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Abstract 

The Effects of Hamming Distances in a Computational Model of Selection by 

Consequences 

Andrei Popa 

McDowell (2004) instantiated the Darwinian principles of selection, 

recombination, and mutation in a computational model of selection by consequences. The 

model forces a population of behaviors to evolve under the selection pressure of the 

environment, by applying low-level Darwinian principles; it has been tested under a 

variety of conditions and the quantitative outcomes are remarkably similar to those 

obtained in experiments with live organisms (McDowell et al., 2008). The computational 

model animates a virtual organism with a repertoire of 100 behaviors, represented by 

binary strings; this raises the specific issue of Hamming distances, the number of digits in 

a binary string that must be changed in order to obtain another bit string of equal length 

(Hamming, 1950). McDowell (2008) hypothesized that in environments that reinforce 

two alternatives the Hamming distance may be computationally equivalent to a 

changeover delay (COD). In experiments with live organisms that reinforce two 

alternatives, an interesting phenomenon is sometimes observed: instead of responding to 

the alternatives, the organism behaves “as if” switching itself is reinforced. One way to 

prevent this phenomenon is the use of a changeover delay, a procedure that prevents the 

organism from acquiring reinforcement if it switches too often (Findley, 1958). The 

Hamming distances represent, by definition, the difficulty of transforming a binary string. 

The computational model places the target classes next to each other, and, traditionally, 

they are separated by a large Hamming cliff, which makes it more difficult for a behavior 

to switch from one target class to the other. In order to investigate the effects of smaller 

cliffs between the target classes, they were positioned at different locations along the 

continuum of integers; in addition, other parameters were systematically varied. Results 

confirmed McDowell et al.’s Hamming-Distance-As-Changeover-Delay hypothesis and 

also revealed a robust rule about the effects of Hamming distances within the model. The 

steady state outcome is, therefore, a product of the reiteration of Darwinian rules, and not 

an artifact of conveniently choosing an exceptional location for the target classes. This 

study constitutes another argument for the robustness of the computational model of 

selection by consequences as a valid account of the behavioral dynamics. 
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Abstract 

McDowell (2004) instantiated the Darwinian principles of selection, 

recombination, and mutation in a computational model of selection by consequences. The 

model forces a population of behaviors to evolve under the selection pressure of the 

environment, by applying low-level Darwinian principles; it has been tested under a 

variety of conditions and the quantitative outcomes are remarkably similar to those 

obtained in experiments with live organisms (McDowell et al., 2008). The computational 

model animates a virtual organism with a repertoire of 100 behaviors, represented by 

binary strings; this raises the specific issue of Hamming distances, the number of digits in 

a binary string that must be changed in order to obtain another bit string of equal length 

(Hamming, 1950). McDowell (2008) hypothesized that in environments that reinforce 

two alternatives the Hamming distance may be computationally equivalent to a 

changeover delay (COD). In experiments with live organisms that reinforce two 

alternatives, an interesting phenomenon is sometimes observed: instead of responding to 

the alternatives, the organism behaves “as if” switching itself is reinforced. One way to 

prevent this phenomenon is the use of a changeover delay, a procedure that prevents the 

organism from acquiring reinforcement if it switches too often (Findley, 1958). The 

Hamming distances represent, by definition, the difficulty of transforming a binary string. 

The computational model places the target classes next to each other, and, traditionally, 

they are separated by a large Hamming cliff, which makes it more difficult for a behavior 

to switch from one target class to the other. In order to investigate the effects of smaller 

cliffs between the target classes, they were positioned at different locations along the 

continuum of integers; in addition, other parameters were systematically varied. Results 
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confirmed McDowell et al.’s Hamming-Distance-As-Changeover-Delay hypothesis and 

also revealed a robust rule about the effects of Hamming distances within the model. The 

steady state outcome is, therefore, a product of the reiteration of Darwinian rules, and not 

an artifact of conveniently choosing an exceptional location for the target classes. This 

study constitutes another argument for the robustness of the computational model of 

selection by consequences as a valid account of the behavioral dynamics. 
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The Effect of Hamming Distances in a Computational Model of Selection by 

Consequences 

 One of the features that seems to be embedded in living organisms is the ability to 

adjust to a dynamic environment. One way this might be achieved is by selecting and 

perpetuating those behaviors that proved useful in the past. Behaviors evolve under the 

pressure exerted by the environment, being shaped by the outcome they produce. Much 

like species, some behaviors endure and are displayed with regularity, some change, and 

some perish; and, to a very large extent, it depends on the feedback received from the 

environment.  

 This observation opened new horizons for thinkers and researchers, leading them 

to the next logical set of questions, such as “What is the nature of the relation between 

environment and behavior?”, “Is there an order that can be determined?”, “Can it be 

foreseen?”. The potential existence of mathematical equations that describe and predict 

human behavior have drawn an impressive amount of attention and the first theories did 

not take long to emerge. In 1943, Clark Hull presented the first mathematical equation of 

performance, expressed as reaction potential:  

SER = (SHR x D x K x V) - IR - SIR - SOR, 

where SHR is habit strength (the strength of the bond between responses and 

reinforcements), D is drive, K is incentive motivation, V is stimulus dynamism (saliency 

of the stimulus), IR is reactive inhibition, SHR is conditioned inhibition, and SOR is the 

oscillation of reaction potential. Despite the presence of variables that refer to internal 

states/qualities, one important aspect of Equation 1 is that performance is viewed as 

 (1) 
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depending on habit strength and stimulus dynamism (among other variables), thus 

acknowledging the role of the environment on displayed behavior.  

 Eight years later, Bush and Mosteller (1951) proposed a different equation to 

describe behavior: 

∆VA= αAβ(λ - VA),  

where ∆VA is the change in the associative strength of the stimulus, λ is a measure of 

reward-value, β is the rate of learning and αA is the attention-value (salience) of the 

stimulus. The main difference between this equation and Equation 1 is a reduction in the 

number of “internal” variables (e.g. drive), the focus shifting towards the qualities of the 

stimulus
1
. 

 One common feature of the above mentioned equations is the use of non-specific 

quantities, which raises important issues. For example, let us assume that Drive is defined 

as the number of hours of water deprivation: if the equation does not fit the data, the 

researcher may choose to define Drive as serotonin level or as the difference between 

body weight in free-feeding conditions and body weight at the time of the experiment. 

We can see that a variety of factors may be used to operationalize the same hypothetical 

construct, which makes the theory difficult to falsify, thus violating one basic condition 

for a valid scientific theory (Popper, 1959).  

 A few years later, another interesting phenomenon was being observed in 

experiments with living organisms (e.g. rats, pigeons): apparently random and chaotic at 

first, the animal’s behavior was showing a clear tendency towards a steady-state, indeed 

reaching equilibrium after a number of trials. What was surprising was the fact that once 

                                                 
1
 Both theories are very complex, encompassing a large number of equations; the two equations presented 

here are considered representative for the purpose of this paper. 

 (2) 
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reached, steady-state behavior was preserved with great precision, and for long periods of 

time (e.g. a pigeon preserving approximately the same rate of pecking for 10 hours 

(Ferster and Skinner, 1957). The influence exerted by the environment, previous attempts 

to capture behavior in mathematical equations, and the quality of steady-state behavior, 

set the stage for the next mathematical approach to behavior. 

The Matching Law 

 In 1961, while conducting experiments with pigeons in concurrent - schedule 

environments
2
, Richard J. Herrnstein (1961) observed an interesting fact: it appeared that, 

once equilibrium was reached, the proportion of responses on each alternative was equal 

to the proportion of reinforcements acquired from that alternative, a relation described by 

the following equation: 

21

1

21
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RR

R

+
=

+
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where R1 and R2 refer to the response rates and r1 and r2 refer to reinforcement rates. 

Equation 3 can also be written in a ratio form: 

2

1

2

1

r

r

R

R
= . 

The relation between responses and reinforcements described by Equation 3 was called 

by Herrnstein The Matching Law and it describes free choice, steady-state behavior in a 

multiple choice environment. The entire family of equations, both for concurrent-

schedule environments and for single-alternative environments is shown in Figure 1. It is 

                                                 
2
 A concurrent schedule typically consists of two schedules of reinforcement, independent of each other, 

that are associated with two different spatial stimuli (e.g. a rat facing two levers). The organism placed in 

this situation can choose one of the two alternatives or it may choose to display behaviors totally unrelated 

to the two alternatives; that is why this environment is referred to as a “free choice environment”. 

 (3) 

 (4) 
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the first mathematical account of behavior that uses true operational definitions, namely 

the number of responses and the number of reinforcements, which allows for a scientist 

to conceive a set of data that may falsify the theory (Bridgman, 1950).  

The initial success of the Matching Law generated a large number of experiments 

that did not manage to shake the theory’s foundations, and that led to the discovery of 

important and interesting facts.  In concurrent-schedule environments it was observed 

that results deviate from perfect conformance to Equation 3 when there are differences 

between the two alternatives (e.g., one lever is harder to press than the other). This 

situation is often encountered in laboratory experiments and in order to account for the 

available data, a new parameter had to be introduced: the bias parameter, b. Also, 

experiments showed another deviation from perfect matching, characterized by a 

tendency towards indifference. In the case of total indifference, the organism is allocating 

its responses equally among alternatives, regardless of consequences. Living organisms 

show a small propensity towards this situation, a propensity called undermatching (Myers 

& Myers, 1977). Mathematically, undermatching is described by an exponent parameter, 

a. At this time the causes of bias are well known (McDowell, 1989); unfortunately, this is 

not the case for a. With the addition of the new parameters, the ratio form of Equation 3 

becomes a power-function equation: 

a

r

r
b

R

R




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where R1 and R2 refer to the response rates and r1 and r2 refer to reinforcement rates. 

When the difference between alternatives is negligible (the two choices are symmetrical), 

b is approximately 1. The exponent is found to vary around the value 0.8 (McDowell, 

(5) 
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1989; McDowell & Caron, 2007), depicting a slight tendency towards indifference 

(undermatching); when a ≥ 1, we speak of overmatching (or a tendency towards 

exclusive preference), a situation not often encountered in living organisms.  The power-

function equation was proposed by Baum (1974) and states that in a free-choice 

environment, organisms allocate their responses to different alternatives in the same 

proportion in which reinforcements are allocated among alternatives; however, they do so 

allowing for bias and with a tendency towards undermatching.  

Experimental results supporting the Matching Theory are numerous and their 

essence is captured in comprehensive reviews of the literature (Baum, 1979; Davison & 

McCarthy, 1988; McDowell, 1988); in addition, the superiority of Baum’s power 

function has been extensively verified (Baum, 1974; Dallery, Soto, & McDowell, 2005; 

McDowell et al, 2009). Little room for disagreement exists at the moment in the scientific 

community and it is widely accepted that the power-function equation describes the 

relation between responses and reinforcements in a free, multiple-choice environment, 

providing an excellent mathematical kinematics for instrumental behavior under such 

conditions. The possibility of mathematically describing behavior at equilibrium 

constituted a major breakthrough in the field and it allowed for the next major question: 

what causes behavior to reach this equilibrium state? 

