

1 2 0

k
A e A

 −
=  were solved 

for A1 and A2. Using these values, we then computed the fraction of viable cells, gtheo(t), and 

compared them with experimental values (time-dependent killing data, g(t)). Then, the logarithmic 

least squares formula described below was applied.  

 

Finally, the set of parameters minimizing the value of S above was determined as the best-fit, 

whose parameter values are shown in Table 3.1. S values were 3.26 × 10-1 and 3.03 × 10-2 for the 

empirically determined and the best-fit parameter sets, respectively. 
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3.5. Appendix. 

 
Below we provide the values for all our data. 

 

Data for generating Fig. 3. 1 : Data points are the arithmetic mean and error bars represent the 

standard deviation of the values reported below for three biological replicate experiments. 

 

Biological Replicate #1 Biological Replicate #2 Biological Replicate #3 
Time (min) 

NCFU Time (min) NCFU Time (min) NCFU 

25 
1.00 × 100 26 1.00 × 100 23 1.00 × 100 

56 
1.19 × 100 55 9.37 × 10-1 53 1.07 × 100 

84 
1.13 × 100 85 6.62 × 10-1 83 6.70 × 10-1 

113 
3.08 × 10-1 114 2.83 × 10-1 112 2.32 × 10-1 

142 
5.14 × 10-2 143 3.77 × 10-2 143 2.29 × 10-2 

212 
2.09 × 10-2 217 1.06 × 10-2 213 7.88 × 10-3 

322 
1.14 × 10-2 330 5.03 × 10-3 325 4.19 × 10-3 

447 
8.37 × 10-3 447 3.01 × 10-3 N/A N/A 

539 
6.66 × 10-3 541 2.25 × 10-3 N/A N/A 

650 
5.04 × 10-3 652 1.64 × 10-3 657 1.23 × 10-3 

943 
2.55 × 10-3 947 7.47× 10-4 N/A N/A 
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Data for generating Fig. 3. 2 : We provide our raw data charts below. 

 

 

Data for generating Fig. 3. 2a : 

 

Circles Triangles Squares 

Imaging 

time point, ti 

(min) 

Number of 

observations, 

Ni 

Imaging 

time point, ti 

(min) 

Number of 

observations, 

Ni 

Imaging 

time point, ti 

(min) 

Number of 

observations, 

Ni 

30 462 69 1372 120 10077 

60 81 84 19 140 16 

90 6 105 9 200 66 

120 2 124 8 260 39 

  144 1 320 19 

  164 2 380 9 

  189 2 440 4 

  227 2 500 6 

  346 2 560 5 

  403 2 620 2 

  522 1 680 6 

  644 1 740 2 

  827 1 800 1 

  883 1 860 3 

  947 1 920 1 

  1188 1 980 3 

    1040 2 

    1160 2 

    1220 1 
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Data for generating Fig. 3. 2b : 

Logarithmic binning rules, as described in Methods, were applied to the data presented above for 

the triangles and squares in Fig. 3. 2a. As a result, the following data chart was generated. 

 

Triangles Squares 

Logarithmically 

binned time 

point (min) 

Number of 

observations 

Logarithmically 

binned time 

point (min) 

Number of 

observations 

70 1372 140 10093 

140 36 209 66 

280 7 313 39 

560 5 468 32 

1120 4 700 18 

2240 1 1047 10 

  1565 5 

 

Here, the data obtained from three independent experiments were presented by three different 

symbols; circles, triangles and squares. For each one of the independent experiments, we took 

time-lapse images of bacterial cells at various time points (t1, t2, …, ti, ti+1…) and counted the 

number of observations for bacterial cells that resumed growth (Ni) between ti and ti-1 (where t0 = 

0). In Fig. 3. 2, lag time, , represents the middle points of the bins, (ti + ti-1)/2. Probability 

distribution f () represents probability divided by the bin width Ni /(Ni)/(ti - ti-1). 

 



 82 

Chapter 4: Developing visualization tools for studying 

surface colonization by Proteus mirabilis across 

multiple scales 

 

4.1. Abstract. 

 
In natural ecosystems, surface-association is the dominant lifestyle for bacteria. In laboratories, 

several bacterial species are known to colonize semi-solid (i.e., agar) surfaces and establish 

communities known as biofilms. As an isogenic population of P. mirabilis bacteria colonizes an 

agar surface, it adopts a strategy of periodic cycles between range expansions and cell 

growth/multiplication at the colony edge. Before each round of range expansions, a striking 

example of non-genetic population diversification is observed; the cells in the outermost region of 

a colony make a cell fate decision whether to remain normal (immotile) and exploit the available 

territory or differentiate and activate a flagella-dependent-motility program known as swarming 

for exploring new territories. Many cellular and environmental factors such as cell density, 

extracellular signaling, surface hardness, gene regulation, etc., have been reported to influence 

swarming. However, how these cellular and environmental factors collectively affect cell fate 

decision remains elusive. Additionally, although a number of theoretical studies recapitulated 

some of the key features P. mirabilis surface colonization at the colony level, how colony scale 

dynamics are related to cellular scale dynamics is unclear. This gap in knowledge is primarily due 

to a lack of the tools available for visualization of the phenomenon at the single-cell-level. Here, 

we first constructed a chromosomal transcriptional fusion of a green fluorescent protein (gfp) gene 
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to the native operon for the master regulator of motility (flhDC) as a reporter of the activity of 

swarmer cell differentiation program. We demonstrated how this construct can unveil 

unprecedented spatiotemporal features of population diversification within a growing cell 

population. Furthermore, we developed a Petri dish-based device compatible with dry-objective-

optical microscopy. We demonstrated how this device can be used to visualize and link dynamic 

properties of swarming across a broad range of scales from the single-cell (m/s) to the colony 

level (cm/h).  

 

4.2. Introduction. 

 
In natural ecosystems planktonic bacteria are substantially outnumbered by surface-associated 

bacteria [7-9]. Surface association can provide bacteria with various advantages such as increased 

population tolerance to antibiotic exposure compared to planktonic populations [19, 226], 

metabolic cooperation for better utilization of resources, and high mechanical resilience[227]. On 

the other hand, mainly due to restricted hydration, surface attachment is expected to impede 

bacterial motility on surfaces like soil [10-12] and hydrogels [13]. This may present a challenge 

when motility is the only option to escape from potential growth inhibitory factors such as nutrient 

limitation and toxic compounds. Collectively, understanding the surface colonization strategies by 

bacteria can help improving our understanding regarding bacterial survival strategies in nature. 

 

When a micro-liter droplet of Proteus mirabilis bacteria is placed onto a nutrient agar medium in 

a standard culture dish (~10 cm in diameter), the bacteria entirely colonize the surface of the 

medium within timescales of hours, even when the agar concentration in the medium is so high ( 

3%) such that its surface cannot be colonized by any other bacteria [228]. Therefore, P. mirabilis 
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represents a superior bacterium in the context of surface colonization. On an agar surface colonized 

by P. mirabilis, a concentric-rings (e.g., Bull’s eye)-patterned biofilm is observed. This pattern is 

due to radially symmetric, periodic high and low cell density bands (Fig. 4.1a; brightness in the 

image is proportional to cell density). As an isogenic population of P. mirabilis bacteria colonizes 

an agar surface, it adopts a strategy of periodic cycles between range expansions and cell 

growth/multiplication at the colony edge (Fig. 4.1b). Prior to each round of range expansions a 

striking example of non-genetic population diversification is observed; the cells on the outermost 

regions make a cell fate decision whether to remain normal (immotile) or to differentiate and 

activate a flagella-dependent-motility program known as swarming [229-231]. Swarmers cells are 

highly elongated (typically more than 10-fold), and this elongation is believed to originate from a 

specific inhibition of cell division without affecting the doubling time of cell mass or DNA [232] 

as they have the same DNA to length ratio as normal cells [230, 233] (see Fig. 4.1c left panel for 

diverse cell morphologies). Surface sensing [234], extracellular signaling [235], cell density [236, 

237], various amino acids [238], and regulation of expression of some genes [234, 239-241] have 

been shown to influence the phenomenon of swarming to various degrees (note that swarming and 

range expansions were used interchangeably in this chapter). However, how these cellular and 

environmental factors collectively affect population diversification (i.e., cell fate decision) 

between immotile and motile cells remains elusive.  

