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Abstract

Topics in Elliptic Curves
By Jackson Salvatore Morrow

In this thesis, the author proves theorems relating to three different areas
in the study of elliptic curves: torsion subgroups over number fields, Selmer
groups of elliptic curves, and images of Galois. In particular, the thesis
contains theorems completing the classification of possible torsion subgroups
for elliptic curves defined over cubic number fields; bounding the order of
`-Selmer groups for twists of elliptic curves defined over number fields of
small degree; and determining the possibilities, indicies, and occurrences of
composite level images of Galois for elliptic curves defined over Q.
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Chapter 1

Introduction

In this thesis, the author proves theorems relating to three different areas in
the study of elliptic curves: classification of torsion subgroups over number
fields, Selmer groups of elliptic curves, and images of Galois.

First, the author, Anastassia Etropolski, and David Zureick-Brown, in
combination with work of Maarten Derickx, complete the classification of
isomorphism classes of torsion subgroups for elliptic curves defined over cubic
number fields. If the modular curves X1(N) or X1(2,M) have rank 0 and
gonality at least 4, the authors provably classify the cubic points on these
modular curves using a variation of the Mordell-Weil sieve in addition to the
moduli property of X1(N) or X1(2,M).

Second, the author proves theorems on bounding the order of `-Selmer
groups for twists of elliptic curves defined over number fields, where ` > 3

is prime. In [Fre88], Frey provided explicit examples of quadratic twist of
elliptic curves over Q with Q-rational points of odd, prime order ` whose `-
Selmer groups are non-trivial. The author generalizes Frey’s result to elliptic
curves defined over number fields of small degree using class field theory
and also provides explicit examples of elliptic curves over Q, which satisfy a
generalized Frey condition.
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Finally, the author proves theorems concerning composite level images of
Galois for elliptic curves defined over Q. Building on recent work of Rouse
and Zureick-Brown [RZB14] and Zywina [Zyw15], the author finds models for
composite level modular curves whose rational points classify elliptic curves
over Q with simultaneously non-surjective composite image of Galois. Also,
the author classifies the rational points for all of these curves using a variety
of different techniques. Furthermore, the author gives an application of these
results to the study of entanglement fields, which play a role in the study of
correction factors of various conjectural constants for elliptic curves.

1.1 Organization

In Chapter 2, we recall necessary background information concerning elliptic
curves and algebraic number theory. In Chapter 3, we discuss joint work with
Anastassia Etropolski, Maarten Derickx, and David Zureick-Brown where the
authors complete the the classification of torsion subgroups for elliptic curves
defined over cubic number fields. In Chapter 4, we state theorems bounding
the order of `-Selmer groups for twists of elliptic curves defined over number
fields K and provide examples of elliptic curves over Q, whose base change
to K satisfying our theorem.

In Chapter 5, we prove theorems concerning the possibilities, indicies, and
occurrences of composite-(m1,m2) level image of Galois for elliptic curves
defined over Q for the tuples (2, `) where ` = 5, 7, 11, 13 and (N, 3) for
N = 2, 4, 8. In Chapter 6, we state applications of our results to the study
of entanglement fields and, building off previous work of [BJ16], complete
the classification of families of elliptic curves over Q with non-abelian (2, 3)-
entanglement. In Chapter 7, we discuss future work related to the study
of torsion subgroups of elliptic curves defined over quartic number fields,
composite level images of Galois, and entanglement fields. Finally, in Ap-
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pendix A.3, we present subgroup lattices corresponding to the subgroups
from [Zyw15].
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Chapter 2

Background

An elliptic curve E is a smooth, projective, algebraic curve of genus one, with
a distinguished point O. For a characteristic 6= 2, 3 field K, an elliptic curve
defined over K can be written in Weierstrass form as, y2 = x3+Ax+B where
A, B ∈ K and 4A3+27B2 6= 0. The set of K-rational points of E, E(K), forms
abelian group with operation defined by setting P1+P2+P3 = O if and only
if P1, P2, and P3 are co-linear; so E is an abelian variety of dimension one.
The epochal theorem of Mordell-Weil describes the structure of the group
E(K).

Theorem 2.0.1 (Mordell-Weil, 1928). For an elliptic curve E defined over
a number field K, the group E(K) is a finitely generated abelian group:

E(K) ∼= Zr ⊕ E[tors].

We call the rank r of the free part of E(K), the rank of E and the finite
group E[tors], the torsion subgroup of E/K. In this thesis, we will prove results
relating to the study of both the rank and torsion subgroup of E/K. This
chapter is devoted to background information concerning the classification
of torsion subgroups over number fields, the algebraic approach to studying
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the rank, and class field theory.

2.1 Torsion subgroups

Let E be an elliptic curve over a number field K. For any positive integer
n, we denote the n-torsion subgroup of E(K), where K is a fixed algebraic
closure of K, by E[n]. For a prime `, let

E[`∞] :=
⋃
n≥1

E[`n] ∼= lim
−→
n

E[`n]

and
E[tors] :=

⋃
n≥1

E[n] ∼= lim
−→
n

E[n].

By fixing a Ẑ-basis for E[tors], there is an induced Z`-basis on E[`∞] for any
prime `, and for any positive integer n, there is an induced Z/nZ-basis on
E[n]. The absolute Galois group GK := Gal(K/K) has a natural action on
each torsion subgroup, which respects each group structure. In particular,
we have the following continuous representations:

ρE,n : GK −→ Aut(Z/nZ) ∼= GL2(Z/nZ) (mod n),

ρE,`∞ : GK −→ Aut(E[`∞]) ∼= GL2(Z`) (`-adic),

ρE : GK −→ Aut(E[tors]) ∼= GL2(Ẑ) (adélic),

where the image under ρ is uniquely determined up to conjugacy in its re-
spective general linear group. The n-division field K(E[n]) is the fixed field of
K by the kernel of the mod n representation. Moreover, the Galois group of
this number field is the image of the mod n representation.

A celebrated theorem of Serre [Ser72] says that for an elliptic curve over K
without complex multiplication, the adélic representation ρE has open image



7

in GL2(Ẑ). Serre’s theorem raised many questions concerning the possible
images of the adélic representation. Observe that the group GL2(Ẑ) is both
a product group and a profinite group via the following isomorphisms

∏
` prime

GL2(Z`) ∼= GL2(Ẑ) ∼= lim←−
n

GL2(Z/`
nZ).

Serge Lang [Lan87] refered to these two characterizations as the “vertical"
and “horizontal" natures of GL2(Ẑ). This binal nature of GL2(Ẑ) provides
two flavors of questions stemming from Serre’s work.

Horizontally speaking, for any non-CM elliptic curve over K, there exists
a smallest integer rE/K > 0 such that for all ` ≥ rE/K , the `-adic represen-
tation is surjective. Indeed, since the image of ρE is open in the topological
space GL2(Ẑ) endowed with the product topology. Serre asked whether rE/K
depends only on K, and he conjectured that rE/Q = 37. In [Zyw11], Zwyina
gives a refined conjecture concerning the surjectivity of the mod ` and pro-
vides a practical algorithm (implemented in Sage) to compute the finite set
of primes ` for which ρE,` is not surjective; a prime ` is called exceptional if it
belongs to this finite set.

Vertically speaking, one question that has garnered attention is determin-
ing when the adélic image is surjective. Serre showed that the adélic image
is always contained in some index 2 subgroup of GL2(Ẑ), hence ρE 6= GL2(Ẑ)

for E defined over Q. In his Ph.D. thesis, Greicius [Gre10] found necessary
and sufficient conditions on a number field L, namely Qcyc.∩L = Q, for which
ρE could be surjective, and building on previous work of Duke and Jones in
[Duk97, Jon10], Zywina proved that almost all elliptic curves (in the sense
of density) have surjective, adélic image of Galois ([Zyw10a, Zyw10b]).

The vertical variant also leads us to determine the possible values for the
index of the adélic image for a given non-CM elliptic curve, which is the
focus of Mazur’s Program B [Maz77, Program B]. This program initiated
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with Mazur’s work [Maz77] in which he proved for which prime values ` does
an elliptic curve E/Q have a Q-rational isogeny; in doing so, he positively
answered a conjecture of Ogg on the possible torsion structures of E(Q)[tors].

Theorem 2.1.1 (Theorem 2 [Maz77]). Let E be an elliptic curve defined
over Q. The torsion subgroup E[tors] is isomorphic to one of the following
15 groups:

Z/N1Z 1 ≤N1 ≤ 12,N1 6= 11,

Z/2Z⊕ Z/N2Z 1 ≤N2 ≤ 4.

Furthermore, each of these torsion subgroups occurs infinitely often.

As a consequence of [Maz77, Theorem 2] and Serre’s open image theorem,
Mazur [Maz77, Theorem 3] showed that for an elliptic curve E/Q and a prime
`, there are three possibilities for the mod ` image:

1. ρ` : GQ −→ GL2(Z/`Z) is surjective,

2. the image ρ` is contained in the normalizer of a Cartan subgroup of
GL2(Z/`Z),

3. N ≤ 19 or N = 37, 43, 67, or 163.1

At its core, Mazur’s Program B studies the following question: given
an open subgroup H ⊂ GL2(Ẑ), classify all elliptic curves E/k such that
the image of ρE is contained in H. The work of this program suggests that
there exists a constant B(k) such that for every elliptic curve E/k without
complex multiplication, the index of ρE(Gk) in GL2(Ẑ) is bounded by B(k).

1In this case, the image of ρ` is contained in a Borel subgroup of GL2(Z/`Z).
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To determine ρE(Gk), one begins by computing the `-adic image ρE,`∞ for
each prime `, which leads to the following inclusions

ρE(Gk) ↪→ ∏
` prime

ρE,`∞(Gk) ⊆
∏
` prime

GL2(Z`) ∼= GL2(Ẑ).

The image of ρE(Gk) under the above inclusion will project onto each `-adic
factor. To determine the `-adic image, we need to understand the mod `n

image for sufficiently large n.
In recent works, Zywina [Zyw15] describes all known, and conjecturally

all, pairs (E, `) such that ρE,`(GQ) is non-surjective, and Rouse and Zureick-
Brown [RZB14] give a complete classification of the 1208 possible 2-adic
images of Galois representations associated to non-CM elliptic curves over
Q. In both of these works, the authors first determine which subgroups G
can occur as ±ρE,`(GQ) and ±ρE,2n(GQ), then proceed by finding equations
for the modular curves XG. If the modular curve XG has genus equal to
0 and XG(Q) 6= ∅, the authors give rational functions whose values map
XG → X(1) via the j-line; the computations of these equations occupies the
majority of [RZB14] and [Zyw15]. These values correspond to j-invariants
of non-CM elliptic curves over Q with image of Galois conjugate to a sub-
group of G. In this thesis, we shall advantageously use these equations to
study the composite-(m1,m2) level image (ρE,m1 × ρE,m2)(GQ) where m1,m2

are relatively prime. Moreover, we determine the possible indicies and the
frequencies with which they occur of the composite-(m1,m2) level image for
the tuples (2, `) for ` = 5, 7, 11, 13 and the tuples (N, 3) for N = 2, 4, 8, 16.

Mazur’s work also inspired the study of possible torsion structures over
number fields of small degree. We provide a terse summary of these results
and refer the reader to [Sut12b] for a full exposition. We define the set S(d)
as the set of primes p for which there exists a number field K of degree ≤ d
and an elliptic curve E/K such that p|#E(K)[tors]. We also define Φ(d)
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as the set of possible isomorphism types for E(K)[tors] over all K and E as
above. From the work of Faltings and Frey, if S(d) is finite, then Φ(d) is
finite. In [Mer96], Merel proved that for all d ≥ 1, the set S(d) is bounded by
a constant dependent on d; we will denote this by B(d). From the previous
works, we have that Φ(d) is also finite. Moreover, there exist bounds for the
value of p ∈ S(d) that are exponential in d, in particular p ≤ (3d/2+ 1)2 i.e.,

S(d) ⊂ Primes(3d/2 + 1)2.

In [Par99], Parent proved an explicit upper bound on the largest prime power
that can divide #E(K)[tors], yielding an explicit value for B(d) in this case.

The exact value of the set S(n) is currently known for n ≤ 5, but reason-
able good bounds on S(6) and S(7) are given in [Der12]. The exact values
of Φ(d) were previously only known for n ≤ 2. In this thesis, we compute
the exact value for Φ(3) in joint work with Anastassia Etropolski, Maarten
Derickx, and David Zureick-Brown.

n S(n) Reference #Φ(n) Reference
1 Primes(7) [Maz77] 15 [Maz77]
2 Primes(13) [Kam92] 26 [KM+88, Kam92]
3 Primes(13) [Par03] 26 Theorem 3.1.3
4 Primes(17) [KSS] 38 ≥
5 Primes(19) [DKSS] ?
6 ⊆ Primes(19) ∪ {37, 73} [Der12] ?

Figure 2.1: Summary of S(n) and Φ(n) for n ≤ 6

Remark 2.1.2. One can also consider the subset SQ(n) ⊆ S(n) corresponding
to primes that can arise as the order of a rational point on an elliptic curve
EK = E×Q K where E is defined over Q and K is a number field of degree n,
and similarly the value ΦQ(n) ≤ Φ(n) corresponding to the set of possible
isomorphism types for E(K)[tors] over all K and EK as above. From [LR13],
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it is known that

SQ(n) ⊆ Primes(13) ∪ {37} ∪ Primes(2n+ 1),

and [LR13, Corollary 1.1] gives precise values of SQ(n) for 1 ≤ n ≤ 21.

2.2 Algebraic study of rank

We now turn our attention to the algebraic study of rank r of E/K. Loosely
speaking, the proof of the Mordell-Weil theorem relies on a combination of
the weak Mordell-Weil theorem and height arguments. The weak Mordell-
-Weil theorem asserts that for m ≥ 2 the quotient E(K)/m := E(k)/mE(K)

is finite. Using Kummer theory and Galois cohomology, this statement is
equivalent to the finiteness of the Galois extension K([m]−1E(K)), which is
the compositum of all fields fields K(Q) as Q ranges over all of the points
in E(K) for which [m]Q ∈ E(K). Moreover, the weak Mordell-Weil theorem
is not apparently effective in the sense that the proof does not explicitly
produce the rank or the torsion subgroup of E(K). If the Sharfarevich-Tate
group X(E) is finite, then the weak Mordell-Weil theorem is effective (see
[Sil09, Chapter X.5]). To exhibit a detailed description of E(K), one needs
to better understand the quotient E(K)/m.

Let E[m] denote the kernel of the multiplication by [m] : E(K) → E(K).
The multiplication by m induces the short exact sequence of GK-modules

0 −→ E[m] −→ E(K) −→ E(K) −→ 0.

If we take Galois cohomology of this sequence and make appropriate reduc-
tions, we find that

E(K)/m H1(K, E[m]).
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The weak Mordell-Weil theorem tells us that E(K)/m is finite; however, we
know that H1(K, E[m]) is infinite. Hence, we need to find a finite subgroup
of H1(K, E[m]) that the quotient E(K)/m injects into. We accomplish this
by local approximations.

More specifically, consider the following diagram

E(K)/m H1(K, E[m])

∏
v E(Kv)/m

∏
vH

1(Kv, E(Kv)[m])

δ

Resv

δv

where δ is the connecting homomorphism from Galois cohomology, v is a
place of K, and E(Kv)/m := E(Kv)/mE(Kv). We define the m-Selmer group

of E/K to be

Selm(E, K) :=
{
ξ ∈ H1(K, E[m]) : Resv(ξ) ⊂ Im(δv) for all v

}
⊂ H1(K, E[m]).

(2.2.1)
The m-Selmer group of E/K is finite (see [Sil09, Theorem X.4.2(b)]), and
hence the above injection becomes

E(K)/m Selm(E, K) H1(K, E[m]).

Therefore, we can understand the quotient E(K)/m by determining the size
of the m-Selmer group. In [Fre88, Theorem 1], Frey exhibits examples of
quadratic twists of elliptic curves over Q with Q-rational points of odd,
prime order ` whose `-Selmer groups are non-trivial, where ` ≥ 3 is prime. In
this thesis, we generalize Frey’s result to elliptic curves defined over number
fields K of small degree using class field theory. We also provide explicit
examples of elliptic curves over Q whose base change to a number K satisfy
the generalized Frey condition.
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2.3 Class field theory

To prove our results in Chapter 4, we will need to recall some definitions and
results from algebraic number theory and class field theory. Let L/K be a
Galois extension of K, with ring of integers OL and OK. For any finite prime
P ∈ OL lying over a prime p ∈ OK, let D(P) denote the decomposition group

ofP, let I(P) denote the inertia group ofP and let κ ′ := OL/P and κ = OK/p
be the residue fields of characteristic q = pn. The Galois theory of the
extension encodes the splitting and ramification of P over p, in particular,
we have the below correspondence.

L 1

KI(P) I(P)

KD(P) D(P)

K Gal(L/K)

e=|I(P)|e=|I(P)|

f=|D(P)|/ef=|D(P)|/e

g=n/efg=n/ef

The exact sequence

1 −→ I(P) −→ D(P) −→ Gal(κ ′/κ) −→ 1

induces an isomorphism D(P)/I(P) ∼= Gal(κ ′/κ). In particular, there is
a unique element in D(P)/I(P), denote by

[
L/K

P

]
, which maps to the qth

power Frobenius map Frobq ∈ Gal(κ ′/κ) under the isomorphism, where q
is the number of elements in κ. The notation

[
L/K

P

]
is referred to as the

Artin symbol of the extension L/K at P. If L/K is an abelian extension, then
the Frobenius automorphism

[
L/K

P

]
is denoted

(
L/K

p

)
; this change in notation
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reflects the fact that the automorphism is determined by p ∈ OK independent
of the primes P of OL above it.

Definition 2.3.1. Now let m be a modulus divisible by all (finite or infinite)
ramified primes of an abelian extension L/K. There is therefore a canonically
defined Frobenius element in Gal(L/K) denoted Frobp. The Artin symbol

of L/K is defined on the group of prime-to-m fractional ideals, IK(m), by
linearity: (

L/K

•

)
: IK(m) −→ Gal(L/K)

m∏
i=1

pnii 7−→ m∏
i=1

Frobnipi .

Therefore, we can extend the Artin symbol to give us a group homomorphism

Φm : IK(m) −→ Gal(L/K)

called the global Artin map.

Just as Legendre symbols encode splitting data for rational primes p in
quadratic fields, Artin symbols capture this information for primes p ⊂ OK
in quadratic extensions L/K.

Lemma 2.3.2. Let L/K be a quadratic extension, let p be a prime ideal of
OK, let m = ∆L/K in the definition of the global Artin map, and let P denote
some prime of OL lying above p, and let 〈δ〉 = Gal(L/K). Then:

1. p is unramified and splits completely in L ⇐⇒ (
L/K

p

)
= id,

2. p is unramified and non-split in L ⇐⇒ (
L/K

p

)
= δ,

3. p is ramified in L ⇐⇒ p|∆L/K where ∆L/K denotes the relative discrim-
inant of L/K.