 Different types of mathematical dynamics have been proposed over the years, in 

an attempt to explain why behaviors and environmental variables are linked the way they 

are. Such accounts classically use as a starting point a statement of a dynamic theory, 

from which they obtain a descriptive outcome; the melioration account (Vaughan, 1981; 

Herrnstein, 1982) and the maximization account (Baum, 1981; Rachlin, Battalio, Kagel, 
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& Green, 1981) are two prominent examples in this regard. For example, a maximization 

account may assume that an organism tends to maximize the utility (value) of its 

behaviors; thus, a certain utility function may be proposed, a function that expresses 

behavior’s value in terms of independent variables, like benefit and cost. Using this utility 

function a researcher may predict what the final outcome will be, assuming that the 

organism tends to maximize value. Although different in theory, most causal accounts of 

dynamics assume an end-state and use dynamic theories and analytical mathematical 

models to predict it.  

 A different account however is selection by consequences, proposed by Skinner 

(1981). The main feature that differentiates it from the above mentioned dynamic theories 

is that it does not specify a final outcome for operant behavior. This kind of dynamics 

entails the implementation of simple, low-level rules that govern the relation between 

organism and environment, causing some behaviors to be maintained in favor of others. 

Instrumental behavior thus occurs without being directed to an expected outcome, but 

emerging without constraints from the simple rules of selection.  

 Because no end-state is specified in a selection by consequences account, an 

implementation using analytical mathematical methods is impossible. However, this 

apparent shortcoming may be overcome by the use of a computational approach, which 

would require only the specification of simple rules. High-order outcome is not directly 

linked with the low-level rules and therefore it may not be predicted; only by repeated 

application of the rules will the final outcome be observed, an aspect that led scientists to 

call this result an emergent property of the low-level rules (McDowell, 2004).  
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 One specific type of computational approach is the genetic algorithm, a specific 

sub-set of evolutionary algorithms (Goldberg, 1989; Holland, 1992). Basically, a genetic 

algorithm is a search technique that implements simple, biologically-inspired rules (e.g. 

reproduction, mutation, survival of the fittest, etc.) to find solutions to complex problems. 

Low-level processes are applied repeatedly to a population of solutions until a specified 

end-state is reached or a specified number of repetitions is achieved. For example, the 

best solution to the famous travelling salesman problem (Applegate, Bixby, Chvátal, & 

Cook, 2006) can be achieved using a genetic algorithm; the initial data are computed (e.g. 

number of cities, cost of travelling, etc) and populations of solutions are repeatedly 

generated and compared with each-other until the best one is found. Another domain that 

benefits from the use of a genetic algorithm is that of computational creativity (Boden, 

1999). This relatively new domain uses computer simulations to replicate human 

creativity; for example, populations of sounds may be combined, selected, and mutated to 

give rise to a huge number of possible combinations that may or may not resemble music 

(Cope, 2005). By contrasting the two examples an important characteristic becomes 

obvious: although an end-state may be specified (travelling salesman problem), it is not 

necessarily required (computational creativity), which makes this kind of computational 

approach an ideal candidate for a computational model of selection by consequences.  

In the following sections I will present a specific genetic algorithm that 

implements Skinner’s causal account of instrumental behavior, namely Selection by 

Consequences. The Darwinian rules of selection, recombination, and mutation will be 

explained, allowing the reader to become familiar with the program’s functionality. 

Evidence that supports the genetic algorithm as a theory of behavior dynamics will also 
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be presented. Afterwards, a specific feature of the program will be addressed, in terms of 

its characteristics and importance, specifically the Hamming distance.  

The Computational Model 

 Selection by Consequences 2.0 (SC 2.0) is a genetic algorithm designed by 

McDowell (2004) that implements simple rules of Darwinian evolution (selection, 

recombination, and mutation). Basically, the model forces a population of behaviors to 

evolve under the selection pressure of the environment, without specifying a final 

outcome.  

 SC 2.0 implements a virtual organism with a total repertoire of 100 behaviors, 

selected from the integers from 0 to 1023. The behaviors’ phenotypes are the integers 

from 0 to 1023; the genotype of each behavior is the binary correspondent of this integer. 

For example, the genotype of behavior 678 is 1010100110; each behavior has a genotype 

of 10 digits. The total number of behaviors is divided into four classes, the class size 

being established based on the baseline probabilities computed by the user. For example, 

if we assign a baseline probability of 5% to class 3 and we draw a behavior at random, 

there is a 5% chance that the behavior will belong to class 3. We may choose to reinforce 

one class (single-alternative schedule), 2 classes (concurrent schedules) or no class (no 

reinforcement is available) of behavior. The reinforced classes (referred to as “target 

classes”) correspond to a rat’s lever-pressing and the non-reinforced classes (referred to 

as “extraneous classes”) correspond to all other behaviors that a rat may display in a 

Skinner-box, that do not produce reinforcement (e.g. exploring the cage).  

 In the beginning of an experiment the program selects a population of 100 

behaviors at random; from this population, a first behavior is randomly emitted. Every 
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time-tick a new population is generated in the following general way: parents are selected 

from the population, they reproduce, mutation occurs, and a new behavior is emitted. 

Twenty thousand emissions constitute an experiment and they are grouped in 500-

generation blocks, each block becoming a data point.  

There are two processes that are not affected by the schedules in effect: 

recombination and mutation. Even though both of them can be implemented in a variety 

of ways, the discussion will be restricted to the ones used in these experiments.  

Recombination 

The recombination method used is called “bitwise”. After the two parents are 

selected, in a manner that will be described later
 
, every bit in the progeny’s string has a 

50% chance of being the corresponding bit of one parent and a 50% chance of being the 

corresponding bit of the other parent. For example, let us suppose that the mother is 340 

and the father is 117; their genotypes are 0101010100 and 0001110101 respectively. The 

bit in the first slot of the child is 0, because it is 0 in both parents. The bit in the second 

slot has a 50% chance of being 1 (from the mother) and a 50% chance of being 0 (from 

the father); it is randomly selected based on the 50-50 probability and, in this example, 

the second slot of the child is 1. The process continues for all ten slots; in our example 

the resulting child may be 0101010101, with 7 bits being the same in mother and father, 2 

bits being from the mother, and 1 bit is from the father; the corresponding integer 

(phenotype) is 341.  

Mutation 

The mutation method used is called “bit flip by individual”. We can choose the 

level of mutation we desire; for all the experiments the mutation rate was set to 10%. 
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This means that every time “mutation” occurs, every individual in the population has a 

10% chance of  being affected by it; if affected, one of the 10 bits, at random, is “flipped” 

from 1 to 0 or vice versa. Using the same example as above, let us assume that the child-

behavior 0101010101 (341) is affected by mutation; in this case, 1 bit is “flipped”. The 

affected bit is randomly selected, each bit of the 10-bits string having a 10% chance
3
 of 

being flipped. In our example the bit affected may be the one in the third slot, which is 

flipped from 0 to 1; the new, mutated behavior is 011010101 (469). Recombination and 

mutation ensure the diversity of the population, introducing variation; both processes are 

illustrated in Figure 2.  

After a behavior is emitted (randomly selected from the population of potential 

behaviors) the program determines whether the behavior is part of the target class; if it is, 

it determines if reinforcement is available. If the emitted behavior is not part of the target 

class, or if it is part of the target class but reinforcement is not available, then parents are 

randomly selected. After they reproduce, mutation affects the new population of 

behaviors and the whole process is repeated.  

Fitness 

If the emitted behavior is part of the target class and reinforcement is available 

(therefore acquired) the process of selection will occur. Selection is based on the fitness 

of every behavior, which is calculated using a method called midpoint fitness. The 

midpoint of the target class from which the behavior was emitted becomes “fitness zero.” 

The fitness of each behavior in the population is calculated as the absolute difference 

                                                 
3
 The selected level of mutation (10% in our example) has nothing to do to the 10 % chance of every bit in 

the child-behavior of being flipped; this probability is always 10%, given the fact that there are ten bits in 

every genotype. 
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between the integer that represents it and “fitness zero”. The range of integers from 0 to 

1023 is wrapped upon itself, as a circle, 1023 being next to 0. This way, the distance 

between 1023 and 0 is equal to the distance between 0 and 1. The fitness value of a given 

behavior is the smallest distance, as represented on this circle, between the behavior’s 

phenotype and “fitness zero” (the midpoint of the target class for which the previously 

reinforced behavior originated); the smaller the fitness value, the fitter the behavior. 

For example, if a target class encompasses behaviors between 512 and 552, then 

its midpoint is 532. If the emitted and reinforced behavior is part of this class, 532 

becomes “fitness zero” (best fitness). The fitness value for, let’s say, behavior 817 is 

|532-817| = 285 and for behavior 390 – |532 -390| = 142. The behavior with the smallest 

fitness value is considered the fittest because it is closest to the target class that was 

reinforced; in this example, the fitter behavior is 390. The procedure of assigning fitness 

values is depicted in Figure 3.  

Selection 

After assigning fitness values, a parental selection function is used to select the 

parents for the new population of behaviors. The parental selection function assigns 

greater probabilities of being selected as parents to behaviors with smaller fitness values. 

In this project the function is linear, but any function that assigns larger probabilities to 

fitter behaviors can be used (e.g. an exponential). Detailed characteristics of the selection 

functions will be discussed later. 

A summary of the program’s functionality is illustrated in Figure 4. In the 

beginning of the experiment a population of 100 behaviors is randomly selected from the 

integers between 0 and 1023. One behavior is randomly selected from this population and 



Effects of Hamming Distances 14 

 

it constitutes the first emission in the experiment. If the emitted behavior is not part of the 

target class or is part of the target class but reinforcement does not occur, then parents are 

selected at random from the existing population. They reproduce and the new population 

of children is affected by mutation. A new behavior is emitted at random from the 

mutated population. If reinforcement occurs, then the program calculates the fitness value 

of each behavior in the population. A parental selection fitness function is used to assign 

greater probabilities of being selected as parents to fitter behaviors. Therefore, the parents 

are no longer selected at random, but are selected based on their fitness. They reproduce 

and the population of children is affected by mutation. From this population a new 

behavior is randomly emitted. Every emission constitutes a generation; in a typical 

experiment there are 20,000 emissions, therefore 20,000 generations.  

The processes of recombination and mutation tend to spread the behaviors among 

the four classes. However, if reinforcement is acquired, the parents for the next 

generation are selected based on fitness, therefore, the probability that parents are 

selected from that particular target class (or close to it) is relatively large. Therefore, 

reinforcement, which entails selection based on fitness, is in opposition to recombination 

and mutation, tending to keep the behavior in the target class that was previously 

reinforced. After a few thousands generations the opposing forces reach equilibrium, a 

steady state best described by The Matching Law.   

Evidence supporting SC 2.0 

The results produced by SC 2.0 are remarkably similar to those displayed by 

living organisms. When Equation 5 is fitted to the data generated by SC 2.0, the bias 

parameter (b) varies around unity for symmetrical-choice environments and fluctuates 
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with the level of asymmetry introduced by the experimenter. The percentage of variance 

accounted for is typically about 95%. The exponent (a) varies around 0.8, accurately 

depicting the undermatching phenomena encountered in living organisms (McDowell & 

Ansari, 2005, McDowell & Caron, 2007, McDowell et al, 2008).  

As stated above, there is no direct link between the low-level rules implemented 

in the program and the final outcome that we observe; moreover, the emergent results 

have been found to be robust over different experimental conditions, as shown in an 

experiment conducted by McDowell et al. (2008). The first phase of this experiment 

modeled a free-choice environment, consisting of symmetrical concurrent schedules. The 

processes of selection, recombination, and mutation were held constant during this phase. 