 

Motility and chemotaxis genes are under the control of a three-tier hierarchy, at the top of which 

is the flagellar master regulator flhDC [242, 243]. The products of the flhDC operon are the FlhD 

and FlhC proteins which together comprise a hetero-hexameric complex FlhD4C2 that in turn 

serves as a transcription factor [244-246]. Expression of the flhDC operon was previously shown 
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to increase prior to swarmer cell differentiation, and its overexpression was reported to induce 

sooner and faster swarming [239, 247], while flhDC-deficient mutants do not swarm [248]. Hence, 

tracking intracellular flhDC promoter activity levels can be used to study the population 

diversification at the single cell level prior to the onset of swarming. However, currently there exist 

no tools available for tracking the flhDC promoter activity in single cells without significantly 

influencing the dynamic and spatial features of swarming in P. mirabilis. Additionally, although a 

number of theoretical studies recapitulated some of the key features P. mirabilis swarming at the 

colony level [232, 249-251], how colony scale dynamics are related to cellular scale dynamics is 

unclear. In order to help addressing these issues, we first constructed a new strain harboring a 

transcriptional fusion of a green fluorescent protein (gfp) gene to the native chromosomal flhDC 

operon to observe the activation of swarmer cell differentiation. We then demonstrate how this 

strain can help unveiling otherwise inaccessible spatiotemporal features of cell differentiation 

within a growing cell population. Furthermore, we developed a Petri dish-based device that allows 

to visualize and link dynamic properties of swarming across a broad range of scales from the single 

cell (m/s) to the colony level (cm/h) when combined with an appropriate long working distance 

objective microscope. 

 

4.3. Representative Results. 

 

4.3.1. Spatiotemporal characterization of flhDC promoter activity at the single cell level using 

a transcriptional fluorescent reporter. 

 
In order to monitor the expression of flhDC operon at the single-cell-level as a reporter of the 

activation of swarmer cell differentiation, we here constructed a flhDC-gfp transcriptional fusion 
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strain (AMK79). This strain had one functional copy of the flhDC operon at its native site in the 

chromosome with a green fluorescent protein (gfp) gene fused to it and one non-functional (i.e., 

truncated) copy of the flhDC operon at another location downstream its native site. When observed 

in conventional swarm assays, population level macroscopic swarming (i.e., range expansion) 

dynamics of this strain (Fig. 4.1b, green) were comparable to that of its parental wild-type strain 

(Fig. 4.1b, black).  
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Figure 4. 1. Spatiotemporal characterization of flhDC promoter activity at the single cell level using 

a transcriptional fluorescent reporter. 

a. Macroscopic concentric rings-pattern formed on the surface of an LB agar (2%) medium after being 

colonized by a center inoculated-P. mirabilis PM7002 wild-type (AMK50) colony. b. Temporal dynamics 

of range expansions of wild-type (AMK50, black) and flhDC-gfp (AMK79, green) bacteria on an LB agar 

(2%) surface. c. Representative phase contrast (left), GFP (middle), and overlay (right) images of a frontal 

region of an AMK79 colony 30 min after the onset of swarming. d. Phase contrast (top) and GFP (bottom) 

image time series of an AMK79 microcolony growing under nutrient limitation (0.2x LB was initially 

provided in agarose (1%) medium). Far right. Phase contrast (top) and GFP (bottom) images of a flhDC-

gfp rcsC (AMK84) strain at the onset of swarming under the same conditions. A 60x oil immersion 

objective was used. e. Average GFP intensities within the microcolonies of AMK79 (flhDC-gfp, T = 12.5 

h) and AMK84 (flhDC-gfp rcsC, T = 10 h) shown in (d). f. A surface plot of GFP intensities in the images 

shown in (d) for AMK79 (flhDC-gfp WT, T = 12.5 h) and AMK84 (flhDC-gfp rcsC, T = 10 h). 

 
 

As seen in Fig. 4.1c, only highly elongated cells exhibit high intracellular GFP intensity 

(elongation is one key feature of swarmer cell morphology) at the onset of swarming. In order to 

spatiotemporally characterize the activation of population diversification we grew (micro)colonies 

from one (or two) cell(s) and monitored flhDC-gfp driven GFP signals at the single cell level (see 

Fig. 4.1c, flhDC-gfp WT for a representative image series). Note that in order to achieve a high 

spatial resolution, we used a short working distance objective microscope which required covering 

the cells with a microscope slide. GFP signals appeared seemingly at random positions early on 

but were later repressed in a central region before the observation of group of cells leaving their 
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original colony (i.e., onset of swarming). Because such a spatiotemporal regulation of flhDC 

expression has never been reported before, our representative results demonstrate how our 

approach can be useful to unravel unprecedented spatiotemporal features of population 

diversification (i.e., differentiation) in preparation to swarming. In order to further demonstrate the 

use of this construct, we next deleted the rcsC gene from this strain yielding a mutant that should 

not have a functional RcsCDB phosphorelay mechanism (AMK84). RcsCDB phosphorelay is one 

of the most well-known regulators of the flhDC operon; in collaboration with the cofactor RcsA it 

transcriptionally represses the expression of flhDC in E. coli [252]. Furthermore, previous 

population averaged results showed that Rcs phosphorelay downregulates flhDC expression [239], 

while mutations of it exaggerates swarming [253]. Corroborating these previous reports, we 

observed that our rcsC-deletion (rcsC) strain began swarming ~2.5 hours earlier, and its 

population averaged flhDC promoter activity was about five times higher than the flhDC-gfp WT 

strain at the onset of swarming (Fig. 4.1e). Moreover, in the absence of RcsC, GFP signals were 

no longer repressed in the central regions of a colony (compare Fig. 4.1c, flhDC-gfp WT at T= 

12.5 h and flhDC-gfp rcsC at T= 10 h). Fig. 4.1f presents surface plots for a quantitative 

comparison of the GFP signal intensities between these WT and rcsC strains at the onset of 

swarming. GFP signals were generally higher in the rcsC mutant. Most strikingly, looking at 

how the GFP signals change in the direction from the interior to the exterior of a colony, a generally 

increasing trend is observed for the WT strain, while a typically decreasing trend is seen for the 

rcsC mutant. Overall, we here demonstrated how the flhDC-gfp fusion strain we constructed and 

single-cell approach we took here can unveil intriguing spatiotemporal regulation of swarmer cell 

differentiation and factors influencing it.  
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4.3.2. A multiscale analysis of the onset of swarming. 

