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Abstract 
 
 
 

An Investigation into Managing SQL-Cardinality Constraints 
 

By Lesi Wang 
 
 
 

Constraint Satisfaction Problems (CSP) are commonly found in practice and finding 
effective representation language and efficient constraint solving techniques are 
important research areas. A recent development is the integration of CSP (specifically 
SAT) solvers with relational database systems to enable CSPs to be modeled using SQL, 
and solved within the database system. A key challenge in this integration is to keep the 
SAT encoding of SQL constraints small. In this work, we describe a divide-and-conquer 
technique for reducing the encoding of cardinality constraints. We present a number of 
experiments to show the improvements on performance. 
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Chapter 1

Introduction

Modeling and solving complex constraints over sets of relational data is impor-

tant in practice. The naive approach to developing such an application is to

implement ad-hoc procedural code that accesses and exports the data through

embedded SQL programming. A more elegant and reusable approach is to

use declarative programming languages that integrate constraint modeling with

database access in transparent ways. The most popular of these languages are

rooted in deductive databases and constraint logic programming. A natural ex-

tension that generalizes relational databases with quantifier free constraints is

constraint databases [5]. The main disadvantage of these solutions is that they

require users to have knowledge beyond traditional RDB and SQL expertise.

An intriguing alternative, recently proposed by Cadoli and Mancini [1], is to

extend SQL with the syntax necessary to express constraint satisfaction prob-

lems (CSP) specific constraints over relations. The key concept is the addition

of a non-deterministic GUESS operator that declares a relation whose extension

may be computed based on a set of constraints written in SQL.

The SQL Constraint Data Engine (SCDE) is an ongoing implementation
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project to explore the feasibility of the GUESS concept by encoding input CSPs,

written in SQL, into satisfiability problems (SAT). A SAT solver is employed

to solve the encoded instances, with solutions from the SAT solver decoded and

presented to the user by the SCDE. Several modifications to the syntax intro-

duced in [6] have been incorporated to improve usability and SQL consistency.

A CSP specification example in SCDE, shown in Figure 1.1, is to partition in-

coming class of Emory Oxford freshmen into seminar groups of equal size and

with balanced characteristics. We will refer to the problem as SGE and use it

as a running example.

The COMPUTABLE keyword specifies the solution table for the CSP. In this

case, a record in the computed result specifies an assignment of a student, pid,

to a group, gid. In the example, we assume 400 students of different ethnicities

and home regions. Our objective is to divide them into 25 freshmen groups of

16 students with group characteristics that are as balanced as possible. That

is, the number of students of each gender, ethnicity and home region should be

similar across the 25 groups.

To represent the problem in a database, 5 tables are used.

people(id, gender, geocode,diversity)
groups(id):
gender(trait, min, max)
geocode(trait, min, max)
diversity(trait, min, max)

Table people describes characteristics of individual students; table groups

contains the target groups that students will be assigned to; table gender,

geocode, and diversity specify the numeric constraints associated with the

different group characteristics. The constraint numbers are automatically cal-

culated from people by calculating the number of students of a particular trait

(e.g. female), and dividing by the number of groups. If the number divides
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Trait min max
Male 6 7
Female 9 10

Table 1.1: Constraint table gender

evenly, then min equals max in the record, otherwise min is the floor of the

quotient and max is the ceiling of the quotient; they differ by one at most. For

example, if we have 174 male students and 226 females students, then the gen-

der constraint table appears as in Table 1.1. Note that the min and max thus

computed are satisfiable constraints when the characteristics are considered in-

dependently. When multiple characteristics are considered together, a solution

where all groups characteristics differ by at most one may not be possible.

Figure 1.1 shows the corresponding constraints to SGE. Constraints C1 and

C2 ensure that each student can only be assigned in one target group, and each

target group has exactly 16 students, respectively. Constraints C11 through

C14 check the group characteristics of each trait.