Analysis of the results indicated remarkable similarity to the behavior of living 

organisms. When Equation 5 was fitted to the data, the exponent, a, varied between 0.76 

and 0.89, with an average of 0.82, which is an indicator of undermatching. The bias 

parameter, b, varied around an average of 0.99, reflecting the absence of bias in 

symmetrical choice environments.  

The second phase of the experiment modeled an asymmetrical free-choice 

environment. The difference between the two alternatives was manipulated by altering 

the parental selection process; more specifically, the severity of the selection process was 

held constant on one alternative while it varied on the second alternative. The severity of 

the selection process can be easily manipulated by modifying the mean of the parental 

selection function; this characteristic will be discussed in detail in the Method section. 

Different levels in the severity of the parental selection process for the two alternatives 

were hypothesized to be computationally equivalent to the effects produced by different 
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types (or magnitudes) of reinforcement in experiments with living organisms. For 

instance, if one alternative provides regular water and the other alternative provides 

saccharine, a rat shows a preference toward the second alternative. This phenomena is 

reflected in the value of the bias parameter, b, and indicates that the organism is placing a 

larger proportion of responses (than predicted by perfect matching) on the preferred 

alternative.  

In the computational model, a more severe selection process means that very fit 

behaviors have a greater chance of becoming parents. The consequence is an increased 

probability of progeny belonging to the same target class from which the previously 

reinforced behavior was emitted. If more behaviors in the population belong to this target 

class, then one would expect the proportion of responses that originate from this class to 

increase, which would be a similar outcome to that encountered in the example with 

living organisms mentioned above, namely a larger proportion of responses on one 

alternative (larger than predicted by perfect matching). This similarity in outcome is the 

foundation of the hypothesis that severity of the selection process for the two alternatives 

is computationally equivalent to different types (or magnitudes) of reinforcement 

delivered by the two alternatives. Because the latter entails differences in preference 

reflected in the value of b one would expect to observe the same differences in the results 

generated by the model.  

 The analysis indicated that stronger selection events are indeed favored, as 

reflected by the bias parameter. When stronger selection events were associated with the 

first alternative the value of b was 2.4; it decreased, approaching 1, as the difference 

between levels of severity of the selection processes on the two alternatives diminished, 
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reaching 0.7 when the stronger selection event was associated with the second alternative. 

The average of the exponent, a, was 0.83, indicating that the small level of 

undermatching is preserved even in asymmetrical choice environments.  

In the third phase of the experiment the authors varied the mutation rate and the 

severity of the parental selection process. Although different from the experiments in 

phase one, severity was kept equal for the two alternatives, thus generating a symmetrical 

choice environment (equally severe or equally lenient). In other words, the effect of 

different mutation rates was examined at different levels of severity of the parental 

selection process. The analysis revealed that for mutation rates between about 5 and 12% 

the exponent varied around 0.8. For mutation rates lower than 5% the exponent decreased 

moderately (≈ 0.60) and for mutation rates larger than 12% the exponent decreased 

dramatically (as low as 0.16). Turning to the effect of the selection process, the results 

showed that more severe selection processes produce slightly higher exponents. The bias 

parameter however varied around 1 for all conditions, accurately depicting symmetry 

between alternatives even for different mutation rates and different levels in the severity 

of the parental selection process.  

For all three phases of the experiment the percentage of variance accounted for 

was very high, varying around 90% (with a few exceptions for extremely low mutation 

rates). Analysis of residuals indicated the absence of linear or higher order polynomial 

trends. The results presented above constitute strong evidence that the computational 

model produces quantitative outcomes extremely similar to those observed in 

experiments with living organisms. It does so in a variety of conditions, for different 

severity levels of the selection process and different mutation rates, both in symmetrical- 
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and asymmetrical-choice environments. These outcomes suggest that McDowell’s 

computational model of selection by consequences may be a valid causal account for 

instrumental behavior. 

Hamming Distance 

An important aspect of the program is the fact that behaviors are represented by 

strings of binary digits. The binary representation has some particular characteristics, one 

of them being the Hamming distance. A Hamming distance represents the number of 

digits that must be changed in a string in order to obtain a different string of equal length 

(Hamming, 1950). For example, to obtain 448 from 447, 7 digits must be changed in the 

string (0110111111 → 0111000000).  

When defining the target classes for the concurrent schedule experiments 

(McDowell et al, 2008), the authors defined them so they were separated by the 

maximum Hamming distance (when operating with 10-bit strings, the maximum distance 

is ten, Russell & Norvig, 2003). This choice was based on the fact that a large Hamming 

distance between target classes makes it difficult for a behavior to “switch” from one 

target class to the other by means of recombination and mutation. Also, it was observed 

that small distances tend to produce frequent switching between classes. This led the 

authors to hypothesize that the Hamming distance may be computationally equivalent to 

the role played by a changeover delay (COD) in experiments with living organisms 

(Findley, 1958).  

It is interesting and troubling at the same time that all the computational 

experiments conducted with concurrent schedules were implemented using a Hamming 

distance of ten between the two target classes. As it was discovered in other fields (e.g. 
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telecommunication, cryptography) the Hamming distance may have a significant effect 

on the behavior of the computational model. In this light, it becomes important to 

investigate the effect of the Hamming distance on the results produced by SC 2.0. 

Hamming Distance and the COD 

A concurrent schedule is a specific arrangement for the delivery of reinforcement, 

which involves two schedules of reinforcement that run simultaneously. In the present 

project the schedules were random interval schedules (RI); a random interval schedule 

means that at certain time intervals reinforcement becomes available and the first 

response after the time interval acquires it. The time intervals are randomly selected form 

an exponential distribution (hence the name “random interval schedule”) with a mean 

specified by the user. For example, a random interval schedule with a mean of seven 

seconds (RI 7) means that the average time between the delivery of a reinforcement and 

the setup of the next (when the next one becomes available, but not necessarily acquired) 

is, on average, no less than seven seconds; however, it can be much longer if the 

organism’s response rate is low. The specific interval however is drawn at random from a 

distribution. Therefore, the first time interval may be, let’s say, 4 seconds, the second 

time interval 15 seconds, and so on. The use of the exponential distribution ensures that 

time intervals are truly randomized and that the average interval is the one specified by 

the researcher. This way, one may set a very rich schedule (e.g. reinforcement becomes 

available, on average, every 2 seconds – RI 2) or a very poor schedule (e.g. reinforcement 

becomes available, on average, every 150 seconds – RI 150).  A concurrent random-

interval random-interval schedule (concurrent RI RI) means that two RI schedules run, 

independently of each other, on two physically different alternatives (e.g. two levers).  
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In experiments with living organisms an important phenomenon was sometimes 

observed on concurrent schedules: instead of reinforcing responding on the alternatives, 

the change between alternatives may have been reinforced. In other words, due to some 

environmental characteristics, the organism was responding as if switching itself was 

being reinforced, and not the targeted response (e.g. the rat was responding as if 

reinforcement was delivered for alternatively pressing the two levers, not for consistently 

pressing one or the other). To prevent this from happening researchers introduced a 

changeover delay (COD) (Findley, 1958). When a COD is in effect and reinforcement 

becomes available, the first response does not acquire the reinforcement. Instead, it is 

acquired at the first response that occurs after the COD elapses. This practice proved to 

be an efficient method of preventing reinforcement for switching between alternatives.  

The effects of CODs on operant behavior were reported as early as the 1960s. The 

main effect is a strong tendency of behavior towards indifference at small CODs and is 

mathematically reflected in the small values of the exponent of fits of Equation 5. Indeed, 

when varying the COD from 0s to 20s, the exponent was found to vary between 0.2 (at 

COD =0) to 0.9 (COD = 20) (Shull & Pliskoff, 1967; Davison & McCarthy, 1988). Some 

researchers support the idea that a COD is necessary for matching. Others suggest that 

matching does occur without the use of COD, if the procedure is very carefully 

controlled; what parameters should be controlled and how to control for them remains 

unclear (Baum, 1974, 1979; de Villiers, 1977). Another study that specifically varied the 

COD values found that if the COD increases, the value of a increases as well; for COD = 

0, the values of a varied between 0.3 and 0.7, in a group of six organisms (Temple, 

Scown, & Foster, 1995). Although the aforementioned studies do not allow for strong, 
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indisputable conclusions, the results clearly show that the value of a drops for small 

values of  the COD, in some cases being extremely close to total indifference (absolute 

value ≈ 0).   

Unpublished data from our laboratory suggest that the Hamming distances have a 

significant effect on the equilibrium states produced by the computational model, but the 

nature and extent of this effect remain unclear. At this point, the data that are available 

suggest that, at least in some cases, the Hamming distance has the effect of a COD 

(McDowell, 2004). First, the value of the exponent seems to drop with smaller Hamming 

distances between the target classes, being as low as 0.05 in some cases. A second 

finding that supports this assumption is the relation between the number of changeovers 

and the proportion of reinforcement. For living organisms, the larger the proportion of 

reinforcement obtained from one alternative, the smaller the rate of switching between 

alternatives (McDowell et al, 2008). Switching between alternatives increases as the 

proportion of reinforcement obtained on one alternative declines towards 0.5, after which 

it declines, as the proportion of reinforcement obtained on the other alternative increases 

from 0.5 to 1. In other words, if the reinforcements are obtained almost exclusively on 

one alternative, the organism switches less often between alternatives. At the other 

extreme is the case in which reinforcements are equally obtained from both alternatives 

(proportion = 0.5); in this case we encounter the maximum number of switches between 

alternatives. The pattern described above is illustrated in the left panel of Figure 5.  

 Interesting preliminary data show another outcome, illustrated in the right panel 

of Figure 5. When the only aspect that varies is the Hamming distance that separates the 

target classes (e.g. distance six instead of ten) the results look completely different from 
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those described above. With smaller Hamming distances between classes, it appears that 

the number of changeovers decreases as the proportion of reinforcement on one 

alternative declines towards 0.5, after which it increases, as the proportion of 

reinforcement on the other alternative increases from 0.5 to 1. This is the exact opposite 

of the pattern described above: if reinforcement is acquired almost exclusively on one 

alternative, the organism switches most often; if the number of reinforcements is equal 

for both alternatives, the organism switches least often.  

The dramatic change in the exponent, as well as the relation between changeovers 

and proportion of reinforcement, seem to be consistent with the hypothesis that the 

Hamming distance between the target classes is computationally equivalent to a 

changeover delay. The purpose of this project is to elucidate the role and the effect of 

different Hamming distances on instrumental behavior in a computational model of 

selection by consequences.  
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General Method 

Traditionally, the computational model uses two specific target classes; Class 1 

consists of behaviors from 471 to 511 and Class 2, behaviors from 512 to 552. The two 

classes, equal in size (41 behaviors in each class), are separated by the largest possible 

Hamming distance, ten. This means that it is relatively difficult for a behavior, by 

mutation and reproduction, to switch from one target class to another. The main question 

that arises is how this particular setting influences the results and what happens if we 

choose different Hamming distances as boundaries between the two target classes.  

 As stated before, the behavior of the virtual organism is governed by the simple, 

low-level rules of selection, recombination, and mutation. When reinforcement is 

obtained, parents for the next generation of behaviors are selected based on their fitness. 

Basically, selection is a function of fitness and the probability of being selected as parent. 