 
Previously, a number of theoretical studies based on various assumptions recapitulated some of 

the key macroscopic features of swarming seen in the conventional swarm assays such as 

concentric-rings pattern formation, and periodic switches between range expansions and cell 

multiplication, etc. [232, 249-251]. As seen for the last time point in Fig. 4.1c, swarming initiates 

as protruding groups of swarmer cells. Here we call these protrusions “fingers”. These fingers are 

the first groups of cells crossing the boundary between the colony and the environment 

surrounding it. Characterization of this fingering phenomenon can help one better understand 

physicochemical factors governing the initiation of swarming and how they affect the macroscopic 

features of swarming. However, in conventional population level swarm assays dynamic events 

on the orders below mm/min cannot be detected. Hence, it is currently unknown if and how 

microscopic and rapid dynamics such as fingering are related to macroscopic scale dynamics of 

the phenomenon. Therefore, we next developed a Petri-dish based device which can allow a 

characterization of the fingering phenomenon while mimicking a conventional swarm assay where 

cells are attached to only one surface at a time (i.e., without the need for covering the cells with a 

microscope slide) (Fig. 4.2a; see Methods for detail). 
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Figure 4. 2. A multiscale analysis of the onset of swarming. 

a. Schematic illustration of the Petri dish-based device for visualizing dynamic properties of swarming. Not 

drawn to scale. b. Distributions of finger width at the onset of swarming for agar concentrations of 1% 

(grey), 1.5% (black), 2% (blue), and 3% (red). c. Representative phase contrast microscopic fields of view 
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of the original colony boundary 1 min and 16 min after the onset of swarming for 2% (left two) and 3% 

(right two) agar concentrations in LB medium. W is the finger width when a finger first leaves its original 

colony; defined in the direction tangential to the original colony boundary. A 20x dry objective was used. 

d. Mean finger width (<W>) was calculated from (b) and plotted as a function of agar concentration. e. The 

lag time prior to the onset of swarming on an LB agar (2%) surface by a P. mirabilis PM7002 colony as a 

function of its initial cell density. Note that lag time has a non-zero constant minimum value denoted as 

tmin. f. Minimum lag time (tmin) as a function of agar concentration. g. Minimum lag time (tmin) and mean 

finger width (<W>) were plotted against each other for the agar concentrations tested. The red line is a 

linear fit defined as tmin = a<W> + b, where a = ~1.04 min/m and b = ~128 min. R2 for the fit is 0.9978. 

 

As seen in Fig. 4.2c, swarming again initiated as fingers in this geometry of the assay suggesting 

that it does so in conventional swarm assays too. In order to demonstrate how our device can be 

used to investigate such a microscopic and short time scale phenomenon of swarming, we varied 

the concentration of agar in the medium and measured the width of these fingers at the time they 

first left their original colony (see Fig. 4.2b for finger width (W) distribution). Plotting the mean 

finger width (<W>) as a function of agar concentration revealed a non-monotonic dependence (Fig. 

4.2d).  

 

It is known from the conventional swarm assays that, for a given environment, the time to initiate 

range expansions observed at the population level linearly decreases with logarithmic increases in 

initial cell density until a non-zero minimum value (tmin) beyond which it no longer depends on 

the initial cell density (Fig. 4.2e) [237]. Determining the value of tmin for various agar 

concentrations yielded a non-monotonic relationship that is similar to the aforementioned 

relationship between <W> and agar concentration (compare Fig. 4.2d and Fig. 4.2f). If finger 

formation is required by a colony in order to overcome the motility barrier exerted on it by 

environment, a correlation between W and tmin is expected. Indeed, plotting <W> and tmin against 

each other yielded a linear correlation (Fig. 4.2g) demonstrating how our device and approach can 
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reveal simple relationships between microscopically and macroscopically observable features of 

the initiation of swarming. 

 

4.3.3. In situ visualization of the motion of individual swarmer cells. 

 
As illustrated by the fingering phenomenon discussed above, range expansions are performed by 

groups of cells. Therefore, it is natural to interrogate the interplay between the macroscopic 

dynamics of range expansions and individual swarmer cell motion. We here demonstrate that our 

Petri-dish based device developed in this study can also allow studying the motion of individual 

cells in situ as a population of bacteria swarms. We first constructed a high copy number plasmid 

that constitutively expresses GFP (pES02, see Methods for detail). Then, we labeled only a small 

fraction (~1%) of a cell population with this plasmid (yielding the strain AMK66) and recorded 

time-lapse fluorescence microscopy videos of actively expanding layers of cells at near real time 

resolution.  Next, tracking the GFP-labeled cells in these time-lapse videos we characterized their 

motion. In Fig. 4.3a, we present our representative results obtained from a middle region of an 

actively expanding layer of cells between 35 min and 37 min after the onset of swarming (Fig. 

4.3a). It is common to plot the mean square displacement (MSD) of a particle as a function of time 

elapsed in motion for comparing its motion with Brownian motion (diffusion) where MSD linearly 

increases with time. Hence, in order to compare the motion of individual cells tracked with 

Brownian motion, we plotted the logarithm of the MSDs of these cells as a function of the 

logarithm of time elapsed (t) in Fig. 4.3b. 
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Figure 4. 3. In situ visualization of the motion of individual swarmer cells. 

a. Phase contrast (left) and GFP (middle) images of a field of view whose center was away from the original 

boundary and the current leading edge of the colony by ~500 m and ~700 m, respectively, 35 min after 

the onset of swarming. Only ~ 1% of the cells harbored a plasmid enabling a constitutive expression of 

GFP (AMK66). Right. GFP image of the same field of view taken after 2 min. Trajectories of motions of 

individual GFP-labeled (AMK66) cells were tracked for the 2 min time elapsed and shown as colored lines. 

A 20x dry objective was used. GFP images were taken every two seconds. One second exposure time was 

used. b. Mean square displacements (MSD) were calculated from the trajectories shown in (a) and their 

logarithms were plotted against the logarithm of the time lag (t). Circles represent the data for ten different 

cells with ten different colors. The black line is a linear fit to the average motion of the ten cells with a slope 

() of ~1.42 and the y-intersect of ~1.55. Here, the y-intersect refers to an apparent diffusion coefficient 

(Dapp). The red line illustrates  = 1 which indicates a normal diffusive motion. 
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4.4. Discussion and Future Directions. 

 
Here, we built two visualization tools for probing connections between microscopic and 

macroscopic features of swarming in P. mirabilis as a striking example of non-genetic phenotypic 

diversification during bacterial surface colonization.  

 

We first constructed a green fluorescent protein reporter gene fusion to the flhDC operon which 

encodes the master regulator of motility. From this construct, basically, every time the promoter 

of flhDC is activated, mRNA containing both flhDC and gfp transcripts is made. And, since our 

gfp gene has its own ribosome binding site it will be separately translated. As a result, an increase 

in the intracellular GFP intensity will be correlated to an increase in the activity of flhDC promoter. 

Furthermore, since flhDC is positively autoregulated [240] an increase in this flhDC promoter 

driven-GFP levels can indirectly report on an increase in the levels of the transcription factor 

proteins encoded by the flhDC operon.  

 

Using the flhDC-gfp fusion construct and a fluorescence microscope we were able to probe the 

spatiotemporal features of flhDC expression as a reporter of population diversification in a colony 

growing on a surface (Fig. 4.2c-d). We first showed that the flhDC operon promoter activity was 

at a minimum in a central region of a colony at the onset of swarming. Then, we showed that the 

deletion of a single gene (rcsC) made this central region’ s flhDC promoter activity higher than 

nearly everywhere else (Fig. 4.2d and Fig. 4.2f).  