15

Proof. Part (3) follows from Definition 5.1.12. Since p is unramified, we know
that |D(P)| = f where f is the inertia degree of P over p. A prime p splits
completely in L if and only if the ramification index e of P above p and the
inertia degree f of P above p are equal to 1. Hence,

|D(P)| = [κ ′ : κ] = 1⇐⇒ ord

(
L/K

p

)
= 1⇐⇒ (

L/K

p

)
= id,

which proves (1). For (2), our assumptions and the fundamental identity tell
us that e = 1 and g = 1 if and only if f = 2. Thus,

|D(P)| = [κ ′ : κ] = 2⇐⇒ ord

(
L/K

p

)
= 2⇐⇒ (

L/K

p

)
= δ.

In Theorem 4.2.1, we use Hecke characters to describe a subset of primes
p|N(E). We recall the definition of these characters and discuss how their
values can encode information about ramification.

Definition 2.3.3. Let f be a non-zero ideal of OK, and let

χ∞ : (R×)r1 × (C×)r2 −→ C×

be a continuous character where [K : Q] = r1 + 2r2. Then the character

χH : I(f) −→ C×

is a Hecke character with conductor f and infinity-type χ∞ if the following
diagram below commutes, where I(f) is the group of fractional ideals corprime
to f and P(f) is the group of principal ideals of OK relatively prime to f. A
Hecke character is primitive if it is not induced from another classical Hecke
character with conductor f ′|f.
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P(f)

Kf C×

(R×)r1 × (C×)r2

χHα7→(α)

α7→1⊗α χ∞

Remark 2.3.4. Recall that there is a conductor-preserving correspondence
between primitive Dirichlet characters of order ` and cyclic, degree ` number
fields k/Q. From [Was12, Theorem 3.7], the Dirichlet character χ corre-
sponds to the fixed field k of kerχ ⊆ (Z/fχZ)

× = Gal(Q(ζfχ)/Q). For any
prime q,

χ(q) = 0⇐⇒ q ramifies in k, and χ(q) = 1⇐⇒ q splits in k.

By class field theory, any Hecke character χH of K of order ` determines
a cyclic extension N/K of degree `. Moreover, the set of Hecke characters
determining this cyclic extension equals {χH, χ

2
H, . . . , χ

`−1
H }. These `−1 Hecke

characters have the same conductor f, and the determinant of L/K equals
their product f`−1 by the Hasse conductor-discriminant theorem. Thus for
any prime ideal q of OK, we have that

χH(q) = 0⇐⇒ q ramifies in N, and χH(q) = 1⇐⇒ q splits in N.
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Chapter 3

Torsion in cubic number fields

3.1 Introduction

In Section 2.1, we briefly discussed the torsion behavior of elliptic curves over
number fields K. In this chapter, we provide a detailed account of the case
where K is a degree 3 number field. For the remainder of this chapter, let
K be a cubic number field. The first step in the cubic classification was to
determine, which torsion subgroups can occur infinitely often.

Theorem 3.1.1 (Theorem 3.4 [JKS04]). As K varies over all cubic number
fields and E varies over all elliptic curves defined over K, the abelian groups
which appear infinitely often as E(K)[tors] are exactly the following:

Z/N1Z N1 = 1, . . . , 16, 18, 20,

Z/2Z⊕ Z/N2Z N2 = 1, . . . , 7.

As alluded to in Remark 2.1.2, one may consider the question of deter-
mining the possible torsion subgroups of elliptic curves with Q coefficients
defined over a cubic number field K. Najman [Naj12] classified all of theses
structures and found a sporadic cubic point on X1(21).
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Theorem 3.1.2 (Theorem 1 [Naj12]). Let E/Q be an elliptic curve with
rational coefficients, and let K/Q be a cubic number field. Then E(K)[tors]
is one of the following:

Z/N1Z N1 = 1, . . . , 10, 12, 13, 14, 18, 21,

Z/2Z⊕ Z/N2Z N2 = 1, 2, 3, 4, 7.

The elliptic curve 162b1 over Q(ζ9)
+ is the unique rational elliptic curve

over a cubic field with Z/21Z torsion. For all of the other groups G, there
exists infinitely many rational elliptic curves with torsion subgroup G.

Since degree 3 is the lowest possible degree of a sporadic point on a modu-
lar curve X1(N), it was formally conjectured in [Wan15, Conjecture 1.1.2] that
only possible torsion structures for elliptic curves over K are listed above in
Theorems 3.1.1, 3.1.2. In combination with work of Maarten Derickx, Anas-
tassia Etropolski, the author, and David Zureick-Brown provide a positive
answer to this conjecture.

Theorem 3.1.3. Let E be an elliptic curve defined over K. The torsion
subgroup E[tors] is isomorphic to one of the following 26 groups:

Z/N1Z N1 = 1, . . . , 16, 18, 20, 21,

Z/2Z⊕ Z/N2Z N2 = 1, . . . , 7.

The elliptic curve 162b1 defined over Q(ζ9)
+ is the unique elliptic curve over

a cubic field with Z/21Z torsion.

To prove of Theorem 3.1.3, we need to find the cubic points on the mod-
ular curves X1(N) and X1(2,M) where N,M are specific composite integers.
In this thesis, we discuss our method to provably compute the cubic points
on the modular curves X1(N) or X1(2,M) with rank 0 and gonality at least

http://www.lmfdb.org/EllipticCurve/Q/162b1
http://www.lmfdb.org/EllipticCurve/Q/162b1
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4. Given a modular curve X1(N) or X1(2,M), our rank and gonality assump-
tions suggest that there are no Q-rational points on the symmetric cube
Sym3 X, and hence we need a technique to verify that our curve does not
have any rational points outside of the rational cusps.

3.2 Proof technique of Theorem 3.1.3

Let X be a smooth projective geometrically irreducible curve of genus ≥ 3
defined over a number field K. The gonality, denoted by γ, is defined to
be the least possible degree of any non-constant morphism X → P1. Let J
denote the Jacobian of X.

Definition 3.2.1. For a positive integer d, the dth-symmetric power of X, is
defined by Symd X := Xd/Sd where Sd is the symmetric group on d letters.

Remark 3.2.2. The points on Symd X corresponds to effective K-rational di-
visors on X of degree d.

Suppose that Symd X(Q) is non-empty and let E be a fixed divisor of
degree d. We consider the corresponding Abel-Jacobi map D 7→ D − E. If
X has a K rational point P, we typically take E to be dP. In our situation,
we have d = 3 and γ ≥ 4, which implies that Symd X(K) is isomorphic
to its image in J. Moreover, it follows from Faltings’ theorem [Fal94] that
Symd X(K) is finite.

3.2.3 Mordell-Weil sieve

This technique is used to verify that a given curve X/Q does not have any
Q-rational points. The idea is to derive a contradiction from various bits of
local information, using the global constraint that a Q-rational point on the
curve maps into the Mordell-Weil group. Given a curve X/Q consider the
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commutative diagram where v runs through the (finite and infinite) place of
Q,

X(Q) JacX(Q)

∏
v X(Qv)

∏
v JacX(Qv).

ι

β α∏
ιv

We assume that we know an embedding ι : X→ JacX defined over Q (e.g. we
know aQ-rational divisor class of degree 1 on X) and that we know generators
of the Mordell-Weil group JacX(Q). If the images of α and ιv are disjoint,
then X(Q) = ∅.

As a further simplification, we can just use a set S of primes of good
reduction and replace the above diagram by the following one:

X(Q) JacX(Q)

∏
p∈S X(Fp)

∏
p∈S JacX(Fp).

ι

β α

ιS

Furthermore, the Mordell-Weil sieve asserts that

α(JacX(Q)) ∩ ιS(β(X(Q))) = ∅⇐⇒ X(Q) = ∅.

See [BS10] for a further discussion of the Mordell-Weil sieve.

3.2.4 A four-fold Mordell-Weil sieve

Let N,M be composite integers. We now outline the general technique of
proof to compute cubic points on the modular curves X1(N) or X1(2,M) with
rank 0 and gonality at least 4.

Remark 3.2.5. To compute the rank of J1(N), we utilize theorems of Kolyva-
gin and Logach [KL89] relating non-zero values of L-series of modular abelian
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varieties at s = 1 and finiteness of the Mordell-Weil group. Using Magma,
we can decompose the modular abelian varieties J1(N) into abelian factors
Bi and compute the non-vanishing of the L-series at s = 1 via the command
IsZeroAt(LSeries(B),1). For the Jacobians J1(2,M), we cannot use the
above Magma instrinsics. Instead, we decompose J1(2,M) into lower di-
mensional abelian varieties and compute their ranks using different methods.
The lower bound results for gonality of X1(N) and X1(2,M) are compiled
from three different resources: for X1(N) where N ≤ 40 come from [DVH14],
for X1(N) where N ≥ 41 come from [Abr96], and for X1(2,M) come from
[JKP06].

Remark 3.2.6. The rank constraints imply that the Jacobian of our modular
curve X is torsion, so in theory, one can exhibit generators for J(X). In prac-
tice, this decomposition is difficult to achieve for curves of high genus, which
introduces a complication in the Mordell-Weil sieve setup. The Mordell-Weil
sieve relies on a sufficient understanding of the Jacobian of a curve X; more
specifically, one ideally needs to know generators for J(X) or at least a finite
index subgroup of J(X).

For the sake of notation, we will discuss the computations for the modular
curves X1(N); the below construction will follow mutatis mutandis for the
modular curves X1(2,M).

Suppose there exist a Q-rational point P ∈ Sym3 X1(N)(Q). Our proofs
consist of constructing a contradiction to the existence of a Q-rational point
on Sym3 X1(N) using local and moduli data. The following diagram will
serve as a road map for our four-fold Mordell-Weil sieve. At each step of the
four-fold Mordell-Weil sieve, we present a technique that constitutes a proof
by contradiction.
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J1(N)(Q)
∏

p J1(N)(Fp3)

Sym3 X1(N)(Q)
∏

p X1(N)(Fp3)

J0(N)(Q)
∏

p J0(N)(Fp3)

Sym3 X0(N)(Q)
∏

p X0(N)(Fp3)

X(1)(Q)
∏

p X(1)(Fp3)

ψ

ι1

ρ1

ψpαp

ρ2

ι2

j

ιp

jp

Figure 3.1: Road map for four-fold Mordell-Weil sieving

First sift

The first sifting corresponds to using the Mordell-Weil sieve on the green
diagram. We encounter an immediate issue with this approach; local ap-
proximations tell us that the torsion on J1(N) is unwieldy, for example
#J1(45)|83608347651268608. Although this sift is the logical first step, it
is also the most computationally inefficient in our case. We only need to ap-
ply this sift to one case, and we do successfully Mordell-Weil sieve on J1(2, 18)
to prove that Sym3 X1(2, 18)(Q) = ∅.

Remark 3.2.7. We remark that the approach taken by Maarten Derickx fo-
cuses on taming the torsion via improved techniques to compute the torsion
of J1(N)(Q) coming from the differences of cusps.

Second sift

The second level of the sieve utilizes the existence of numerous sub-covers of
the modular curves X1(N). We know that there exist morphisms X1(N) →
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X0(N) and X1(N)→ X1(p) where p|N. In some cases, these maps are given
by quotients, but in most cases, we do not have equations for this map;
hence we denote these maps by dashed arrows. By [Sut12a], we have opti-
mized equations for X1(N) for N ≤ 100 and for the j-map j : X1(N)→ X(1).
Magma’s intrinsic SmallModularCurve(N) computes the defining equation
for the modular curve X0(N) and the instrinsic jInvariant(SmallModularCurve(N),N)
produces the j-map from X0(N) → X(1). We will use the explicit equations
for these sub-covers and their j-maps to construct our second sift.

We can consider the image of the point ψ(P) ∈ Sym3 X0(N). The lower
genus of X0(N) assists us in the determination of the generators for J0(N); in
Section 3.3.1, we discuss an interesting case of this analysis. The second sift
is an application of the Mordell-Weil sieve to the magenta diagram. We may
also use the data at numerous primes p of good reduction to construct this
contradiction; one must be careful when comparing local data. Furthermore,
one may conduct the above procedure for any morphism from X1(N) to any
algebraic group A, where A admits a reduction mod p; this follows from
[PSS07, Remark 12.1].

Third trick

The third iteration of the sieve exploits the moduli property of Sym3 X1(N)(Q).
First, suppose that we have equations for the map ψ. If the second sift fails,
then we have local conditions on X0(N)(Fp3) that determine when the point
Q ∈ X0(N)(Fp3) is in the image ρ2(ψ(P)). Using the equation for ψ and
reducing mod p, we can compute pre-images of the points X0(N)(Fp3) in
X1(N)(Fp3), and ideally we find that these pre-images are the reductions of
cuspidal points.

Now suppose that we do not know the equations for ψ. Recall that a
point P ∈ Sym3 X1(N)(Q) corresponds to an isomorphism class of elliptic
curves defined over some cubic number field with Z/NZ torsion subgroup.
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For a prime of good reduction p, we compute the points on X0(N)(Fp3) sat-
isfying the local datum determined by ρ2(ψ(P)), equivalently by ψp(ρ1(P)),
and then take the image of each such point under jp. Using the moduli
property of Sym3 X1(N)(Q), we know that the image of such points under
jp corresponds to elliptic curves over Fp3 with Z/NZ torsion. Magma’s in-
trinsics can quickly compute whether such elliptic curves over Fp3 , and their
quadratic twists, satisfy our prescribed torsion condition. If we find no such
curve or twist, then we have contradicted the existence of the Q-rational
point P.

If we do find such an elliptic curve, then we can repeat the above pro-
cess for a different prime p ′ of good reduction and compare the local data
to achieve a contradiction. Succinctly, this trick consists of applying the
Mordell-Weil sieve to the magenta diagram, considering the image of the
points in X0(Fp3) under the blue arrows, and then use the moduli property
of Sym3 X1(N) to construct a contradiction. As above, one may conduct this
procedure for any morphism from X1(N) to any algebraic group A, which
admits a reduction mod p map.

Fourth sift

The fourth sift encompasses the other three steps, and it involves sieving
using j-maps and simultaneously comparing local data at different primes p
of good reduction. We present a general framework of the fourth sift for the
modular curves X1(N) where N = 2M for some composite integer M and
X1(M), X0(N) have finitely many Q-rational points. Using the morphisms
X1(N) → X1(M), X1(N) → X0(N) and X1(N) → X0(M), we can compute
local datum on the points X1(R)(Fp3) and X0(N)(Fp3), and by varying over
primes p of good reduction, we can refine these constraints. Now consider
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the following diagram

X1(N)(Fp3)

(X1(M)×X(1) X0(N))(Fp3) X0(N)(Fp3)

X1(M)(Fp3) X(1)(Fp3).

σ

jN

jM

The existence of the map σ follows from the universal property of fibered
products, but note that we are fibering over a P1, so a priori, we do not have
an explicit description of the set (X1(M)×X(1) X0(N))(Fp3).

The lack of a nice description implies that we can only sieve using the
maps jM, jN. For a fixed prime p of good reduction, consider the image of
the points X1(M)(Fp3) (resp. X0(N)(Fp3)) that satisfy our local constraints
induced by the maps jM (resp. jN). If the intersection of these two sets is
empty, then we have achieved a contradiction to the existence of a Q-rational
point on Sym3 X1(Q). If the intersection is non-empty, then we can check
using Magma that this j-invariant corresponds to an elliptic curve E/Fp3
with Z/NZ; if not, then we have reached our desired contradiction. We can
repeat the above procedure for different primes p of good reduction and for
any morphism X1(N)→ X where X is a curve with finitely many points that
admits a reduction mod p.

Remark 3.2.8. If the second, third, and fourth sift do not prove that Sym3 X1(N)(Q)

is all cuspidal, the one should revisit the first sift and proceed with a Mordell-
Weil sieve on a finite index subgroup of J1(N).
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3.3 Analysis of X1(45)

In this section, we prove that the symmetric cube Sym3 X1(45) does not have
any Q-rational points using the second sift of our four-fold Mordell-Weil
sieve. Consider the map ψ : X1(45) → X0(45) where X0(45) is a genus 3
non-hyperelliptic curve defined over Q. For the remainder of this section, let
X := X0(45).

Using similar methods to Remark 3.2.5, we compute that rk J0(45) = 0.
Local computations suggest that J0(45) ⊂ Z/2Z × Z/4Z × Z/4Z × Z/8Z.
However, our computations produce divisors generating a Z/4Z×Z/8Z sub-
group of J0(45), so we need different methods to determine the 2-torsion on
the Jacobian of our genus 3 non-hyperelliptic curve X.

3.3.1 Theta divisors, bitangents, and 2-torsion on Jaco-

bians

Let Q/Q be an algebraic closure of Q and let X := X ×Q Q be the base
change of X to Q. We have a correspondence between divisors D ∈ DivX

and line bundles F via their global sections. In particular for each divisor D,
we can find a line bundle F such that H0(X,F) ∼= OX(D). Recall that the
Picard group of X, denoted by PicX, is the group of isomorphism classes of
line bundles on the scheme X with operation given by tensor products and
that the Jacobian of X is the subgroup of PicX of degree 0 line bundles.

Definition 3.3.2. Let D ∈ PicX. If 2D v K, where K is the canonical
divisor of of X, then D is a theta divisor. We say that D is even or odd

according to parity of h0(OX(D)).

Let TD(X) denote the set of theta divisors of X. Then TD(X) forms a
torsor under JX[2]. Fix a D ∈ TD(X). We define the action of JX[2] for
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D ′ ∈ J(X)[2] by setting

(O(D)⊗O(D ′)−1)⊗2 ∼= OX ⊗ωX
∼= ωX.

Recall that X is a non-hyperelliptic smooth projective, geometrically irre-
ducible curve of genus 3. It is a well-known fact that canonical image of X
is a smooth plane quartic; this fact may be deduce from basic principles or
from Petri’s theorem [Pet23]. We define a bitangent of X to be a line such
that (L ·X) = 2[P]+2[Q] for some P,Q ∈ DivX.We now sketch the relation-
ship between bitangents on a genus 3 non-hyperelliptic curve and odd theta
divisors on X.

Let Bit(X) denote the set of bitangents of X. Notice that if L is a bitangent
of X, then

1

2
(L · X) = [P] + [Q]

is an odd theta divisor. Furthermore, there exists a bijection between bitan-
gents ψ : Bit(X) → TDodd(X) defined by sending L 7→ 1/2(L · X). The map
ψ is injective since the linear equivalence [P] + [Q] v [R] + [S] implies that
[P] + [Q] = [R] + [S]; this follows from X not being hyperelliptic and the lin-
ear equivalence witnessing this gonality. To show surjectivity, suppose that
D ∈ TDodd(X). The assumptions imply that 2D = K and D = [P] + [Q], and
thus the line joining P and Q is a bitangent. Therefore, we have established
the following bijections for nice genus 3 non-hyperelliptic curves X:

Bit(X)←→ TDodd(X).

For a fixed bitangent D, we see that the difference D − D ′ generates JX[2]
for some D ′ ∈ Bit(X); succinctly, we have that the difference between the
bitangents of X will generate the 2-torsion on the Jacobian of X.