This process is implemented by the use of a probability density function, which assigns 

higher probabilities of being selected as parents to fitter behaviors. In all experiments 

conducted for this project the function used was linear; its form is given by the formula:  
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In the above equation µ is the mean of the function and the fitness value (x) is in 

the interval [0, 3µ]. The function expresses the probability of a behavior with a given 

fitness value (x) of becoming a parent. Fitness values represent the difference between the 

midpoint of the target class from which the previously reinforced behavior occurred and a 

behavior’s phenotype (its integer); as illustrated in Figure 3, behaviors that are closer to 

the midpoint of the target class have smaller fitness values and higher fitness. After 

(6) 
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assigning fitness values, a behavior is selected using the cumulative form of Equation 6, 

that is, its integral: 

xxxP
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The parental selection function depends only on its mean, and by modifying the 

mean we can alter the strength of the selection process. For example, using Equation 7, 

the probability of a behavior with a fitness value of 40 being selected as parent is 0.01 for 

µ = 40, 0.005 for µ = 15, and 0 for µ = 7. As we can see, the probability that one 

behavior, with a specific fitness value, will become a parent decreases as the mean of the 

parental function increases; the same behavior has larger and larger chances of becoming 

a parent as the mean decreases, as illustrated in Figure 6. In other words, the selection 

process becomes more severe as the mean decreases, allowing only very fit behaviors to 

be selected as parents; since the parental selection function depends only on its mean, the 

severity of the selection process can be easily altered by modifying the mean.  

After parents are selected they recombine and give rise to the next generation of 

behaviors. The recombination method used in all experiments is called “bitwise”, each bit 

of the child behavior having a 50 percent chance of coming from one parent or the other, 

as illustrated in Figure 2. Throughout the present project the level of mutation was kept 

constant at ten percent, which means that each behavior has a 10% percent chance of 

being affected by mutation. If affected, one bit, at random, is “flipped” (one becomes 

zero or zero becomes one), that is why this mutation method is called “bit flip by 

individual”. Both the method and the rate (10%) were kept constant in all experiments. 

After mutation, a new behavior is emitted and the entire process is reiterated; 210,000 

(7) 
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repetitions constituted an experiment and five experiments were run for each 

experimental condition. Each repetition was fitted and the five sets of parameters were 

averaged. A data point is thus the average of five values; this refers to exponents’ values, 

values of the bias parameter, and proportion of variance accounted for. Another important 

aspect that characterizes all experiments is the fact that the two classes were always 

identical in terms of number of behaviors encompassed in each one and the severity of 

the selection process associated with them. In other words the virtual organism was 

always placed in a symmetrical-choice environment.   

Mathematical analysis 

The data collected were analyzed using the logarithmic transformation of the 

power function matching equation (Equation 5); the logarithmic transformation results in 

a straight line, which is easier to fit than a power function and is widely accepted in the 

field as being the standard method of analysis:   
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In the above equation, a is the slope and log b is the y-intercept of the straight line. A 

slope smaller than one depicts the undermatching phenomenon; values larger than one 

indicate overmatching. If the straight line intersects the y-axis above zero it means that 

the organism is biased towards the first alternative. A negative intercept value indicates a 

preference towards the second alternative. These phenomena can be examined in Figure 

7. The actual values were calculated using the Excel functions SLOPE and INTERCEPT; 

the bias parameter, b, is equal to 10
INTERCEPT

.  

 (8) 
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Residuals were analyzed for randomness using the Reich method (Reich, 1992), 

as it was applied by McDowell (2004). The Reich method consists of three tests for the 

randomness of the residuals. One procedure tests the obtained number of positive 

residuals for randomness (ideally, half of the values are positive and half are negative), 

the second procedure tests for consecutive values with the same sign, and the third 

procedure tests for a lag-1 auto-correlation among residuals. The failure of any of the 

three tests was taken to indicate a systematic pattern of residuals for that particular 

experiment. The tests were conducted using an Excel Macro developed by McDowell 

(2004).  

The randomness for any given group of experiments was investigated by 

calculating the binomial probability of concluding that x or more non-random sets of 

residuals in the entire collection (n) are not random, given the known probability of 

falsely concluding that a certain set is not random. Since it is enough to fail one test out 

of three to be considered non-random, and each test has an alpha level of 0.05, the 

probability of making a Type I error (concluding that a set of residuals is not random 

when, in fact, it is random) is considered to be the cumulative alpha level, given by 

Equation 9: 

1 – (1 – 0.05) (1 – 0.05) (1 – 0.05) = 0.142625. 

Under these circumstances, given a collection of experiments with random 

residuals, one would expect to conclude in approximately 14% of cases that residuals are 

random, when in fact they are not. We can compare the hypothetical collection described 

above with the obtained collection by calculating the binomial probability of concluding 

that x or more sets of residuals are not random in a collection of n sets, all with random 

 (9) 
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residuals, given the fact that there is a 14% chance of falsely concluding that a set of 

residuals is random. Basically we assume that x or more sets of residuals are not random 

(H1); if the binomial test is significant (probability ≤ 0.05) we must accept the fact that 

residuals in our collection are not random. However, if the binomial probability is greater 

than 0.05 the alternative hypothesis is rejected and we accept that residuals in our 

collection are, in fact, random (H0 = true). The binomial probability is calculated using 

Equation 10, where p = 0.142625: 

. 

Direct correlations between log (R1/R2) and log (r1/r2) were used to calculate the 

proportion of variance accounted for (pVAF) by the power-function equation. An SPSS 

corelational analysis was used to compare two particular sets of data points; SPSS was 

also used to generate frequency distributions of the exponent and the bias parameter. The 

genetic algorithm’s utility functions were used to calculate the number of changeovers, 

defined as the number of times the organisms switches from one alternative to another, 

averaged per 500-generation blocks.  

In the next sections of the project seven experimental series will presented. The 

absolute effect of the Hamming distances, when using the traditional settings, will be 

discussed in the first series. The second series investigates and clarifies a certain issue 

observed in the first series. The third and fourth experimental series explore the effects of 

different class sizes and different parental selection means, at all nine locations. The fifth 

and sixth series have the purpose of isolating an effect observed in the previous 

experiments. From the results of the six experimental series a general rule emerges, and 

that rule is tested for robustness in the final series of experiments.  

(10) 
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Experimental Series 1 

The focus of this series of experiments was the absolute effect of the Hamming 

distance, using the traditional experimental parameters: a class size of 41 behaviors and a 

parental selection function mean of 40.  

Method 

In order to study the effect of Hamming distances the two target classes were 

moved along the continuum of integers from 0 to 1023, placing them in such locations so 

that the Hamming distance between the two target classes was 9, 8, 7, 6, 5, 4, 3, and 2, as 

shown in the top panel of Figure 8. All these locations are situated to the left of Hamming 

distance ten (HD 10). Given the structure of the continuum, which, regarding the position 

of Hamming distances, is perfectly symmetrical with respect to HD 10, there are no 

reasons to assume a difference between the two halves: locations to the left or to the 

right
4
.  However, for control purposes, the eight locations mentioned above were 

“mirrored” to the right, as shown in the bottom panel of Figure 8; Figure 9 depicts all 17 

locations, to the left and to the right. Five experiments were conducted for each location, 

giving a total of 85 experiments. Each experiment entailed eleven pairs of concurrent 

schedules and each pair was in effect for 20,000 generations; therefore, almost 93 million 

generations were run for the present experimental series. The mean of the parental 

selection function was kept constant at its traditional value of 40 and its form was linear; 

the mutation rate was also kept constant, at 10%. 

Results and Discussion 

                                                 
4
 These labels are used throughout the paper to refer to the two halves of continuum. Locations situated 

between 0 and 512 are referred to as “left” and locations situated between 512 and 1023 are referred to as 

“right”. 
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The results are illustrated in Figure 10. When the Hamming distance that 

separates the two target classes was ten (McDowell, 2004; McDowell et al, 2009) the 

value of the exponent (a) varied around 0.8, the level of undermatching typically 

encountered in experiments with live organisms (Baum, 1979; McDowell, 1988); similar 

values emerged in the present experiments when the Hamming distance between the two 

target classes was nine. However, a significant decrease in the value of a was observed 

when the Hamming distance was reduced to eight: from approximately 0.8 to 

approximately 0.5, indicating a high level of undermatching. The most interesting 

phenomenon emerged when the Hamming distance was seven, a phenomenon that is 

consistent for all the other values of the Hamming distance, as illustrated in the top panel 

of Figure 10. In all these cases the value of the exponent was very close to zero (varying 

between 0.07 and 0.15), which indicated an extremely strong tendency towards total 

indifference. The bottom panel of Figure 10 illustrates the values of the bias parameter 

(b), which varied around unity; not a surprising outcome considering the fact that all the 

experiments involved symmetrical-choice environments. In addition, results obtained 

when the two target classes were situated to the left were almost identical, both in values 

and pattern, with those obtained when the target classes were located to the right. 

Besides the decrease in the exponent’s value down to the point of total 

indifference, another important phenomenon accompanied the smaller Hamming 

distances: a striking change in both the pattern and the frequency of the changeovers 

(switching between the two alternatives). When HD 10 or HD 9 separated the two target 

classes the pattern typical for live organisms was observed: the number of changeovers 

increased as the proportion of reinforcement on the first alternative increased from 0 to 
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0.5, after which it decreased as the proportion of reinforcement on the first alternative 

increased from 0.5 to 1. This pattern indicates that when reinforcements were acquired 

almost exclusively from one alternative the number of changeovers was rather small; 

when reinforcements were obtained equally from both alternatives, the organism 

switched most often. As illustrated in Figure 11, the number of changeovers in these 

cases (averaged per 500 generations blocks) varied between 3 and 14.  When the two 

target classes were separated by a Hamming distance of eight the number of changeovers 

increased from an average of approximately seven to an average of approximately 30; at 

the same time an almost constant pattern of switching was observed, associated with an 

exponent value of 0.5. However, the most interesting phenomenon was encountered in 

the situations in which the Hamming distances between the two target classes were equal 

to or smaller than seven (situations associated with exponent values close to zero). The 

frequency of changeovers was approximately ten times higher compared with the first 

situation (Hamming distance ten). Also, the pattern was in complete opposition to the one 

observed when HD 10 served as boundary, indicating that when reinforcements were 

obtained almost exclusively from one alternative the organism switched most often 

between alternatives.  

 Experimental series 2 

An interesting phenomenon was observed in the previous experimental series 

when the Hamming distance that separated the two target classes was equal to four. In 

this case a fracture in the pattern was observed, manifested by a small but noticeable 

increase in the value of the exponent (a ≈ 0.16); the identical phenomenon appears at the 

right (a ≈ 0.16), as depicted in Figure 10. Examining the exact locations it becomes 
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evident that using a class size of 41 behaviors at Hamming distance four, the second 

target class comprises behaviors from 488 to 528, which includes inside it the Hamming 

distance ten (between 511 and 512). Similarly, when mirroring the location to the right 

the Hamming distance ten is included inside in the first target class, which encompasses 

behaviors between 495 and 535.  