 

Based on the previously published population averaged findings, RcsCDB phosphorelay is a well-

known negative regulator of the flhDC operon [239, 252]. To our knowledge, our results are the 
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first to show the spatiotemporal pattern of the negative regulation of flhDC expression by RcsC. 

Our results indicate that in a WT population a central subpopulation suppresses swarmer cell 

differentiation in an RcsC-mediated manner.  

 

In E. coli, based on population averaged results, it was previously shown that growth on an agar 

medium activates the Rcs phosphorelay in an RcsC dependent manner [254]. Rcs is mostly known 

in E. coli for being responsible for regulating the envelope composition of cells [254, 255]. Yet, 

physiological cues inducing the activation of Rcs phosphorelay, and its functional role in surface 

colonization have not been unraveled [256]. In addition to our aforementioned observations, since 

(i) cell growth on an agar surface would eventually lead to a nutrient limitation (unless nutrients 

are constantly replenished), and (ii) central regions of a colony would be where nutrients are the 

most limited, we hypothesize that Rcs displays a heterogeneous pattern of activity within a 

growing colony such that its activity is higher where the nutrient levels are lower. Once activated, 

it then represses flhDC expression. This would yield a microenvironment driven population 

diversification as previously reported for biofilms of other bacterial species [56-59]. The cells 

suppressing the expression of flhDC expression here may activate a long-term starvation survival 

mode.  

 

However, the nutrient limitation driven-RcsC-mediated repression of flhDC expression at the 

colony interior we argue above cannot be the only mechanism responsible for generating the 

population heterogeneity observed as some cells do not exhibit any increase in flhDC expression 

in either the WT or rcsC strains, even if they are located on frontal regions of a colony at the 

onset of swarming (Fig. 4.1d). Indeed, the positive feedback-activation of flhDC we reported 
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before [240] could eventually be responsible for this heterogeneity. It is well known that such 

positive feedback loops can yield a bistable gene expression when promoter activity is highly 

sensitive to changes in the regulatory protein levels; the cells that have somehow achieved a 

threshold level of the regulatory protein is quickly driven to a state with high gene expression. 

Such a hypersensitivity can be achieved via cooperative DNA binding of the regulatory proteins 

[70, 71], which is indeed the case for FlhD and FlhC proteins that together bind DNA as a hetero-

hexameric complex, FlhD4C2 [244-246]. So, in this perspective, having GFP-OFF cells on the 

outer region of a colony would indicate that, due to some other regulatory inputs or stochastic 

factors beyond an RcsC-mediated repression, the threshold level of FlhD4C2 can only be attained 

in a fraction of the cells. Indeed, numerous other regulatory proteins have been identified for the 

flhDC operon (see [234] for a comprehensive review). Nonetheless, our ongoing work (data not 

shown) suggests that the flhDC-repressing activity of RcsC may indeed be driven by nutrient 

limitation. We are currently undertaking further research in order to directly probe a correlation 

between the spatiotemporal patterns of nutrient and RcsCBD phosphorelay activity levels within 

a colony growing on an agar surface.  

 

Another tool we developed here is a Petri-dish based device which allows studying microscopic 

features of swarming while mimicking conventional swarm assay conditions where cells are 

attached to only one surface at a time (i.e., without the need for covering the colony with a 

microscope slide) (Fig. 4.2a; see Methods for detail). In order to demonstrate the use of this device 

for linking microscopic and macroscopic features of swarming, we characterized the dependence 

of the fingering phenomenon seen at the onset of swarming on agar concentration (Fig. 4.2c). Our 

preliminary results revealed that the mean finger width (<W>) is linearly correlated with the 
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minimum lag time (tmin) observed before the onset of swarming (Fig. 4.2g). Fitting a linear function 

to this correlation yielded two parameters; a positive slope (a) and a positive y-intersect (b) (Fig. 

4.2g, the red line and the equation). Here, b represents the value that tmin would take in case no 

finger formation is required for getting out of the original colony. For our preliminary set of data 

presented, b= ~128 min. Swarmer cell differentiation requires at least two major changes to the 

cells; hyper elongation (cell growth with no division) and high flagellation. Swarmer cells are 

typically 10-fold longer than normal cells, and their biomass doubling time is the same as normal 

cells (~20 min per doubling) [232]. Hence, it would take nearly 60 min in order for a cell to 

elongate to a typical swarmer cell length. In addition, the available literature suggests that it takes 

about 20 min for a bacterial cell to generate a typical flagellum [257]. Collectively, b= ~128 min 

can be explained to a large degree by consideration of only these two apparent changes to the cells 

before the onset of swarming. On the other hand, the value of a can tell the average time that is 

required for the formation of a finger of a unit micron. Our preliminary data suggests a = ~ 1 

min/m. Further research is needed to check on the universality of this relationship between mean 

finger width and minimum lag time to initiate swarming under various environmental parameters 

such as nutrient and agar concentrations.  

 

As another demonstration of the use of the Petri-dish based device we developed here, in Fig. 4.3 

we characterized the motion of individual swarmer cells in an actively expanding layer of cells 

during swarming. As a result, on a log-log scale, we plotted the mean square displacement (MSD) 

of the individual cells as a function of the time elapsed (t) (Fig. 4.3b). It is well-known for 

particles undergoing diffusion (Brownian motion) that MSD increases linearly with t, and the 

proportionality between them gives the diffusion coefficient of the particle with a pre-factor 
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depending on the dimensionality of the space in which the motion takes place [258]. More 

generally, MSD   t, where  =  represents diffusion, while    (  ) indicates a super 

(sub) diffusive motion. Our representative results here seem to yield    Indeed, a previous 

study reported that two other species of bacteria perform a similar super diffusive motion during 

swarming [259]. However, in order to conclude that the motion of swarming P. mirabilis is indeed 

inherently super diffusive in our case, a larger set of data needs to be collected, and a more in-

depth analysis of the data is needed. For example, we have not yet performed any proper control 

experiments and analyses in order to rule out an instrument driven drift as one source of the super 

diffusive-like trajectories we obtained. Moreover, a more careful consideration is needed for our 

precision in determining the positions of bacteria at a given time point. For example, a bacterium 

could move approximately 15 pixels (~ 5 m) within the one second of illumination exposure time 

we employed here. In order to improve this precision, reducing the exposure time as much as 

possible and employing an automated way of tracking the bacteria would definitely be helpful. 

Eventually, it would be interesting to incorporate the nature of individual cell motion in the models 

attempting to explain the macroscopic dynamic features of swarming. For example, can knowing 

the nature of individual cell motion help one understand why P. mirabilis adopts a surface 

colonization strategy which involves periodic cycles between range expansions and cell 

multiplication? 
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4.5. Materials and Methods. 

 

4.5.1. Construction of a P. mirabilis strain with a single chromosomal copy flhDC-gfp 

transcriptional fusion.  