A solution to the problem is a set of records in STUDGROUPS such that

each constraint is satisfied. A near solution is scored by the percentage of

the number of records that violate the constraints. More formally, let G =

{gender, geocode,diversity}, then for a computed instanceM of STUDGROUPS,

score(M) is given by the following equation. Remarks on notation: S =

M ./

pid=id
people, D(t, x, c) = |Fcount(pid) S

./

s.t=t.trait
s.x=groups.id

t− t.c|

Score(M) =

∑
g∈G

∑
gid∈groups

min(D(g, gid,min), D(g, gid,max))

Fcount(distinct gid)S

Suppose for instance, two groups in M would be 11 and 7 females, respec-

tively, and the remaining group characteristics all meet the requirements of the

constraints, for all groups. Then score(M) would be
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min(|11− 9|, |11− 10|)/400 +min(|7− 9|, |7− 10|)/400 = 3/400 = 0.75%

The Student Grouping Example (SGE) is an extreme example of a CSP in

which every constraint is a cardinality constraint. When translated into a SAT

instance, cardinality constraints frequently produce unacceptably large number

of clauses as well as large clauses using a standard encoding. In general, given a

set of SAT variables ( V1 .... Vn ) the constraint that at most m ≤ n variables are

true is a set of
(

n
m+1

)
negative clauses of length m+1. Conversely, the constraint

that at least m variables are true is a set of
(

n
n−m+1

)
clauses of length n-m+1.

Cardinality constraints are common and important in CSP, and as the above

example shows, can be easily represented in SQL by the aggregated COUNT func-

tion. Handling cardinality constraints efficiently in SAT solvers is an active area

of research [8] [7], and is also the focus of this thesis. Specifically, we address

the following question:

Problem Statement: What general heuristics are effective for reducing the

size of the SAT encoding from SQL constraint?

We present a simple divide-and-conquer technique and study its performance

on several problem instances related to the above example. Our approach breaks

up the problem by exploring the numeric constraints in the data set. Assuming

that cardinality constraints are naturally represented as data in tables like Ta-

ble 1.1, our technique should be generally useful to systems such as SCDE with

minimal modifications.
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CREATE COMPUTABLE TABLE STUDGROUPS (
pid INTEGER FOREIGN KEY REFERENCES PEOPLE(id),
gid INTEGER FOREIGN KEY REFERENCES GROUPS(id),

−−Each student must be assigned to exactly one target group
CONSTRAINT C1 CHECK (NOT EXISTS
(SELECT p.id
FROM people p
WHERE 1 <> (SELECT COUNT(*)

FROM studgroups s
WHERE s.pid = p.id))),

−− Each target group will have exactly 16 students
CONSTRAINT C2 CHECK (NOT EXISTS
(SELECT g.id
FROM groups g
WHERE 16 <> (SELECT COUNT(*)

FROM studgroups s
WHERE s.gid = g.id))),

−− The number of females and males in each group must be at least gender.min
CONSTRAINT C11 CHECK (NOT EXISTS
(SELECT grp.id, gen.trait, gen.min
FROM groups grp, gender gen
WHERE gen.min > (SELECT COUNT(*)

FROM studgroups s, people p
WHERE s.pid = p.id
AND s.gid = grp.id
AND p.gender = gen.trait))),

−− The number of females and males in each group must be at most gender.max
CONSTRAINT C12 CHECK (NOT EXISTS
(SELECT grp.id, gen.trait, gen.max
FROM groups grp, gender gen
WHERE gen.max < (SELECT COUNT(*)

FROM studgroups s, people p
WHERE s.pid = p.id
AND s.gid = grp.id
AND p.gender=gen.trait))),

−− The number of students from each geographic areas should be at least geocode.min
CONSTRAINT C13 CHECK (NOT EXISTS
(SELECT grp.id, geo.trait, geo.min
FROM groups grp, geocode geo
WHERE geo.min > (SELECT COUNT(*)

FROM studgroups s, people p
WHERE s.pid = p.id
AND s.gid = grp.id
AND p.geocode = geo.trait))),