This phenomenon could be better understood if we consider a Skinner box with 

two levers (concurrent schedules). Also, let’s consider that the physical distance between 

the two levers represent the magnitude of the changeover delay. If the distance is very 

small, it is very easy for the rat to switch from one alternative to the other; as the distance 

increases it becomes more difficult for the rat to switch between alternatives. In a Skinner 

box there is always more than one behavior that may acquire reinforcement from a lever: 

the rat may press it with one paw, with both front paws, with variable intensity, etc. We 

may say that all these behaviors constitute a class of behaviors that occasionally result in 

reinforcement from one alternative, such as, for instance, the second target class in the 

computational model. In a testing chamber we may represent one response alternative not 

by one lever, but rather by a collection of buttons next to each other, as depicted in the 

top panel of Figure 12. The physical distance between the two collections of buttons (the 

two response alternatives) represents the changeover delay or the Hamming cliff. The 

first two panels of Figure 12 depict the situations in which the two target classes are 

separated by a Hamming distance of ten and four respectively. The third panel however, 

illustrates a very specific situation: that in which the two target classes are separated by a 

Hamming distance of four and the Hamming distance ten is included inside the second 

target class. Observing the figure it becomes clear that a potential effect of this setting 
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would be to separate the second target class into two, informal classes. While some 

behaviors do remain close to the first target class, allowing facile switching between 

alternatives (mathematically illustrated by exponent values close to zero), an important 

proportion of behaviors become isolated from the first target class. When the behavior 

that acquired reinforcement is one that is close to the first alternative it will draw the 

organism towards indifference, due to the small barrier between the target classes. When 

the behavior that acquired reinforcement is one that is separated from the other target 

behaviors (from either target class) by the Hamming distance ten it will draw the 

organism towards matching. These two opposing phenomena may consequently lead to a 

compromise: exponent’s values that are close enough to zero to indicate a severe level of 

undermatching and yet large enough to dispute total indifference.  

Method 

Assuming that this particular setting might be the cause of this phenomenon, the 

following modification was introduced: a different location was chosen for Hamming 

distance four. The purpose was to preserve the magnitude of the cliff that separates the 

target classes, while making sure that Hamming distance ten is not included in any of the 

classes. One position that meets these two conditions is between 391 and 392. In this 

case, the first class comprises behaviors between 351 and 391 and the second target class 

comprises behaviors between 392 and 432. 

At the same time, a different location was chosen for Hamming distance five; in 

this situation the first target class comprises behaviors between 391 and 431 and the 

second target class comprises behaviors between 432 and 472. But Hamming distance ten 

is not included in any of the target classes. Therefore, a different location was chosen, 
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between 495 and 496. In this case the second target class encompassed behaviors 

between 496 and 536, thus including Hamming distance ten. These two new locations 

were mirrored with respect to Hamming distance ten: the mirrored location for Hamming 

distance four is between 631 and 632 and the mirrored location for Hamming distance 

five is between 527 and 528. Five experiments were run for each location, giving a total 

of 20 experiments; the parental selection function was kept constant (µ =40). 

Results and discussion 

The results, depicted in Figure 13, confirmed the initial assumption: including HD 

10 inside either of the target classes produced a slight increase in the exponent’s value. 

When HD 10 was not included in any of the target classes the predicted, smooth pattern 

was observed: the value of a decreased dramatically when the Hamming distance 

between the two target classes was seven or less, varying between 0.07 and 0.14, 

mathematically describing total indifference.  

This finding raised an interesting problem: is this phenomenon due to the 

presence of HD 10 in one of the target classes or is it due to the presence of a larger HD 

inside a class than the one that separates the classes? In other words, is the phenomenon 

caused by the absolute values of the Hamming distances or is it caused by a relation 

between the Hamming distance that separates the two target classes (referred from now 

on as HD between) and the largest Hamming distance found in one of the classes 

(referred from now on as HD within)?  

Experimental series 3 

In order to answer this question it was important to systematically investigate the 

effect of different HDs within, their mathematical relation with the different HDs 
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between, and the effect of these various relations on the outcomes produced by the 

computational model. Positioning the two target classes at different locations made 

possible the manipulation of the Hamming distance that separates the classes. However, 

just by positioning the target classes at different locations on the continuum of integers, 

due to the structure of this continuum, the largest Hamming distance found inside a class 

is still equal for all conditions, namely six. 

Method 

 The only way to address this research question was to manipulate the size of the 

target class. This allowed for a systematic manipulation of the absolute value of the 

largest Hamming distance found inside a class. Due to the continuum’s structure, by 

decreasing the number of behaviors encompassed in each target class, the largest HD 

within can be indirectly decreased, as illustrated in Figure 14. When the target classes 

encompass 41 behaviors, the largest HD within is six. If we decrease the number of 

behaviors in each target class to 25, the largest HD within is five. Similarly, the largest 

HD within is four when the class size is reduced to 15 behaviors and three when each 

class contains only seven behaviors. In addition to the four class sizes mentioned so far 

(41, 25, 15, and 7), another two values were used, mainly for control purposes; in these 

two cases the classes included 71 and 151 behaviors respectively. A listing of all class 

sizes and the corresponding largest Hamming distance found in each class can be 

examined in Table 1. All six class sizes were tested at all nine Hamming distances 

between HD 9 and HD 2; this entailed 54 experimental conditions. Five experiments 

were run for each condition, resulting a total of 270 experiments. For each experiment the 

severity of the selection process was kept constant (µ = 40)  
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Results and discussion 

The results are depicted in the left panel of Figure 15. The outcomes obtained for 

the small class sizes are depicted in the top right panel (7, 15, and 25 behaviors). The 

pattern of exponents was remarkably similar to the one displayed when the classes 

encompassed 41 behaviors. Moreover, the exponent’s values varied arround 0.8 for HD 

10, were slightly smaller for HD 9, reached values of aproximatelly 0.5 for HD 8, and 

varied between 0.01 and 0.23 for all Hamming distances equal to or smaller than seven.   

In the case of larger class sizes (71 and 151 behaviors), results followed the same 

pattern: a varied around 0.8 – 0.9 for HD 10 and HD 9, reaching a value close to 0.5 at 

HD 8. For the Hamming distances between seven and two, the exponent’s values 

decreased, just as happened in the case of the traditional setting (41 behaviors in each 

target class); however, it did not reach the extreme small values encountered for smaller 

class sizes, as depicted in the bottom-right panel of Figure 15. This is not surprising when 

we consider the fact that the absolute number of behaviors that may acquire 

reinforcement when the class sizes are large is very high; successive generations of 

behaviors may belong to the same target class just because it is so large that, even if the 

behavior is not controlled by the environment, it is hard for a behavior to be very 

different than the previous one just through recombination and mutation. Also, the largest 

Hamming distance is almost always included in one of the classes. These aspects could 

overshadow a possible propensity towards total indifference. 

It appeared that a systematic decrease in the value of the largest Hamming 

distance found inside a class yielded similar outcomes, both in pattern and values, as 

those obtained when its value was kept constant. The emergent results seem to suggest 
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that the relation between HD between and HD within does not affect the outcomes, thus 

contradicting the initial hypothesis.  

However, the theoretical framework (McDowell, 2004) and empirical data 

(McDowell et al., 2008) suggest that an important feature of the computational model is 

the selection process. For example, it was observed that a more severe selection process 

tends to generate higher exponents, while a weak selection process generates lower 

exponents.  

Experimental series 4 

As explained earlier, the parental selection function depends only on its mean; 

thus, the severity of the selection process is easily manipulated by modifying the 

function’s mean. In general, smaller means are associated with higher exponents and 

larger means with lower exponents (McDowell et al., 2008); results obtained so far are in 

agreement with previous findings, as illustrated in Figure 16. In investigating different 

experimental conditions an interesting relation was observed: the number of behaviors 

that can be selected as parents is equal to three times the value of the mean, as illustrated 

in Figure 17. For example, when the mean is equal to 40, behaviors with fitness values 

greater than 120 have no chance of becoming parents and all behaviors with fitness 

values smaller than 120 can, in theory, be selected as parents. Therefore, regardless of the 

position on the continuum and of the number of behaviors in each target class, when 

using the traditional mean of 40 the number of behaviors that can be selected as parents is 

always equal to approximately 120.  

In other words, by decreasing the class size and keeping the mean constant, the 

number of behaviors that can acquire reinforcement decreases, while the number of 
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behaviors that can become parents remains constant. A lot of behaviors are considered 

“fit”, while very few behaviors are, in fact, reinforced. 

Even more interesting is the fact that, in the traditional setting, the number of 

behaviors that can be selected as parents is approximately three times larger than the 

number of behaviors that constitute a target class (41 behaviors). This particular relation, 

between the number of behaviors that can acquire reinforcement (class size) and the 

number of behaviors that can be selected as parents (which depends on the mean of the 

parental selection function), might have contaminated the results examined in the 

previous experimental series. More precisely, the size of the target class was decreased, 

thus systematically excluding larger Hamming distances from the target classes. 

However, at the same time, the parental selection function mean was kept constant (µ = 

40), which means that the absolute number of behaviors that can become parents 

remained constant when the class size decreased. In other words, the number of behaviors 

that can acquire reinforcement becomes smaller but the number of behaviors that are 

considered fit remains constant, which indirectly creates weaker and weaker selection 

processes. Since the severity of the selection process directly influences the outcomes 

(McDowell, 2004; McDowell et al., 2009) it becomes obvious that this phenomenon must 

be isolated and studied systematically before strong conclusions can be reached. 

Method 

In order to control for the special relation between the class size and the mean of 

the parental selection function, three categories of means were selected. The first and 

most important one was a category called proportional; its purpose was to preserve the 

relation for each experimental condition. For each class size a mean was selected so that 
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the number of behaviors in the target class was three times smaller than the number of 

behaviors that could be selected as parents. For example, for a class size of 25 behaviors, 

the mean that satisfies the condition is 25; for 15 behaviors the mean is 15, and its value 

is eight when the target classes includes seven behaviors.  

In addition, given the relation between the size of the target class and the mean’s 

value, it was important to determine if the emergent results were due to the values of the 

mean relative to the size of the target class (as predicted) or to the absolute values of the 

mean. Therefore, two other values were used for every class size and at all nine locations. 

A very small value of the mean (µ = 8) was used to control for the general effect of a 

very severe selection process; a very large value (µ = 150) was used to control for a very 

weak selection process. This experimental series was characterized by 135 new 

experimental conditions, thus requiring 675 additional experiments (≈ 148 million 

generations).   

Results and discussion 

In the usual setting the proportional mean is equal to the traditional mean; each 

target class encompasses 41 behaviors and the parental selection function mean is 40. As 

shown in Experimental Series 1, a varied around 0.8 for HD 10 and HD 9; at HD 8 the 

exponent was approximately 0.5, after which its value decreased significantly, reaching 

values close to zero for all other locations (HD 7 to HD 2). These results were very 

similar when the class size was reduced to 25, 15, and 7 behaviors and the parental 

selection function mean was kept constant (µ = 40) in Experimental Series 3. The 

outcomes were remarkably different however when a proportional mean was used, as 

depicted in Figure 18. When the class size was 25 (µ = 25), the exponent varied around 
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0.8 for HD 10, HD 9, and HD 8; it was approximately 0.35 at HD 7, and it was close to 

zero for all other locations. When the class size was 15 (µ = 15), a was close to 0.8 for 

HD 10, HD 9, HD 8, and HD 7; its value declined to 0.28 for HD 6, and was very close to 

zero for all other locations. The identical trend was found when the class size was 7 (µ = 

7), with one important difference: a varied around 0.8 for HD 10, HD 9, HD 8, HD 7, and 

HD 6, after which it declined considerably, as depicted in Figure 18.  

An important aspect needs to be restated: the size of the target class was 

decreased so that the largest Hamming distance inside a class decreases as well. The 

reason was to investigate the relation between the Hamming distance that separates the 

two target classes (HD between) and the largest Hamming distance that is found inside a 

target class (HD within). In the traditional situation (41 behaviors in each target class) the 

largest Hamming distance inside a class is HD 6, regardless of their position on the 

continuum of integers from 0 to 1023. When the size of the target classes is decreased to 

25, the largest Hamming distance inside a class is HD 5; the largest one is HD 4 for 15 

behaviors and HD 3 for 7 behaviors in each target class.  