A gfpmut3b gene [166] was PCR amplified from the plasmid pES02 using the primers #342 and 

#343, respectively. These primers contained SmaI and XbaI sites. The resultant gfpmut3b gene 

fragment contained its own 5’-UTR and ribosome binding site but did not include a promoter. A 

previously constructed pLX7801 plasmid is a variant of the suicide vector pGP704 that contains a 

transcriptional fusion of the E. coli lacZ gene to an incomplete sequence of the P. mirabilis flhDC 

operon where the first three nucleotides are missing in the flhD gene open reading frame (denoted 

as flhD’) [260]. pLX7801 and the gfpmut3b PCR product obtained above were digested by SmaI 

and XbaI enzymes. This caused excision of the lacZ gene from pLX7801. The remaining part of 

the vector was isolated via a DNA gel electrophoresis and then ligated to the SmaI-XbaI-digested 

gfpmut3b PCR product obtained above using the T4 DNA ligase (New England Bio Labs). E. coli 

CC118 pir (EMK40) was then transformed via electroporation with the resultant plasmid (pES04) 

for maintenance yielding the strain EMK63. The existence of a flhD’C-gfpmut3b fusion was 

confirmed in pES04 by DNA sequencing. Via electroporation, E. coli Sm10 pir (EMK39) was 

then transformed with pES04 isolated from EMK63. This yielded the strain EMK64. Finally, a 

bacterial conjugation was performed between P. mirabilis 7002 WT (AMK50) and EMK64 in 

order to insert the flhDC-gfpmut3b transcriptional fusion at the native site of the flhDC operon in 

the chromosome using a previously described protocol [240]. This yielded the strain AMK79. The 

integration of the construct into the chromosome of AMK79 was verified by a colony PCR reaction 

using primers #318 (which targets the promoter region of the flhDC operon) and #349 (which 

targets a middle region in the gfpmut3b gene). 
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4.5.2. A markerless in-frame deletion of the rcsC gene in the P. mirabilis strain with a single 

chromosomal copy flhDC-gfp transcriptional fusion.  

 
A previously described protocol was used with slight modifications [241]. Briefly, an 

approximately 1,000 base pair-fragment containing the first two codons of the rcsC gene and 

upstream flanking DNA was generated by PCR (IFD1) using primers #403 and #404. A second 

fragment of 1,000 base pair-fragment containing the last three codons of the gene and downstream 

flanking DNA was generated by PCR (IFD2) using primers #405 and #406. Primers #404 and 

#405 were previously 5’ phosphorylated using T4 Polynucleotide Kinase (ThermoFisher). IFD1 

and IFD2 were then ligated, and the resultant ligate was PCR amplified using primers #403 and 

#406. This IFD1 + IFD2 PCR amplicon was then ligated into pBluescript SK(-) (Stratagene) pre-

digested with SmaI yielding the plasmid pES07. For maintenance of pES07, E. coli 

DH5 (EMK45) was transformed with it by electroporation yielding the strain EMK72. The IFD1 

+ IFD2 fragment was then sub-cloned from pES07 to the suicide vector pKNG101 between the 

ApaI and BamHI sites yielding the plasmid pES08. pKNG101 is a suicide vector harboring 

streptomycin resistance, used to select for initial pKNG101 integration, and the sacB gene, which 

selects for the loss of pKNG101 in the presence of 10% sucrose [261]. E. coli CC118 pir 

(EMK40) was then transformed via electroporation with pES08 for maintenance yielding the strain 

EMK74. Next, via electroporation, E. coli Sm10 pir (EMK39) was transformed with pES08 

isolated from EMK74. This yielded the strain EMK75. Finally, a bacterial conjugation was 

performed between P. mirabilis 7002 WT (AMK50) and EMK75 in order to obtain a single copy 

flhDC-gfpmut3b transcriptional fusion at the native site of the flhDC operon in the chromosome 

using a previously described protocol [240]. This yielded the strain AMK84. The in-frame deletion 

in the rcsC gene in the chromosome of AMK84 was verified via a colony PCR reaction using 
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primers #403 and #406 by observation of an expected decrease (~2800 base pairs) in the length of 

the product in comparison to the product obtained when a wild-type colony (AMK79) was used as 

template. Additionally, the absence of an rcsC gene in AMK84 was also verified by a colony PCR 

reaction using primers #422 and #423 which yielded a product of the expected size (2,739 bp) 

when an AMK79 colony was used as template, but not for AMK84 as the template. Primers #422 

and #423 target the 57th bp from the beginning and the 34th bp from the end of the open reading 

frame of the rcsC gene, respectively. 

 

4.5.3. Construction of a plasmid allowing a constitutive high expression of a green fluorescent 

protein gene. 

An rrnBT-pTet-gfpmut3b fragment was amplified from NMK141 using primers #305 and #307, 

and then ligated to pBluescript SK(-) (Stratagene) digested with SmaI. E. coli DH5 (EMK45) 

was transformed with the resultant ligate by electroporation. This fragment has an E. coli 

transcription terminator site named rrnBT followed by a tet promoter and then a gfpmut3b gene 

which has a 5’-UTR region and a ribosome binding site. Hence, in the absence of Tet repressor 

proteins this construct should constitutively express GFP. pBluescript SK(-) has a lacZ gene with 

a constitutively active promoter. Therefore, when exposed to a blue/white screening, colonies with 

an intact copy of this plasmid will appear blue. However, its lacZ gene overlaps with its multiple 

cloning site (MCS) which also has the only SmaI site in the plasmid. Therefore, any variant of this 

plasmid carrying an insert at the SmaI site will have broken lacZ gene, and colonies of harboring 

such variants will appear white in a blue/white screening. Hence, several white colonies were 

analyzed utilizing restriction reactions for the existence of the plasmid carrying a rrnBT-pTet-

gfpmut3b insert. The plasmid isolated from one such colony was verified by DNA sequencing and 
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then named pES02. Finally, P. mirabilis PM7002 (AMK50) was transformed with pES02 by 

electroporation yielding the strain AMK66. 

 

 

4.5.4. Bacterial growth conditions.  

 
The strains and plasmids used in this study are described in Table 4.1. All primers used were 

described in Table 4.2. All P. mirabilis strains were derived from a wild-type PM7002 strain 

(AMK50) which was originally received as a gift from Philip N. Rather (Emory University). 

Except where indicated, cell cultures were performed in Luria-Bertani (LB) broth at 37°C with 

shaking at 200 rpm. For all of our experiments, the night before the experiment cells taken from 

an 80°C stock in glycerol were grown to saturation. Then, a small volume from this overnight 

culture was inoculated in fresh antibiotic-free medium for an experimental culture such that its 

optical density at 600 nm (OD600) would reach to the value of interest after going through at least 

five doublings. Conventional swarm assays were performed using 100 mm x 15 mm Petri dishes 

(Fisher Scientific). In all conventional swarm assays, 16 ml medium per 100 mm-dish was used. 

In all microscopic swarm assays, 2.5 ml medium per 35 mm-dish was used. This ensured 

approximately the same medium thickness in the dishes of these two different sizes. 
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Table 4. 1. Strains and plasmids used in Chapter 4. 

