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Abstract 
 

Introduction to Survival Analysis Methods in the Presence of Competing Risks 
By Emily A. Gebhardt 

 
Competing risk scenarios, where a subject may be at risk for multiple events, 
occurs frequently in practice. Competing risks are events that may occur prior to 
the event of interest, thus, changing the probability of accurately observing the 
event of interest. Conventionally, when focusing on a single failure time, the 
complement of the Kaplan Meier approach estimates cumulative incidence and 
Cox Proportional Hazards regression model the risk of an event for fitted 
covariates. In the presence of competing risks, these techniques are often used by 
practitioners, where all events aside from the event of interest are considered to be 
censored. However, these methods are known to overestimate parameters 
(cumulative incidence function etc.) of interest, regardless of if the competing 
events are independent. Therefore, to calculate the probability of an event of 
interest, newly developed methods that are specific to competing risks should be 
used. To fit a regression model with competing risks, two different hazards can be 
used: cause-specific or subdistribution hazards. The former estimates the 
instantaneous rate of the event among those who are currently risk free, while 
subdistribution hazards estimate the immediate risk for subjects that are event 
free, including those who experienced a competing event at a previous time. We 
applied these methods to study the effects of competing risks: first hospital 
acquired infection and hospital mortality among patients in the surgical intensive 
care unit. A total of 56 patients developed hospital acquired infection, while 12 died 
in the hospital. We illustrated the upward bias of the Kaplan Meier method as 
compared to the cumulative incidence function for both events of interest. 
Modeling the cause-specific and subdistribution hazard we found the rate of 
hospital acquired infections decreased with an increase in white blood cell count 
(SDHR: 0.96, 95% CI: (0.93,1.00) p=.042), and higher Sepsis-related Organ 
Failure Assessment scores at entry increased the rate of mortality (SDHR: 1.17, 
95% CI: (1.01,1.36) p=.032). Noticeably, both significant factors occurred only in 
the subdistribution hazard models. These findings indicate studies with competing 
risks should implement the cumulative incidence function and both the cause-
specific and subdistribution hazard models to avoid incorrect inference. 
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1. Introduction 
 

1.1 Survival Analysis 
 

In the field of public health research, survival analysis, also known as time-to-event 

analysis, is a compilation of statistical methods which examine the timing of health-

related events. To formulate the survival problem, the investigator needs to determine 

the event of interest (e.g. stroke, heart attack, death), the time of its origin (e.g. time of 

surgery, hospital admission, birth), and the time scale used to measure the interval 

between the event of interest and the time of its origin. It should be noted that the event 

of interest does not necessarily need to be a morose outcome. The event can also be 

something positive such as the remission of a disease.  

 

Given a specific time, 𝑡, the probability of surviving past 𝑡 is the conditional measure of 

the subject’s continuing risk for the event in question. In order to be risk free at a given 

time, the subject must not have experienced the event even slightly before the time of 

interest, i.e., those experiencing the event at the time of interest are still said to be at risk 

for the event.1 The subjects still at risk are said to be part of a risk set. To determine the 

interval of time for any specific event, the investigator must first determine a time of 

origin. This is typically the time the observation of the event begins.2 For example, in 

order to analyze the incidence of death attributable to a medical treatment, researchers 

should follow patients from the time of their entry into an intensive care unit (ICU) until 

they leave or die. If a patient dies in the ICU, the researcher records the time between 

entrance into the ICU and death. If, on the other hand, the patient survives and leave the 

ICU at the end of the specified observation period, he/she is considered to be censored. 
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Censoring is a fundamental concept in survival analysis. Censoring occurs when some 

event times are known to have occurred only in certain intervals. There are many 

different types of censoring, but the most common is right censoring. More specifically, 

this study will analyze data using random right censoring.  

 

Random right censoring is a subtype of right censoring. It occurs when the observation 

time ends before the event of interest takes place, thus making it impossible to observe 

both the failure time and censoring time. Subjects’ censoring times may be different due 

to the length of follow-up ranging between subjects and unspecified censoring times. 

This typically occurs in clinical trials. Patients may also be censored when there is loss to 

follow up since the time of the event of interest would be unknown. In this eventuality, 

the analysis will continue without knowing when the event of interest may occur for the 

censored patient. Thus, fully reliable survival data must include follow-up time and 

status, i.e., the occurrence of the event in question or the designation of censored for all 

patients.  

 

When conducting survival analysis, it is important to determine which type of censoring 

is to be used and how the censoring will alter estimations. Standard survival analysis 

techniques assume non-informative independent censoring. However, in most studies, it 

is possible for patients to experience more than one type of event. There is the possibility 

that a patient may die from causes unrelated to the event of interest, as, for example, the 

occurrence of a severe infection. An extension of survival analysis methods has been 

created to account for the occurrence of such multiple events. Such events are termed 

competing risk events. 3  
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1.2 Competing Risks 
 

In general, competing risks are events that occur prior to the event of interest, thus, 

changing the probability of accurately observing the event of interest. Depending on the 

environment in which the study is set and the specific event of interest, there can be 

multiple competing events. Traditional survival analysis methods assume that competing 

events are absent.2 Since conventional time-to-event analysis ignores competing events, 

such analysis is known to overestimate the true probability of the event of interest. 2,4-8 

 

Other issues, however, can occur when analyzing survival data, especially when 

competing risks have been censored. One example would be violating the assumption of 

non-informative censoring. Under standard methods, if a decision has been made to 

establish multiple events, the competing risks must be independent of each other. In 

order for competing risks to be independent of each other, however, any information 

about a subject’s risk of experiencing one type of event cannot provide further 

information about the subject’s risk for another type of event.2 Nevertheless, there is no 

fully reliable method to test for such independence and in biomedical and public health 

data it is rare than two events are ever fully independent of each other.5  Furthermore, by 

censoring subjects at the time of the competing risk, even if the competing events are 

independent, analysts are creating an environment where only the event of interest can 

occur. In sum, using standard survival methods in the presence of competing risks may 

lead to incorrect conclusions. 