When examining the relation between HD between classes and HD within classes, 

it can be observed that the difference between the two, at HD 10, is four, when the class 

size comprises 41 behaviors; five, when the class size comprises 25 behaviors, six, for 15 

behaviors, and seven for 7 behaviors. In other words, as the size of the target class 

decreases, the difference between HD between and HD within increases. In this light, 

when we closely examine the results presented above, we observe that basically the 

exponent varied around 0.8 only when the difference between HD between and HD 

within was equal to or larger than three; exponents’ values are depicted in Table 2. As 
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depicted in Figure 19, when the difference was equal to or larger than three, the 

exponent’s values clustered around 0.8; when the difference was smaller than two, a 

varied between 0.07 and 0.35, its values clustering around 0.1 (average = 0.13, SD = 

0.07). In other words, it becomes apparent that in order to obtain good matching the 

distance between the Hamming distance that separates the target classes and the largest 

Hamming distance found within a class must be equal to or larger than three. This 

condition is remarkably similar to the proper use of a changeover delay in experiments 

with live organisms: the magnitude of the COD must exceed a certain value (threshold) in 

order to obtain good matching; below this threshold
5
 the organism is pulled towards 

indifference.  The findings presented so far seem to be robust; however, there are three 

important issues that need to be addressed before strong conclusions can be formulated. 

First, results should be identical to the left and to the right of Hamming distance ten. 

Second, it must be determined if a weak selection process is sufficient to produce very 

low exponents; more precisely, it must be determined if a systematic increase in the 

parental selection function mean is associated with a systemic decrease in the exponents’ 

values. This would explain why keeping the severity of the selection process constant 

while decreasing the class size (Experimental Series 3) resulted in low exponents’ values. 

Third, it becomes apparent that only two conditions must be met in order to obtain good 

matching: the difference between HD between and HD within must be equal to or larger 

than three and the mean of the parental selection function must be approximately equal to 

the number of behaviors encompassed in each target class. Therefore, a different 

                                                 
5
 The threshold does not have a certain absolute value; it s magnitude depends on a variety of factors, like 

species, schedules of reinforcements that are in use, the type of COD, etc..  
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experimental condition must be investigated, one that was not studied so far and which 

satisfies the aforementioned conditions.  

Experimental series 5  

In order to study the effect of Hamming distance (HD) on the results produced by 

the computational model, the two target classes in Experimental Series 1 were placed 

along the continuum of integers from 0 to 1023 so that the Hamming distance between 

the two target classes was 10, 9, 8, 7, 6, 5, 4 ,3, and 2. This way, there were 9 locations 

that were investigated: the traditional location (between 511 and 512) and 8 other 

locations; they were all situated to the left of HD 10 (HD 10 = Hamming Distance 10), 

between 0 and 511. In order to verify that the results are robust, these 8 specific locations 

were mirrored with respect to HD 10; all locations are depicted in Figure 8. In the first 

experimental series, all conditions were tested and results obtained at the left were almost 

identical with those obtained at the right. However, two new variables were added 

afterwards, the size of the target class and the parental selection function mean.  

Method 

Given that the structure of the continuum is perfectly symmetric with respect to 

HD 10 and the first experimental series yielded almost identical outcomes at the left and 

the right of HD 10, it was considered unnecessary to replicate each experimental 

condition (192 experimental conditions, each requiring 5 experiments). Instead, 61 

experimental conditions were randomly selected and tested at the right of HD 10; the 

outcomes were then compared with their homologues at the left. Five experiments were 

run for each condition, giving a total of 305 experiments (≈.67 million generations). 

Results and discussion 
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The parameter of interest was the exponent, since it is the most affected and most 

informative of the obtained values. The correlation between the two sets of data was very 

strong and positive (r
2
 = 0.99, p < 0.01). An illustration of the results can be examined in 

the two panels of Figure 20. From these data we can conclude that there were no 

significant differences between the left and right situations, thus we do not need to mirror 

all 192 experimental conditions; results were robust with respect to the location used: at 

the left or the right of the largest possible Hamming distance, ten.  

Experimental series 6 

The fourth series of experiments suggested that in order to obtain results similar 

to those observed in experiments with live organisms two conditions must be met: the 

difference between HD between and the largest HD within must be equal to or larger than 

three; in addition, the parental selection function mean must be relatively proportional 

with the number of behaviors in each target class (e.g. target class = 15 behaviors, mean 

≈ 15).  

An important question is why this pattern was not observed in the 3
rd

 

experimental series, when the mean of the parental selection function was kept constant 

and the size of the target class was systematically decreased.  As shown before, smaller 

means yield larger exponent values, while larger means are associated with smaller 

values. Therefore, the argument is that even for situations in which the difference 

between HD between and HD within was equal to, or larger than three, the mean was 

large enough to keep the exponent at low values. The data accumulated thus far seem to 

suggest that this is the case; however, in the current form, it does not provide enough 

evidence for strong conclusions.  
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Method 

In order to verify that this phenomenon is indeed caused by large values of the 

parental selection function mean (weak selection process) more experiments were 

needed, with more values of the mean, at the same HD location.  If the argument 

described above is indeed correct, we should observe a gradual decline in the exponent’s 

value, as the mean increases (a large mean describes a weak selection process); in 

addition, the effect should appear regardless of the size of the target classes and the 

locations used. Therefore, a class size of 25 behaviors was placed at HD 10, HD 9, and 

HD 8. For this class size, at all three locations, 14 different values for the parental 

selection function mean were used: 8, 25, 40, 50, 70, 90, 110, 130, 150, 190, 230, 250, 

275, and 300. Five experiments were run for each of the 42 locations, requiring a total of 

210 experiments (≈ 46 million generations). 

Results and discussion 

For all three locations the same pattern was observed and is illustrated in Figure 

21. The exponent declined from values close to 0.85 to values close to zero. Another 

noteworthy aspect is that a declined faster as the difference between HD between and HD 

within became smaller. A closer look at the actual values of a indicates that the 

exponent’s value was noticeably below 0.8 when the mean of the parental selection 

function was about two or three times larger than the number of behaviors in each target 

class. In other words, the exponent’s values decreased gradually as the mean increased; 

the decline was more rapid as the difference between HD between and HD within became 

smaller. These findings provide support for the idea that in the third experimental series 

the lack of noticeable results was due to the fact that the parental selection function mean 
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was kept constant, while the number of behaviors in each class was decreased 

considerably. 

Experimental series 7 

In Experimental Series 4 it was shown that in order to obtain results similar to 

those observed in experiments with live organisms the absolute value of the Hamming 

distance that separates the two target classes is not crucial. The only two conditions that 

must be satisfied are: the difference between HD between and HD within must be equal 

to or larger than three and the parental selection function mean must be approximately 

equal to the number of behaviors encompassed by each target class. This phenomenon 

seems to be robust; however, in order to accept it as a general rule, it must be 

encountered in all experimental settings that satisfy these two conditions.  

Method 

Testing this rule required a setting in which the difference between HD between 

and HD within is equal to three and the mean of the parental selection function is 

proportional to the size of the target class. Evidently, this experimental condition must be 

different than those in which the phenomenon was previously observed. Until now, 

exponents with values close to 0.8 were encountered in all the locations from HD 10 to 

HD 6 (7 behaviors, mean 8, a = 0.72). Therefore, potential locations of interest are HD 5 

and HD 4. These two are the only locations that can be examined; HD 3 would require 

that the Hamming distance inside a class is zero, which is impossible because the 

Hamming distance, by definition, cannot be zero. In the first condition, when the classes 

are separated by HD 5, the largest Hamming distance inside a class must not be larger 

than two. Therefore, given the way in which the Hamming cliffs are distributed 
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throughout the continuum, the number of behaviors in each target class must be reduced 

to three. In the second condition, when the classes are separated by HD 4, the largest 

Hamming distance inside a class must not be larger than one. Therefore, the number of 

behaviors in each target class must be reduced to two. The parental selection function 

mean must be proportional to the number of behaviors in each target class; therefore, the 

values used were three and two respectively. A noteworthy fact is that these parameters 

have never been used before: they were considered much too extreme to produce 

acceptable results. The two conditions (class size = 3 behaviors and class size = 2 

behaviors) were tested at all nine locations: HD =10 through HD = 2. Five experiments 

were run for each of the 18 locations. 

Results and discussion 

Results are depicted in Figure 22 and Table 3. For the first condition (class size = 

3), when the difference between HD between and HD within was three (at HD 5) the 

exponent was close to 0.8 (a ≈ 0.79), as expected. At HD 4, when the difference was two, 

the exponent’s value (a ≈ 0.53) was extremely similar to the other conditions in which the 

difference was two. At HD 3 and HD 2 the exponent varied around 0.2. For all the 

locations from HD 6 through HD 10, a was situated around 0.8. As shown in Table 3, the 

bias parameter varied around unity, which is typical for symmetrical choice 

environments.  

For the second condition (class size = 2), when the difference between HD 

between and HD within was three (at HD 4) the exponent was close to 0.8, as expected (a 

≈ 0.86). At HD 3, when the difference was two, the exponent’s value (a ≈ 0.61) was 

extremely similar to the other conditions in which the difference was two. At HD 2 the 
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value of a approached 0.2. For all locations from HD 5 to HD 10 a varied around 0.8. 

The bias parameter varied around unity, which is typical for symmetrical choice 

environments. Furthermore, when examining the number and pattern of the changeovers 

in relation to the proportion of reinforcement on the first alternative we encountered the 

exact same phenomena as in previous experiments: the frequency of COs increased 

dramatically when the difference between HD within and HD between was smaller than 

3, as illustrated in Figure 23. In addition, the pattern indicated that when reinforcement 

was obtained almost exclusively from one alternative the organism switched most often. 

Results presented so far constitute a solid argument for the idea that the exponent 

varies around 0.8 only when the difference between the Hamming distance that serves as 

boundary and the largest Hamming distance inside a class is equal to, or larger than three, 

and the parental selection function mean is approximately equal to the number of 

behaviors encompassed by each target class. A frequency distribution of all a values 

obtained in such settings is shown in the top panel of Figure 24.  The middle panel 

illustrates the distribution of exponents when the difference between HD between and HD 

within is smaller than three. Also, a frequency distribution of the bias parameters’ values 

is depicted in the bottom panel of Figure 24.  

General discussion 

An important aspect that characterizes McDowell’s computational model (2004) 

is that it uses binary strings to represent behaviors’ genotypes; this raises the important 

issue of the Hamming distance (Hamming, 1950), which is the number of bits that must 

be changed in a string in order to obtain a different string of equal length. McDowell and 

colleagues (2008) hypothesized that in concurrent-schedule environments the Hamming 
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distance that separates the two target classes may be the computational equivalent of the 

changeover delay used in experiments with live organisms (Findley, 1958). The 

continuum of integers from zero to 1023 does not allow us to directly manipulate the 

Hamming distance; however, we can do so by placing the target classes at different 

locations on the continuum.  

When the Hamming distance that separated the two target classes was ten or nine, 

the exponent varied around 0.8, indicating the typical level of undermatching displayed 

by live organisms (Myers & Myers, 1977; McDowell, 1989; McDowell & Caron, 2006). 