Strain Description/Genotype Derived from Comment Reference 

P. mirabilis strains 
AMK50 TcR - PM7002 ATCC wild-type 

strain 

Stock of 

Laboratory 

of Minsu 

Kim 

AMK66 TcR AMK50 Constitutive expression of 

GFP from the plasmid pES02 

This study 

AMK79 TcR 

flhDC-gfpmut3b, AmpR 

 

AMK50 Transcriptional fusion of the 

gfpmut3b gene the native 

flhDC operon 

This study 

AMK84 TcR 

flhDC-gfpmut3b, AmpR 

rcsC 

AMK79 Transcriptional fusion of the 

gfpmut3b gene the native 

flhDC operon, 

Markerless rcsC in-frame 

deletion mutation 

This study 

E. coli strains 

EMK39 thi thr leu tonA supE recA 

RP4-2Tc::Mu Kanr  pir 

- SM10 pir [262] 

 

EMK40 araD139 ∆(ara leu)7697 

∆lacZ74 phoA∆20 galE 

galK thi rpsE rpoB 

argE(Am) recA1 

 

- CC118  pir [263] 

EMK45 F- 80dlacZM15 

(lacZYA-argF’)U169 

endA1 recA1 hsdR17(rk- mk-

)deoR thi-1 supE44 - 

gyrA96 relA1 

- DH5 

 

Stock of 

Laboratory 

of Minsu 

Kim 

NMK141 ∆motA, 

pTet-gfp (intC),  

pCon-tetR-lacIq (attB) 

- E. coli NCM3722 mutant with 

pTet driving the expression of 

gfpmut3b at the intC locus, 

pCon driving the expression 

of tetR at the attB locus 

Stock of 

Laboratory 

of Minsu 

Kim 

Plasmids 
pBluescriptII 

SK(−) 

ColE1 replicon lacZα; ChlR - - Stratagene 

pKNG101 R6K replicon mob+ 

sacB+R+; SmR 

- - [261] 

pLX7801 AmpR - pGP704 + flhD’C-lacZ [260] 

pES02 ColE1 replicon lacZα; ChlR pBluescriptII 

SK(−) 

pBluescriptII SK(−) + rrnBT-

pTet-gfpmut3b 

This study 

pES04 AmpR pLX7801 pGP704- flhD’C-gfpmut3b This study 

pES07 ColE1 replicon lacZα; ChlR pBluescriptII 

SK(−) 

pBluescriptII SK(−) + rcsC 

in-frame deletion fragment 

 

This study 

pES08 R6K replicon mob+ 

sacB+R+; SmR 

pKNG101 pKNG101 + rcsC (in-frame 

deletion mutation) 

 

This study 
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Table 4. 2. Primers used in Chapter 4. 

Primer Sequence (5’ → 3’)                                Purpose 

#305 TGCGAGAGTAGGGAACTGC  

#307 CCAAGTCTTTTATTTGTATAGTTCATCCATGCC 

   

rrnBT-pTet-gfpmut3b 

amplification from NMK141 

#318 TGGGTAGATTCGCTTATTAATTCTCAGC  

#342 ATAGCCCGGGTACTGAGCACATATGCAG  

#343 GCCGTCTAGAGGTTATTTGTATAGTTCATCCAT

GCC 

flhDC-gfpmut3b transcriptional 

fusion 

#403 CTCGTGGTCGTCCAATTATC  

#404 TCGCAAATAACCACCCTAA  

#405 GTGGCATAATCCAACGATT  

#406 ATCTCAGAGAGAACTGCGA  

#422 GCACTGGGTATCATGTTGTG  

#423 GCACTGGGTATCATGTTGTG rcsC in-frame deletion 

 

 

For strain construction, except noted otherwise, the plates were incubated at 37°C. E. coli strains 

were grown on LB with agar (1.5%), and P. mirabilis strains were grown on LB with 3.5% agar 

in order to prevent swarming. Antibiotic selections for E. coli were done at the following 

concentrations: 100 g/ml ampicillin, 25 g/ml kanamycin, 25 g/ml streptomycin, and 25 g/ml 

chloramphenicol. Antibiotic selections for P. mirabilis were performed at the following 

concentrations: 300 g/ml ampicillin, 20 g/ml kanamycin, 35 g/ml streptomycin, 200 g/ml 

chloramphenicol and 15 g/ml tetracycline. When appropriate, for blue/white colony screening 

 5-bromo-4-chloro-3-indolyl--D-galactopyranoside (X-Gal), whose reaction with LacZ proteins 

yields a blue colored product, was used at final concentration of 20 g/ml. 

 

4.5.5. Strain and plasmid construction. 

 
All PCR amplifications were done using the high-fidelity Phusion DNA polymerase (New England 

Bio Labs). All ligations were performed using the T4 DNA ligase (New England Bio Labs). All 
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enzymes used for restriction reactions were purchased from New England Bio Labs. In order to 

transform the cells with plasmids via electroporation, 8 ml of cells was grown to an OD600 of 0.3 

to 0.5 in LB broth. The cells were pelleted by centrifugation at 3,500 rpm for 5 min at 4°C before 

being washed three times with 5 ml of ice-cold 10% glycerol and finally resuspended in 110 l of 

ice-cold 10% glycerol per electroporation. Electroporations were performed in 1mm Eppendorf 

cuvettes with an Eppendorf Eporator electroporator. 900 l of pre-warmed LB broth was 

immediately added to the transformed cells. The cells were then incubated at 37°C for one hour 

shaking at 200 rpm before being plated on LB agar plates containing appropriate selection 

antibiotics. 

 

4.5.6. Microscope imaging and analysis. 

 
The optical microscope used in this study was an inverted one with an automated mechanical XY 

stage and auto-focus. This microscope was controlled by the MetaMorph software (Molecular 

Devices) and housed in a microscope incubator (InVivo Scientific) which maintained the 

temperature of samples at 37°C during the experiments. As specified in the figure captions, a dry 

or an oil immersion was used to obtain phase-contrast and fluorescence images of cells. A FITC 

filter set (Olympus) was used to image green fluorescent protein signals. Images were captured 

using a Neo 5.5 sCMOS camera (Andor),manually analyzed and prepared for publication using 

ImageJ [98]. For cell tracking, a freely available plug-in (“Manual Tracking”) was used. 

 

For the experiments yielding the data presented in Fig. 4.1d-f, a 3 µl aliquot from an exponentially 

growing culture of OD600= 0.01 was spread onto a pre-warmed 35 mm glass-bottom Petri dish 

(InVitro Scientific). A pre-warmed ~2.5 ml pad of 0.2x LB containing agarose (1%) was gently 
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placed on top such that it would fully cover the bottom surface of the dish. The lid of the dish was 

closed and sealed with parafilm in order to prevent evaporation of water. The dish was then 

immediately moved to the microscope pre-warmed to 37°C.  

 

For the experiments yielding the data presented in Fig. 4.2 and Fig. 4.3, experiments were started 

with a 4 µl aliquot in Petri dish based-devices developed in this study for a microscopic study of 

open-geometry samples. See below for detail. 

 

4.5.7. Development of a Petri dish based-device for multiscale studies of swarming.  

 
A not-to-scale schematic illustration was given in Fig. 4.2a. A 22 mm x 22 mm cover glass (with 

a thickness of 0.13 mm – 0.17 mm) was sterilized by ethanol and was coated with a flat agarose 

(in nanopore water) pad of thickness of 0.16 mm – 0.19 mm on one surface only. The agarose 

concentration used here was 2.5%. This agarose coated cover glass was stored at 4°C until it was 

used in an experiment. In the meantime, an 18 mm x 18 mm hole was drilled at the center of the 

bottom of a 35 mm Petri dish (Greiner). The cut edges of this hole were carefully sanded for 

leveling them with the both interior and exterior surfaces of the bottom of the dish. For sterilization, 

the dish was then soaked in pure ethanol for less than a minute and then rinsed thoroughly three 

times with autoclaved nano-pure water.  The day before the experiment, an LB agar medium was 

solidified in a separate sterile 35-mm Petri dish with an intact bottom and stored at 4°C until 30 

min before the experiment. 30 min prior to the experiment, this nutrient agar medium was carefully 

removed with the help of a spatula and placed into the aforementioned ethanol sterilized dish with 

a hole at its bottom. The lid of this dish was then closed and sealed with a piece of parafilm. The 

dish was flipped upside down, and 4 l of cells was center inoculated on the agar medium through 

the hole at the bottom of the dish. Once the inoculum fully dried out and the cells settled at room 
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temperature, the hole in the dish was closed with the agarose coated cover glass described above. 