Returning to our original problem, we want to show that the 2-torsion
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of J(X) has rank 2, which would imply that J(X) ∼= Z/4Z × Z/8Z. By the
above discussion, we need to compute the bitangents of the curve X and the
action of GQ on these lines. We accomplish this by computing the number
field over which the bitangents are defined. Roughly speaking, this reduces
to computing a Gröbner basis for a system of equations, so we omit the full
details of this computations.1 We find that these bitangents of X are defined
over a quartic number field with Galois group Z/2Z× Z/2Z.

We find a transitive subgroupH of GSp6(F2) such thatH ∼= Z/2Z×Z/2Z,
and hence the action of GQ on the bitangents is Z/2Z × Z/2Z. Moreover,
the 2-rank of J(X) is 2, and hence we have proved that J(X) ∼= Z/4Z×Z/8Z.
Since we have explicitly determined the torsion on J0(45), we can use our
four-fold Morell-Weil sieve. At the second sift, we derive a contradiction at
p = 7 to our assumption on the existence of a Q-rational point Sym3 X1(45),
and therefore we have proved that Sym3 X1(45)(Q) is cuspidal.

N.B. We conclude by remarking that the above analysis demonstrates a
failure of the local-global principle on the torsion of the Jacobian of X.

1Magma code for these computations is available upon request.
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Chapter 4

Selmer groups of twists of elliptic

curves over K with K-rational

torsion points

4.1 Definitions and Notation

Let ` be an odd, rational prime and let E/K be an elliptic curve defined over
a number field K. The K-rational points E(K) form a finitely generated group
by the Mordell-Weil theorem. Recall from [Sil09, Section X.4] that we have
the following exact sequence

0→ E(K)/`E(K)→ Sel`(E, K)→X(E, K)[`]→ 0,

where Sel`(E, K) denotes the `-Selmer group and X(E, K)[`] is `-Shafarevich-
-Tate group. If K = Q, then Frey [Fre88] provides explicit examples of
quadratic twist of elliptic curves over Q with Q-rational points of odd, prime
order ` whose `-Selmer groups are non-trivial; a theorem of Mazur [Maz77]
implies that ` ∈ {3, 5, 7}.
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Theorem 4.1.1 ([Fre88]). Suppose that E/Q is an elliptic curve with a Q-
rational torsion point P of odd prime order `, and suppose that P is not
contained in the kernel of reduction modulo `; in particular, this means that
E is not supersingular modulo ` if ord`(jE) ≥ 0. Let S̃E be the subsets of
primes dividing the conductor N(E) of E defined by

S̃E := {p|N(E) : 2 < p ≡ −1 (mod `), ` - ordp(∆E)} ,

where jE is the j-invariant of E and ∆E is the discriminant of E. Suppose
that S̃E = ∅. Then, whenever d ≡ 3 (mod 4) is a negative, square-free
integer coprime to `N(E) satisfying:

1. if ord`(jE) < 0, then
(
d
`

)
= −1;

2. if p|N(E) is an odd prime, then

(
d

p

)
=


−1 if ordp(jE) ≥ 0;
−1 if ordp(jE) < 0 and E/Qp is a Tate curve;
1 otherwise;

we have that Sel`(Ed,Q) is non-trivial if and only if the `-part of the class
group of Q(

√
d) is non-trivial.

Remark 4.1.2. Frey actually proved a more general, double divisibility state-
ment concerning the `-Selmer group of Ed and the order of Galois groups of
particular number fields unramified outside of S̃E, when S̃E 6= ∅; we generalize
[Fre88, Theorem] in Theorem 4.2.2 and [Fre88, Corollary] in Corollary 4.2.6.

Frey’s idea was to obtain information about Sel`(Ed,Q) when E(Q) con-
tains an element of order `. In particular, he studied the behavior of E over
local fields Q` and their algebraic closures Q`. In this paper, we investigate
the `-Selmer rank in families of quadratic twist of elliptic curves E/K with
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K-rational points of odd prime order `. We use Frey’s proof as a blueprint
for our own, but the techniques we utilize come from class field theory. That
being said, many of his arguments go through undisturbed.

The problem of constructing elements in the Selmer group is a classical
question with many avenues of approach. Frey’s condition that the elliptic
curve E/K have a K-rational point of odd prime power order ` > 3 has
two immediate consequences. First, the image of Galois under the mod `
representation is conjugate to

( 1 ∗0 ∗ ) ⊂ GL2(F`),

which will assist in our explicitly description the Galois structure of splitting
fields of `-covers of E/K and the splitting fields of elements in Sel`(E

d, K). The
second is that we can immediately identify a quotient ofH1(Gal(K/K), E(K)[`]),
namely H1(Gal(K/K), ζ`). Frey’s (and our) proof relies on an analysis of co-
cyles in H1(Gal(K/K), E(K)[`]) and this fact will allow us to deduce local
triviality in certain cases using Hilbert’s Theorem 90. A laborious aspect of
our proofs is the case by case analysis of how primes p dividing N(E) behave
in the field K(

√
d) · K(E[`]) where d ∈ O×K /(O

×
K )

2 yields the quadratic twist
Ed of E and K(E[`]) is the `-division field of E/K.
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Notation

We set the following notation.

K := Galois number field,

` := odd, rational prime in S(n) \ {2, 3} such that ` - cl(K) and ζ` /∈ K,

L/K := algebraic extension of K,

p := prime divisor of the rational prime p in OK,

P := prime divisor of p in OL,

Kp := completion of K with respect to p,

LP := completion of L with respect to P,

S := finite set of primes of OK,

M/L := Galois extension with abelian Galois group of exponent `.

More generally, lower case gothic font will denote a divisor of a rational prime
of Q, and similarly, upper case gothic font will denote a divisor of a prime
of K.

Definition 4.1.3. M/L is said to be little ramified outside S if for primes
p /∈ S and all PL|p one has

M · LP(ζ`) = LP(ζ`)(
√̀
u1, . . . ,

√̀
uk)

with k ∈ N and ordPL(ui) = 0. Here ζ` is a `th root of unity, u1, . . . , uk are
elements in LP(ζ`), and ordPL is the normed valuation belonging to PL.

If M/L little ramified outside S, then M/L is unramified at all divisors
of primes p /∈ S ∪ {l}.
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Notation

We set the following notation, which comes directly from [Fre88]:

LS := maximal abelian extension of exponent ` of L which is

little ramified outside S,

LS,u := maximal subfield of LS which is unramified outside of S,

HS(L) := Galois group of LS/L,

HS,u(L) := Galois group of LS,u/L,

clS(L) [`] := order of HS(L),

clS,u(L) [`] := order of HS,u(L).

Remark 4.1.4. If S = ∅, we see that cl∅,u(L) is equal to the order of the
subgroup of the divisor class group of L consisting of elements of order `
which we denote by cl(L)[`].

Now assume that L/K is normal with cyclic Galois group generated by
an element γ of order ` − 1. Take an extension γ̃ to L(ζ`). Let χ` be the
cyclotomic character induced by the action of Gal(L(ζ`)/K) on 〈ζ`〉. Then
χ`(γ̃) is determined by

γ̃(ζ`) = ζ
χ`(γ̃)
` .

Let M be normal over K containing L such that Gal(M/L) is abelian of
exponent `. Then γ̃ operates by conjugation on

Gal(M(ζ`)/L(ζ`)) ∼= Gal(M/L),

and this operation does not depend on choice of γ̃. Hence the subgroup

H(χ`) :=
{
α ∈ Gal(M/L) : γ̃αγ̃−1 = αχ`(γ̃)

}
⊆ Gal(M/L)
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is well-defined. In the special case that M = LS, we denote the order of
HS(L)(χ`) by clS(L)`(χ`).

Now we shall consider an elliptic curve E/K given by a Weierstrass equa-
tion F(x, y) = 0 with coefficients in OK and minimal discriminant ∆E. For
any extension L/K, we denote the L-rational points of E (including ∞) by
E(L). Let χH be a primitive Hecke character of order ` and let

S̃E := {p|N(E) : χH(p) 6= 0, ordp(∆E) 6≡ 0 (mod `)}

SE := {p ∈ S̃E : ordp(jE) < 0}.

Let d ∈ O×K /(O
×
K )

2 and denote the twist of E/K by Ed/K. Via the general
theory of twists [Sil09, Section X.2], we know that Ed is isomorphic to E
over K(

√
d) but not over K. Let GK := Gal(K,K) denote the absolute Galois

group. Let W(Ed, K)[`] be the set of elements of order ` in the kernel of

ρ : H1(GK, E
d(K)) −→ ⊕

p prime

H1(Gal(Kp/Kp), E
d(Kp)).

The group of elements of order ` in the Selmer group of Ed, denoted by
Sel`(E

d, K) is given as the pre-image of W(Ed, K)[`] by the map

α : H1(GK, E
d(K)[`]) −→ H1(GK, E

d(K)).

There are two main cases we need to consider:

Case 1:

Assume that ordp(jE) ≥ 0. Then there is a finite extension N/K such that
E has good reduction modulo all PN|p i.e., we find an elliptic curve Ẽ such
that Ẽ modulo PN is an elliptic curve over the residue field of PN. Ẽ(NP)

contains a subgroup Ẽ−(NP) consisting of points (x̃, ỹ) with ordPN(x̃) < 0.
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Ẽ− is the kernel of reduction modulo PN, and ordPN(x̃/ỹ) is the level of (x̃, ỹ).
For ease of notation, we say that a point (x, y) ∈ E(NP) is in the kernel of
the reduction modulo PN if its image (x̃, ỹ) ∈ Ẽ−(NP).

Case 2:

Assume that ordp(jE) < 0. Then after an extension L/Kp of degree ≤ 2, E
becomes a Tate curve (via a theorem of Tate [Sil09, Theorem C.14.1]); in
particular, one has a Tate parametrization

τ : L
×
/〈q〉 −→ E(L)

where q is the p-adic period of E. One also has that

jE =
1

q
+

∞∑
i=0

aiq
i with ai ∈ Z

and the points of order ` in E(L) are of the form τ(ζα` (q
β/`)) where α,β ∈

{1, . . . , `− 1}.

Definition 4.1.5. If F/K is a number field and PF|p we say that a point
(x, y) ∈ E(FP) is in the connected component of the unity modulo PF if it is
of the form τ(u) with u a PF-adic unit, and (x, y) is in the kernel of the
reduction modulo PF if u− 1 ∈ PF.

Remark 4.1.6. One should notice that if E is not a Tate curve over Kp but
over an extension of degree 2 of Kp, then for all points P ∈ E(Kp), 2P is in
the connected component of unity modulo p.
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4.2 Statement of Results

As mentioned above, [Fre88, Theorem] gives a double divsibility statement
involving the `-torsion of the Selmer group. First, we generalize his single
divisibility to elliptic curves E/K defined over number fields K of finite degree
with K-rational points of odd, prime order `. Recall that S(n) is the set of
primes that can arise as the order of a rational point on an elliptic curve
defined over a number field of degree n.

Theorem 4.2.1. Let K be a Galois number field and choose ` ∈ S(n) \ {2, 3}
such that ` - cl(K) and ζ` /∈ K. Let E/K be an elliptic curve over K with a
K-rational point P of order `; let χH denote a primitive Hecke character of K
with order `; let q denote a prime of OK that lies above 2; and let l denote a
prime of OK that lies above `. Suppose that P is not contained in the kernel
of reduction modulo l; in particular, this means that E is not supersingular
modulo l if ordl(jE) ≥ 0. Let SE be the set of primes

SE := {p|N(E) : ordp(∆E) 6≡ 0 (mod `), χH(p) 6= 0, and ordp(jE) < 0} .

Suppose that d ∈ O×K /(O
×
K )

2 is negative1, coprime to l·N(E), and satisfies the
following divisibility and Artin symbol conditions where 〈δ〉 = Gal(K(

√
d)/K):

1. if q|N(E), then q|∆K(
√
d)/K;

2. if ordl(jE) < 0, then
(
K(
√
d)/K
l

)
= δ;

3. if p|N(E) is a prime of K with p /∈ SE, then

• if ordp(jE) ≥ 0, then
(
K(
√
d)/K
p

)
= δ;

• if ordp(jE) < 0 and E/Kp is a Tate curve, then
(
K(
√
d)/K
p

)
= δ;

1We say that d ∈ O×
K/(O

×
K )
2 is negative if the image of d under each real embedding

is negative
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• otherwise,
(
K(
√
d)/K
p

)
= id.

Then we have that the order of the `-torsion of the SE-ray class group of
K(
√
d) divides the order of Sel`(Ed, K). More precisely, the single divisibility

statement holds:
clSE,u(K(

√
d))[`]

∣∣∣#Sel`(E
d, K). (4.2.1)

We also prove a stronger, more explicit version of Theorem 4.2.1 in the
form of a double divisibility statement, which completely generalizes [Fre88,
Theorem].

Theorem 4.2.2. Let K be a Galois number field of degree n ≤ 5 such that
NK/Q(q) = 2 for all q|2. Choose ` ∈ S(n) \ {2, 3} such that ` - cl(K) and
ζ` /∈ K. Let E/K be an elliptic curve over K with a K-rational point P of
order `; let χH denote a primitive Hecke character of K with order `; let q
denote a prime ideal of OK that lies above 2; and let l denote a prime ideal
of OK that lies above `. If [K : Q] = 5 and ` = 5, then we must make the
added assumption that (`)OK is not totally ramified. Suppose that P is not
contained in the kernel of reduction modulo l; in particular, this means that
E is not supersingular modulo l if ordl(jE) ≥ 0. Let S̃E and SE be the sets of
primes

S̃E := {p|N(E) : χH(p) 6= 0, ordp(∆E) 6≡ 0 (mod `)} ,

SE := {p ∈ S̃E : ordp(jE) < 0}.

Suppose that d ∈ O×K /(O
×
K )

2 is negative, coprime to l ·N(E), and satisfies the
following divisibility and Artin symbol conditions where 〈δ〉 = Gal(K(

√
d)/K):

1. if q|N(E), then q|∆K(
√
d)/K;

2. if ordl(jE) < 0, then
(
K(
√
d)/K
l

)
= δ;

3. if p|N(E) is a prime of K with p /∈ SE, then
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• if ordp(jE) ≥ 0, then
(
K(
√
d)/K
p

)
= δ;

• if ordp(jE) < 0 and E/Kp is a Tate curve, then
(
K(
√
d)/K
p

)
= δ;

• otherwise,
(
K(
√
d)/K
p

)
= id.

Then we have the following double divisibility

clSE,u(K(
√
d))[`]

∣∣∣#Sel`(E
d, K)

∣∣∣ clS̃E,u(K(√d))[`] · clSE(K ′)[`](χ`), (4.2.2)

where K ′ is the subfield of K(
√
d, ζ`) of index 2 containing neither ζ` nor

√
d.

Remark 4.2.3. In words, (4.2.2) states that the order of the `-torsion of the
SE-ray class group of K(

√
d) divides the order of Sel`(Ed, K), and the order

of Sel`(E
d, K) divides the order of the `-torsion of the S̃E-ray class group

of K(
√
d) times the degree of the maximal abelian extension K ′′ of K ′ of

exponent ` unramified outside of SE∪{l} such that the Galois group Gal(K ′/K)

acts on Gal(K ′′/K) by χ`εd, where εd is the character prescribing the Galois
action on

√
d.

Once we have proved Theorems 4.2.1, 4.2.2, we can immediately extend
the divisibility statements (4.2.1), (4.2.2) to elliptic curves E defined over Q
by considering the values of SQ(n).

Corollary 4.2.4. C Let E/Q be an elliptic curve defined over Q. For some
Galois number field K, suppose that EK attains a K-rational point P of order
` where ` ∈ SQ(n) \ {2, 3} such that ` - cl(K) and ζ` /∈ K. In keeping with
the notation and assumptions of Theorem 4.2.1, we can produce examples of
quadratic twists EdK that satisfy the divisibility statement (4.2.1).

Corollary 4.2.5. D Let E/Q be an elliptic curve defined over Q; let EK
denote the base change of this curve to a Galois number field of degree n ≤ 20
such that NK/Q(q) = 2 for all q|2. Choose ` ∈ SQ(n) \ {2, 3} such that ` -
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cl(K), ζ` /∈ K, and the ramification index el(K/Q) satisfies 1 > el(K/Q)/(`−

1) − 1. Suppose that EK attains a K-rational point P of order `, then in
keeping with the notation and assumptions of Theorem 4.2.2, we can produce
examples of quadratic twists EdK that satisfy the double divisibility statement
(4.2.2).

We can also generalize [Fre88, Corollary], which we stated as Theorem
4.1.1.

Corollary 4.2.6. E Let (E, `, K, d) be as in Theorem 4.2.2 or in Corollary
4.2.5. If S̃E = ∅, then Sel`(E

d, K) is non-trivial if and only if the `-torsion of
the class group of K(

√
d) is non-trivial, in particular

cl(K(
√
d))[`]

∣∣∣#Sel`(E
d, K)

∣∣∣(cl(K(√d))[`])2.
Remark 4.2.7. In his Ph.D. thesis [Mai03], Mailhot was able to recover and
sharpen [Fre88, Theorem] for elliptic curves defined over Q using purely
cohomological methods. His refinement comes from prescribing a splitting
behavior of primes above K ′ instead of just a non-ramified condition. We
remark that our methods and results are disjoint, however, we believe that
[Mai03, Corollary 2.17] can be generalized to elliptic curves defined over
number fields K, using Theorem 4.2.2.

4.3 Proof of Theorem 4.2.1

In this section, we prove the divisibility statement (4.2.1). Before we proceed,
we make a remark about some of the prime assumptions of Theorem 4.2.1.

Remark 4.3.1 (Prime assumptions). If ordp(jE) < 0, then we have that E/Kp

has a Tate parametrization. The second condition ordp(∆E) 6≡ 0 (mod `)

assists us in Lemma 4.3.2. In short, it allows us to understand ramification
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in the `-division field of EKp . The final condition χH(p) 6= 0 is used in Lemma
4.3.3 and is an analogue of Frey’s condition that p ≡ −1 (mod `). Moreover,
this condition allows us to deduce, using Remark 2.3.4, that for a cyclic
extension M2/K of degree `, p is unramified in M2.

The first step in the proof is to exhibit an element in Sel`(E
d, K).

Lemma 4.3.2. Let ` > 3 be a rational prime; let M/K be a non-abelian
Galois extension of degree 2` containing K(

√
d) that is unramified over this

field outside of SE; let α be a generator of Gal(M/K(
√
d)); and let φ the

element in H1(Gal(M/K), Ed(M)[`]) determined by φ(α) = P, where P is a
K-rational point of order `. Then φ is an element of Sel`(Ed, K).

Proof. First, we need to show that there exists some element

φ ∈ H1(Gal(M/K), Ed(M)[`])

whose restriction φ to Gal(M/K(
√
d)) = 〈α〉 is given by φ(α) = P. We

identify Ed(M)[`] with E(M)[`] = 〈P〉. Since Ed(K(
√
d))[`] = 〈P〉 and δ(P) =

−P where 〈δ〉 = Gal(K(
√
d)/K), we have invariance of φ under δ from the

fact that δαδ = α−1. Since

H1(Gal(M/K), Ed(M)[`]) = H1(Gal(M/K(
√
d)), Ed(M)[`])δ,

our assertions follows.
Hence it remains to show that φ is locally trivial when regarded as an

element of
H1(Gal(M/K(

√
d)), Ed(M)).