At HD 8 a decreased significantly (≈ 0.5) and reached values close to zero for all other 

locations (HD 7 through HD 2), mathematically describing a very strong tendency 

towards total indifference (Baum, 1979; Davison & McCarthy, 1988; McDowell, 1988). 

These findings are consistent with results obtained with live organisms, results that 

indicate that below a certain COD value the organism is drawn towards indifference, 

mathematically described by exponent values close to zero (Shull & Pliskoff, 1967; 

Davison & McCarthy, 1988; Temple, Scown, & Foster, 1995).  

Another important phenomenon observed when the Hamming distance that 

separates the two target classes was equal to or smaller than seven, was the remarkable 

change in the pattern and frequency of changeovers. For Hamming distances ten and nine 

the pattern was typical, indicating that when reinforcements were acquired almost 

exclusively from one alternative the number of changeovers was rather small; when 

reinforcements were obtained equally from both alternatives, the organism switched most 

often. The complete opposite pattern was observed for Hamming distances equal to or 

smaller than seven, indicating that when reinforcements were obtained almost exclusively 
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from one alternative the organism switched most often between alternatives. Also, in 

these situations, the number of changeovers was approximately ten times higher than for 

Hamming distances ten and nine (Figure 11). In other words, when the two target classes 

were separated by Hamming distance ten or nine the results depicted the typical level of 

undermatching and the classic pattern in changeovers. When the Hamming distance was 

equal to or smaller than seven, the exponent depicted a strong tendency towards total 

indifference and the number of changeovers was extremely high. 

 The second experimental series suggested that the relation between the Hamming 

distance that separates the target classes (HD between) and the largest Hamming distance 

found inside a class (HD within) may also affect the outcomes.  Results obtained in the 

third and fourth experimental series showed not only that the relation between HD 

between and HD within is important, thus emphasizing the relative value of the Hamming 

distance, but also that it plays a decisive role in obtaining results similar to those 

observed in live organisms. Moreover, it was shown that desirable outcomes are obtained 

when the difference between the two Hamming cliffs (HD between minus HD within) 

was equal to or larger than three and the mean of the parental selection function was 

approximately equal to the number of behaviors included in each target class. The rule 

mentioned above was tested using two extreme experimental conditions: a class size of 

three behaviors with a mean of three and a class size of two behaviors with a mean of 

two. Despite the very extreme parameters, results were remarkably similar with those 

encountered in previous situations both in pattern and value, as depicted in Figure 22, 

providing strong support for the findings previously mentioned.  
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The occurrence of this phenomenon in all experimental conditions, corroborated 

with results that indicate perfect symmetry between the two halves of the continuum 

(Figure 20) and with the fact that, for any given experimental series, the probability of 

non-random residuals is extremely close or equal to zero (Table 4), constitute evidence 

that the phenomenon may be accepted as a general rule. In order to obtain results similar 

to those observed in experiments with live organisms, the difference between the 

Hamming distance that separates the target classes and the largest Hamming distance 

found inside a class must be equal to or larger than three and the parental selection 

function mean must be approximately equal to the number of behaviors included in each 

target class. A noteworthy aspect is that the rule strongly emphasizes the relative values 

of all parameters involved (the Hamming cliffs, the size of the target classes, and the 

severity of the selection process) and not their absolute values. The initial question is thus 

answered: HD 10, by itself, is neither necessary nor sufficient: good results may be 

obtained in many conditions with a variety of parameters.  

 Not only is HD 10 not important by itself, but the fact that a certain difference 

(three) is necessary for obtaining results similar with those displayed by live organisms, 

corroborated with the fact that similar results are obtained even when the difference is 

very large (e.g. in the most extreme case, class size = 2, the largest difference is nine) are 

consistent with the large body of data involving experiments with live organisms in 

which changeover delays were used (Shull & Pliskoff, 1967; Temple, Scown, & Foster, 

1995). 

Limitations and future directions 
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Understanding the role and effect of Hamming distances constitutes an important 

step; however, even if we know what the effects are and how they can be manipulated, 

this still does not refute the fact that their existence imposes certain restrictions on the 

model. For example, it would be hard to test the organism in a free-choice environment 

with more than two alternatives. Also, the use of a proper, completely flexible 

changeover delay remains problematic. An elegant solution that would bypass these 

issues would be the implementation of the reflected binary code, also known as Gray 

code (Gray, 1947; Russell & Norvig, 2003), as suggested by McDowell (2008). The Gray 

code is a binary numeral system in which two successive values differ in only one bit, 

thus making the Hamming distance irrelevant (since it is equal to one throughout the 

continuum).  

Conclusion 

The extreme low values of the exponent that describe situations in which the 

difference between the Hamming distance that separates the target classes and the largest 

Hamming distance inside a class is lower than three, the pattern and absolute number of 

changeovers that accompany these situations, and the fact that the phenomenon can be 

replicated even with extreme parameters, together provide strong support for the 

conclusion that the Hamming distance is indeed the computational equivalent of the 

changeover delay used in experiments involving live organisms. Furthermore, this vast 

body of data shows that the results produced by the computational model are not caused 

by conveniently positioning the two target classes so they are separated by the largest 

Hamming distance (ten), but they emerge from the rules that govern the computational 

model: the Darwinian laws of selection, recombination, and mutation. These findings are 
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consistent with and build on previous research (McDowell, 2004; McDowell and Caron, 

2007; McDowell et al., 2008), providing further support for the robustness of 

McDowell’s computational model of selection by consequences as a valid account of the 

dynamics of instrumental behavior.  
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Table 1. 

The list of class sizes used in the current project and largest Hamming distance found 

inside each class.  

  

Class size   Largest HD within   

  

151 Behaviors   HD 8   

  

71 Behaviors   HD 7   

  

41 Behaviors   HD 6   

  

25 Behaviors   HD 5   

  

15 Behaviors   HD 4   

  

7 Behaviors   HD 3   

  

3 Behaviors   HD 2   

  

2 Behaviors   HD 1   
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Table 2. 

When using a proportional mean, the exponent varies around 0.8 as indicated by 

shading, only when the difference between HD between and HD within is larger than or 

equal to three. 

 

Class size HD between Largest HD within 

HD between - HD 

within a 

41 HD 10 6 4 0.87 

41 HD 9 6 3 0.79 

41 HD 8 6 2 0.50 

41 HD 7 6 1 0.14 

41 HD 6 7 -1 0.09 

41 HD 5 7 -2 0.09 

41 HD 4 10 -6 0.16 

41 HD 3 10 -7 0.07 

41 HD 2 10 -8 0.07 

25 HD 10 5 5 0.79 

25 HD 9 5 4 0.81 

25 HD 8 5 3 0.75 

25 HD 7 5 2 0.35 

25 HD 6 5 1 0.09 

25 HD 5 7 -2 0.11 

25 HD 4 6 -2 0.07 

25 HD 3 6 -3 0.09 

25 HD 2 6 -4 0.09 

15 HD 10 4 6 0.78 

15 HD 9 4 5 0.80 

15 HD 8 4 4 0.81 
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15 HD 7 4 3 0.71 

15 HD 6 4 2 0.28 

15 HD 5 4 1 0.10 

15 HD 4 6 -2 0.13 

15 HD 3 6 -3 0.18 

15 HD 2 6 -4 0.23 

7 HD 10 3 7 0.82 

7 HD 9 3 6 0.77 

7 HD 8 3 5 0.74 

7 HD 7 3 4 0.80 

7 HD 6 3 3 0.72 

7 HD 5 3 2 0.33 

7 HD 4 3 1 0.10 

7 HD 3 6 -3 0.15 

7 HD 2 6 -4 0.35 
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 Table 3.  

Results obtained when the class size is reduced to three and two behaviors; the parental 

selection function mean is three and two respectively (proportional). The grey cells 

represent the situation in which the difference between HD between and HD within 

equals 3, at HD 5 and HD 4 respectively. 

 

3 behaviors  2 behaviors 

HD a b pVAF  HD a b pVAF 

10 0.91 1.01 0.85  10 0.81 1.01 0.90 

9 0.82 0.97 0.88  9 0.96 0.93 0.83 

8 0.82 1.08 0.90  8 0.89 0.96 0.92 

7 0.81 0.92 0.92  7 0.89 1.04 0.87 

6 0.81 1.05 0.81  6 0.90 0.91 0.82 

5 0.81 0.99 0.82  5 0.87 0.94 0.78 

4 0.58 0.95 0.73  4 0.86 1.04 0.76 

3 0.18 0.95 0.34  3 0.61 1.11 0.68 

2 0.21 1.08 0.46  2 0.27 0.96 0.44 
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Table 4 

Results of the Reich test as an analysis of residuals.  

Reich test for the analysis of residuals 

H0: x or more sets of residuals are  random 

H1: x or more sets of residuals are not random 

Experimental 

Series 
Total (n) Fail (x) 

Signifficant (α 

= 0.05) 
p 

1 85 3 No 1.00 

2 20 0 N/A N/A 

3 275 17 No 1.00 

4 675 19 No 1.00 

5 305 33 No 1.00 

6 140 6 No 1.00 

7 90 3 No 1.00 
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Figure Captions 

Figure1. The left column depicts the equations that form the Matching Theory; they are 

all derived from the first equation, discovered by Herrnstein (1961). This family of 

equations constitutes the Classic Theory of Matching. The right column of the table 

depicts the new form of the equation, after introducing the two new parameters: b (bias) 

and a (undermatching). These equations form what is called the Modern Theory of 

Matching (McDowell, 2005). At this point, for single-alternative environments 

researchers use the classic theory equation (Eq. 2); for concurrent-schedules 

environments researchers use the modern version of the equation (Eq. 5). A detailed 

analysis of the classic and modern theories was conducted by McDowell (1986, 2005). 

[Figure reprinted with permission of author (McDowell, 2005, p. 112).] 

Figure 2. Recombination and Mutation. The two parents are 340 and 117. The bitwise 

recombination method entails that each slot in the child’s string has a 50% chance of 

being the bit of one parent and a 50% chance of being the bit of the other parent. In our 

example 7 bits are the same in both parents, so they will be the same in the child. Based 

on a 50-50 chance, the program selects the remaining three bits at random; in our 

example bit 2 and bit 5 come from the left-side parent and bit 10 from the right-side 

parent; the resulting behavior is 341 (the changed bits are in bold). This progeny is also 

affected by mutation: each bit has a 10% chance of being flipped and, in our example, the 

bit affected by this process is the third bit in the string (in bold) – it is flipped from 0 to 1, 

the resulting behavior being 469. Recombination and Mutation ensure variability in the 

population.  
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Figure 3. Fitness values. The fitness of each behavior is defined as the absolute distance 

between the behavior’s phenotype and the phenotype of the midpoint of the target class 

from which the previously reinforced behavior originated. This way of calculating fitness 

values is referred to as midpoint fitness. The figure illustrates an example in which the 

reinforced behavior originated in a target class that extends from phenotype 512 to 

phenotype 552. The midpoint of this class is 532. Three behaviors are considered in this 

example, namely 95, 390, and 817, and the fitness value of each of them is illustrated in 

the figure. The smallest fitness value represents the fittest behavior because, as we can 

see, it is closest to the midpoint of the target class.  