 

The awareness of competing risks has become increasingly common in recent years. 

Many studies have begun to analyze the relevance of different approaches to account for 

competing events. In these studies, investigators repeatedly point out the naïve use of 
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standard estimating techniques in relation to competing risk probability, concluding its 

overestimation of the probability of any event, competing or of interest.2,4-10 In 2009, 

Wolbers et al. deepened the idea of overestimation by proposing conventional hazard 

modeling procedures overestimated risk by 10% in their analysis. They claim that 

overestimation of probability is well known, whereas, modeling is not. Further 

attributing this novel discovery to the influence of competing risks in their study 

population. 9 Discovering a change in risk of the event of interest was not a rarity in these 

analyses, especially if the competing risk is linked to or a consequence of the primary 

disease. 

 

Numerous studies conclude these novel inferences would not have been attained if the 

competing risk was ignored2,10-12, albeit, studies using these models require careful 

interpretation, but should be implemented in any situation where competing events 

exist. Conversely, Schoenfeld (2005) argues the use of competing risk analysis in ICU 

outcome studies is not warranted. He articulates the issue with focusing on the time to 

the event instead of whether the event occurs. Ultimately concluding that accounting for 

competing risks in the ICU can mistake longer survival with improved survival.13 

 

The purpose of this thesis is to further develop the findings of previous studies stated 

above. We will illustrate the application and results of the differing methods using a 

prospective, randomized, controlled, double-blind, parallel-group, intent-to-treat, 

multicenter investigator-initiated Phase III study. First, we will introduce conventional 

survival analysis methods for estimating the probability of an event. The shortcomings of 

conventional survival analysis when competing risks are present will then be explained. 

Secondly, we will describe a methodological solution for analyzing event probability 

when competing risks are taken into account and show the benefits of applying such 
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methods. Thirdly, we will compare and interpret how predictive models can be adapted 

using the corrected probability methods in the presence of competing risks.  

 

2. Methods 
 

2.1 Estimating the Probability of a Single Event 
 

When characterizing an event, the common functions of interest are: the survival 

function, hazard function, probability density function, and the mean residual lifetime. 

Thus, calculating the probability of an individual surviving up to a certain time, the 

instantaneous risk of an event, the probability of an event occurring at a specific time, 

and the mean time to the event, respectively.14 Using the interrelationships between 

these equations, one can algebraically manipulate the others to provide instrumental 

information about the hazard and probability of an event at or before a certain time in 

forms of the cumulative hazard function and the cumulative distribution function.  

 

Assuming a baseline origin and continuous variables, one can define the time from origin 

to a single event of interest as 𝑇, such that 𝑇 ≥ 0. The survival function, 𝑆(𝑡), is a 

monotone, non-increasing value that describes the probability of an individual surviving 

beyond time 𝑡: 𝑆(𝑡) = 𝑃(𝑇 > 𝑡), where 0 ≤ 𝑆(𝑡) ≤ 1. At the start of the follow-up period 

the survival function will be equal to one and decrease based on the occurrence of this 

event until equaling zero as time approaches infinity. The survival function is 

complementary to the cumulative distribution function, i.e. 𝐹(𝑡) ≡ 𝑃(𝑇 ≤ 𝑡) = 1 − 𝑆(𝑡). 

With non-informative right censoring, one can use the Kaplan-Meier (KM) estimator, 

also known as the product limit method, to estimate the survival function. This classic 

non-parametric approach, is estimated by 
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�̂�𝐾𝑀(𝑡) = ∏ (1 −
𝑑𝑘

𝑛𝑘
)𝑛

𝑘: 𝑡(𝑘)≤𝑡      ( 1 ) 

      

where 𝑛𝑘 is the number of subjects at risk, including those who have experienced an 

event (i.e. censoring or death), at time  𝑡(𝑘), and 𝑑𝑘 is the number of failures at time  𝑡(𝑘). 

Using the KM survival estimate and its relationship to the crude incidence of events, one 

can estimate the incidence of an event over the follow-up period. Through algebraic 

manipulation and discrete lifetimes, the cumulative incidence estimate can be rewritten 

as the following5 

�̂�𝐾𝑀(𝑡) = 1 − �̂�𝐾𝑀(𝑡) = ∑
𝑑𝑘

𝑛𝑘
𝑘: 𝑡(𝑘)≤𝑡 �̂�𝐾𝑀(𝑡𝑘−1).                    ( 2 ) 

This function, otherwise known as the Kaplan Meier complement, describes the crude 

incidence of the event of interest prior to or at a given time. 

 

2.2 Modeling Hazards of a Single Event 
 

Analyzing the survival based on a specific event over the follow-up period is an 

important summary concept, but, often a matter of greater interest is how survival 

changes based on the adjustment of concomitant information. One approach to 

modeling the population heterogeneity explained by covariates is the Cox Proportional 

Hazard (CPH) Model. The major benefit of Cox’s model is it is non-parametric, meaning 

is does not require any distributional assumptions on survival for the data. Instead, it 

utilizes the hazard function and the exponential function to evaluate covariate effects. 