We may restrict ourselves to primesPM|l·N(E). By condition (1) of Theorem
4.2.1, the divisors of q are unramified in M/K(

√
d) if q|N(E), and hence we

may assume that PM - q.



41

Assume that
(
K(
√
d)/K
p

)
= δ. In this case, PM is either fully ramified or

decomposed (sinceM/K is non-abelian). So assume that PM is fully ramified
and divides p. Then p ∈ SE and in particular p 6= l and ordp(∆EK) 6= 0

(mod `). We claim that Ed/Kp(
√
d) is a Tate curve and that P is contained

in the connected component of the unity over Kp(
√
d) corresponding to an

`th root of unity ζ`.
The fact that Ed/Kp(

√
d) is a Tate curve follows since p ∈ SE and so

ordp(jE) < 0. Since ordp(∆E) 6= 0 (mod `), we know that adjoining q1/`

to Kp(
√
d), where q is the p-adic period of E, is a non-trivial extension.

Under the Tate parametrization τ, we have that torsion points of order ` in
Ed(Kp(

√
d))[`] are of the form τ(ζα` q

β/`) where α,β ∈ {1, . . . , `− 1}. Since
P is a point of order ` defined over Kp(

√
d), we know that ζα` ∈ Kp(

√
d) for

some α ∈ {1, . . . , `− 1} and that

τ−1(P) = ζα` q
β/` ∈ Kp(

√
d).

In order for ζα` qβ/` ∈ Kp(
√
d), we must have that β = 0 since q is not an

1/`th power. Thus, τ−1(P) = ζα` , and hence P is contained in the connected
component of the unity over Kp(

√
d) corresponding to an `th root of unity

ζ`. SinceMP/Kp(
√
d) is cyclic of degree `, we have that ζ` = αx/x for some

x ∈MP by Hilbert’ Theorem 90, and therefore, φ is trivial when considered
in H1(Gal(MP/Kp), E

d(MP)).
Next assume that

(
K(
√
d)/K
p

)
= id and p 6= l. Then ordp(jE) < 0 and E is

a Tate curve over Kp, and so again P corresponds to some `th root of unity
ζ` under the Tate parametrization of E = Ed over Kp(ζ`) and hence φ is split
by Kp(ζ`) as seen above. But since the degree of Kp(ζ`) over Kp is prime to
`, φ is split over Kp already, and thus φ is locally trivial.

There is one remaining case: p = l and ordl(jE) ≥ 0. Let LM|l. By the
assumption, M/K is unramified at LM, and we can find a normal extension
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N/K of degree prime to ` such that E has good reduction modulo all primes
LN|l. In particular, we may take N = K(ζ12,

12
√
l). Now

H1(Gal(ML ·N/Kl ·N), Ed(ML ·N)) = 0

since the reduction of Ed modulo L is good and MLN/KlN is unramified,
and hence it follows that

H1(Gal(ML/Kl), E
d(ML)) = 0.

Next, we look at the action of δ on HSE,u(K(
√
d)).

Lemma 4.3.3. The generator 〈δ〉 = Gal(K(
√
d)/K) acts as − id on the

Galois group HSE,u(K(
√
d)).

Proof. We may write

HSE,u(K(
√
d)) = H− ⊕H+

where H− is the part where δ acts as − id, and H+ the part with δ = id.
Let M̃ := MH−

SE,u
, which is the fixed field of MSE,u by H−. Assume that

M1 is a subfield of M̃ that is cyclic over K(
√
d). Hence M1/K is cyclic of

degree 2 · [M1 : K(
√
d)]. Let M2 be the cyclic extension of K with degree

[M1 : K(
√
d)] contained in M1. Then M2 is unramifed outside of SE. For

p ∈ SE, we have that χH(p) 6= 0. Since [M2 : K]|` and ` - cl(K), it follows
that M2 is not contained in the Hilbert class field of K and is unramified
at all primes K. Thus, we have that M2 = K, M1 = K(

√
d) and hence

M̃ = K(
√
d).

Proof of Theorem 4.2.1. The divisibility of #Sel`(E
d, K) by clSE,u(K(

√
d))[`]

follows from Lemmas 4.3.2, 4.3.3 since our element φ ∈ Sel`(E
d, K) is induced
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by α ∈ Gal(M/K(
√
d)) and the action of 〈δ〉 on HSE,u(K(

√
d)) does not affect

the order of α when considered as an element of HSE,u(K(
√
d)).

4.4 Proof of Theorem 4.2.2

Before we proceed with a proof of Theorem 4.2.2, we wish to shed some light
onto our assumptions. In general, our hypotheses allow us to control the
ramification in cyclic extensions of K(

√
d).

Remark 4.4.1 (Field assumptions). We assume that our field K is a number
field of degree n ≤ 5 such that NK/Q(q) = 2 for all q|2 and that for some
` ∈ S(n)\ {2, 3}, ` - cl(K) and ζ` /∈ K. The degree and norm condition appear
in Lemma 5.1.1 and allow us to deduce ramification conditions on prime
divisors QM|q where M1/K is cyclic. The condition that ` - cl(K) implies
that there does not exist an extension M2/K of degree ` contained in the
Hilbert class field of K; once again this gives us a ramification consequence.
The assumption that ζ` /∈ K is subtle, but it allows for more ramification
possibilities since Kummer theory does not restrict cyclic extensions. The
final condition that el(K/Q) 6= 5 when [K : Q] = 5 and ` = 5 is due to a
deep result of Katz [Kat80] concerning the injectivity of `-torsion under the
reduction map; the assumption 1 > el(K/Q)/(`− 1) − 1 from Theorem 4.2.5
is the general condition. This assumption allows us to use the fact that prime
to 2 torsion will inject under the reduction map.

To prove Theorem 4.2.2, it suffices to prove the divisibility statement

#Sel`(E
d, K)

∣∣∣ clS̃E,u(K(√d))[`] · clSE(K ′)[`](χ`).
To begin, we discuss the Galois structure of the `-division field of elliptic
curves E/K from Theorem 4.2.2.
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4.4.2 Galois structure of splitting fields of `-covers of E

We want to determine the Galois group structure of splitting fields of elements
in H1(GK, E(K)[`]) for elliptic curves having a K-rational point P of order `.
Recall that ζ` /∈ K. Denote the `-division field by K(E[`]); this is the field
obtained by adjoining the x, y coordinates of all points of order ` of E to K.
Then K(E[`]) is a Galois extension of K containing K(ζ`), and it is cyclic over
K(ζ`) of degree dividing `. From this point on, we shall abbreviate E(K)[`]
with E[`], and similarly for Ed[`].

Lemma 4.4.3. The Galois group K(E[`])/K is generated by two elements γ, ε
with γ`−1 = id, ε` = id, γ|K(ζ`) generates K(ζ`)/K, and γεγ−1 = εχ`(γ)

−1

.

Proof. Choose a base of the form {P,Q} of E[`] such that for σ ∈ Gal(K(E[`])/K)

the action of σ on E[`] induces the matrix

ρσ = ( 1 b0 a ) ∈ GL2(F`),

with a = det(ρσ) ≡ χ`(σ) mod `. Now we choose γ such that

ργ = ( 1 00 w ) ∈ GL2(F`).

with w a generator of (Z/`Z)×. Also, we pick ε = id if K(E[`]) = K(ζ`). If
K(E[`]) 6= K(ζ`), we choose ε such that

ρε = ( 1 10 1 ) ∈ GL2(F`).

Then γ and ε generate Gal(K(E[`])/K) and since

( 1 00 w ) (
1 1
0 1 )

(
1 0
0 w−1

)
=
(
1 w−1

0 1

)
= ( 1 10 1 )

w−1

we have the relation γεγ−1 = εχ`(γ)
−1 .
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Remark 4.4.4. The choice of γ and ε is closely related to the choice of base
{P,Q}. In particular, we have ε(Q) = P +Q if ε 6= id and γ(Q) = χ`(γ)Q.

Let d ∈ O×K /(O
×
K )

2 be negative and relatively prime to l · N(E). We
define Ld to be the quadratic extension of K(E[`]) given by the compositum
K(
√
d) ·K(E[`]). The Galois group Gal(Ld/K) is generated by three elements

δ, γ, ε with δ commuting with ε and γ and

δ2 = id, δ(
√
d) = −

√
d,

γ`−1 = id, γ|K(E[`]) = γ,

ε` = id, ε|K(E[`]) = ε,

γiεj|K(
√
d) = id, γεγ−1 = εχ`(γ)

−1

.

In particular, we have that δ operates as − id on Ed[`], the points of order `
of Ed. The fixed field of ε is K(

√
d, ζ`) and the fixed field of 〈ε, δγ(`−1)/2〉 is

K ′ as defined in Theorem 4.2.2. Thus, we have the following field diagram:
We now describe the elements in H1(GK, E

d[`]). We have the exact inflation-
restriction sequence

0 −→ H1(Gal(Ld/K), E
d[`])

inf.
−→ H1(GK, E

d[`])
res.
−→ H1(Gal(K/Ld), E

d[`]),

where H1(Gal(K/Ld), E
d[`]) = HomGal(Ld/K)(Gal(K/Ld), E

d[`]).

Lemma 4.4.5. The group H1(GK, Ed[`]) injects into HomGal(Ld/K)(Gal(K/Ld), E
d[`]).

Proof. We need to show that H1(Gal(Ld/K), E
d[`]) = 0. If ε = id, the degree

of Ld/K is prime to `, and the assertion follows. Now let ε be of order `.
Using the inflation-restriction sequence, one has that

H1(Gal(Ld/K), E
d[`]) = H1(〈ε〉, Ed[`])〈δ,γ〉.

Let Pd, Qd be the points of order ` of Ed[`] corresponding to P,Q ∈ E[`] .
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Then Pd = εQd − Qd, and hence H1(〈ε〉, Ed[`]) is generated by the class of
cocycle ψ which sends ε to Qd. Since δεδ = ε and δQd = −Qd, we have that
ψ /∈ H1(〈ε〉, Ed[`])〈δ〉, and thus H1(Gal(Ld/K), E

d[`]) = H1(〈ε〉, Ed[`])〈δ,γ〉 =
0.

Take an element Φ̃ ∈ H1(GK, E
d[`]) with

res Φ̃ = φ ∈ HomGal(Ld/K)(Gal(K/Ld), E
d[`])

and denote by M the fixed field of the kernel of φ. M/K is normal and
Gal(M/Ld) is possibly generated by two elements α1, α2 with α`i = id, which
we may choose in such a way that

φ(α1) = µ1P and φ(α2) = µ2Q.

We may also assume that µi = 1 if αi 6= id.
We extend δ, γ, ε ∈ Gal(Ld/K) to elements δ̃, γ̃, ε̃ ∈ Gal(M/K) and com-

pute that the actions of these elements on αi. We assume that δ̃2 = γ̃`−1 = id.
Since

φ(βαiβ
−1) = βφ(αi) ∀β ∈ Gal(M/K)

via the fact that φ is a group homomorphism and the cocycle condition we
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get:

δ̃αiδ̃ = α
−1
i (∵ δ̃|Ed[`] = − id)

γ̃α1γ̃
−1 = α1 (∵ γ̃P = P),

γ̃α2γ̃
−1 = α

χ`(γ̃)
2 (∵ γ̃Q = χ`(γ̃)Q),

ε̃α1ε̃
−1 = α1 (∵ ε̃P = P),

ε̃α2ε̃
−1 = α1α2 if ε 6= id and α2 6= id(∵ then εφ(α) =

εP = P +Q = φ(α1α2); necessarily α1 6= id

in this case).

In particular, it follows that 〈α1〉 is a normal subgroup of Gal(M/K) and
that 〈α2〉 is normal if either α2 = id or ε̃ = id.

Now we distinguish between two cases:

Case 1. ε̃ = id. In this case 〈α1〉 and 〈α2〉 are both normal in Gal(M/K)

and hence
Mi :=M

〈αi〉

are normal extensions of K. The Galois group of M2/K(
√
d) is abelian and

generated by the restriction of 〈γ̃, α1〉 to M2. Hence

M2 :=M
〈α2,γ̃〉

is Galois over K containing K(
√
d) and if α1 6= id, then Gal(M2/K) is non-

abelian of order 2`. Since

δ̃γ̃(`−1)/2α2(δ̃γ̃
(`−1)/2)−1 = α2,
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it follows that M1 is abelian over K ′ and hence

M1 :=M
〈α1 ,̃δγ̃(`−1)/2〉

is normal over K. Its Galois group is generated by

α2 = α2|M1 and γ = γ̃|M1,

and its order is equal to |α2|·(`−1). Also one has the relation γα2γ−1 = α
χ`(γ)
2 .

To summarize, we have that

M1(φ) :=M
〈α1 ,̃δγ̃(`−1)/2〉,

M2(φ) :=M
〈α2,γ̃〉.

Case 2. |̃ε| = `. In this case, we may assume that α1 6= id for α1 = id

implies that α2 = id, as well.

Subcase (i). α2 = id. We assert that Gal(M/K(ζ`,
√
d)) is not cyclic.

Otherwise ε̃ would be an element of order `2 with ε̃ ` = α1 (without lose of
generality). So δ̃ε̃ `δ̃ = ε̃−` and hence

δ̃ε̃δ̃ = ε̃ k with k ≡ −1 mod `.

But since δεδ = ε, we would get δε̃δ = ε̃ · (ε̃`)n = ε̃ 1+`
n which gives a

contradiction. Hence, we can choose ε̃ so that

ε̃ ` = α̃ `1 = id and δ̃ε̃δ̃ = ε̃,

which determines ε̃ uniquely. Thus, M2 := M〈ε̃,γ̃〉 is normal over K and
contains K(

√
d) and its Galois group is dihedral of order 2` and generated
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by 〈α1, δ̃〉. To summarize, we say that

M1(φ) :=M
〈α1 ,̃δγ̃(`−1)/2〉,

M2(φ) :=M
〈ε̃,γ̃〉.

Subcase (ii). α2 6= id. We have that M1 := M〈α1〉 is normal over K and
of degree ` over Ld. Since δ̃α2δ̃ = α−1

2 , we conclude as above that ε has
an extension ε̃ to M1 of order ` with δ̃ε̃δ̃ = ε̃. Since δ̃γ̃(`−1)/2 acts trivially
on α2 and ε̃ acts trivially on α2|M1, we have that 〈δ̃γ̃(`−1)/2, ε̃〉 is a normal
subgroup of Gal(M1/K). Hence

M1 :=M
〈δ̃γ̃(`−1)/2 ,̃ε〉
1

is normal over K containing K ′, and its Galois group over K ′ is generated by
α2 = α2|M1, which is of order ` and satisfies the relation

γα2γ
−1 = α

χ`(γ)
2 with γ = γ̃|K ′.

In order to simplify notation, we define M2(φ) := K(
√
d) if either ε 6= id or

α2 6= id. To summarize, we say that

M1(φ) :=M
〈δ̃γ̃(`−1)/2 ,̃ε〉
1 ,

M2(φ) := K(
√
d).

Hence for a given
Φ̃ ∈ H1(GK, E

d[`])

we have a field M = M(φ) which determines 〈φ〉 completely where φ =

res(Φ̃). We want to study the information we attain from the pair (M1(φ),M2(φ)).
If ε = id or α2 = id, then we get backM(φ) =M from (M1(φ),M2(φ)). In
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these cases, we shall say that φ is of first type. What happens if ε 6= id and
α2 6= id? Assume that

φ 6= ψ ∈ H1(GK, E
d[`])

have fieldsM(φ) andM(ψ) with Galois groups 〈α1, α2〉 and 〈β1, β2〉 as above
such that

M(φ)α1 =M(ψ)β1 .

LetN be the composite ofM(φ) andM(ψ). Then the Galois groupGal(N/Ld)

is generated by three elements 〈σ1, σ2, σ3〉, which we can choose in such a way
that

σ1|M(φ) = α1, σ1|M(ψ) = βλ1

σ2|M(φ) = α2, σ2|M(ψ) = βλ2

where λ ∈ {1, . . . , `− 1}. N is a splitting field of φ and ψ, and

(φ− λ`−1ψ)(σ1) = (φ− λ`−1ψ)(σ2) = 0.

Hence the fixed field of the kernel of φ−λψ is a cyclic extension of Ld which
is normal over K, and φ− λ−1ψ is of first type.

Thus,M1(φ) determines 〈φ〉 up to elements of first type, and in order to
determine all elements in H1(GK, E

d[`]), it is enough to determine all dihedral
extensions of K of degree 2` containing K(

√
d) and all extensionsM1 of degree

` over K ′ which are normal over K such that conjugation by γ on Gal(M1, K
′)

is equal to χ`(γ).
Therefore to prove the double divisibility, one has to show that for φ ∈

Sel`(E
d, K), the fieldM2(φ) is unramified over K(

√
d) outside S̃E, andM1(φ)

is unramifed over K ′ outside SE and little ramified at divisors of l.
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4.4.6 Splitting fields of elements in Sel`(E
d, K)

We shall continue to use the assumptions and the notations of the Theorem
4.2.2 and Section 4.4.2.

Lemma 4.4.7. Let φ be an element in Sel`(E
d, K). Then M1(φ) =: M1 is

unramified at q over K ′ and M2(φ) =:M2 is unramified at q over K(
√
d).

Proof. We first prove the latter statement. Since q|∆K(
√
d)/K , we have that

K(
√
d) and K ′ are ramified at q over K. Hence the norm of Q|q in K(

√
d)

is equal to q, and by assumption the norm of Q|2 is equal to 2. Suppose
that K(

√
d) had a cyclic extension of degree ` in which Q is ramified. Then

the completion K(
√
d)Q admits a cyclic extension of degree ` ramified at Q.

Since ` is odd and Q has residue characteristic two, this extension is tamely
ramified. By local class field theory, the tamely ramified cyclic extensions
of a local field K(

√
d)Q all have degree dividing |κ×|, where κ is the residue

field. Since κ = F2, we have that there are no tamely ramified and ramified
extensions of K(

√
d)Q. Thus, K(

√
d) has no cyclic extension of degree ` in

which Q ramifies, and hence M2 is unramified at q over K(
√
d).

To prove the former statement, we shall utilize the proof of [Fre88, Lemma 3]
and look prime by prime. For ` = 5, the same argument as above can be
applied to QK ′ |q. For ` = 7, there is only one extension Q|q to K ′ which is
ramified of order 2 and has norm 8. Assume that QK ′ is ramified in M1/K

′

and let QM1
be the unique extension of QK ′ to M1. Let Mt be the subfield

of M1 in which QM1
is tamely ramified. Then Mt is a cyclic extension of

degree 7 over K(ζ7 + ζ−17 ), and M1 is the compositum of Mt with K ′ over
K(ζ7+ ζ

−1
7 ). Thus, Gal(M1/K(ζ7+ ζ

−1
7 )) is abelian. But this contradicts the

fact that
γ3αγ3 = αχ7(γ

3) = α−1,

where 〈α〉 = Gal(M1/K
′) and 〈γ〉 = Gal(K ′/K).
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For ` = 11, 13, 19, 37, we can use the same proof as the first statement
since

11 - (25 − 1) 13 - (22 − 1) 37 - (23 − 1) 37 - (218 − 1)

13 - (26 − 1) 19 - (29 − 1) 37 - (29 − 1) 37 - (22 − 1).