Figure 4. The figure illustrates the functionality of McDowell’s Computational Model of 

Selection by Consequences (version 2.0). In the beginning of the experiment a population 

of 100 behaviors is randomly selected from the integers between 0 and 1023. One 

behavior is randomly selected from this population and it constitutes the first emission in 

the experiment. If the emitted behavior is not part of the target class or is part of the 

target class but reinforcement is not available, then parents are selected at random from 

the existing population. They reproduce and the new population of children is affected by 

mutation. A new behavior is emitted at random from the mutated population. If 

reinforcement occurs, then the program calculates the fitness value of each behavior in 

the population. A parental selection fitness function is used to assign greater probabilities 

of being selected as parents to fitter behaviors. Therefore, the parents are no longer 

selected at random, but are selected based on their fitness. They reproduce and the 

population of children is affected by mutation. From this population a new behavior is 

randomly emitted. The procedure typically continues for 20,000 emissions. The basic 
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Darwinian rules of selection, recombination, and mutation are depicted in boxes with 

grey backgrounds.    

Figure 5. The relation between Changeovers and the proportion of reinforcement on the 

first alternative of a concurrent schedule (data generated by McDowell’s computational 

model). In the left panel are results obtained when the two target classes were separated 

by a Hamming distance of 10. In this case we observe the pattern typical of live 

organisms: the number of changeovers increased as the proportion of reinforcement on 

the first alternative increased from 0 to 0.5, after which it decreased as the proportion of 

reinforcement on the first alternative increased from 0.5 to 1. This pattern indicates that 

when the reinforcements were acquired almost exclusively from one alternative the 

number of changeovers was smaller; when reinforcements were obtained equally from 

both alternatives, the number of changeovers increased. [Figure reprinted with permission 

of author (McDowell et al, 2008).] The exact opposite pattern is depicted in the right 

panel, when the Hamming distance that separates the two target classes was 6. The only 

parameter that varied in the two experiments is the Hamming distance. Also, note the 

very large difference in the rates of changeovers between the two conditions, regardless 

of the proportion of reinforcement on the first alternative; when the Hamming distance 

that separates the target classes was ten, the maximum number of changeovers per 500 

generations varied around 7. When the Hamming distance was six, the maximum number 

of changeovers per 500 generations varied around 90. 

Figure 6. The figure depicts the relation between the mean of the linear parental selection 

function and the probability density associated with a behavior having a given fitness of 

becoming a parent. For smaller means the process of selection is more severe than for 
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larger means. The intersection between a line and the x-axis represents the largest 

possible fitness value that has a chance of becoming a parent; all values greater than this 

have zero chance of being selected. For example, when the mean is 7, behaviors with 

fitness values greater than 21 have no chance of being selected as parents. The figure also 

captures an important feature of the selection process: behaviors with smaller fitness 

values have a greater chance of becoming parents.  

 

Figure 7. The figure illustrates how Equations 3, 4, and 8 (the last two being versions of 

Equation 3) are applied to data obtained from concurrent schedules. Equation 3 is fitted 

in the top panel (the original form), Equation 4 is fitted in the middle panel (the ratio 

form), and Equation 5 (the logarithmic transformation of Equation 4) is fitted in the 

bottom panel. In the last case a is the slope of the line and depicts the phenomena of 

under- and overmatching: a slope greater than 1 depicts overmatching and a slope smaller 

than 1 depicts undermatching; in this example the slope is 0.81, depicting the level of 

undermatching typically encountered in experiments with live organisms. In the same 

panel log b is the y-intercept, therefore b is 10
INTERCEPT

. A deviation of b from unity 

reflects an asymmetry between alternatives; a value larger than one (positive intercept) 

indicates a preference towards the 1
st
 alternative and a value smaller than one (negative 

intercept) indicates a preference towards the 2
nd

 alternative; in this example b = 0.83, 

indicating a preference towards the second alternative.  

Figure 8. The top panel illustrates the position of Hamming distances to the left of the 

largest possible Hamming distance – ten (between 511 and 512). Each column in the 

chart represents the boundary between two target classes. The integers and their 



Effects of Hamming Distances 65 

 

corresponding binary representations are depicted for all 9 distances. The bottom panel 

illustrates the position of Hamming distances to the right of the largest possible Hamming 

distance. These were obtained by mirroring the positions in the left, with respect to the 

Hamming distance of ten.   

Figure 9. The figure illustrates the position of all 17 Hamming distances, in the order in 

which they appear in the range of integers from 0 to 1023; it also depicts the perfect 

symmetry with regard to the largest Hamming distance (ten – between 511 and 512). 

Figure 10. Values of the exponent and bias parameter when using the traditional setting: 

41 behaviors in each target class and a parental selection function mean of 40. The top 

panel of the figure depicts the values of a when different Hamming distances served as 

boundaries between the target classes. For the traditional setting all locations were 

mirrored with respect to HD 10. The bottom panel illustrates the values of the bias 

parameter, b; it varied around unity, an expected outcome since all experiments involved 

symmetrical-choice environments.  

Figure 11. The change in pattern and number of changeovers, as the Hamming distance 

that separates the two target classes decreased. The trendlines are quadratic polynomials, 

as used by McDowell (2004). The aspects of interest are the change in the pattern of 

changeovers and the very large increase in the absolute number of changeovers (as 

averaged per 500 generations blocks). The figure omits the conditions in which the 

Hamming distance between the classes had values between seven and two (six, five, four, 

and three); they were very similar, in values and pattern, with the conditions in which the 

Hamming distance that separates the classes was equal to seven and two, respectively.  
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Figure 12. The top panel illustrates the situation in which two target classes, each 

encompassing a number of behaviors, were separated by Hamming distance ten. In an 

experiment with living organisms the different behaviors that constitute a target class 

may be regarded as different modes of pressing a lever, while the physical distance 

between the two levers represents the changeover delay; as the changeover delay 

decreases it becomes easier (and more likely)for the organism to switch between 

alternatives. The second panel illustrates the situation in which the Hamming distance 

that separates the two target classes is four, represented here by a smaller physical 

distance between the two alternatives. The third panel depicts a special situation, in 

which the two target classes are separated by hamming distance four and the second 

target class includes Hamming distance ten. 

Figure 13. The effect of including HD 10 in one of the target classes. When small 

Hamming distances separate the two target classes and HD 10 is included in one of the 

classes we observe a small but noticeable increase in the value of the exponent. Keeping 

the Hamming distance between the classes equal to four, but positioning the classes at 

another location, so that neither of them encompasses HD 10, the phenomenon does not 

appear (top panel). When the target classes were separated by Hamming distance five, 

HD 10 was not included in any of the classes and the value of a was the expected one 

(very close to zero). The two target classes were positioned so that the target classes at a 

different location, so that HD 10 was included in one of the classes: the result is depicted 

in the bottom panel. This process was repeated for the mirrored locations as well (to the 

right), yielding the same outcome.  
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Figure 14. As the size of the target class decreases, the largest Hamming distance 

included in a class decreases as well. The example refers to the second target class, when 

the two target classes are separated by Hamming distance eight. 

Figure 15. Values of the exponent at different class sizes. The left panel illustrates the 

results obtained for all six class sizes, at all nine Hamming distances. The top right panel 

illustrates only the values associated with class sizes smaller than 41. The bottom right 

panel shows the exponents’ values associated with class sizes of 41, 71, and 151 

behaviors. In all three panels the x-axis represents the value of the Hamming distance that 

separates the two target classes (HD between). 

Figure 16. Comparison between exponents’ values when using different means for the 

parental selection function. Results are congruent with previous research (McDowell et 

al., 2008): stronger selection processes yield higher exponents’ values.  

Figure 17. The relation between fitness value and the severity of the parental selection 

process. The four panels illustrate that the largest fitness value (least fit behavior) that can 

be selected as parent is equal to approximately three times the value of the mean. For 

example, when the mean is 15 (bottom-left panel), the largest fitness value that can be 

selected is approximately 45.   

Figure 18. Comparison between values of a when using the traditional mean of 40 with 

values of a when using a proportional mean, for all class sizes and at all Hamming 

distances. The upper left panel illustrates only the traditional setting; let it be noted that 

when using a mean of 40 the values of the exponent vary around 0.8 only for HD 10 and 

HD 9, regardless of the number of behaviors in the target class. When using a 

proportional mean the values of the exponent vary around 0.8 for HD 10, HD 9, and HD 
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8 (bottom left panel). The top right panel shows that when the target class encompasses 

15 behaviors the exponent varies around 0.8 for HD 10, HD 9, HD 8 and HD 7. The 

bottom right panel illustrates results obtained when the class size is reduced to seven 

behaviors: the exponent’s values remain close to 0.8 for HD 10 through HD 6 (inclusive). 

Figure 19. The distribution of exponents when using a proportional mean at class size 41, 

25, 15, and 7 (combined). The left panel illustrates the frequency of exponents obtained 

when the difference between the Hamming distance that separates the two target classes 

and the larger Hamming distance inside a class is equal to or larger than three. The right 

panel illustrates the frequency of exponents obtained when the difference between the 

Hamming distance that separates the two target classes and the larger Hamming distance 

inside a class is smaller than 2. 

Figure 20. Values of the exponent when the target classes are situated to the left and to 

the right with respect to HD 10. Sixty-one random locations situated to the left of HD 10 

were mirrored to the right of HD 10. The top panel of the figure depicts the correlation 

between the two data sets. The bottom panel depicts the same relation but in a different 

visual way.  

Figure 21. The gradual decline in the exponent’s value as the mean increases. The 

decrease is more rapid as the difference between HD between and HD within decreases. 

The class size of 25 behaviors includes a HD 5, therefore the abovementioned difference 

is 5, for HD 10, 4, for HD 9, and three, for HD 8.  

Figure 22. Values of the exponent, a, when the two target classes encompass 41, three 

and two behaviors; the parental selection function mean is proportional, namely 41, three, 

and two. The noteworthy aspect is that even with such extreme parameters, when the 
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difference between HD between and HD within is equal to three (at HD 9, HD 5, and HD 

4 respectively) the exponent is close to 0.8. It decreases noticeably when the difference is 

two (ranging between 0.5 and 0.6) and reaches values close to zero when the difference is 

smaller than two. Also, regardless of how much the difference increases, the exponent 

still varies around 0.8.  

Figure 23. The relation between changeovers and the proportion of reinforcement on the 

first alternative of a concurrent schedule, when the target classes comprise three 

behaviors (left panel) and two behaviors (right panel). In both cases a proportional mean 

was used (µ = 3 and 2). In both cases we observe the same phenomenon illustrated in 

Figure 5. When the difference between HD between and HD within is larger than three 

we observe the pattern typical of live organisms: the number of changeovers increases as 

the proportion of reinforcement on the first alternative increases from 0 to 0.5, after 

which it decreases as the proportion of reinforcement on the first alternative increases 

from 0.5 to 1. This pattern indicates that when the reinforcements are acquired almost 

exclusively from one alternative the number of changeovers is smaller; when 

reinforcements are obtained equally from both alternatives, the number of changeovers 

increases. The exact opposite pattern is observed when the difference between HD 

between and HD within is one. This change in pattern and number of COs is associated 

with a substantial decrease in the exponent’s value, emphasizing once more the relation 

between HD between and HD within and not the absolute values of the Hamming 

distances. 

Figure 24. Frequency distributions of the exponent and the bias parameter. The top panel 

illustrates the frequency distribution of a when the difference between the Hamming 
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distance that separates the target classes and the largest Hamming distance inside a class 

is equal to or larger than three. The middle panel depicts the frequency distribution of a 

when the aforementioned difference is smaller than three. The bottom panel presents the 

frequency distribution of the bias parameter, b. 
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