−− The number of females and males in each group must be at most geocode.max
CONSTRAINT C14 CHECK (NOT EXISTS
(SELECT grp.id, geo.trait, geo.max
FROM groups grp, geocode geo
WHERE gen.max < (SELECT COUNT(*)

FROM studgroups s, people p
WHERE s.pid = p.id
AND s.gid = grp.id
AND p.geocode=geo.trait))),

−−............
−− Same constraints for hometown regions and other traits if required
−−............
)

COMPUTE TABLE STUDGROUPS;

Figure 1.1: SCDE specification of Student Grouping
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Chapter 2

Background

In this chapter, we provide an overview of the SCDE system and a related work

on divide-and-conquer to improve performance.

2.1 System Overview

The SCDE architecture is shown in Figure 2.1. It has two parts: a database

system (currently SQLite) and a SAT solver (currently SATO [3]). The SCDE

takes a CSP specification as the input and exports the solution table. The input

CSP is represented as a combination of internal tables and parse trees of the

SQL constraints. Users interact with the system in several ways: a commandline

tool for interactive problem development, a file input, a graphical user interface

(under development), and application program interfaces. To encode the input

problem as SAT, it first translates the computable table Q into an internal table,

vbmap, where each possible record of Q is associated with an unique integer id.

These unique id’s are used to construct clauses written in standard formats

accepted by all SAT solvers. The most common way of specifying cardinality

constraints in SCDE is by the SQL statement pattern shown in Figure 2.2.
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Figure 2.1: Structure of SCDE

CHECK (NOT EXISTS

(SELECT *

FROM Q, B1, ...., Bk

WHERE <c>

AND m op (SELECT COUNT(*)

FROM Q, B′1,...., B′j

WHERE <c’>)

))

Figure 2.2: SCDE Cardinality syntax

In the pattern, Q is the computable table, B’s are the base tables, m is an

expression that evaluates to a number and and op is a comparison such as <

and =. The SCDE translates such a constraint to a clause of the form:

(V1 .... Vn) op m

Each Vi is the SAT variable associated with a tuple of the computable table in

the result of the nested subquery. Recall the data of Table 1.1 and constraint

C2 of SGE from Figure 1.1. If V1...Vn are all variables associated with assigning

females to group1, then the translated constraint would appear as
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(V1 .... Vn) ≤ 10 and (V1 .... Vn) ≥ 9

9 is the minimum number that should be in any group of a solution that con-

siders only the gender constraint. As mentioned, a SAT representation of these

constraints typically require unacceptably large boolean formulas. To put this

in context, if given the problem of distributing 65 students among 10 groups

evenly. Each group should be assigned at least 6 students and at most 7 stu-

dents. These produce to
(

65
65−7+1

)
= 82,598,880 positive clauses of length 59 and(

65
6+1

)
= 696,190,560 negative clauses of length 7 by the standard encoding. Find-

ing heuristics to reduce this complexity is one of the purposes of the optimizer

(shown in Figure 2.1 by the gray box), and is the focus of this thesis.

2.2 Case study

The SCDE has been applied to several case studies including the ACC Basketball

Scheduling Problem [6]. The basic problem is to schedule a double round-robin

basketball tournament for 9 teams. Table 2.1 summarizes the performance of

several variants of the original problem using the SCDE. Since the schedule is a

double round-robin tournament, each team must play every other team twice.

The number of games that must occur between a match-up and a rematch is

indicated in parentheses. Problem generic contains the basic requirements of a

double round-robin tournaments with a rematch interval of 9 games. Problem P

is the simplified version of the original problem. Problem All contains all con-

straints of the original problem but with varying requirements for the rematch

intervals. Orig represents the original problem without modifications. It is in-

tuitively clear that the smaller the spacing requirement, the easier it is to solve

the problem. This intuition is reflected in the solving time. The experiments

show that compiling adds a modest but consistent overhead to the overall time

to find a solution. It is not surprising that a difficult to solve problem instance,
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generic P(5) P(6) All(4) All(5) orig
clauses 180K 174K 175K 175K 176K 182K
compile time 5s 5s 5s 8s 7s 7s
solve time 0s 177s 820s 403s 577s NA
solution found yes yes no yes no NA

Table 2.1: ACC performance

such as Orig, is also difficult for SCDE.