 

The hazard function, which is a function of time, describes the instantaneous risk of 

failure and is defined as: 

ℎ(𝑡) =  lim
∆𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡 | 𝑇 ≥ 𝑡)

∆𝑡
.                                                ( 3 ) 
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This definition provides the probability of experiencing failure immediately, i.e. time ∆𝑡, 

after time 𝑇, given that the observed is still at risk at that point in time. With interest in a 

single event, the CPH regression model can be written as 

 ℎ(𝑡|𝒁) = ℎ0(𝑡) ∙ 𝑒𝜷𝑇𝒁,                                                                 ( 4 ) 

 

where 𝒁 is a p-dimensional vector of explanatory variables with corresponding 

regression estimates, 𝜷, and ℎ0(𝑡) is the baseline hazard when 𝒁 = 0. When using the 

hazard ratio to compare subjects with distinct values of 𝒁, the ratio can be interpreted as 

the relative risk, calculated by exponentiation of the associated coefficient estimates.2 

For example, let 𝑍1 and 𝑍2 be representative of two different variables. The hazard ratio 

can be equated to 

ℎ(𝑡|𝑍1)

ℎ(𝑡|𝑍2)
=

ℎ0(𝑡) ∙ 𝑒𝜷𝑇𝑍1

ℎ0(𝑡) ∙ 𝑒𝜷𝑇𝑍2
=  𝑒𝜷𝑇(𝑍1−𝑍2) 

If the hazard ratio is greater than 1, there is an increased risk for the occurrence of that 

event in subjects where 𝑍1 is present, and a ratio less than one means there is a reduction 

in the hazard of that event in subjects where 𝑍1 is present. A hazard ratio of 1 means 

there is little to no difference in the effect of the covariates on the risk of the event.  

 

The model can also be written in a log-linear format: log (ℎ(𝑡|𝑍)) = log (ℎ0(𝑡)) + 𝜷𝑇𝒁. 

With the logarithmic transformation, the regression coefficients can be directly 

interpreted as log-hazard ratios.2,5 This is the typical format when using software to 

model the data, so results must be interpreted accordingly. With the hazard function 

from (5), the CPH model can be related to the survival function by 

𝑆(𝑡|𝒁) = [𝑆0(𝑡)]𝑒𝜷𝑻𝒁
.                                                           ( 5 ) 
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Here 𝑆0(𝑡) is the baseline survival function when the covariates are equal to 0. Therefore, 

under CPH model, one can make inferences about the hazard and survival for 

individuals, and between individuals, based on their covariate values. As said before, this 

approach is commonly used because it does not rely on any distributional assumptions 

and, similar to the KM estimate, the CPH model assumes non-informative censoring. 

Differently from other modeling techniques, it does assume that the hazard ratios for two 

individuals with specific covariate values are a constant independent of time, hence the 

proportional hazard title.  

 

2.3 Estimating the Probability of Multiple Events 
 

In the presence of competing risks, we can use the aforementioned methods to calculate 

the probability of events and model hazards. Similar to the occurrence of a single event, 

it is crucial to define a variable to record the failure time from any event and include an 

indicator variable for which type of event occurred at that time (e.g. death, stroke, 

censored). Henceforth, let  

𝑇 = min(𝑋1, 𝑋2, … , 𝑋𝑑 , 𝐶), 

where 𝑋𝑑 represents a failure time from the 𝑑𝑡ℎ event and 𝐶 is the random censoring 

time, and 𝛿 for which type of event occurred at that time (e.g. death, stroke, censored), 

i.e.  

𝛿 = {
𝑖   if 𝑇 =  𝑋𝑖 
0   if 𝑇 =  𝐶𝑖

, 𝑖 = 1, … , 𝑑. 

In the interest of estimating the probability in the presence of competing events, one 

could use the KM method by treating all other competing events as censored. 

Nevertheless, using the KM method in the presence of competing risks can overestimate 

the incidence function of an event.2,4-8 This is because the KM estimate calculates the 
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probability of one event without taking into consideration the possibility of any other 

event occurring.7 This implies that the risk of an event is the same among all subjects, 

even those that have already experienced a competing event.4 Moreover, if one is to 

remove the possibility of a specific event, the risk of the other events occurring will 

remain the same.  

 

By way of illustration, assume there are two events being considered, death, the event of 

interest, and stroke, the competing event. The probability of a stroke can be calculated 

using equation (2); however, the risk set and the number of failures will account for 

patients still at risk for having a stroke. In other words, subjects who have died will be 

censored. On the other hand, the calculated incidence of dying will censor those who 

have had a stroke. Over time, the KM estimate of the death will eventually be close, or 

equal, to 1, as would the estimate of the probability of stroke. Consequently, the 

cumulative probability of failure due to any cause (death or stroke) sums to more than 1, 

proving that the estimates are not probabilities. Moreover, even if the competing events 

were said to be completely independent of each other, there would still be a bias in the 

KM cumulative incidence estimate.2 For this reason, competing risks endpoints are 

commonly estimated using the Cumulative Incidence Function.15 

 

2.4 Estimating the Probability of an Event with Competing Risks 
 

The Cumulative Incidence Function (CIF) is an extension of the KM cumulative 

incidence. The concept of the CIF is similar to the KM estimate where it focuses on the 

probability of a specific event occurring. The CIF estimate, however, allows for the 

estimation of the occurrence of an event in an environment where all competing risks are 
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accounted for. This adaptation can be clearly seen in the formulation of the CIF, which is 

shown below: 

𝐶𝐼𝐹𝑑(𝑡) = 𝑃(𝑇 ≤ 𝑡, 𝐷 = 𝑑).              ( 6 ) 

 

This is the definition of the CIF for the 𝑑𝑡ℎ event type, where D is representative of the 

type of event that occurred.2 One shortcoming of this approach is that you can only 

observe a single failure time for each subject because the joint survival is not identifiable. 

This is known as the identifiability dilemma.4,14 When calculating the CIF, the customary 

focus is in the event that occurs first.  

 

In conclusion, the CIF denotes the failure probability of the 𝑑𝑡ℎ event before time t and 

before the occurrence of a different type of event.14 Given this correction, the cumulative 

incidence curve of each failure type estimates the marginal probabilities, which do not 

assume independence of events and will sum to the cumulative incidence of failure of 

any cause.2,5,7 When there are no censored observations, the KM estimate of incidence 

and the CIF will be equal. However, if censoring is present over the follow-up period, the 

CIF is the correct way to estimate probability. Moreover, if the dataset possesses 

competing risks, it is important to know the use of the KM estimate will result in 

incorrect estimates with invalid interpretations.5 In the case that follows, we will 

illustrate the upward bias of the KM estimate and differentiate between the two 

aforementioned methods. 