13 - (23 − 1) 19 - (23 − 1) 37 - (26 − 1)

For ` = 17, there there is only one extension Q|q to K ′ which is ramified
of order 2 and has norm 28 (note that 17|(28 − 1)). If we assume that QK ′

is ramified in M1/K
′, then we can use the above argument to construct the

same contradiction.

Remark 4.4.8. Since 73|(236 − 1), 73|(29 − 1), and 73|(218 − 1), we may not
assume that there is a unique cyclic extension of K ′ with degree 73 in which
Q is ramified, and hence the above argument does work for ` = 73. This
precludes us from extending Theorem 4.2.2 to number fields K of degree 6.

Therefore, we can assume that p - q · l, but p|N(E).

Lemma 4.4.9. Let φ be an element in Sel`(E
d, K). Then M1/K

′ is unrami-
fied outside of SE ∪ {l} and M2/K(

√
d) is unramified outside S̃E ∪ {l}.

Proof. We have to test prime numbers p 6= l that divide N(E).

1. If ordp(jE) ≥ 0, then it follows from Néron’s list of minimal models of
elliptic curves with potentially good reduction that ` must be equal to
3 ([Nér64, p.124]). Since we only consider primes ` > 3, we can exclude
this case from consideration.

2. Now assume that ordp(jE) < 0. We have two subcases:

(a) If ordp(jE) ≡ 0 mod `, we have that p /∈ SE and so Ed is not a
Tate curve over Kp. Moreover, Kp(E[`]) is unramified over Kp and hence
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M1/K
′ andM2/K(

√
d) are unramified at all divisors of p if and only if

M1/Ld (resp. M2/Ld) are unramified at all divisors of p. We now use
the triviality of the φ ∈ Sel`(E

d, K) over Kp from Lemma 4.3.2. Also
recall that M is the fixed field of the kernel of φ. We shall show that
QM is unramified over Ld.

There is a P̃ ∈ Ed(MP) where PM|p such that for all σ ∈ D(PM), we
have σP̃ − P̃ = φ(σ). Hence

P ′ := ` · P̃ ∈ Ed(Kp)

and so 2P ′ is in the connected component of unity modulo p via Remark
4.1.6. Hence P̃ = P̃1 + P2 with P2 ∈ Ed[`] and 2P̃1 in the component
of the unity of E mod PM, so P̃1 corresponds to a PM-adic unity u
under the Tate parametrization. Now take

α ∈ 〈α1, α2〉 ∩ I(PM)

where I(PM) is the interia group of PM. Then 2(αP̃ − P̃) corresponds
to αu/u and is an `th root of unity. By Hilbert’s Theorem 90, we have
that α = id, and thus, PM is unramified over Ld.

(b) If ordp(jE) 6≡ 0 mod `, then the values at the Hecke characters χ of
order ` tell us that either E is a Tate curve over Kp or that p ∈ SE.
Consider the former situation. Our assumptions from Theorem 4.2.2
tell us that q is not completely decomposed in K(

√
d) and K ′. Since

K×p /(K
×
p )
` ∼= Kp(

√
d)×/(Kp(

√
d)×)` ∼= K ′×P /(K

′×
P )`

for allPK ′ |p, we see that for all cyclic extensionsM1 of K ′ andM2/K(
√
d)

of degree ` and divisors PMi |p, one has that Gal(Mi,PMi
/Kq) is abelian
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of even order. But this implies that

M1,P = K ′p and M2,P = KP(
√
d),

which is absurd. Thus p ∈ SE and our lemma follows.

The next step is to describe the behavior of Mi at divisors of l.

Lemma 4.4.10. Assume that ordl(jE) < 0 and φ ∈ Sel`(E
d, K). Then

M2/K(
√
d) is unramified at l and M1/K

′ is little ramified at divisors of l.

Proof. The assumptions tells us that E/Kl is a Tate curve but that Ed/Kl

is not a Tate curve. Since Kl(E[`]) = Kl(ζ`), the behavior of Mi at l is
determined by the behavior of M at l. Let LM|l, let I(LM) be the inertia
group of LM, and let

α ∈ 〈α1, α2〉 ∩ I(LM).

As in the proof of Lemma 4.4.9, we can use the fact that Ed/Kl is not a Tate
curve to show that there is a Q̃ ∈ Ed(ML) where LM|l and αQ̃− Q̃ = φ(α).
Hence 2Q̃ is in the connected component of unity modulo LM via Remark
4.1.6. This implies that

MLM =M
〈α〉
LM

(
√̀
u)

where u is a LM-adic unit corresponding to 2Q̃ under the Tate parametriza-
tion. Moreover, M1/Ld is little ramified at l.

Now assume that α2 = id or ε = id. Then M2/K(
√
d) is of degree `,

and we have to show that M2/K(
√
d) is unramified at LM2 |l. We recall the

choice of point Q. Since γQ = χ`(γ)Q where 〈γ〉 = Gal(K(ζ`)/K), it follows
that Q is in the kernel of the reduction of E modulo all divisors of l, and
hence P+λQ is not in this kernel where λ ∈ N. For α ∈ I(LM), we saw that
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σQ̃− Q̃ = φ(σ) is in the kernel of the reduction modulo LM, and hence

α1α
λ
2 /∈ I(LM) ∀ λ ∈ N and LM|l.

Thus, it follows that M〈α2〉/Ld is unramified at LM and M2/K(
√
d) is un-

ramified at l.

Finally, we look at the case where ordl(jE) ≥ 0.

Lemma 4.4.11. Assume that E/K has a K-rational point P of order ` > 3,
that ordl(jE) ≥ 0, and that P is not contained in the kernel of reduction
modulo l, in particular, this means that E is not supersingular modulo l. Let
φ be an element in Sel`(E

d, K) with corresponding fields M1 and M2. Then
M1/K

′ is little ramified at l, and M2/K(
√
d) is unramified at l.

Proof. Suppose that ordl(jE) ≥ 0, which implies that E has potentially good
reduction at l. Since E/K has a K-rational point P of order ` > 3, we know
that Gal(K(E[`])/K(ζ`)) is a subgroup of the additive group F+

` . We want to
show that all divisors of l are not ramified in K(E[`])/K(ζ`). If E has good
reduction over K(ζ`), then we are immediately done. If E does not have good
reduction over K(ζ`), then there must exist some extension N/K(ζ`) such
that [N : K(ζ`)]|6 and that E has good reduction at all divisors LN|l; this
divisibility condition is similar to the proof of [Sil09, Proposition VII.5.4.c].
From our assumptions, it follows that NL contains K(E[`]) and that 〈Q〉 is
the subgroup of order ` of the kernel of reduction modulo LN. Hence all
divisors of l are not ramified in K(E[`])/K(ζ`), and we can prove the lemma
by looking at the behavior of l in M/Ld.

Assume that LM|l and let I(LM) be the inertia group of LM. Suppose
that αµ1α

λ
2 ∈ I(LM). There there is a P̃ ∈ E(ML) with

(αµ1α
λ
2)P̃ − P̃ = µP + λQ.
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But we know that for µ 6= 0, the point µP + λQ is not in the kernel of
reduction modulo LM. Let Ẽ be a model of E over N having good reduction
modulo LN|l. Since (I(LM) − id)Ẽ(N ·ML) is contained in this kernel, we
must have that µ = 0, and hence

I(LM) ∩Gal(M/Ld) ⊆ 〈α2〉.

Thus, M〈α2〉/Ld is unramified at LM; moreover, M2/K(
√
d) is unramified

above l.
Now assume that I(LM) = 〈α2〉. Then Q = α2Q̃− Q̃ and since 〈α2〉 acts

trivially on Ẽ(N ·ML)/Ẽ−(N ·ML), we may assume that Q̃ ∈ Ẽ−(N ·ML)

and hence ` · Q̃ ∈ Ẽ−(N · Kl). Since Ẽ has ordinary reduction modulo LM,
we have that N · Kl(Q̃) is little ramified at divisors of l. Thus, our lemma
follows.

Lemmas 5.1.1, 4.4.9, 5.1.2, 5.1.3 prove that for φ ∈ Sel`(E
d, K), the field

M2(φ) is unramified over K(
√
d) outside S̃E ∪ {l}, and M1(φ) is unramifed

over K ′ outside SE and little ramified at divisors of l. Moreover, we have
proved that

#Sel`(E
d, K)

∣∣∣ clS̃E,u(K(√d))[`] · clSE(K ′)[`](χ`),
which completes the proof of Theorem 4.2.2.

Proof of Corollary 4.2.6

Since we have established our double divisibility statement (4.2.2), we can
proceed with a proof of Corollary 4.2.6. By the definitions established in
Section 4.1, we have that

clS̃E,u(K(
√
d))[`] · clSE(K ′)[`](χ`)

∣∣∣ cl∅,u(K(√d))[`] · cl∅(K ′)[`](χ`) · εS
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where εS is a number depending only on S̃E. Note that when S̃E = ∅, we
have that εS = 1 and that cl∅,u(K(

√
d))[`] = cl(K(

√
d))[`] by Remark 4.1.4.

Corollary 4.2.6 follows immediately from the following lemma.

Lemma 4.4.12. cl∅(K ′)[`](χ`) | cl(K(
√
d))[`].

Proof. LetM/K be a Galois extension containing K ′ with 〈α〉 = Gal(M/K),
with the relations

α` = id and γαγ−1 = αχ`(γ) where 〈γ〉 = Gal(K ′/K).

We assume that M is unramified outside l and little ramified at l; hence

M(ζ`) = K
′(
√
d)(
√̀
c),

with c ∈ M(
√
d) and the principal divisor of c is a `th power. We want to

extend c to an element of order ` in the divisor class group of K(
√
d).

Let γ̃ be an extension of γ to Gal(M(
√
d)/K) such that γ̃`−1 = id, γ̃|K(ζ`)

generates Gal(K(ζ`)/K), and γ̃|K(
√
d) = id. Since M(

√
d)/K is normal, we

have γ̃(c) = ci · e` with 1 ≤ i ≤ `− 1 and e ∈ K ′(
√
d). Hence,

γ̃(
√̀
c) = (

√̀
c)i · e · ξγ̃

with ξ`γ̃ = 1. Let α̃ be an extension of α to M(
√
d) of order `. We can see

that i = 1 since
γ̃α̃(
√̀
c) = ξ

χ`(γ)
α̃ γ̃(

√̀
c)

and
α̃χ`(γ)γ̃(

√̀
c) = α̃χ`(γ)(ξγ̃(

√̀
c)i · e) = ξi·χ`(γ)α̃ · γ̃(

√̀
c),

and hence
M(
√
d) = K(

√
d,
√̀
c, ζ`).
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There exists an element c̃ = c`−1 · e ′` ∈M(
√
d) with e ′ ∈ K ′(

√
d) such that

the divisor of c̃ is a `th power. However, since ±c̃ is not an `th power in
K(
√
d), it is an element of order ` in the divisor class group of K(

√
d).

4.5 Elliptic curves satisfying Corollary 4.2.5

Let E be an elliptic curve over a number field K. In a recent work [Zyw15],
Zywina has described all known, and conjecturally all, pairs (E/Q, `) such
that mod ` image of Galois, ρE,`(GQ), is non-surjective. Using Zywina’s
classification, we can find elliptic curves E/Q that will satisfy the conditions
of Corollary 4.2.5. First, we present an example of this technique for the
case when ` = 3. We remark that this case does not apply to Corollary 4.2.5;
however, it best illustrates the technique.

Let E/Q be a non-CM elliptic curve over Q such that ρE,3(GQ) conjugate
to

B(3) := ( ∗ ∗0 ∗ ) ⊂ GL2(F3).

We can use Galois theory to prove the following result:

Proposition 4.5.1. Let E/Q have mod 3 image of Galois conjugate to B(3).
Then Q(E[3]) = Q(x(E[3])) ·K where K is an explicitly computable quadratic
extension.

Before we prove Proposition 4.5.1, we prove the following lemma which
tells us over which extension E obtains a 3-torsion point.

Lemma 4.5.2. For E/Q from Proposition 4.5.1, there exists some quadratic
extension K such that E has a K-rational 3-torsion point. In particular,
E(K)[3] = 〈P〉.

Proof. Let E : y2 = x3−Ax−B for A,B ∈ Q. Via the Weil-pairing, we know
that Q(ζ3) ⊆ Q(E[3]). It is also a well known fact that B(3) ∼= S3 × Z/2Z.
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Combining these results with our assumptions, we have the following diagram
of Galois sub-fields of Q(E[3]): where the extension Q(x(E[3])) is the index
2 sub-field of Q(E[3]) generated by the x-coordinates of points in E(Q)[3].
Recall that the roots of the 3-division polynomial

ψ3(x) = 3x
4 + 6Ax2 + 12Bx−A2

correspond to x-coordinates of E(Q)[3]. In particular, ψ3(x) is the minimal
polynomial of the degree 6, Galois extension Q(x(E[3])).

Since S4 does not contain any transitive subgroups of order 6, we know
that ψ3(x) must have a linear factor, so we write ψ3(x) = (x−α)g(x) where
α ∈ Q and g(x) is an irreducible cubic. This implies that there exists some
P ∈ E(Q)[3] with Q-rational x-coordinate given by α. Moreover, we see that
there is a 3-torsion point

P = (α,
√
f(α)).

that is defined over the quadratic extension Q(
√
f(α)).

Remark 4.5.3. From the above proof, one can easily see thatGal(Q(x(E[3]))/Q) ∼=

S3. Indeed, since Q(x(E[3])) is Galois, we showed that the Galois group of
ψ3(x) is actually the Galois group of the cubic g(x). Since [Q(x(E[3])) : Q] =

6, we know g(x) must be an irreducible cubic with non-square discriminant,
which immediately implies our claim.

Proof of Proposition 4.5.1. Let K denote the quadratic extension from Lemma
4.5.2. It is clear that K ⊂ Q(E[3]) and that K * Q(x(E[3])), so we have
Q(E(3)) is the compositum of Q(x(E[3])) and K.

The idea behind finding elliptic curves over Q such that E(Q)[`] = {O}
and E(K)[`] = 〈P〉 is to consider E/Q with ρE,`(GQ) conjugate to a subgroup
H such that

( 1 ∗0 ∗ ) ( H ⊆ ( ∗ ∗0 ∗ ) =: B(`).
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We can see that E will attain an ` torsion point over an extension K where
the degree of K/Q is determined the cardinality of the upper left entry. For
` = 3, we saw that H = B(3) and thus the upper left entry has order 2, which
gives a less explicit proof of Proposition 4.5.1.

Let ` ∈ {5, 13}. Below, we provide examples of elliptic curves E/Q that
do not have a Q-rational point of order ` but attain a K-rational point P of
order ` over some extension of small degree K that satisfies the conditions of
Corollary 4.2.5. The final step in our verification is showing P is not contained
in the kernel of reduction modulo l; in particular, this means that E/K is not
supersingular modulo l if ordl(jE) ≥ 0. This condition is computable via the
Magma command IsSupersingular.

In order to conduct a thorough search, we consider all subgroups H which
can occur as an image of Galois for a non-CM E/Q and satisfy the above
containment. In particular, we run through a large list elliptic curves E/Q
with prescribed non-surjective mod ` image of Galois coming from the mod-
ular curves XH of Zywina [Zyw15]. Since this list is comprehensive, we also
give examples of elliptic curves over Q that do not satisfy and potentially
satisfy Corollary 4.2.5, modulo some computations.

For ` = 5, we only have one example.

Example 4.5.3.1 (` = 5). Let E/Q be the elliptic curve

E : y2 = f(x) = x3 −
185193

185193
x+

185193

149
.

E has mod 5 image of Galois conjugate to B(5) ⊂ GL2(F5), and hence E
attains a K-rational point of order 5 over a bi-quadratic extension K of Q.
The first quadratic extension L/Q is given by adjoining the quadratic root
α of the 5-division polynomial ψ5, and then the second quadratic is given by
adjoining the square root of the f(α). For E defined above, we compute that
cl(K) = 8, ζ5 /∈ K, 2 is ramified in OK, and that E/K is not supersingular
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modulo l if ordl(jE) ≥ 0 where l|5. Therefore, the elliptic curve E and the
number field K satisfy the conditions of Corollary 4.2.5.

For ` = 7, we have two possibilities.

Potential example 4.5.3.2 (` = 7). Let E/Q be the elliptic curve

E : y2 = f(x) = x3 −
81469949623875

3017401762489
x+

162939899247750

3017401762489
,

which has mod 7 image conjugate to B(7). E attains a K-rational point of
order 7 over an extension K of degree 6. The extension K is given by first
adjoining the root α of the cubic factor of ψ7 and then adjoining the square
root of f(α). We verify almost all of the conditions from Corollary 4.2.5 for
E and K; however, we are not able to verify that 7 - cl(K).

Non-example 4.5.3.3 (` = 7). Suppose that E/Q has ρE,7(GQ) conjugate to

H :=
(
a2 ∗
0 ∗

)
wherea ∈ F7.

Since #(F×7 )
2 = 3, we have that E attains a K-rational point of order 7 over

a cubic extension K. Moreover, this extension is given adjoining the root of
the cubic factor of the 7-division polynomial ψ7. In our search, we find that
all E/K are supersingular modulo l if ordl(jE) ≥ 0 where l|7.

For ` = 11, there do not exist any subgroups coming from [Zyw15] that
have our desired condition. For ` = 13, we find a few examples of curves
satisfying Corollary 4.2.5.

Example 4.5.3.4 (` = 13). Suppose that E/Q has ρE,13(GQ) conjugate to

H =
(
a3 ∗
0 ∗

)
wherea ∈ F13,

then E attains a K-rational point of order 13 over a bi-quadratic extension
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K/Q since #(F×13)
3 = 4. As an example, consider the elliptic curve

E : y2 = x3 −
2248091

180353
x+

4496182

180353
,

which has mod 13 image conjugate to H. E attains a K-rational point of
order 13 over a bi-quadratic extension K of Q. The first quadratic extension
L/Q is given by adjoining a quadratic root α of the 13-division polynomial
ψ13, and then the second quadratic is given by adjoining the square root of
the f(α). We compute that cl(K) = 2, ζ13 /∈ K, (2) splits in OK, and E/K is
not supersingular modulo l if ordl(jE) ≥ 0 where l|13. Therefore, the elliptic
curve E and the number field K satisfy the conditions of Corollary 4.2.5.

Example 4.5.3.5 (` = 13). Suppose that E/Q has ρE,13(GQ) conjugate to

H :=
(
a4 ∗
0 ∗

)
wherea ∈ F13.

Since #(F×13)
4 = 3, E attains a K-rational point of order 13 over cubic exten-

sion K/Q. For example, consider the elliptic curve

E : y2 = x3 + 13674069x+ 324405221670.