2.3 Improvement of SAT solver

Cardinality constraints are not the only source of large encodings in SCDE

specifications. A problem that contains many attributes and data values can

also produce a large number of clauses. An example is a course scheduling

problem which contains teaching preference of professors for courses and time.

Suppose 4 base tables with information about professors, courses, time and

rooms are given.

professor(pid ,name, rank, department, research_areas, #courses)
course(cid, department, topics, term)
time(tid, duration)
rooms(rid, capacity)

Assume the computable table is composed from the keys of each base table:

schedule(pid, cid, tid, rid).

Possible constraints on the solution include:

1. Each course cannot be assigned to different professors to teach

2. Course topics should match professors research interest and expertise.

3. Room and time has no conflicts.
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Previous studied in [4] and [6] introduced an approach to improve the solu-

tion time by incrementally encoding the problem as a series of smaller problems.

The basic idea is to divide the schema of the computable table into several sub-

schema, solve the most important sub-schema and its associated constraints

first, then use its solutions to guide the search for solutions to the next sub-

schema. We call the approach Attribute Decomposition. For the example above,

the computable table is divided into 3 sub-tables:

P1(pid, cid),

P2(pid, cid, tid),

P3(pid, cid, tid, rid).

The choice of attributes for each sub-problem is based on a simple analysis

of the ways in which the attributes are connected to each other in the SQL

constraints. In general, an attribute that is syntactically related to many other

attributes (i.e. appear together in a logical expression) is given a higher weight.

The weights of all the attributes are used to determine the choices of the schema

for the initial sub-problem. Experiments show that Attribute Decomposition

yields significant performance improvements. With a setting of 20 professors,

35 courses, 12 time slots, and 8 rooms, the brute-force method solve a solution

within 5.553 for 692,255 clauses, while Attribute Decomposition uses 2.829 and

only 85 + 92 + 579 clauses are involved. In another experiment with the same

settings, the brute-force one uses 44.67 seconds to compute 5,571,459 clauses,

but Attribute Decomposition only takes 1.218 for a total number of 173 + 92

+ 579 clauses [4].

To verify the robustness of the attribute selection heuristics of [4], we adapted

an algorithms that had been applied to informative retrieval[2] to calculate the

importance of the attributes. In this algorithm, an undirected graph is built

to represent the linguistic associations among terms that appear in constraints.
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The terms include table and attribute names, and are represented as nodes.

The associations are represented as edges. Each node is initialized with two

numbers: informative score (i-score) which represents the volume of information

associated with the term, and representative score (r-score) that indicates the

ability that a term can reduce a problem. The two scores are iteratively updated

until they stabilize, and the final aggregate score is taken to be the sum of

the r-score and the difference of the i-score and the initial i-score. Several

comparative studies including problems of airline scheduling, basketball and

course scheduling showed that the two ranking approaches agreed in their results

[6].
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Chapter 3

Divide and conquer by

traits

The Attribute Decomposition approach to divide a SCDE problem works well

when the computable table has a non-trivial number of attributes. For com-

putable tables that have only two or three attributes, as is the case with our

student grouping example (SGE), this approach is inapplicable. In addition,

the assumption that analyzing constraints can reveal useful information about

sub-problems does not necessarily hold. As our example demonstrates, specific

numbers associated with cardinality constraints are frequently stored as data

(e.g. the gender constraint table). Finally nearly all the constraints for the

example are written identically. This makes differentiation based on syntactic

analysis not particularly useful. As mentioned, the size of encoding given a

cardinality constraint is on the order
(

f(n)
g(m,n)