 

2.5 Modeling Hazards with Competing Risks 
 

In the instance of competing risks, using the CPH model to estimate effects of covariates 

on the hazard of events can be used but, as previously mentioned, has been shown to 
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overestimates the effects.9 Therefore, when considering multiple events, two different 

types of hazard functions are introduced: the cause-specific hazard function and the 

subdistribution hazard function. The first method, true to its name, employs CPH 

regression but distinguishes models between each failure type. Defining the 

instantaneous rate of the 𝑑𝑡ℎ event type, it is expressed as 

ℎ𝑑
𝑐𝑠(𝑡) =  lim

∆𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡, 𝐷 = 𝑑 | 𝑇 ≥ 𝑡)

∆𝑡
.                                     ( 6 ) 

 

The second is given by 

ℎ𝑑
𝑠𝑑(𝑡) =  lim

∆𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡, 𝐷 = 𝑑 | 𝑇 > 𝑡 ∪ (𝑇 < 𝑡 ∩ 𝐷 ≠ 𝑑))

∆𝑡
,                 ( 7 ) 

 

denoting the immediate risk of experiencing the 𝑑𝑡ℎ event in subjects who have not yet 

failed from this event type.4 Although the exact interpretation changes between the two 

hazard functions, the major difference is their corresponding risk set. The cause-specific 

hazard function looks at patients that are currently risk free (i.e. subjects who have not 

experienced any failure type); therefore, decreasing at the occurrence of any other event. 

Whereas, the subdistribution hazard function analyzes a risk set that contains event free 

subjects, which includes those who have experienced a competing event at a previous 

time. Individuals who have not failed from the cause of interest remain in the risk set 

until they are either censored or experience failure.2,4 The concept of keeping individuals 

in the risk set, even if they have experienced a competing event, may seem 

counterintuitive. However, one can think of these subjects as placeholders for the 

portion of the population that cannot experience the event of interest. Resulting in a 

condition imposed on the definition of the hazard function. 
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Each approach estimates the hazard of specific failure types, while also having the 

capability to model the relationship of covariates to each cause. Measuring the effect of 

covariates on the cause-specific hazards can be modeled for cause 𝑑 as 

ℎ𝑑
𝑐𝑠(𝑡|𝒁) = ℎ𝑑,0(𝑡) ∙ 𝑒𝜷𝑑

𝑇𝒁,                                                               ( 9 ) 

 

where 𝜷𝑑 is the estimated covariate effects on cause 𝑑 and ℎ𝑑,0(𝑡) represents the baseline 

cause-specific hazard of cause 𝑑. In the presence of competing risks, the cause-specific 

hazard model analysis is completely standard, but does not have a simple interpretation 

due to its dependence on the covariates and baseline values for the models of all other 

failure causes.4,8  In response to this, Fine and Gray4,16 modified the cause-specific hazard 

regression model by redefining the hazard using the subdistribution hazard technique.  

 

While both modeling methods are developed from the Cox Proportional Hazard 

regression model, the subdistribution hazard model utilizes the cumulative incidence to 

ease interpretation. 4,17 Regression on the cumulative incidence function takes on the 

same format as (9) but the baseline hazard is now defined using the subdistribution 

hazard function in (8). Hence,  

ℎ𝑑
𝑠𝑑(𝑡|𝒁) = ℎ𝑑,0(𝑡) ∙ 𝑒𝜷𝑑

𝑇𝒁,                                                            ( 10 ) 

 

For this reason, the subdistribution hazard model can directly evaluate the cumulative 

incidence function for each specific event in response to covariates, something the cause-

specific hazard model fails to do.4,8 It is important to note that the cause-specific hazard 

model is mathematically valid and the estimated covariates can be interpreted as the 

relative change in the hazard corresponding to a 1-unit increase in the 𝑝𝑡ℎ covariate. The 

issue with this method lies in the fact that to express the effects of covariates, traditional 
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survival analysis modeling results are interpreted with the hazard ratio, which can be 

challenging with the cause-specific model.4 Directly relating the change in a covariate to 

an increase (decrease) in risk can be inaccurate. Ergo, it is recommended to interpret it 

as a change relative to the cause-specific hazard. 

 

Due to the differences between the two methods, there are certain circumstances when 

each should be employed. The implementation of the CIF warrants the subdistribution 

hazard model to be a better predictor of risk. Thus, when researchers are interested in 

evaluating the effects of covariates on the incidence of an event while accounting for 

competing risks, a subdistribution model should be employed.2 On the other hand, Lau 

et al recommend the use of the cause-specific model when studying the cause of 

biomedical processes is of more importance.12 In summary, studies analyzing these 

survival techniques suggest the subdistribution model is more appropriate when the 

objective is risk analysis and clinical prediction models, while the cause-specific hazard 

models is pertinent when epidemiological processes are questioned. With this being said, 

it is crucial to thoroughly considered the scientific question in the presence of competing 

risks before deciding which model is appropriate. To avoid erroneous analyses, previous 

studies advocate the importance of reporting the results from both methods; allotting for 

complete understanding of the estimates and the hazard associated with different 

outcomes, but to approach the interpretations with caution.2,17  

 

2.6 Goodness of Fit 
 

Once modeling has been completed, diagnostics must be run to test the proportional 

hazards assumption that is made in both modeling techniques. The assumption relies on 

the idea that the cause-specific hazard and subdistribution hazard do not depend on 
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time. There are many methods to testing the relationship of the hazard ratios to time and 

whether they should be included in the model such as the Cox-Snell residuals, 

Schoenfeld residuals, and Martingale residuals. We will analyze the Schoenfeld residuals, 

visually and statistically, to address the proportional hazards assumption when looking 

at both hazard functions because this technique is practical for time dependent 

covariates. 