Using [Zyw15], E has mod 13 image conjugate to H. Now let K/Q denote
the number field defined by the cubic factor of ψ13. For notational purposes,
we shall write K = Q(α) where α is the primitive element of K. By base
changing to K, we find that EK = E ×Q K has K-rational 13-torsion point.
We also compute that cl(F) = 1, 2 splits in OK, ζ13 /∈ K, and that E/K is
not supersingular modulo l if ordl(jE) ≥ 0 where l|13. Therefore, the elliptic
curve E and the number field K satisfy the conditions of Corollary 4.2.5.

Example 4.5.3.6 (` = 13). Suppose that elliptic curve with ρE,13(GQ) conju-
gate to (

a2 ∗
0 ∗

)
wherea ∈ F13.



63

Since #(F×13)
2 = 6, E will attain a K-rational point of order 13 over an

extension of degree 6. As an example, consider the elliptic curve

E : y2 = x3 −
12096

529
x+

24192

529
,

which satisfies the above property. E attains a K-rational point of order
13 over a sextic extension K of Q. The first cubic extension L/Q is given
by adjoining a cubic root α of the 13-division polynomial ψ13, and then
the second quadratic is given by adjoining the square root of the f(α). We
also compute that cl(F) = 4, 2 splits in OK, ζ13 /∈ K, and that E/K is not
supersingular modulo l if ordl(jE) ≥ 0 where l|13. Therefore, the elliptic
curve E and number field K satisfy the conditions of Corollary 4.2.5.

Potential example 4.5.3.7 (` = 13). Suppose that elliptic curve E/Q with
mod 13 image conjugate to B(13) will attain a K-rational point of order 13
over an extension of degree 12. The difficultly in verifying the conditions of
Corollary 4.2.5 is computing the class number and ramification indicies for
the duodecic extension K.

Finally for ` = 37, there is only one E/Q that we need to consider.

Potential example 4.5.3.8 (` = 37). Suppose that E/Q is the elliptic curve
with j-invariant −7 · 113, which has affine equation

E : y2 = x3 −
251559

11045
x+

503118

11045
.

From [Zyw15, Theorem 1.10.(ii)], we know that the mod 37 image of E is
conjugate to

H :=
(
a3 ∗
0 ∗

)
wherea ∈ F37.

Since #(F×37)
3 = 12, E attains a K-rational point of order 37 over a duode-

cic extension K/Q. As before, the difficultly in verifying the conditions of
Corollary 4.2.5 is computing the class number and ramification indicies for
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the duodecic extension K.
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Chapter 5

Composite level images of Galois

5.1 Background

Let ` be an exceptional prime. In [Zyw15], Zywina studies the mod `

images of Galois by constructing modular curves of prime level and com-
puting their Q-rational points. Zywina first determines which proper sub-
groups of GL2(F`) can occur as the mod ` image of Galois. For a subgroup
G ⊂ GL2(F`) with det(G) = F×` and −I ∈ G, we can associate a modular
curve XG, which is a smooth, projective, and geometrically irreducible curve
over Q. It comes with a natural morphism

πG : XG −→ SpecQ[j] ∪ {∞} =: P1
Q,

such that for an elliptic curve E/Q with jE /∈ {0, 1728}, the group ρE,`(GQ) is
conjugate to a subgroup of G if and only if the jE = πG(P) for some rational
point P ∈ XG(Q). The modular curves XG of genus 0 with XG(Q) 6= ∅ are
isomorphic to the projective line, and their function field is of form Q(h)

for some modular function h of level `. Giving the morphism πG is then
equivalent to expressing the modular j-invariant in the form J(h) for a unique
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rational function J(t) ∈ Q(t). We now describe the complete set of necessary
conditions on the possible non-surjective images of ρE,n(GQ), where n > 1 is
some positive integer.

Definition 5.1.1. A subgroup G of GL2(Z/nZ) is applicable if it satisfies
the following conditions:

• G 6= GL2(Z/nZ),

• −I ∈ G and det(G) = (Z/nZ)×,

• G contains an element with trace 0 and determinant -1 that fixes a
point in (Z/nZ)2 of order n.

Proposition 5.1.2 (Proposition 2.2 [Zyw15] ). Let E be an elliptic curve
over Q for which ρE,n is not surjective. Then ±ρE,n(GQ) is an applicable
subgroup of GL2(Z/nZ).

Proposition 5.1.2 gives necessary conditions for when a proper subgroup of
GL2(Z/nZ) can occur as the image of Galois, and hence reduces a part of the
problem to a group theoretic computation. From here, Zywina constructs the
modular curves corresponding to these subgroups and classifies the rational
points on them. This result gives a conjecturally complete description of the
“horizontal" flavored question concerning the mod ` representations.

In [RZB14], Rouse and Zureick-Brown consider the “vertical" flavored
question through their study of the 2-adic images. The authors determine
the possible 2-adic images of Galois by finding all the rational points on the
“tower" of 2-power level modular curves. For a subgroup H of GL2(Ẑ) and
an integer n such that H contains the kernel of the reduction map GL2(Ẑ)→
GL2(Z/nZ), the authors define XH to be the quotient of the modular curve
X(n) by the image H(n) of H in GL2(Z/nZ). This quotient roughly classifies
elliptic curves whose adélic image of Galois is contained in H. Furthermore,
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the authors describe a necessary condition on the p-adic image, where p is
any prime.

Definition 5.1.3. A subgroup H ⊂ GL2(Zp) is arithmetically maximal if

• det : H→ Z×p is surjective,

• there is an M ∈ H with determinant −1 and trace zero, and

• there is no subgroup K with H ⊆ K so that XK has genus ≥ 2.

Rouse and Zureick-Brown give an equivalent statement to that in Propo-
sition 5.1.2. In particular if E/Q is an elliptic curve and H = ρE,2∞(GQ),
then H is arithmetically maximal. The authors determine that there exist
727 arithmetically maximal subgroups of GL2(Z2) and give a beautifully de-
tailed diagram of these subgroups (see [RZB14, Figure 1]). We shall let Hn
denote the nth subgroup in their list (as given in [RZB, gl2data.txt]).

Below, we reproduce the list of applicable subgroups from [Zyw15] and
give the rational function expressing the modular j-invariant for certain ex-
ceptional primes `. In Appendix A.3, we present these subgroups as lattices
in GL2(F`).

Notation

We set some notation for specific subgroups of GL2(F`). Let Csp(`) be the
subgroup of diagonal matrices. Let ε = −1 if ` ≡ 3 (mod 4) and otherwise
let ε ≥ 2 be the smallest integer which is not a quadratic residue modulo `.
Let Cnsp(`) be the subgroup consisting of matrices of the form ( a bεb a ) with
(a, b) ∈ F2` \ {(0, 0)}. Let Nsp(`) and Nnsp(`) be the normalizers of Csp(`)

and Cnsp(`), respectively, in GL2(F`). We have [Nsp(`) : Csp(`)] = 2 and
the non-identity coset of Csp(`) in Nsp(`) is represented by ( 0 11 0 ). We have
[Nnsp(`) : Cnsp(`)] = 2 and the non-identity coset of Cnsp(`) in Nnsp(`) is rep-
resented by

(
1 0
0 −1

)
. Let B(`) be the subgroup of upper triangular matrices
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in GL2(F`).

5.1.4 List(` = 2)

Up to conjugacy there are three proper subgroups of GL2(F2), all of which
are arithmetically maximal:

G1 = {I} , G2 = {I, ( 1 10 1 )} , G3 = {I, ( 1 11 0 ) , (
0 1
1 1 )} .

From [Zyw15, Theorem 1.1], ρE,2(GQ) is conjugate in GL2(F2) to a subgroup
of Gi if and only if jE is of the form:

J1(t) = 256
(t2 + t+ 1)3

t2(t+ 1)
, J2(t) = 256

(t+ 1)3

t
, J3(t) = t

2 + 1728

for some t ∈ Q and each respective i.

5.1.5 List(` = 3)

Define the following subgroups of GL2(F3):

• let G1 be the group Csp(3),

• let G2 be the group Nsp(3),

• let G3 be the group B(3),

• let G4 be the group Nnsp(3),

• let H1,1 be the subgroup consisting of the matrices of the form ( 1 00 ∗ ),

• let H3,1 be the subgroup consisting of the matrices of the form ( 1 ∗0 ∗ ),

• let H3,2 be the subgroup consisting of the matrices of the form ( ∗ ∗0 1 ).
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Each of the groups Gi contain −I, and the groups Hi,j do not contain −I.
Moreover, we have Gi = ±Hi,j. From [Zyw15, Theorem 1.2(ii)], ρE,3(GQ) is
conjugate in GL2(F3) to a subgroup of Gi if and only if jE is of the form:

J1(t) = 27
(t+ 1)3(t+ 3)3(t2 + 3)3

t3(t2 + 3t+ 3)3
, J2(t) = 27

(t+ 1)3(t− 3)3

t3
,

J3(t) = 27
(t+ 1)(t+ 9)3

t3
, J4(t) = t

3

for some t ∈ Q and each respective i. Furthermore, [Zyw15, Theorem 1.2(iii,iv)]
provides explicit conditions (isomorphisms) when ρE,3(GQ) is conjugate to
Hi,j for i = 1, 3 and j = 1, 2.

5.1.6 List(` = 5)

Define the following subgroups of GL2(F5):

• let G1 be the subgroup consisting of the matrices of the form ± ( 1 00 ∗ ),

• let G2 be the group Csp(5),

• let G3 be the unique subgroup of Nnsp(5) of index 3; it is generated by
( 2 00 2 ) ,

(
1 0
0 −1

)
, and ( 0 13 0 ),

• let G4 be the group Nsp(5),

• let G5 be the subgroup consisting of the matrices of the form ± ( ∗ ∗0 1 ),

• let G6 be the subgroup consisting of the matrices of the form ± ( 1 ∗0 ∗ ),

• let G7 be the group Nnsp(5),

• let G8 be the group B(5),

• let G9 be the unique maximal subgroup of GL2(F5) which contains
Nsp(5); it is generated by ( 2 00 1 ) , (

1 0
0 2 ) ,

(
0 −1
1 0

)
, and

(
1 1
1 −1

)
,
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• let H1,1 be the subgroup consisting of the matrices of the form ( 1 00 ∗ ),

• let H1,2 be the subgroup consisting of the matrices of the form
(
a2 0
0 a

)
,

• let H5,1 be the subgroup consisting of the matrices of the form ( ∗ ∗0 1 ),

• let H5,2 be the subgroup consisting of the matrices of the form ( a ∗0 a2 ),

• letH6,1 be the subgroup consisting of the matrices of the form ( 1 ∗0 ∗ ),

• let H6,2 be the subgroup consisting of the matrices of the form
(
a2 ∗
0 a

)
.

Each of the groups Gi contain −I, and the groups Hi,j do not contain −I.
Moreover, we have Gi = ±Hi,j. From [Zyw15, Theorem 1.4(ii)], ρE,5(GQ) is
conjugate in GL2(F5) to a subgroup of Gi if and only if jE is of the form:

J1(t) =
(t20 + 228t15 + 494t10 − 228t5 + 1)3

t5(t10 − 11t5 − 1)5
,

J2(t) =
(t2 + 5t+ 5)3(t4 + 5t2 + 25)3(t4 + 5t3 + 20t2 + 25t+ 25)3

t5(t4 + 5t3 + 15t2 + 25t+ 25)5
,

J3(t) =
54t3(t2 + 5t+ 10)3(2t2 + 5t+ 5)3(4t4 + 30t3 + 95t2 + 150t+ 100)3

(t2 + 5t+ 5)5(t4 + 5t3 + 15t2 + 25t+ 25)5
,

J4(t) =
(t+ 5)3(t2 − 5)3(t2 + 5t+ 10)3

(t2 + 5t+ 10)3
,

J5(t) =
(t4 + 228t3 + 494t2 − 228t+ 1)3

t(t2 − 11t− 1)5
,

J6(t) =
(t4 − 12t3 + 14t2 + 12t+ 1)3

t5(t2 − 11t− 1)
,

J7(t) =
53(t+ 1)(2t+ 1)3(2t3 − 3t+ 3)3

(t2 + t− 1)5
,

J8(t) =
52(t2 + 10t+ 5)3

t5
,

J9(t) = t
3(t2 + 5t+ 40)
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for some t ∈ Q and each respective i. Furthermore, [Zyw15, Theorem 1.4(iii)]
provides explicit conditions when ρE,5(GQ) is conjugate to Hi,j for i = 1, 5, 6
and j = 1, 2.

5.1.7 List(` = 7)

Define the following subgroups of GL2(F7):

• let G1 be the subgroup of Nsp(7) consisting of elements of Csp(7) with
square determinant and elements of Nsp(7) \ Csp(7) with non-square
determinant; it is generated by ( 2 00 4 ) , (

0 2
1 9 ) , and

(
−1 0
0 −1

)
,

• let G2 be the group Nsp(7),

• let G3 be the subgroup consisting of matrices of the form ± ( 1 ∗0 ∗ ),

• let G4 be the subgroup consisting of matrices of the form ± ( ∗ ∗0 1 ),

• let G5 be the subgroup consisting of matrices of the form ( a ∗0 ±a ),

• let G6 be the group Nnsp(7),

• let G7 be the group B(7),

• let H1,1 be the subgroup generated by ( 2 00 4 ) and ( 0 21 0 ),

• let H3,1 be the subgroup consisting of matrices of the form ( 1 ∗0 ∗ ),

• let H3,2 be the subgroup consisting of matrices of the form
( ±1 ∗
0 a2

)
,

• let H4,1 be the subgroup consisting of matrices of the form ( ∗ ∗0 1 ),

• let H4,2 be the subgroup consisting of matrices of the form
(
a2 ∗
0 ±1

)
,

• let H5,1 be the subgroup consisting of matrices of the form
(
±a2 ∗
0 a2

)
,
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• let H5,2 be the subgroup consisting of matrices of the form
(
a2 ∗
0 ±a2

)
,

• let H7,1 be the subgroup consisting of matrices of the form ( ∗ ∗0 a2 ),

• let H7,2 be the subgroup consisting of matrices of the form
(
a2 ∗
0 ∗

)
.

Each of the groups Gi contain −I, and the groups Hi,j do not contain −I.
Moreover, we have Gi = ±Hi,j. From [Zyw15, Theorem 1.5(ii)], ρE,7(GQ) is
conjugate in GL2(F7) to a subgroup of Gi if and only if jE is of the form:

J1(t) = 3
3 · 5 · 75/27,

J2(t) =
t(t+ 1)3(t2 − 5t− 1)3(t2 − 5t+ 8)3(t4 − 5t3 + 8t2 − 7t+ 7)3

(t3 − 4t2 + 3t+ 1)7
,

J3(t) =
(t2 − t+ 1)3(t6 − 11t5 + 30t4 − 15t3 − 10t2 + t+ 1)3

(t− 1)7t7(t3 − 8t2 + 5t+ 1)
,

J4(t) =
(t2 − t+ 1)3(t6 + 229t5 + 270t4 − 1695t3 + 1430t2 − 235t+ 1)3

(t− 1)t(t3 − 8t2 + 5t+ 1)7
,

J5(t) = −
(t2 − 3t− 3)3(t2 − t+ 1)3(3t2 − 9t+ 5)3(5t2 − t− 1)3

(t3 − 2t2 − t+ 1)(t3 − t2 − 2t+ 1)7
,

J6(t) =
64t3(t2 + 7)3(t2 − 7t+ 14)3(5t2 − 14y− 7)3

(t3 − 7t2 + 7t+ 7)7
,

J7(t) =
(t2 + 245t+ 2401)3(t2 + 13t+ 49)

t7

for some t ∈ Q and each respective i. Furthermore, [Zyw15, Theorem 1.5(iii,iv)]
provides us with explicit conditions when ρE,7(GQ) is conjugate to Hi,j for
i = 1, 3, 4, 5, 7 and j = 1, 2.

5.1.8 List(` = 11)

Define the following subgroups of GL2(F11):

• let G1 be the subgroup generated by ± ( 1 10 1 ) and ( 4 00 6 ),
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• let G2 be the subgroup generated by ± ( 1 10 1 ) and ( 5 00 7 ),

• let G3 be the group Nnsp(11),

• let H1,1 be the subgroup generated by ( 1 10 1 ) and ( 4 00 6 ),

• let H1,2 be the subgroup generated by ( 1 10 1 ) and ( 7 00 5 ),

• let H2,1 be the subgroup generated by ( 1 10 1 ) and ( 5 00 7 ),

• let H2,2 be the subgroup generated by ( 1 10 1 ) and ( 6 00 4 ).

Each of the groups Gi contain −I, and the groups Hi,j do not contain −I.
Moreover, we have Gi = ±Hi,j. From [Zyw15, Theorem 1.6(ii,iii)], there
are unique values for jE that correspond to ±ρE,11(GQ) being conjugate in
GL2(F11) to a subgroup of G1 and G2.

The modular curve XG3(11) = X+
nsp(11) is the only one from Zywina’s

classification that has genus 1 with infinitely many rational points. To ex-
plicitly describe this modular curve, let E be the elliptic curve over Q defined
by the Weierstrass equation y2 + y = x3 − x2 − 7x + 10 and let O be the
point at infinity. The Mordell-Weil group E(Q) is an infinite cyclic group
generated by the point (4, 5). Halberstadt [Hal98] showed that X+

nsp(11) is
isomorphic to E and that the morphism to the j-line corresponds to

J(x, y) :=
(f1f2f3f4)

3

f25f
11
6

,

where

f1 = x
2 + 3x− 6, f2 = 11(x

2 − 5y) + (2x4 + 23x3 − 72x2 − 28x+ 127),

f3 = 6y + 11x− 19, f4 = 22(x− 2)y+ (5x3 + 17x2 − 112x− 120),

f5 = 11y+ (2x2 + 17x− 34), f6 = (x− 4)y− (5x− 9).
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From [Zyw15, Theorem 1.6(iv)], ρE,11(GQ) is conjugate to G3 if and only if
jE = J(P) for some point P ∈ E(Q) \ {O}.

Remark 5.1.9. In [Zyw15, Section 4.5.5], Zywina gives explicit polynomials
A,B,C ∈ Q[x] of degree 55 such that for a non-CM elliptic curve E/Q,
we have jE = J(P) for some P ∈ E(Q) \ {O} if and only if the polynomial
A(x)j2E + B(x)jE +C(x) ∈ Q[x] has a rational root. Hence given a numerical
jE, this gives a straightforward way to check the criterion that ρE,11(GQ) is
conjugate to a subgroup of G3.