)
, where n is the number of pos-

sible tuples for the computable table, and m is the value associated with the

constraint that often indicates the number of records (of a certain type) that

must, or must not, appear in the solution. Hence the key to reducing the size
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n groups min negative
clauses

max positive
clauses

time total

39 10 3 7410 4 5757570 0 5764980
39 5 7 16313115 8 1059575660 0 1075888775
40 11 3 8580 4 7238088 0 7246668
40 9 4 88920 5 34545420 NA 34634340
40 7 5 639730 6 130504920 0 131144650
45 12 3 11880 4 14661108 0 14672988
45 6 7 48870360 8 5316978810 0 5365849170
45 7 6 8552313 7 1508872365 NA 1517424678
45 8 5 1191960 6 363036960 0 364228920
45 12 3 11880 4 14661108 0 14672988
50 6 8 599306400 9 61633669020 NA 62232975420
50 9 5 2072700 6 898959600 195 901032300
50 15 3 18375 4 31781400 NA 31799775
50 16 3 19600 4 33900160 NA 33919760
50 17 2 850 3 3915100 0 3915950
50 19 2 950 3 4375700 261 4376650
50 21 2 1050 3 4836300 NA 4837350
50 26 1 26 2 509600 0 509626
51 25 2 1275 3 6247500 NA 6248775
51 26 1 26 2 541450 NA 541476

Table 3.1: Tests for the size of the SAT encoding and the performance of SATO

of an encoding is by lowering the values of n and m. This is the basis of our

approach described in this chapter.

As an initial step experiment to understand how large of a formula SATO can

handle efficiently, we experimented with various values for n and m. Table 3.1

shows some of the results. The values for min and max are the ceiling and

floor for the size of each group, respectively. NA indicates that no solution was

found quickly (within 10 minutes), and 0 indicates that a solution was found

immediately.

All complete SAT Solvers adopt the basic Davis-Putnam Longman-Loveland

(DPLL) procedure. While some solvers incorporates more advanced search

heuristics, it is likely that all have limits that are comparable or within some
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constant factor of SATO’s performance.

The data reveals some patterns, but are unfortunately inconclusive. A com-

parison of numbers of variables versus time consuming to provide a solution is

shown in Figure 3.1. We find very few instances are solvable when number of

variables exceeds 800 (e.g. 40 students and 20 groups), except for very small

problems. For number of variables smaller than 800, the difficulty of the prob-

lem becomes harder to predict. For our experiments (discussed in Chapter 4),

we generally aim to divide each problem until number of variables is substan-

tially smaller than 800, and when associated with the number of groups, n is

generally assigned to be 40.

Figure 3.1: Comparison of #variables and solving time

To obtain smaller values of n and m, the straightforward way is to divide

the students into sufficiently small subsets, obtain solutions for each subset, and

14



then combine these to form the overall solution. One possibility is to divide the

initial data set randomly into evenly sized subsets and calculate all constraints

at once, but a small set of experiments show that this is infeasible. When we

use an example of 400 students with 2 traits for gender, 8 traits for geocode

(i.e., home region), and 7 traits for diversity, 75% of the subsets produce no

solutions and the total time to calculate a unsolvable subset costs more than 30

minutes.

A better approach, it turns out, is to divide students along traits. Each trait

induces a sub-problem that can be solved independently from the other traits.

This process can be repeated for each sub-problem. Merging of solutions occur

in the reverse of the order in which the traits are considered.

Figure 3.2: Divide by trait values

For SGE shown in Figure 1.1, if we first divide along gender as shown in
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Figure 3.2, this produces 2 sub-problems of 226 females and 174 males. Note

that by dividing on gender, the gender constraints no longer apply on the sub-

problems; they are absorbed by the constraint C2 that specifies the size of each

group, but modified to reflect the size of the new problems. Since the data

set of the sub-problem may not divide evenly into the number of groups, usu-

ally the new group size constraints also need to be represnted as a range. The

SCDE specification for the sub-problem is shown in Figure 3.3. Similarly, the

cardinality constraints specified in the base tables for diversity and geographic

origins would need to be adjusted appropriately. If we continue to divide the

sub-problems along other traits, then the final sub-problem would only be con-

strained by two basic constraints: that each student is assigned to exactly one

group, and the size of each group.