The cover glass was immediately and firmly sealed to the dish with the help of a Scotch tape. 

Finally, the dish was moved to the microscope pre-warmed to 37°C. Note that this design leaves 

about an ~0.5 mm air gap between the bacteria to be studied and the bottom agarose coated-cover 

glass. This allows mimicking the regular swarm assay conditions in a set up that is compatible 

with a long working distance objective microscope. Here coating the interior surface of the bottom 

cover glass was extremely essential as water condensation would be blocking the view otherwise. 
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Chapter 5: Summary and Outlook 

 

Population diversification is a widespread adaptation mechanism to unfavorable environments [21, 

22]. It is well known that an isogenic population of bacteria can exhibit phenotypic diversification 

which can in turn have significant effects on ecological dynamics of populations and species [51]. 

Non-genetic phenotypic diversification plays a critical role in the adaptation of populations 

through catastrophic environmental changes [52, 53] and promotes sustenance of microbial species 

[54, 55]. In this dissertation, I have studied the origins and implications of non-genetic phenotypic 

heterogeneity in bacteria under three prevalent unfavorable environments– nutrient fluctuations, 

antibiotic exposure, and surface association. My work consisted of experiments, quantitative 

modeling and development of visualization tools. 

 

In the second chapter, we characterized the metabolic heterogeneity and its effect on phenotypic 

diversity in a clonal population of starved E. coli cells subjected to nutrient upshift. Our results 

revealed dynamic changes in phenotypic composition. We identified metabolic heterogeneity as a 

cellular variation driving such changes, and oxidative stress as a potential endogenous factor 

triggering such cellular variations.  

 

Importantly, our findings provide a fresh metabolic perspective for dormancy. Dormant cells are 

resilient to a variety of environmental stresses, and hence can contribute to recovery of a microbial 

population after disturbance [52, 55]. Although it has been generally assumed that dormant cells 

are metabolically inactive [153], their metabolism has not been experimentally characterized in 

detail. To our knowledge, this dissertation is the first study characterizing the three major 
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metabolic activities in single dormant bacteria; substrate uptake, catabolism, and anabolism. Our 

results identify a metabolic state of dormant cells; dormant cells are metabolically partially active, 

exhibiting active substrate uptake and catabolism but inactive anabolism.  

 

Furthermore, our results showed that oxidative stress induces dormancy through inactivation of 

anabolism. Aerobically growing cells constitutively produce reactive oxygen species such as 

hydrogen peroxide, superoxide anion radical, and highly reactive hydroxyl radicals mostly as a 

result of respiration through the use of molecular oxygen [264-266]. Hence, oxidative stress is a 

potential endogenous stress that most aerobic organisms may experience as a by-product of their 

respiratory activities, and thus could naturally contribute to the emergence of metabolic 

heterogeneity and dormancy.  

 

The emergence of metabolic heterogeneity and diverse growth responses as a result of nutrient 

shifts in isogenic cell populations have been reported only in a few recent articles so far. For 

example, isogenic populations exhibited metabolic diversifications driving the constituent cells 

into either a growing or a non-growing phenotype following carbon source downshifts in 

Lactococcus lactis [267] and E. coli [117] bacteria. As a eukaryotic example, in an isogenic 

Saccharomyces cerevisiae yeast population, dynamic changes in carbon source (glucose) levels 

led to the emergence of a metabolic heterogeneity and an associated growth arrest in a 

subpopulation of cells [268]. Together with these, our findings are expected to constitute one of 

the few pioneering examples in the field. 
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Cells, just to stay viable, must take up and catabolize nutrients. This “maintenance requirement” 

arises due to the fact that it takes substrates and energy to repair the chemical wear and tear of 

cellular materials, maintain the membrane potential, and fulfill other non-growth-related functions 

[154, 155].  How dormant cells could meet this maintenance requirement was not clear with the 

previous assumption of inactive metabolism. Now, our findings of active substrate uptake and 

catabolism in dormant cells illustrate how this maintenance requirement could be satisfied. 

Importantly, our findings that active substrate uptake and catabolism in dormant bacteria may 

provide a potential target for antimicrobial treatments. It is generally believed that antimicrobial 

agents target crucial steps for cell growth. Dormant cells, because of their lack of growth, can 

persist in the face of these agents as described in chapter three [195, 224]. Antimicrobial agents 

inhibiting nutrient uptake and catabolic pathways may make it difficult for dormant cells to meet 

the maintenance requirement and cause the loss of viability, contributing to eradication of bacteria.  

 

It was previously shown by Matthias Heinemann’ s group that an isogenic E. coli population can 

form non/slow-growing antibiotic tolerant-persister cells following a nutrient downshift [117]. It 

is worth noting that, as a follow-up to this, while the corresponding work presented in this 

dissertation was being independently conducted, the same group later published results supporting 

our findings and conclusions regarding the emergence of metabolic heterogeneity, diverse growth 

responses and persistence as result of nutrient shifts: Persister cells generated as a result of nutrient 

downshifts have a low metabolic activity in general, and their proteomic characterization suggests 

an enhanced catabolism and lowered anabolism compared to normally growing cells [118]. It is 

crucial to note that our study extensively differs from this study regarding the research 
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methodology and more broadly reports on the dynamic changes in the phenotypic composition of 

a population and factors that can cause those changes. 

 

In the third chapter, we quantitatively studied persistence, which is probably the most clinically 

relevant example of non-genetic phenotypic heterogeneity conferring a clonal bacterial population 

chances to evade an antibiotic treatment. Previous studies have found that persisters survive 

antibiotic treatment by virtue of staying in a non-growth (i.e., dormant) state during long periods 

of time (i.e., lag phase) [100-104]. While many genes that can alter the levels of persistence have 

been identified, there has been a substantial controversy regarding how these genes contribute to 

persistence [184-189]. As such, with the current knowledge of molecular mechanisms alone, we 

cannot predict the population dynamics of persistence, e.g., what percentage of cells in a 

population is persisters, and how their percentage changes over time. Here, quantitatively 

analyzing the lag phase of a previously starved E. coli cell population subjected to nutrient upshift, 

we found that the lag time distribution of persister cells is captured by a power-law decay with an 

exponent of nearly two.  

 

A myriad of different molecular processes can contribute to generation and rejuvenation of 

persisters [104, 159, 195, 208-223]. Then, what would be the time distribution of cells exiting from 

the persistent state? A minimalist’s approach would be to consider exiting from persistence as a 

random and independent (Poisson) event occurring at a constant rate. As we showed in chapter 

three in detail, the time distribution of a single Poisson event should follow an exponential decay. 