 

Schoenfeld defines the partial residuals at 𝑡𝑖  as �̂�𝑖 = (�̂�𝑖1 … �̂�𝑖𝑝)′ where  

�̂�𝑖𝑘 = 𝑋𝑖𝑘 − �̂�(𝑋𝑖𝑘| 𝑅𝑖) and the estimated values are calculated by substituting �̂� for 𝜷 at 

all observed failures. If the proportional hazards assumption holds and 𝜷 is the true 

regression coefficient, the expected value of the partial residuals should be 0. Therefore, 

a plot of �̂�𝑖 versus time should be centered around 0. 18 A violation of this, by having a 

nonzero slope, would indicate that the proportional hazards assumption does not stand. 

We generated a plot of the Schoenfeld residuals versus time, including a Loess 

smoothing curve, to examine the magnitude of the slope for each covariate in the model. 

Expanding upon this concept, Grambsch and Therneau defined scaled Schoenfeld 

residuals as the product of the scaled residuals and the corresponding covariance matrix, 

denoted �̂�𝑖
∗ = [𝑉�̂�𝑟(�̂�𝑖1 … �̂�𝑖𝑝)]−1�̂�𝑖. This is calculated for each covariate and it is not 

defined for censored times. The test statistic for each covariate specific test is denoted by 

Grambsch and Therneau as 

𝑇𝑖 =
[∑(𝛿𝑖𝑔(𝑡𝑖) − �̅�(𝑡))𝑟𝑖

∗]2

∆𝐼𝑖 ∑(𝛿𝑖𝑔(𝑡𝑖) − �̅�(𝑡))
2                                                      ( 11 ) 

 

where 𝑟𝑖
∗is the scaled Schoenfeld residual for covariate 𝑖, 𝛿𝑖 is an indicator variable for an 

event, 𝑔(𝑡) is the time scale, and �̅� is the average time scale, ∆ is the total number of 

events, 𝐼𝑖 is the estimated information matrix for the parameter of interest. The test 
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statistic on an individual covariate asymptotically follows a 𝜒2 distribution with 1 degree 

of freedom.19  Test statistics that obtain a p-value exceeding .05 are considered to show a 

departure from proportionality. 

 

2.7 Statistical Software 
 

To complete all analyses, R (version 3.3.1) statistical programming language was used. 

When estimating the CIFs we used the cuminc function, a competing risks data analysis 

tool, found in the cmprsk package (version 2.2-7). We applied the survfit function in the 

survival package (version 2.41-3) to estimate the KM survival curves. Cause-specific 

hazard models were fit using the standard coxph function. This typically estimates the 

cox proportional hazard model, but by simply adjusted the risk set for each event to 

censor the individuals who experienced the competing event the covariates now becomes 

estimates for the cause-specific model. We employed the crr function to estimate the 

subdistribution hazard model by creating a matrix of all the covariates we were 

interested in modeling. This is a function created specifically for subdistribution hazard 

modeling for competing risks regression. It can be found in the cmprsk package. Model 

diagnostics were analyzed and graphs were generated using the cox.zph function, crr 

function, and smooth.spline function in R. The cox.zph function uses the methods 

developed by Grambsch and Therneau to test the proportional hazards assumption. 

 

2.8 Illustrative Example 
 

We considered a parallel group, multi-center, double-blind, randomized, controlled 

clinical trial dataset of SICU patients treated with glutamine supplemented parenteral 

nutrition (GLN-PN) or standard glutamine-free parenteral nutrition (STD-PN). These 

data were previously used to study clinical outcomes in relation to glutamine 



 

 

16 

supplementation for patients hospitalized in the surgical ICU (SICU). Criteria for patient 

eligibility and enrollment were defined by Ziegler et al. More information about data 

collection and study findings may be found in Ref. [20].20  The final sample consisted of 

150 patients randomized to receive either STD-PN (n=75) or GLN-PN (n=75).  

 

Our primary event of interest is hospital mortality with a competing failure of new 

hospital acquired infections. For generalization purposes, we will only be looking at the 

data collected while the patients were in the hospital. Survival times were calculated 

from the date of randomization until the occurrence of the first event, either infection or 

death, or until discharge from the hospital. For patients that experienced multiple 

infections, only their first incident infection was studied. Consequently, any patient with 

an infection before randomization was considered to not have experienced any event. 

Similarly, any subjects that did not experience an event before being discharged from the 

hospital were censored in the survival analysis. Diagnosis of a hospital-acquired 

infection was based off the standardized CDC criteria.21 All hospital acquired infections 

were centrally adjudicated. To minimize the chance of misdiagnosis, incident nosocomial 

infections were not diagnosed until >48 hours after parenteral nutrition began.20 If 

infection, death, and discharge occurred on the same day, the patient was considered to 

first experience infection.  

 

Descriptive statistics for patients in the study within each event type cohort were studied. 

For continuous variables, we calculated the median and 25th and 75th percentile. 

Categorical variables were summarized as frequencies and percentages. Because of our 

interest in time to event data, descriptive results of time dependent variables for all 

patients were calculated by subsetting the data into failure specific cohorts. The 
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frequency of events and 25th, 50th, and 75th percentile of days to event were calculated for 

each event type. 

 

Cumulative incidences of mortality and infections were calculated using the KM method 

from equation (2) and cumulative incidence function in equation (3), along with the 

incidence of the composite outcome of all-cause mortality. All-cause mortality was 

calculated using the KM method while no longer differentiating between event types, it is 

also equal to the sum of the cumulative incidence curves for each event type. For 

comparison, the sum of the KM estimates for each event type was calculated. 

 

We considered 10 baselines covariates: age, gender, race, preoperative body mass index 

[weight (kg)/height (m2), APACHE II score at the day of randomization, study entry 

Sepsis-related Organ Failure Assessment (SOFA) score,22 treatment assignments, 

presence of acute respiratory distress syndrome (ARDS), white blood cell count 

(available through electronic medical records), and nutritional status as estimated by the 

Subjective Global Assessment (SGA) method.23 Using the covariates of interest, we 

generated a model using both the cause-specific hazard model (9) and subdistribution 

hazard model (10). Multivariable analysis was completed and hazard ratios and 95% 

confidence intervals (CIs) were calculated for each covariate in the model. We excluded 3 

patients with missing data on continuous covariates when analyzing the hazard models. 