As a comparison of the reduction in the number of clauses, a subset that

has only 27 Asian, SW and female students over 25 groups (and with only the

two basic constraints) can be encoded in 8,800 clauses, a substantial reduction

to the 3.84408E+19 clauses in the original problem.

To merge the solutions of the sub-problems, we adopt a simple greedy al-

gorithm that sorts the groups with respect to the group sizes. The group of a

smaller size is combined with a group of a larger size. A more precise descrip-

tions of the complete divide-and-conquer algorithm is shown in Algorithm 1,

which is on the next page. We will refer to this by the name DC.

In the algorithm, we assume a set of base tables. Input B denotes the distin-

guished base table that represent the elements to be partitioned. In particular,

B contains individual traits that form the basis for the group characteristics.

Note that merging is performed iteratively where each iteration merges a

solution with its neighbor. The merged solutions are put back into the beginning

part of the list S[], and the next round of merging only traverses half of the list.
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Algorithm 1 DC(P ) //DC: divide-and-conquer
Input: P is the input problem (Q,B,R, T ) with Q: the computable table B:

base table of elements to be partitioned R: constraints associated with the
problem P T : an ordered list of individual characteristics of B

1: if size(B) < limit(α,β) then
2: encode and solve P by SCDE
3: decode and return the solution;
4: else
5: let S[]: a list to hold temporary solutions (S[][] is the list of groups for

each solution)
6: let C: the first (i.e., the most important) characteristic in T
7: // divide and solve P along the traits of C
8: T ′ = T − C;
9: R′ = R with cardinality constraints associated with C removed

10: i = 0;
11: for each trait v in C do
12: B′ = σB.C=v(B);
13: P ′ = (Q,B′, R′, T ′);
14: S[i] = DC(P ′);
15: i = i+ 1;
16: end for
17: // merge the solutions
18: s = number of traits in C;
19: repeat
20: z = 0;
21: for i = 0, j = 1; i < s− 1; i = i+ 2, j = j + 2 do
22: sort the groups in S[i] in increasing order
23: sort the groups in S[j] in decreasing order
24: for k = 1 to the number of groups do
25: S[z][k] = merge S[i][k] with S[j][k]
26: end for
27: z = z + 1;
28: end for
29: s = d s / 2e;
30: until s = 1;
31: return S[0];
32: end if

17



CREATE COMPUTABLE TABLE STUDGROUPS (
pid INTEGER FOREIGN KEY REFERENCES PEOPLE(id),
gid INTEGER FOREIGN KEY REFERENCES GROUPS(id),

−−Each student must be assigned to exactly one target group
CONSTRAINT C1 CHECK (NOT EXISTS
(SELECT p.id
FROM people p
WHERE 1 <> (SELECT COUNT(*)

FROM studgroups s
WHERE s.pid = p.id))),

−− Each target group have no more than dtotal/groupse students
CONSTRAINT C3 CHECK (NOT EXISTS
(SELECT g.id
FROM groups g
WHERE dtotal/groupse < (SELECT COUNT(*)

FROM studgroups s
WHERE s.gid = g.id))),

−− Each target group will have no less than btotal/groupsc students
CONSTRAINT C4 CHECK (NOT EXISTS
(SELECT g.id
FROM groups g
WHERE btotal/groupsc > (SELECT COUNT(*)

FROM studgroups s
WHERE s.gid = g.id))),

−− The number of students from each geographic areas should be at most geocode.max
CONSTRAINT C13 CHECK (NOT EXISTS
(SELECT grp.id, geo.trait, geo.max
FROM groups grp, geocode geo
WHERE geo.max < (SELECT COUNT(*)