5.1.10 List(` = 13)

Define the following subgroups of GL2(F13):

• let G1 be the subgroup consisting of matrices of the form ( ∗ ∗0 b3 ),

• let G2 be the subgroup consisting of matrices of the form
(
a3 ∗
0 ∗

)
,

• let G3 be the subgroup consisting of matrices ( a ∗0 b ) for which (a/b)4 =

1,

• let G4 be the subgroup consisting of matrices of the form ( ∗ ∗0 b2 ),

• let G5 be the subgroup consisting of matrices of the form
(
a2 ∗
0 ∗

)
,

• let G6 be the group B(13),

• let G7 be the subgroup generated by the matrices ( 2 00 2 ) , ( 2 00 3 ) ,
(
0 −1
1 0

)
,

and
(
1 1
−1 1

)
; it contains the scalar matrices and its image in PGL2(F13)

is isomorphic to S4,

• let H4,1 be the subgroup consisting of matrices of the form ( ∗ ∗0 a4 ),

• let H4,2 be the subgroup consisting of matrices of the form
(
b2 ∗
0 a4

)
and

( 2 00 4 ),
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• let H5,1 be the subgroup consisting of matrices of the form
(
a4 ∗
0 ∗

)
,

• let H5,2be the subgroup consisting of matrices of the form
(
a4 ∗
0 b2

)
and

( 4 00 2 ).

Each of the groups Gi contain −I, and the groups Hi,j do not contain −I.
Moreover, we have Gi = ±Hi,j. Define the polynomials

P1(t) =
t12 + 231t11 + 269t10 − 3160t9 + 6022t8 − 9616t7 + 21880t6

−34102t5 + 28297t4 − 12455t3 + 2876t2 − 243t+ 1
,

P2(t) = t
12 − 9t11 + 29t10 − 40t9 + 22t8 − 16t7 + 40t6 − 22t5 − 23t4 + 25t3 − 4t2 − 3t+ 1,

P3(t) = (t4 − t3 + 2t2 − 9t+ 3)(3t4 − 3t3 − 7t2 + 12t− 4)(4t4 − 4t3 − 5t2 + 3t− 1),

P4(t) = t
8 + 235t7 + 1207t6 + 955t5 + 3840t4 − 955t3 + 1207t2 − 235t+ 1,

P5(t) = t
8 − 5t7 + 7t6 − 5t5 + 5t3 + 7t2 + 5t+ 1,

P6(t) = t
4 + 7t3 + 20t2 + 19t+ 1.

From [Zyw15, Theorem 1.8(ii)], ρE,13(GQ) is conjugate in GL2(F13) to a sub-
group of Gi if and only if jE is of the form:

J1(t) =
(t2 − t+ 1)3P1(t)

3

(t− 1)t(t3 − 4t2 + t+ 1)13
J2(t) =

(t2 − t+ 1)3P2(t)
3

(t− 1)13t13(t3 − 4t2 + t+ 1)

J3(t) = −
134(t2 − t+ 1)3P3(t)

3

((t3 − 4t2 + t+ 1)13(5t3 − 7t2 − 8t+ 5))
J4(t) =

(t4 − t3 + 5t2 + t+ 1)P4(t)
3

t(t2 − 3t− 1)13

J5(t) =
(t4 − t3 + 5t2 + t+ 1)P5(t)

3

t13(t2 − 3t− 1)
J6(t) =

(t2 + 5t+ 13)P6(t)
3

t

for some t ∈ Q and each respective i. Furthermore, [Zyw15, Theorem 1.8(iii)]
gives explicit conditions on when ρE,13(GQ) is conjugate toHi,j for i = 4, 5 and
j = 1, 2, and [Zyw15, Theorem 1.8(iv)] gives necessary numerical conditions
for when ρE,13(GQ) is conjugate to G7. The case ` = 13 is the first case for
which Zywina does not give a complete description, which is due to three
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outstanding cases (see Section 5.6).
For the remainder of this chapter, we will only consider elliptic curves

E/Q. Let 3 ≤ `13 be a prime; let G ⊂ GL2(F`) be a subgroup from [Zyw15];
and let H ⊂ GL2(F2n) be a subgroup from [RZB14]. Using the rational
functions corresponding to the j-maps of the modular curves XH(2n) and
XG(`), we construct the following fibered diagram

X ′ XG(`)

XH(2
n) P1

Q

j(G)

j(H)

We define composite-(2n, `) level modular curve XH,G(2n · `) to be the nor-
malization of the fibered product X ′; the aforementioned j-map equations
allow us to easily find equations for these curves. The Q-rational points on
XH,G(2

n · `) correspond to j-invariants of over Q with composite-(2n, `) image
conjugate to some subgroup ofH×G ⊂ GL2(F2n)×GL2(F`) ∼= GL2(Z/2

n·`Z)
via the Chinese Remainder Theorem. Succinctly, these Q-rational points
classify elliptic curves over Q with simultaneously non-surjective, composite-
(2n, `) image of Galois.

5.1.11 Statement of Results

In this paper, we will find equations for composite-(2n, `) level modular curves
and determine their rational points for the tuples (2, `) where ` = 5, 7, 11, 13
and (N, 3) where N = 2, 4, 8.

Theorem 5.1.12. Let E be a non-CM elliptic curve over Q such that the
discriminant of E is a rational square. Then there:

1. is 1 possibility for simultaneously non-surjective, composite-(2, 5) image
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of Galois;

2. is 1 possibility for simultaneously non-surjective, composite-(2, 7) image
of Galois;

3. is at most 1 possibility for simultaneously non-surjective, composite-
(2, 11) image of Galois;

4. are at most 3 possiblilties for simultaneously non-surjective, composite-
(2, 13) image of Galois.

Corollary 5.1.13. Let E be a non-CM elliptic curve over Q such that the
discriminant of E is a rational square. Then the index of (ρE,2 × ρE,`)(GQ)

in GL2(Z/2 · `Z) dividing

1. 10 for ` = 5 occurs infinitely often;

2. 16 for ` = 7 occurs infinitely often;

3. 110 for ` = 11 occurs finitely often;

4. 156 or 182 for ` = 13 occurs finitely often.

Remark 5.1.14. The assumption on the discriminant of E plays a vital role in
the construction of the composite level modular curves (see Section 5.1.17).
In particular, this condition allows us to quickly find nice models for these
curves.

Theorem 5.1.15. Let E be a non-CM elliptic curve over Q. Then there are:

1. 6 possibilities for simultaneously non-surjective, composite-(2, 3) image
of Galois;

2. 5 possibilities for simultaneously non-surjective, composite-(4, 3) image
of Galois;
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3. 6 possibilities for simultaneously non-surjective, composite-(8, 3) image
of Galois;

Corollary 5.1.16. Let E be a non-CM elliptic curve over Q. Then the index
of (ρE,2n × ρE,3)(GQ) in GL2(Z/2

n · 3Z)

1. being either 4, 8, 9, 12, 18, or 36 for the tuple (2, 3) occurs infinitely
often;

2. dividing 18 or 24 for the tuple (4, 3) occurs infinitely often;

3. dividing 36 the tuple (8, 3) occurs infinitely often;

The idea behind the proofs of Theorem 5.1.12 and Theorem 5.1.15 is to
first find models for the composite level modular curves corresponding to
the subgroups from [RZB14, Zyw15]. Once we have the models for these
modular curves, we determine the rational points on these models. The
analysis of rational points on this collection of modular curves involves a
variety of techniques, including local methods, Chabauty, étale descent, and
the Mordell-Weil sieve, which we discuss in Section 5.3.

In the proof of Theorem 5.1.12, we first consider maximal subgroups. If
H,H ′ ⊆ GL2(F`) from [Zyw15] such that H is maximal and H ′ ⊂ H, then
we have a map between the composite level modular curves XG,H ′ → XG,H.
Hence, the points on XG,H ′ must map to points on XG,H. In particular, if
XG,H(Q) is finite, then so is XG,H ′(Q). Moreover, if XG,H(Q) only contains
CM or cuspidal points, then so will XG,H ′(Q), which reduces the number of
modular curves we need to analyze; we note when this occurs our Tables
below.
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5.1.17 Models for Theorem 5.1.12

The discriminant condition in Theorem 5.1.12 allows us to construct models
for the composite-(2, `) level modular curves as hyperelliptic curves. Indeed,
since an elliptic curve E/Q with such a discriminant has 2-division field
Q(E[2]) isomorphic to Q(α) where α is a root of the defining cubic equation
f(x) of E. From[Zyw15, Theorem 1.1], the condition on the discriminant is
equivalent to ρE,2(GQ) being conjugate in GL2(F2) to the index 2 subgroup

G3 := {I, ( 1 11 0 ) , (
0 1
1 1 )} .

For subgroups H ⊂ GL2(F`) coming from [Zyw15], the composite-(2, `) level
modular curve has the form s2+1728 = f(t)/g(t), where f, g ∈ Q[t]. Through
some simple manipulation, we rewrite our modular curve as

XG3,G(2 · `) : g(t)2s2 = h(t)2w(t)

for some h,w ∈ Q[t]. Then we consider the bi-rational map

ϕ : XG3,G(2 · `) −→ X

(s, t) 7−→ (g(t)s/h(t), t).

Hence we have reduced our problem to finding the rational points on the
hyperelliptic curve

X : y2 = w(t).

In the proof of Theorem 5.1.15, we build the “tower" of (2n ·3)-power level
modular curves; the idea of this “tower" of (2n ·3)-power level modular curves
comes from [RZB14]. First, we compute the rational points on the level 6
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modular curves, which acts as the foundation of our tower. If the subgroup
H×G ⊂ GL2(F2)×GL2(F3) ∼= GL2(Z/6Z) occurs as a composite image of
Galois, then we find the subgroups of level 4 from [RZB, gl2data.txt] that
cover H (e.g. that do not contain H in the kernel of reduction). We find such
level 4 subgroups for all 6 possible composite-(2, 3) images and proceed by
computing the rational points on the composite-(4, 3) level modular curves.
We repeat this procedure for each tier of our tower ending with level 8.

5.1.18 Models for Theorem 5.1.15

For n = 1, we find a hyperelliptic model as we did in Section 5.1.17. For n =

2, 3, we need different methods to determine the smooth compactification of
the modular curves X of genus g. The primary tool to compute these smooth
models for X is by taking the image of X under the canonical map. We briefly
recall the construction of the canonical map. Choose a basis ω1, . . . ,ωg of
Ω1(X). The canonical map ϕ is the map associated to the linear series of all
holomorphic 1-forms ωi, precisely

ϕ : X −→ Pg−1

P 7−→ (ω1(P), . . . ,ωg(P)).

For g = 1, we cannot utilize the canonical map since the canonical divisor
K is trivial, so instead we compute image of the log-canonical map. For any
divisor D of the form K + Q where Q is effective, we can construct a map
to a (possibly empty) projective space. The log-canonical map generalizes
the canonical map (set Q = 0), and we define the log-canonical map as we
did the canonical map; this definition implicitly uses the adjunction formula
which relates smooth divisors to canonical bundles.

For a number of our curves X, we can immediately see that X has a cubic
point, equivalently an effective degree 3 divisor D. Once we find this D, we
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compute the log-canonical map associated to K + D using some Magma’s
intrinsics and proceed with our usual analysis. We find that the remaining
curves have a quartic point, and hence we repeat the above procedure for
the corresponding degree 4 divisor. If the genus of X is greater than 2, then
Magma’s instrinsic IsHyperelliptic(C) determines if C is hyperelliptic,
and if so, it computes a hyperelliptic model H for C and a map from C→ H.

5.1.19 Organization

In Section 5.2, we construct our composite level modular curves and give
proofs for Theorems 5.1.12 and 5.1.15. We devote a large portion of this
chapter to an analysis of the Q-rational points on our modular curves. In
Section 5.3, we explain the techniques and theory used to determine these
rational points, and the subsequent sections provide further details of this
analysis for curves of increasing genera.

5.2 Composite level modular curves

In this section, we present tables containing equations for models, genera,
and rational points of the composite level modular curves. We stress that
the points in the tables do not correspond to points on the given models,
but rather on the modular curve XH,G(N) where N is composite. In Section
5.3, we provide a detailed analysis of the rational points on these modular
curves.

Tables for Theorem 5.1.12

For simplicity, we shall consider the composite-(2, `) level modular curves for
` = 5, 7, 11, 13, separately. We denote the cases when the modular curve
XH,G has genus 0 and a rational point by P1

Q. Furthermore, we provide a
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parametrization for these curves in [Mor]. We present these tables in Ap-
pendix A.1

Tables for Theorem 5.1.15

The curves found in Table A.5 correspond to the subgroupsH×G ≤ GL2(Z/6Z)

where H comes from List 5.1.4 and G from List 5.1.5. In [Mor], we give tables
and diagrams for the composite-(2n, 3) level modular curves for n = 1, 2, 3.
In these tables, we provide similar data as above for the modular curves cor-
responding to subgroups Hn × G ≤ GL2(Z/2

n · 3Z) where Hn comes from
[RZB, gl2data.txt] and G from List 5.1.5 and the rational points on these
curves. For G∈ {G1, G2}, we find bi-rational maps from the modular curves
XHn,G to the curve XHn,G4 using similar methods to those in Section 5.1.17.
In the case where XHn,G4 only contains finitely many CM or cuspidal points,
it suffices to compute the points on this model, and when this occurs, we
simply provide the data for the curve XHn,G4 ; we denote these case in our
tables by the tuple (Hn,G). We present these tables in Appendix A.2.

Equipt with the data from these tables, we prove Theorems 5.1.12 and
5.1.15

Proof of Theorems. The proof of Theorem 5.1.15 follows directly from Table
A.5 and the Tables in [Mor, RZBTables.pdf]. For Theorem 5.1.12, we need
to provide a bit more detail. Parts (1) and (2) follow directly from the
Tables A.1, A.2, respectively. Since we are unsuccessful in our attempt to
provably find the rational points on the genus 7 non-hyperelliptic modular
curve XG3,G3(22), there remains at most one possibility of simultaneously
non-surjective composite-(2, 11); hence part (3) is clear. As mentioned in
List 5.1.10, there are three outstanding cases of the mod 13 image, and these
cases correspond to the three cases in part (4). Piecing these results together,
we have proved Theorem 5.1.12.
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5.3 Analysis of Rational Points -Theory

The composite level curves whose models we computed have genera either
0, 1, 2, 3, 7.

For the genus 0 curves, we determine whether the curve has a rational
point, and if so we compute an explicit isomorphism withP1

Q. For the genus 1
curves, we determine whether the curves have a non-singular rational point,
and if so compute a model for the resulting elliptic curve and determine
its rank and torsion subgroup. This is straightforward: all but one of the
covering maps have degree 2, so we end up with a model of the form y2 = p(t),
where p(t) is a polynomial, and the desired technique is implemented in
Magma. The remaining case is handled via a brute force search for points.

For genus less than 7, we determine the complete set of rational points.
Each of the following techniques play a role:

1. local methods,

2. Chabauty for genus 2 curves,

3. quotients,

4. étale descent,

5. Mordell-Weil sieve,

In this section, we describe in detail the theory behind these techniques,
except that of the Mordell-Weil sieve (see Section 3.2.3), used to analyze
the rational points on the lower genus curves, and the subsequent sections
provide a case by case analysis of the rational points on the various composite
level modular curves.
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Type Number
XH,G ∼= P1 17

Pointless conics 2
Elliptic curves with positive rank 2
Elliptic curves with rank zero 29

Genus 1 curves without rational points 1
Genus 2 models and points computed 12

Genus 3 hyperelliptic models and points computed 2
Genus 7 curve whose points are not computed 1

Table 5.1: Summary of the 66 composite level models

5.3.1 Chabauty

See [MP07] for a survey. The practical output is that if rk JacX(Q) <

dimJacX = g(X) , then p-adic integration produces an explicit 1-variable
power series f ∈ QpJtK whose set of Zp-solutions contains all of the rational
points. This is all implemented in Magma for genus 2 curves over number
fields. In the section below, we discuss the documentation for Magma’s
implemented Chabauty command on genus 2 curves.

5.3.2 Étale descent

Étale descent is a “going up" style technique, first studied in [CG89] and
[Wet97] and developed as a full theory (especially the non-abelian case) in
[Sko01]. It is now a standard technique for resolving the rational points on
curves (cf. [FW01, Bru03]).

Let π : X → Y be a degree n étale cover defined over a number field
K such that Y is the quotient of some free action of a group G on X. By
Riemann-Hurwitz, the genus of X is ng(Y) − (n − 1). Then there exists a
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finite collection π1 : X1 → Y, . . . , πn : Xn → Y of twist of X→ Y such that

n⋃
i=1

πi(Xi(K)) = Y(K).

Moreover, if we let S be the union of the sets of primes of bad reduction
of X and Y and of the primes of OK over the primes dividing #G, then the
cocycles corresponding to the twist are unramifeid outside of S.

We shall use this procedure on in the case of étale double covers. In
this case, G = Z/2Z, and since the twists are consequently quadratic, we
will instead denote the twist of a double cover X → Y by Xd → Y, where
d ∈ K×/(K×)2. The above discussion gives that, for any point of Y(K), there
will exist d ∈ O×K,S/(O

×
K,S)

2 such that P lifts to a point of Xd(K).

5.3.3 Quotients

Taking quotients is a “going down" technique. If C is a curve of genus g,
it is very helpful to be able to find maps from C to curves of lower genus.
In this context, it is helpful to compute the group G of automoprhisms of
C and consider quotients C/H for subgroups H ≤ G. Magma’s algebraic
function field machinery is able to compute automorphism groups of curves,
however, the performance of these routines varies quite significantly based
on the complexity of the base field.

We are interested in constructing automorphisms (define over Q) of non-
hyperelliptic curves C/Q with genus ≤ 3, and for our purposes, Magma’s
rountines are sufficient. For a new, faster procedure for efficiently construct-
ing all “probable" automorphisms of non-hyperelliptic curves of genus ≥ 3
over number fields, see [RZB14, Section 7.7].
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5.3.4 Probable computations of rank

It is straightforward to compute the rank of a curve of genus at most 2
using Magma’s preexisting commands via RankBound, an implementation
of [Sto01]. Computations of the rank of the Jacobian of a genus 3 plan curve
have recently been worked out [BPS12], but it is often impratical [BPS12,
Remark 1.1] and moreover has not been implemented in a publicly available
way. For the determination of the rational points on each XH,G we shall use
a rigorous computation of rank for genus at most 2 and use cyclic descent
for genus equal to 3 (see Section 5.1.18).

In the following sections, we provably compute all of the rational points
on the modular curves of genus 2, 3, and 7. The Magma code verifying the
below claims is available at [Mor].

5.4 Analysis of Rational Points - Genus 2

There are 12 composite level modular curves with genus 2. Among these,
6 have Jacobians with rank 0, 4 with rank 1, and 2 with rank 2. We will
use étale descent on the rank 2 cases and Chabauty and quotients on the
others. In each case, the rank of the Jacobian is computed with Magma’s
RankBound command. In the subsections below, the curve X will denote a
hyperelliptic curve of genus 2.

5.4.1 Rank 0

If rk JacX(Q) = 0, then JacX(Q) is torsion. To find all of the rational points
on X it thus suffices to compute the torsion subgroup of JacX(Q) and compute
the preimages under an inclusion X ↪→ JacX. This is implemented in Magma

as the Chabauty0(J) command, where J is JacX.
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5.4.2 Rank 1

If rk JacX(Q) = 1, then one can attempt Chabauty’s method. This is imple-
mented in Magma as the Chabauty(ptJ,p) command, where ptJ is a point
on JacX which generates JacX / JacX[tors] and p is a prime of good reduction
of X. The output of this command is an indexed set of tuples 〈(x, z, v, k)〉
such that there are at most k pairs of rational points on X whose image in P1

Q

under the x-coordinate map are congruent to (x : z)modulo pv, and such that
the only rational points on X outside of these congruence classes are Weier-
strass points. Using the command Support(RamificationDivisor(X)), we
compute the Weierstrass points on our curve which live over Q and thus the
rational points on the curve X.