 

Diagnostic measures were taken for all hazard regression models. All cause-specific 

hazard regression model assumptions were checked applying the cox.zph function to a 

coxph function in R, which yields a 𝜒2 test statistic for each covariate and a 

corresponding p-value, which are calculated using the covariate specific test defined by 

Grambsch and Therneau in (11). For the subdistribution hazard model, Schoenfeld 
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residuals given by the crr function in R were plotted against the unique failure times to 

check the proportional hazards of each covariate using a smoothing curve. All model 

diagnostic graphics can be found in the Appendix. 

 

3. Results 
 

3.1 Descriptive Statistics 
 

The final dataset analyzed consisted of 150 patients randomized to receive either STD-

PN (n=75) or GLN-PN (n=75). The majority (55%) of patients did not experience an 

event before being discharged. A total of 45 patients died over their follow-up period, 

while 24 of those occurred in the hospital. There were 201 occasions where patients were 

diagnosed with an infection. Of those hospital acquired infections, 91 were incident cases 

among 56 patients. Throughout follow-up, a total of 56 infections occurred before 

hospital death or hospital discharge and 12 deaths occurred before first-time infection or 

discharge. In one patient, infection, death, and discharge occurred on the same day, we 

categorized this event as an infection. Results of time dependent data for patients that 

experienced an event can be found in Table 1 (Appendix A). Among those that were 

diagnosed with an infection (n=56), the median time to event was 10 days. Hospital 

mortality did not occur until a median of 11 days after randomization. 

 

Descriptive statistics for patients in the study sample are reported in Table 2 (Appendix 

A). Patients who died during follow-up tended to be older and have a lower BMI, higher 

APACHE II and SOFA scores, in comparison to patients who were diagnosed with a 

hospital acquired infection. They were also more likely to be categorized as male and 

have acute respiratory distress syndrome. Notably, patients that experienced hospital 
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mortality had a higher white blood cell count upon entry. Overall, there was a similar 

distribution of SGA nutritional status, race, and treatment among event type as 

compared to the sample. 

 

3.2 Estimating the Cumulative Incidence of Hospital Acquired Infection and Hospital 
Mortality 
 

Visual comparisons of the CIF and KM method among hospital mortality and hospital 

acquired infection can be seen in Figure 1, 2. The estimation of the cumulative incidence 

of all-cause failure increases at the occurrence of any event until 20 days after 

randomization, when infections are the only occurring event (Figure 1 Appendix A). As 

anticipated, Figure 2 (Appendix A) depicts the KM method for each event type to 

overestimate the cumulative incidence at each point in time. Secondly, the sum of the 

two KM estimates of incidence is drastically greater than the estimate of incidence for 

all-cause mortality. This estimated composite incidence curve increases past 1.0, which, 

as stated before is possible, but is illogical for probability; further demonstrating the idea 

that the naïve use of the KM method when estimating cumulative incidence in the 

presence of competing risks is incorrect and results in overestimation. 

 

3.3 Modeling Cause-Specific and Subdistribution Hazards 
  

We regressed the hazard of each competing event on the 10 covariates of interest using 

both the cause-specific hazard and subdistribution hazard. In general, this multivariable 

Cox regression model can be denoted as 

ℎ(𝑡|𝑍) = ℎ0(𝑡)𝑒𝜷𝑇𝒁, 

where  

𝒁 = (𝐴𝑔𝑒, 𝐼𝐹𝑒𝑚𝑎𝑙𝑒 , 𝐼𝑊ℎ𝑖𝑡𝑒 , 𝐵𝑀𝐼, 𝐴𝑃𝐴𝐶𝐻𝐸 𝐼𝐼, 𝑆𝑂𝐹𝐴, 𝐼𝐺𝐿𝑁−𝑃𝑁 , 𝐴𝑅𝐷𝑆, 𝑊𝐵𝐶, 𝐼𝑆𝐺𝐴 2, 𝐼𝑆𝐺𝐴 3)𝑇  
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with corresponding covariate vector, 𝜷. For each hazard model, the baseline hazard 

varies depending on the method used. The estimated hazard ratios (HR) and 95% 

confidence intervals (95% CI) for each covariate are reported in Table 3 (Appendix A). 

 

Some explanatory variables have a quantitatively different effect on the hazard model of 

hospital acquired infection than on hospital mortality, i.e., age, white blood cell count, 

and a SGA nutritional status of 3 are protective against hospital acquired infection 

during follow-up, whereas glutamine supplemented treatment, being female, and 

nutritional status 2 decrease the hazard of hospital mortality. As an example, a one unit 

increase in white blood cell count significantly decreases the relative incidence of 

hospital acquired infection (SDHR: 0.96, 95% CI: (0.93,1.00) p=.042), but has a 

subdistribution and cause-specific hazard ratio greater than 1 for hospital mortality 

(non-significant). 

 

At the same time, it is important to note that when comparing the incidence and cause-

specific hazard, most variables have a similar effect for a given type of event, except race 

and ARDS. Although the confidence intervals show the difference between the cause-

specific and subdistribution hazard models is not significant, being white has an 

increased cause-specific hazard for both event types as compared to the incidence model. 

Similar for ARDS, its effect on the cause-specific hazard model of hospital mortality is 

protective (CSHR: 0.55, (95% CI): (0.09,6.42)), but the relative incidence of hospital 

mortality is increased by 14% in the presence of acute respiratory distress syndrome 

(SDHR: 1.14, (95% CI): (0.18,7.45)). Furthermore, these results show the only significant 

hazard ratios in this data analysis lie within the subdistribution hazard model. 