FROM studgroups s, people p
WHERE s.pid = p.id
AND s.gid = grp.id
AND p.geocode = geo.trait))),

−− The number of females and males in each group must be at least gender.min
CONSTRAINT C14 CHECK (NOT EXISTS
(SELECT grp.id, geo.trait, geo.min
FROM groups grp, geocode geo
WHERE gen.min > (SELECT COUNT(*)

FROM studgroups s, people p
WHERE s.pid = p.id
AND s.gid = grp.id
AND p.geocode=geo.trait))),

−−............
−− Same constraints for home regions and other traits if required
−−............
)

COMPUTE TABLE STUDGROUPS;

Figure 3.3: SCDE specification of sub-grouping SCDE specification for sub-
problems after dividing by gender

Hence, if s the number of traits and g the number groups, then log2(s)g number

of merges are required overall. If the number of traits is not even, then we

assume that the result of merging the last solution in S[] is just the solution
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itself.
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Chapter 4

Experiments

4.1 Case studies

To experiment, we created several data sets shown in Table 4.1. Each data set

has 3 characteristics: gender, ethnicity and home regions that have 2, 3 and 4

traits respectively. The trait Ordering column describes the order in which the

division is applied to the original problem.

Data set Gender Ethnicity Home region Trait #
F/M NW/SW/NE/NW W/B/A Ordering groups

1(200) 95/105 54/54/52/40 51/106/43 G.D.S. 10
2(200) 105/95 45/65/50/40 20/65/115 G.D.S. 10
3(300) 146/154 81/80/79/60 143/83/74 G.D.S. 20
4(300) 141/159 92/42/38/128 77/158/65 G.D.S. 20
5(400) 214/186 90/130/100/80 40/130/230 D.G.S. 25
6(400) 201/199 108/106/106/80 192/110/98 G.D.S. 25

Table 4.1: Data sets

As summary comparison of the time to solve each problem by the divide-

and conquer approach is shown in Figure 4.1 and the corresponding result data
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details are in Table 4.2. By comparison, when the entire problem is encoded

and submitted to SATO - the brute-force approach, only data 1 produced a

solution, after 16 hours of computing time. Computing time for all other data

sets failed to terminate after 24 hours.

The computing time required for divide-and-conquer is consistent and does

not change much in relation to the problem size. The reason that data set

1, which requires much more time than other, larger data sets to compute is

because of the existence of a sub-group that contains 35 students. This sub-

problem alone took 67 seconds to solve. With respect to the score of each

solution, we see that it does not grow significantly as the size of problem increase.

The worst case result is data set 5 with a score of 15.25%. A closer inspection

of the solution shows that group characteristics are quite even, however; the

maximum variance for any trait is 3 among the 25 groups. Column Ordering is

the order of input trait to Algorithm DC(P), is the order of input trait, where

S is gender, D is diversity and G is the geocode.

Data set Time(s) Score
1 73 0.00%
2 3 5.50%
3 7 10.67%
4 7 9.00%
5 8 15.25%
6 8 5.00%

Table 4.2: Performance table

A more detailed analysis of the effect of trait ordering is shown in Table 4.3

data set 1. We observe the following: a characteristic with a smaller difference

among its traits are generally better balanced with respect to the specified con-

straint in the solution. This suggests a heuristic for ordering traits: dividing the

data set along the trait with the largest variance first may provide a more bal-

anced solution overall. For a CSP that involves multiple cardinality constraints
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Figure 4.1: Time/Score performances

over multiple traits, this ordering may be automatically calculated or specified

by the user.