In the presence of a large number of distinct Poisson events, the event time distribution follows a 

power law decay with exponent of -2, agreeing very well with what we found experimentally.   
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Power law distribution is a widespread feature in many stochastic processes, observed in physics, 

microbiology, ecology, earth sciences and social sciences (e.g., self-organized criticality, 

earthquake, word usage, etc.) [201, 259, 269]. The most well-known examples of a power-law 

distribution reported for microbiological phenomena are the time distribution of switches in the 

rotational direction of bacterial flagellar motors in the presence of large fluctuations in the 

regulatory protein levels [270-272], typical organism size distributions in marine microbial 

communities [273], and waiting time distributions between the directional turns of single Bacillus 

subtilis and Serretia marcescens bacteria as they engage in a collective surface motion composed 

of alternating straight runs and turns [259]. In the latter example, the exponent of the power law 

time distribution was specifically measured as -2.5. Moreover, the distributions of slip 

displacements and durations in the stick-slip social motility of Myxococcus xanthus bacteria were 

shown to exhibit power-laws with exponents of -2.0 and -2.2, respectively [274]. Interestingly, a 

recent experimental ecology study also revealed power-law waiting time distributions with 

exponents ranging between -2 and -1 in the foraging activity of various marine predator animals 

[269]. Power-law distributions were also reported when fluctuations in many distinct processes 

such as voltage in a simple resistor, traffic flow, and human heartbeat were plotted against their 

frequency, and this is more generally known as 1/f noise [275, 276]. Overall, power-law 

distributions are ubiquitously found as a quantitative feature of fluctuations in nature, yet they may 

be underlain by different mechanisms for different phenomena. Our work here highlights the 

power of quantitative analysis for revealing some universal features of fluctuations at systems level 

and conferring a predictive power even without a detailed knowledge regarding the specific 

underlying mechanisms.  
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From a clinical point of view, a long tailed (power law decay in this case) probability distribution 

for exiting from dormancy (i.e., rejuvenation) is problematic, because it indicates that some 

persister cells can survive a very long period of antibiotic treatment, later rejuvenate and resume 

growth. Unfortunately, many conventional antibiotics have little efficacy for these cells during 

non-growth phase, killing them only once they rejuvenate. Indeed, previous analyses have 

suggested that bacterial populations as small as one or two cells can cause infections in human 

[277-280]. Also, it has been increasingly acknowledged that chronic diseases are underlain by poor 

eradication of infections, e.g., such as Pseudomonas aeruginosa in chronic cystic fibrosis [281], 

Helicobacter pylori in chronic gastric and duodenal ulcers [282], and Mycobacterium tuberculosis 

in chronic phthisis [283]. Therefore, for infections containing persister cells, a prolonged antibiotic 

treatment is required for eradication. This is why for infections by agents with a high number of 

persisters, e.g., Mycobacterium tuberculosis, antibiotic treatment lasts more than six months. It is 

also interesting to note that, it may be possible to draw some parallels between bacterial persistence 

and the persistence of human immunodeficiency virus (HIV) infections. Once established, HIV 

infection can be controlled by antiretroviral therapy (ART), which suppresses ongoing virus 

replication, but cannot be completely cured. This is believed to be due at least partly to formation 

of non-replicating reservoirs of viruses, against which ART is ineffective, which can later switch 

to a replicating state and relapse the infection after the drug therapy is stopped [284, 285]. In order 

to replicate, like any other virus, HIV needs to be in a replicating host cell, and hence HIV can 

remain latent inside long-living non-replicating cell types such as immune memory cells and 

neurons [285]. Then, later HIV can switch to a replicating state, promote and spread the infection 

via several different mechanisms identified such as activation of the host cell or being transferred 

to an active host cell through cell-to-cell contacts [285]. Hence, similar to bacterial persistence, 
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there can be multiple ways of entering into and exiting from a non-replicating state for HIV [285]. 

Therefore, it is curious to see if one would observe a power-law with an exponent close to -2, if 

the time distribution of HIV switching from a non-replicating state to a replicating state is 

characterized.  

 

The heterogeneous Poisson events explanation that we offer for the power law-decay-lag time 

distribution may imply a resourceful survival strategy for a bacterial population. It would increase 

the chance of survival, without necessarily requiring any investment of resources on the 

communication between individuals, in uncertain environments by rare but long-awaited 

transitions to a growth state, instead of hedging all its bets to a single rate constant Poisson kinetics 

whose arrival time distribution would decay relatively more rapidly. This is indeed in agreement 

with the well-known “microbial scout hypothesis” and previously reported experimental results in 

support of it; the microbes that have survived an environmental assault are mostly in a non-growth 

(dormant) state, and they transition to a growth state at random over a long period of time [120, 

286, 287].  

 

Our findings in the second and the third chapters also raise a concern about the colony formation 

assay: one of the most frequently performed techniques in microbiological research since its 

invention in late the 1800s by Robert Koch [81]. Studies of microbial dynamics critically rely on 

this assay. In this assay, microbial samples are spread on a nutrient-rich agar plate, and then the 

number of colonies formed after overnight incubation is counted to determine the number of viable 

cells in the original samples. This assay assumes life and reproductive ability equal to each other 

and is routinely used to determine microbial soil contamination or the presence of pathogens in 
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drinking water. When environmental microbes are plated on nutrient-rich agar plates, a large 

number of cells fail to form colonies. This is known as “great plate count anomaly”, and it remains 

a long-standing puzzle why these cells do not form colonies - are they dead or dormant [121]? In 

fact, natural environments are scarce in nutrients, and microbes spend most of their lifetime starved 

in their natural habitats [2]. Previous studies have shown that starvation induces oxidative stress, 

and cells that accumulated high levels of oxidative stress were shown to not form colonies on 

nutrient-rich agar plates [145, 148, 288]. These studies assumed that for these cells the inability to 

form colonies was due to the loss of viability. We showed that non-growing cells with partial 

metabolic activities (which can be induced by oxidative stress) in chapter two and persister cells 

in chapter three can have long lag phases (tens of hours) when transferred to a nutrient-rich 

environment. This invokes a careful assessment of the reliability of the colony formation assay 

results in order to report the number of viable cells in a sample. Given that the lag time kinetics of 

bacteria is also an active research topic in various other fields such as food safety industry [289, 

290], we believe that our findings can have broader implications. 

 

In the fourth chapter, we developed two visualization tools with the aim of studying the origins 

and implications of non-genetic population diversification in the context of surface associated-life 

of bacteria. We chose to use Proteus mirabilis as a model organism, because it exhibits a 

remarkably rich phenomenon as it colonizes an agar surface; highly coordinated spatially and 

temporally periodic range expansions at the colony level associated with cellular differentiation 

events [229-231, 236]. Although an extensive literature exists regarding individual factors 

affecting these differentiation events, how they collectively exert their effects at the systems-level 

remains an open question. Also, how such cellular level events are related to the colony level 
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dynamics is unclear. With the hope of addressing these issues, we genetically constructed a 

reporter of cellular differentiation in cells and a Petri dish-based device allowing visualization of 

the phenomenon across a wide range of scales from the single cell (m/s) to the colony level 

(cm/h). Preliminary experiments we ran using this experimental set-up suggest that nutrient 

gradient as a colony grows on an agar surface [59] may lead to the population diversification. 

Specifically, we believe that motility is induced by a mild nutrient limitation but repressed at 

locations where the nutrients are more severely limited. We are currently undertaking further 

research in order to thoroughly test this hypothesis. 

 

Lastly, non-genetic phenotypic diversity can have significant effects on evolutionary dynamics 

and vice versa. For example, recent studies of experimental evolution showed that phenotypic 

diversity may evolve under fluctuating environments [160] and further accelerates evolutionary 

adaptation to various other environmental challenges [161, 162]. It would be insightful to test the 

universal applicability of our findings and ideas by characterizing different bacteria and types of 

environmental challenges. 
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