Nonetheless, the hazard ratio for APACHE II score, and BMI do not differ for cause-

specific hazard and subdistribution hazard upon either outcome. 
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3.4 Model Diagnostics 
 

The results from testing the proportional hazards assumption for the cause-specific 

hazard model fitted on the 10 covariates suggest that the proportional hazards 

assumption is adequate for all covariates of both hospital mortality and hospital acquired 

infection (𝑃 > 0.05). The proportional hazards assumption for the subdistribution 

hazard model of each competing failure was not evaluated with a test statistic, but the 

residuals were plotted against the unique event times. Plots of the Schoenfeld residuals 

for the cause-specific hazard model and subdistribution hazard model for each event 

type on each covariate have a slope close to 0 (Figures 3-6 Appendix B). This result is 

consistent with the p-values found for the cause-specific models. 

 

4. Discussion 
 

Many studies on patient characteristics and significant risk factors for malnutrition have 

been published. When analyzing glutamine supplemented parenteral nutrition, most 

studies include the comparison of mortality and incidence or prevalence of infection 

among treatment cohorts.20,24-26 Most of these studies the analysis of both infection and 

mortality as competing events were not modeled. However, as stated before, there is 

controversy on whether competing risks analysis should be done. In this study, we 

applied survival analysis methods to study the incidence and hazard of hospital mortality 

in the presence of the competing risk: hospital acquired infection. 

 

The results of this prospective, randomized, controlled, double-blind, parallel-group, 

intent-to-treat, multicenter investigator-initiated Phase III study demonstrate the 
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difference between standard survival analysis techniques and methods applied in the 

presence of competing risks. Confirming results of other studies, we clearly illustrated 

the overestimation of KM method as compared to the CIF when estimating incidence of 

hospital acquired infection and hospital mortality.  

 

As illustrated, the hazard ratios for the two competing events are in opposite directions 

for age, gender, treatment, white blood cell count, and a SGA nutritional status of 3. 

When this occurs, the effect of the covariate on the hazard can be interpreted as an actual 

effect. For example, a higher rate of hospital mortality for patients with higher white 

blood cell counts at entry associated with a reduced risk of hospital acquired infection 

implies we will observe more mortality in patients with a higher white blood cell count at 

the end of the study. This parallels the increased median white blood cell count at entry 

among patients with hospital mortality. Moreover, when both the cause-specific hazard 

and subdistribution hazard models are consistent with each other, we can interpret the 

effect of the covariate as direct, but not necessarily causal, on the cumulative incidence of 

hospital acquired infections. This occurs in all modeled covariates except ARDS and race.  

 

The analysis of the effect of ARDS on the incidence and cause-specific hazard differs 

from the generalizations that can be made to all other covariates. Specifically, there is 

agreement among the cause-specific hazard function for both failure types and between 

models for hospital acquired infections. However, the estimated hazard ratios do not 

have the same effect on the relative incidence between mortality and infections within 

the follow-up period. The inconsistency of the estimates suggests that those with acute 

respiratory distress syndrome are less likely to fail from infection as they are to die. The 

effects of ARDS are more likely illustrated in the subdistribution hazard model because 

of the competing risks influence on its risk set. 
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Previously, this dataset has been analyzed without the consideration of competing risks. 

As a result, Ziegler et al. found no difference in 6-month mortality between glutamine 

supplemented parenteral nutrition relative to standard treatment, estimating a hazard 

ratio of 1.05 (95% CI: 0.58-1.88, p=0.88).20 Conversely, when incorporating competing 

risks analysis into this survival analysis data, glutamine supplementation resulted in 

reduced estimated rate of hospital mortality relative to standard parenteral nutrition but 

the estimated infection rate was higher in the glutamine arm. However, similar to the 

previous study, our results were not statistically significant. 

 

Although, failure to account for competing risks when completing analyses can result in 

mis-estimation and erroneous conclusions, focusing largely on those who do not fail 

from other causes first can be misleading and certainly does not represent the complete 

picture. For example, the cumulative incidence curve (Figure 1) of hospital mortality 

indicates that 20 days after randomization, the first event experienced by all patients was 

infection. Therefore, early deaths were the only deaths considered in the model, resulting 

in a small sample size for the analysis of hospital mortality and larger hazard ratio 

confidence intervals as compared to hospital acquired infections. 

 

Additionally, the main concept behind competing risks is the notion that the events 

hinder the probability of each other. Because of this, infection and mortality are 

considered to be two separate events. Although the subdistribution hazard includes 

those that have experienced a competing event when analyzing the event of interest to 

account for some relationship between the outcomes, the direct causal relationship 

between death and infection is not explored. When looking at death and infection, 

however, the idea that death can alter the probability of infection or be at risk for 
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infection is improbable. Due to this, there can be an indirect effect of a covariate on the 

cumulative incidence of infection in response to the decrease risk. Furthermore, this can 

cause subdistribution hazard regression estimates to be significant, while cause-specific 

hazard regression model covariates are not. It is important to note that our analysis may 

illustrate this bias by the significance of the estimated hazard ratios for white blood cell 

count and the Sepsis-related Organ Failure Assessment score under only the 

subdistribution hazard model. Thus, we suggest the use of the subdistribution hazard 

model can be misleading and further research into semi-competing risks analysis, which 

analyze data where the competing risk can affect the hazard of the event of interest, 

should be done with this dataset. A comprehensive discussion of this survival analysis 

technique can be found in papers by Peng & Fine and Fine, Jiang, & Chappell, Ref. [27, 

28].27,28 

 

In summary, competing risks are prevalent in intensive care unit research especially 

when analyzing mortality and can alter the analysis of the data. These conclusions 

demonstrate how important it is to present results for both cause-specific and 

subdistribution hazard models for all failure types. In doing so, complete understanding 

and analysis of the predictive variables and their effect on the event are plausible. 

Furthermore, it can allow researchers to study appropriate modeling methods to address 

their research question. 
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APPENDIX A 

 

TABLE 1. Descriptive Results of Time-dependent Events for all 150 
patients 

Event Number of Events 
Time (days) to event among those 

with event (Q1, median, Q3) 

Hospital Acquired Infection 56  (5.0, 10.0, 20.0) 

Hospital Mortality 12 (5.5, 11.0, 16.5) 

Abbreviations: Q, quantile. 