4.2 A Real World Example

Returning to the original Emory Oxford SGE, which motivated our work in this

thesis, the 400 students are to be partitioned among 25 classes, and they come

from 8 home regions and are made up of 7 ethnicity groups.
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Data set Order Score
1 G.D.S 0
2 G.S.D 5%
3 D.G.S 20%
4 D.S.G 5%
5 S.D.G 10%
6 S.G.D 15%

Table 4.3: Ordering comparision

Table 4.4 shows a time comparison of our divide-and-conquer approach to

the brute-force method. For the problem, we only included min-cardinality

constraints. If we add the max-cardinality constraints to the problem, the brute-

force method almost never return with an answer within a reasonable amount of

time. Even with only the minimum constraints, the table shows that the brute-

force approach still took far longer than the divide-and-conquer approach which

included both and max- and min-cardinality constraints. And while the overall

scores are similar, the variance of each characteristic among the groups are

generally smaller by the divide-and-conquer approach. This is shown in Table

4.5. For each characteristic in the table, the associated traits are represented as

numbers in the second column. For example, 1 represents female for gender. The

columns Gmin and Gmax represent the min- and max-cardinality constraints,

respectively, for each group characteristic considered in isolation. That is, if

the characteristic is the only constraint for the problem, then an ideal solution

will have, for each group, at least Gmin and at most Gmax elements with that

characteristic. The next two columns, DCmin and DCmax, show the actual

range of values in the solution produced by Algorithm DC(P). For instance, the

the smallest number of females in a group is 5 and the largest number is 9. The

last two columns, BFmin and BFmax represent the same information using the

brute-force approach.

From the data, it is intuitively clear that the solution of the divide-and-
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brute-force divide-conquer
time(s) 261 25
score 49.75% 42.5%

Table 4.4: Solutions comparison for Oxford students

characteristic trait Gmin Gmax DCmin DCmax BFmin BFmax

gender 1 6 7 5 9 4 9
2 9 10 8 12 7 12

geocode

1 7 8 6 9 5 11
2 3 4 1 6 2 6
3 1 2 0 4 1 4
4 0 1 0 4 0 2
5 0 1 0 2 0 2
6 0 1 0 2 0 3
7 0 1 0 3 0 3
9 1 1 0 2 0 3

diversity

1 0 1 0 1 0 1
2 4 5 4 6 2 10
3 2 3 2 3 1 6
4 0 1 0 5 0 3
5 1 2 0 5 1 3
6 6 7 5 7 4 10
7 0 1 0 1 0 1

Table 4.5: Comparison of ranges for Oxford students

conquer are better balanced. While the greatest differences in the group char-

acterstics using the brute-force method are 8, 6, and 6 (for diversity 4, 6,

and geocode 1), the largest differences using the divide-and-conquer are 5, 5,

and 5 (for geocode 2, diversity 4 and 5).
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Chapter 5

Conclusion and future work

We have introduced a simple divide-and-conquer technique to reduce the size

of the SAT encoding of cardinality constraints in SQL. The technique divides a

problem along traits of elements to be grouped based on constraints of the prob-

lem. This reduces both the size of the data and the number of constraints to be

solved in the resulting sub-problem. Experimental comparison with the brute-

force approach on a prototypical grouping problem shows that our technique

can provide solutions faster and more accurately than the brute-force approach.

Many questions remain. We discuss here a few of the more important ones.

1. Our experiments have focused on problems that contain only cardinality

constraints. It is not clear, however, how Algorithm DC(P) can be inte-

grated with other heuristics in the presence of other types of constraints.

In particular, it is possible that there exist non-cardinality constraints

that are incompatible with the subproblems that Algorithm DC(P) gen-

erates. Designing techniques to simultaneously address both cardinality

and non-cardinality constraints equitably is an important research issue.

2. The merging step in Algorithm DC(P) is, by itself, an interesting con-
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straint satisfaction problem. Currently, the greedy algorithm only takes

into account the overall size of groups when merging. Consequently,

smaller group characteristics may not be well balanced. An interesting

question is how the balance of both sets of constraints can be effectively

maintained during merge. Relatedly, analyzing and establishing a bound

for the best balance across all groups is an interesting theoretical question.

3. Some recent work on cardinality constraints have introduced more com-

pact SAT encodings [8]. A comparative study of the performance between

such alternative encoding and our divide-and-conquer may provide useful

guidelines for optimization techniques in SCDE.
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