 
 
 

TABLE 2. Descriptive Characteristics of risk factors for all 150 patients 
by event  

Characteristics§ ALL (N=150) 
Hospital 
Acquired 

Infection (N=56) 

Hospital 
Mortality 
(N=12) 

Age 61.2 (53.7–68.8) 61.3 (54.1–71.4) 63.9 (56.1–70.5) 

Male Gender 80 (53.3) 29 (51.9) 8 (66.7) 

Race    

    Black or African American 19 (12.7) 7 (12.5) 1 (8.3) 

    White 131 (87.3) 49 (87.5) 11 (91.7) 

BMI, kg/m2 26.9 (22.1–31.4) 26.8 (21.3–32.3) 24.9 (20.8–27.9) 

APACHE II score at study entry 16.0 (12.0–20.0) 18.0 (13.0–21.3) 23.0 (16.3–25.3) 

SOFA score at entry 6.0 (2.0–10.0)
†
  8.0 (3.0–11.5)‡ 11.0 (9.0–13.0)¶ 

Treatment (GLN-PN) 75 (50.0) 32 (57.1) 6 (50.0) 

ARDS at entry 17 (11.3) 8 (14.3) 3 (25.0) 

WBC at entry, 109/L 12.3 (9.0–17.8) 13.4 (9.4–18.1) 16.7 (13.2–26.2) 

Nutritional Status✶    

   1 60 (40.0) 19 (33.9) 5 (41.7) 

   2 68 (45.3) 27 (48.2) 6 (50.0) 

   3 22 (14.7) 10 (17.9) 1 (8.3) 

§ Continuous variables are reported as median (25th percentile - 75th percentile [Q1-Q3]) 
and categorical variables are reported as number (%) 
† 

Calculation based off a sample size of 147 patients 

‡ Calculation based off a sample size of 55 patients. 
¶ Calculation based off a sample size of 11 patients. 
✶ Estimated by the Subjective Global Assessment method 

 
Abbreviations: BMI, body mass index; APACHE II, Acute Physiology and Chronic Health 
Evaluation II; SOFA, Sepsis-related Organ Failure Assessment; ARDS, acute respiratory 
distress syndrome; WBC, white blood cell; Q, quantile. 
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TABLE 3. Risk Factors for Hospital Acquired Infection or Mortality 
Using Multivariable Competing Risk Models† 

 Cause-Specific Hazard 
Model 

Subdistribution Hazard 
Model 

Variable 
Hospital 
Acquired 
Infection 

Hospital 
Mortality 

Hospital 
Acquired 
Infection 

Hospital 
Mortality 

Age (per 10-year increase in 
age) 

0.87 
(0.76,1.28) 

1.05 
(0.49,2.04) 

0.87 
(0.74,1.31) 

1.05 
(0.56,1.80) 

Gender (Female) 
1.15 

(0.63,2.08) 
0.74 

(0.16,3.49) 
1.15 

(0.66,2.00) 
0.79 

(0.15,4.23) 

Race (White) 1.34 
(0.51,3.48) 

1.35 
(0.10,18.47) 

1.16 
(0.42,3.19) 

1.05 
(0.04,29.78) 

BMI, kg/m2 
0.97 

(0.93,1.02) 
0.88 

(0.77,1.02) 
0.98 

(0.94,1.03) 
0.90 

(0.77,1.05) 

APACHE II score at study 
entry 

1.05 
(0.99,1.11) 

1.05 
(0.91,1.22) 

1.04 
(0.98,1.10) 

1.05 
(0.94,1.17) 

SOFA score at entry 1.08 
(0.99,1.17) 

1.19 
(0.96,1.48) 

1.06 
(0.96,1.16) 

1.17 

(1.01,1.36)✶ 

Treatment (GLN-PN) 1.28 
(0.71,2.29) 

0.93 
(0.22,3.90) 

1.25 
(0.70,2.26) 

0.97 
(0.28,3.33) 

ARDS at entry 0.55 
(0.21,1.49) 

0.55 
(0.09,6.42) 

0.61 
(0.20,1.87) 

1.14 
(0.18,7.45) 

WBC at entry, 109/L 0.97 
(0.94,1.01) 

1.04 
(0.97,1.12) 

0.96 

(0.93,1.00)✶ 
1.06 

(1.00,1.12) 

Nutritional Status‡     

    2 
1.86 

(0.93,3.75) 
1.04 

(0.18,5.99) 
1.72 

(0.84,3.54) 
1.01 

(0.16,6.35) 

    3 
1.24 

(0.51,3.00) 
0.44 

(0.03,5.52) 
1.35 

(0.58,3.15) 
0.28 

(0.03,2.77) 

† Due to missing data, hazard ratios are estimated based on a total sample size of 147 

and reported as HR (95% Confidence Interval). 
‡ Estimated by the Subjective Global Assessment method with reference as Nutritional 
Status score of 1. 
✶ Indicates significance (p<.05) 

 
Abbreviations: BMI, body mass index; APACHE II, Acute Physiology and Chronic Health 
Evaluation II; SOFA, Sepsis-related Organ Failure Assessment; ARDS, acute respiratory 
distress syndrome; WBC, white blood cell. 
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Figure 1. Cumulative incidence functions for all event types. CIF, cumulative incidence 
function; KM, Kaplan-Meier 

 



 

 

30 

 
 
Figure 2. Cumulative incidence functions and Kaplan Meier estimates for all event types. 
CIF, cumulative incidence function; KM, Kaplan-Meier 
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APPENDIX B: 

 

 
Figure 3. Schoenfeld residual plots for cause-specific hazard model of hospital acquired 
infection. 
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Figure 4. Schoenfeld residual plots for cause-specific hazard model of hospital mortality. 
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Figure 5. Schoenfeld residual plots for subdistribution hazard model of hospital acquired 
infection. 
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Figure 6. Schoenfeld residual plots for subdistribution hazard model of hospital 
mortality. 
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