5.4.3 Rank 2

If rk JacX(Q) = 2, then Chabauty’s method does not apply; instead, we
proceed with étale descent. In each case, the Jacobian of X has a rational
2-torsion point. Thus, given a model

X : y2 = f(x)

of X, f factors as f1f2 where both polynomials are of positive, even degree,
and X admits étale double covers Cd → X, where the curves Cd is given by

Cd : dy
2
1 = f1(x)

dy22 = f2(x).

Let S denote the set of bad places as in Section 5.3.2. By étale descent, every
rational point on X lifts to a rational point on Cd(Q) for d in the set of
divisors of primes in S, their multiples, and negations. The Jacobian of Cd is
isogenous to Jac(X)×Ed, where Ed is the Jacobian of the (possibly pointless)
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genus one curve dy22 = f2(x) (where we assume that deg f2 ≥ deg f1, so that
deg f2 ≥ 3).

There is only one isomorphism class of genus 2 curves in our list with
Jacobain of rank 2 (XH40,G4(24), XH97,G4(24)). The two curves in this class
are isomorphic to the hyperelliptic curve

H : y2 = 2x6 + 2 = 2(x2 + 1)(x4 − x2 + 1).

This curve admits étale covers by the genus 3 curves

Cd : dy
2
1 = (x2 + 1)

dy22 = 2(x
4 − x2 + 1).

for d ∈ {±1,±2,±3,±6}. We find that the genus 1 curves dy22 = 2(x4−x2+1)
only have local points everywhere when d = 2. We compute that the curve
2y21 = (x2 + 1) is isomorphic to P1

Q and the curve 2y22 = 2(x4 − x2 + 1) is
isomorphic to the rank 0 elliptic curve

E : y2 + 2xy = x3 − 8x2 + 12x.

Hence the following diagram

Cd(Q)

P1
Q H(Q) E(Q)

P1
Q

pr1 pr2
π

x

tells us that the points on Cd(Q) come from the preimages of the points on
E(Q). This allows us to determine the rational points on Cd and thus on H
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and on XH40,G4(24) and XH97,G4(24).

5.5 Analysis of Rational Points - Genus 3

There are 22 genus 3 curves (and at most 20 isomorphism classes). Of the
isomorphism classes, 12 are hyperelliptic. The curves XG3,G2(14), XG3,G6(14),
and XG3,G3(10) are hyperelliptic and have rank equal to 0, and we handle
these curves by using a Mordell-Weil sieve argument.

5.5.1 Analysis of XG3,G2(14)

The modular curve XG3,G2(14) has a model given by the genus 3 hyperelliptic
curve

XG3,G2(14) : y
2 = −(x3 − 2x2 − x+ 1)(x4 + 2x3 − 9x2 − 10x− 3).

For simplicity, we denote the smooth compactification of the modular curve
XG3,G2(14) by X. Magma computes that rk JacX(Q) = 0, so JacX(Q) is
torsion. We find that there exists a non-singular point (1 : 0 : 0) ∈ X(Q),
and we claim that this is in fact the only point on X. For ease of notation,
we shall denote this point as P0. We provide a proof determining the rational
points on XG3,G2(14), and we refer the reader to [Mor] for the code verifying
this proof and that of XG3,G6(14).

Since the rank of our curve is zero, JacX(Q) is torsion. From [HS00,
Exercise C.4], we have #JacX(Fp) = P1(1), where P1(T) is the numerator of
the Weil zeta function of X(Fp) for some prime p. Moreover, by computing
this value for a large number of primes and taking greatest common divisor,
we find that #JacX(Q) must divide 6. Since we have a point P0 on X, we
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can embed X into JacX via the Abel-Jacobi map

X −→ JacX

P 7−→ [P − P0].

Our above computation tells us the possible torsion in JacX(Q) is of order
1, 2, 3 or 6. We shall show that no point on X(Q) maps to a non-trivial
torsion point in JacX(Q), from which we can conclude that P0 is the only
point in X(Q).

First, we recall the fact that the prime to p torsion of JacX(Q) injects
into JacX(Fp). Using this fact, we apply a Mordell-Weil sieve type argu-
ment to prove our desired claim. Let S = {5, 11} and consider the following
commutative diagram

X(Q) JacX(Q)

∏
p∈S X(Fp)

∏
p∈S JacX(Fp)

ι

β α

ιp

If the divisor [P−Q] was a torsion point over Q, then it must also be torsion
over Fp for all p. Using Magma, we can enumerate X(Fp) and check indi-
vidually the orders of [P −Q] in JacX(Fp). For the primes in S, we compute
that the points on X(F5) map to points of exact order {1, 51} in JacX(F5)

and the points on X(F11) map to points of exact order {1, 8, 20, 40, 60, 120}

in JacX(F11). Since none of these values coincide and the prime to p torsion
injects, we have that the divisor [P−Q] of JacX(Q) could have order {5, 255}
or {11, 88, 66, 220, 440, 660, 1320}, and in particular a 5 or 11 torsion point
could map to the identity. However, our initial computation told us that the
possible torsion in JacX(Q) must divide 6. Therefore, no point on X(Q) can
inject into a non-trivial torsion point on JacX(Q), and so, {P0} = X(Q).
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5.5.2 Analysis of XG3,G3(10)

The modular curve XG3,G3(10) has a model as a genus 3 hyperelliptic curve

X : y2 = 3x8 + 8x7 + 26x6 + 9x5 + 10x4 − 99x3 − 104x2 − 148x− 77.

Magma’s RankBound command does not give a useful bound. To ameliorate
this problem, we use quotients. Let A denote the automorphism group of X.
We find that A ∼= Z/2Z × Z/2Z and that the quotient curve X/α, where α
is a generator of A, is the rank 0 elliptic curve

E : y2 = x3 + x2 − 33x− 62.

By pulling back the points on E, we find that X(Q) = ∅.

5.6 Analysis of Rational Points - Higher Genus

We encounter a genus 7 curve coming from the anomalous genus 1 modular
curve XG3(11) with infinitely many points.

5.6.1 Analysis of XG3,G3(22)

As mentioned in Section 5.1, there is only one modular curve from [Zyw15] of
genus 1 with rank 1, namely XG3(11), which is isomorphic to the elliptic curve
E : y2+ y = x3− x2− 7x+ 10. Recall the morhpism J(x, y) corresponding to
the map from E → A1

Q∪{∞} and that E(Q) ∼= 〈(4, 5)〉. The composite-(2, 11)
level modular curve

XG3,G3(22) :
y2 + y = x3 − x2 − 7x+ 10

s2 + 123 = J(x, y)
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is a genus 7 curve in A3(Q). For simplicity, we denote the smooth compact-
ification of this curve by X. By pulling back points from E(Q), we find a
cuspidal point and the CM point (x : y : s : z) = (2 : 0 : 0 : 1) on X. Unfortu-
nately, we are unable to provably compute the rational points on the curve
X. Below, we discuss the attempted techniques and facts about said curve.

Let JacX(Q) be the Jacobian of X. Local computations strongly suggest
that

JacX(Q) v E × E2 ×A×A ′

where E is the elliptic curve defined above, E/Q is an elliptic curve, and A,
A ′ are some 2-dimensional abelian varieties. We cannot prove that JacX(Q)

decomposes as above since the computations over the finite fields Fp4 exceeds
Magma’s capabilities.

The geometry of the curve suggests that we use quotients to provably find
the rational points on X. Using Magma, we compute the the automorphism
group of X is Z/2Z, and the only curve quotient of X is the elliptic curve
E with positive rank; this procedure takes around 13 hours. If the above
decomposition does hold, then we want to determine the other elliptic factor
E.

As suggested by Jeremy Rouse, it could be possible that there exists some
maximal subgroup H of GL2(Z/22Z) such that G3 × G3 ≤ H, which may
correspond to the existence of a modular curve XH of lower genus for which
X(Q) → XH(Q). Since these subgroups do not have any special condition,
there is no reason a priori that XH should have lower genus. Using Magma,
we find one applicable maximal subgroup H containing G3 × G3. To our
chagrin, the index of G3 ×G3 in H is 2, and hence the modular curve XH is
isomorphic to E by our above curve quotient computation.

An unexplored approach is to find a number field K over which we have ex-
tra automorphisms, meaning Aut(X) ⊆ Aut(XK); these extra automorphisms
will allow for further curve quotient possibilities. If the above decomposition
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holds, then we can choose K to be a number field over which the 2-dimensional
abelian variety A or A ′ splits. The recent work [BSS+16] gives a database
of genus 2 curves of small discriminant. By ranging over this database and
comparing Weil-zeta functions, we may be able to find the genus 2 curve
defining the abelian variety A or A ′, and once we have equations for the
defining curve, we can compute the number field K and proceed with taking
curve quotients.

5.6.2 The Cursed Examples

Up to conjugacy, there are 4 maximal subgroups of GL2(F13) that have sur-
jective determinant, namely G6, Nsp(13), Nnsp(13) and G7. Zywina handles
the cases concerning the subgroups of G6, and the other three subgroups
correspond to the outstanding cases.

Baran [Bar14] showed that the modular curves XNsp(13) and XNnsp(13) are
both isomorphic to the genus 3 curve C defined in P2

Q with equation

(y− z)x3 + (2y2 + zy)x2 + (−y3 + zy2 − 2z2y+ z3)x+ (2z2y2 − 3z3y) = 0.

Baran gives the morphism from the above model to the j-line. The 7 known
rational points on C all correspond to cusps and CM points on XNsp(13) and
XNnsp(13). Conjecturally, C has no other rational points, which is equivalent
to saying that there does not exist a non-CM elliptic curve over Q with
ρE,13(GQ) conjugate to a subgroup of Nsp(13) and Nnsp(13).

Banwait and Cremona [BC14] have shown that XG7(13) is isomorphic to
the genus 3 curve C ′ defined in P2

Q with equation

4x3y− 3x2y2 + 3xy3 − x3z+ 16x2yz− 11xy2z+ 5y3z+ 3x2z2 + 9xyz2 + y2z2 + xz3 + 2yz3 = 0.

The authors also give the morphism from the modular curve to the j-line. The
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4 known rational points on C ′ correspond to a CM points and three non-CM
points. Conjecturally, C ′ has no other rational points, which is equivalent to
saying that [Zyw15, Theorem 1.8(iv)] gives necessary and sufficient condition
on when ρE,13(GQ).

We check that: the known points on C do not pull back to points XG3,Nsp(26),
the point (0 : 0 : 1) on C pulls back to the CM point corresponding to j = 0
on XG3,Nnsp(26), and the known points on C ′ do not pullback to points on
XG3,G7(26). Following the above conjectures, we formulate our own concern-
ing the composite-(2, 13) image of Galois.

Conjecture 5.6.3. There does not exist a non-CM elliptic curve E over
Q with square discriminant such that (ρE,2 × ρE,13)(GQ) is simultaneously
non-surjective.
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Chapter 6

Entanglements

An elliptic curve E over K has (m1,m2)-entanglement fields if K(E[m1]) ∩
K(E[m2]) 6= K for a relatively prime pair m1,m2 ∈ N. We say that E/K has
(m1,m2)-abelian entanglement (resp. (m1,m2)-nonabelian entanglement) if
K(E[m1]) ∩ K(E[m2]) = L where L/K is an abelian (resp. nonabelian) exten-
sion. In this chapter, we complete the classification of the (2, 3)−nonabelian
entanglement fields for elliptic curves over Q using Theorem 5.1.15 and
[BJ16], and we also provide a conjectural classification of (2, 3)-abelian en-
tanglement fields for elliptic curves over Q. Using Theorem 5.1.12, we also
find non-CM elliptic curves with (2, 7)-entanglement fields of degree 3, and
finally, we exhibit an infinite family of elliptic curves over Q with (2, pn)-
entanglement fields of degree 3 where p is a prime such that 3|p− 1.

An important tool in our study of entanglements is Goursat’s topological
lemma (see [Rib76, Lemma 5.2.1] for proof).

Lemma 6.0.4 (Goursat’s lemma). Let G0 and G1 be groups and G ⊆ G0×G1
a subgroup satisfying

πi(G) = Gi (i ∈ {0, 1}),

where πi denotes the canonical projection onto the ith-factor. Then there ex-
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ists a normal group Q and surjective homomorphisms ψ0 : G0 → Q, ψ1 : G1 →
Q for which

G = {(g0, g1) ∈ G0 ×G1 : ψ0(g0) = ψ1(g1)} .

The idea is to use our results concerning composite level modular curves
to find possibilities for entanglement. Then we apply Goursat’s lemma to
eliminate the cases where entanglement cannot occur from a group theoretic
viewpoint. From here, we compute division fields using Magma and check
for entanglements.

To demonstrate the technique, we first present a result proving the lack
of entanglement fields for a family of elliptic curves over Q.

Lemma 6.0.5. Let E be a non-CM elliptic curve over Q with square dis-
criminant. Then Q(E[2]) ∩ Q(E[5]) = Q, so E/Q does not have (2, 5)-
entanglement field.

Proof. From Table A.1 and Proposition 5.1.2, we find that the composite-
(2, 5) image must be either conjugate to G3×G9 or G1×G9; in the latter case,
entanglement is not possible since Q(E[2]) ∼= Q. The subgroup G9 do not
contain an index 3 normal subgroup, hence Lemma 6.0.4, implies that there
does not exists a subgroup G ≤ GL2(F2) × GL2(F5) that projects onto the
mod 2 and mod 5 image. Therefore, these curves cannot have entanglement
fields via the Galois correspondence.

6.1 (2, 3)-entanglement

In a recent work [BJ16], Brau and Jones exhibit a modular curve of level 6
over Q whose Q-rational points correspond to j-invariants of elliptic curves E
over Q with Q(E[2]) ⊆ Q(ζ3, ∆

1/3
E ) and hence have (2, 3)-entanglement fields.
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The construction of their modular curve begins with finding the unique index
6 normal subgroups N ≤ GL2(F3) defined by

N :=
{
( x −y
y x ) : x2 + y2 ≡ 1 mod 3

}
t
{
( x y
y −x ) : x

2 + y2 ≡ −1 mod 3
}
.

The authors observe that N fits into the exact sequence

1 N GL2(F3) GL2(F2) 1.
θ

Their modular curve of level 6 corresponds to the subgroup H ′ ≤ GL2(Z/6Z)

coming from the graph of θ

H ′ := {(g2, g3) ∈ GL2(F2)×GL2(F3) : g2 = θ(g3)} .

The points lying in the image of the j(XH ′) correspond to j-invariants of
elliptic curves over Q satisfying the above division field condition. We state a
stronger version of their result concerning this curve in the following theorem.

Theorem 6.1.1 ([BJ16] Theorem 1.4). Let E be a non-CM elliptic curve
over Q with j-invariant of the form

jE = 2
1033t3(1− 4t3)

where t ∈ Q \ {0}. Then E has surjective mod 2 image of Galois and (2, 3)-
nonabelian entanglement fields

Q(E[2]) ∩ Q(E[3]) ∼= Q(ζ3, ∆
1/3
E ).

Proof. By [BJ16, Remark 1.5], E has the property thatQ(E[2]) ⊆ Q(ζ3, ∆
1/3
E ) ⊆

Q(E[3]). We show that the mod 2 image must be surjective, in particular,
we show that Q(E[2]) cannot be isomorphic to Q, Q(ζ3), or Q(∆

1/3
E ). Using
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[Zyw15, Theorem 1.2.ii], we construct the modular curve

X : 21033t3(1− 4t3) =
256(s+ 1)3

s
,

whose rational points correspond to elliptic curves over Q with ρE,2(GQ)

conjugate to a subgroup of G2 and Q(E[2]) ⊆ Q(ζ3, ∆
1/3
E ). This modular

curve is isomorphic to a rank 0 elliptic curve, and we compute that the only
points on X are CM points. Hence E cannot have ρE,2(GQ) conjugate to G2,
in particular Q(E[2]) cannot be isomorphic to Q(ζ3). Since {I} ⊂ G2, we
immediately have that there do not exist non-CM elliptic curves over Q with
ρE,2(GQ) conjugate to G1 and Q(E[2]) ⊂ Q(ζ3, ∆

1/3
E ).

To complete the proof, we need to find the Q-points on the curve

X : s2 + 1728 = 21033t3(1− 4t3).

Through simple manipulation, we find a model for X as

X ′ : s2 = 2633(2t− 1)2(4t2 + 2t+ 1)2.

Notice that X ′ is not geometrically irreducible. In fact, X ′ × Q is the in-
tersection of two conics in three distinct points, two of which are quadratic
points. Moreover, we only find one Q-rational point (0, 1/2) on X ′ since 3
is not a square. Since the point (0, 1/2) corresponds to a CM elliptic curve,
there does not exist non-CM elliptic curves over Q with ρE,2(GQ) conjugate
to G3 and Q(E[2]) ⊂ Q(ζ3, ∆

1/3
E ). Therefore, E must have surjective mod 2

image of Galois and (2, 3)-nonabelian entanglement fields.

Brau and Jones pose the question [BJ16, Question 1.1] of classifying the
triples (E,m1,m2) with E an elliptic curve over a number field K andm1,m2 a
pair of relatively prime integers for which the (m1,m2)-entanglement is non-
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abelian over K. We ask whether the elliptic curves defined in Theorem 6.1.1
are the only ones defined over Q with non-abelian (2, 3)-entanglement fields.
By constructing covers of the modular curve XH ′ , we find another family of
elliptic curves with such entanglement fields and provide a complete answer
to [BJ16, Question 1.1] in the case where K = Q and (m1,m2) = (2, 3).

Theorem 6.1.2. There exist infinitely many non-CM elliptic curves E over
Q with composite-(2, 3) image of Galois conjugate to GL2(F2)×G3 and non-
abelian entanglement fields

Q(E[2]) ∩ Q(E[3]) = Q(ζ3, ∆
1/3
E ) ∼= Q(x(E[3])).

Furthermore, there do not exist non-CM elliptic curves with j-invariant out-
side of those from Theorem 6.1.1 and those given in [Mor] with (2, 3)-nonabelian
entanglement fields.

Proof. Let G3 be the level 3 applicable subgroup from List 5.1.5. There exists
a unique index 6 normal subgroup of G3, namely

G ′ := 〈( 2 00 2 )〉 .

Since G ′ ≤ N , we have the following exact sequences

1 N GL2(F3) GL2(F2) 1

1 G ′ G3 GL2(F2) 1

θ1

θ2

Let

H ′′ := {(g2, g3) ∈ GL2(F2)×G3 : g2 = θ2(g3)}

denote the graph of θ2. Since H ′′ ≤ H ′, there is a map between the modular
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curves XH ′′ → XH ′ . Using List 5.1.5, we can construct a model for the level
6 modular curve corresponding to H ′′

XH ′′ : 21033s3(1− 4s3) =
27(t+ 1)(t+ 9)3

t3
.

The curve XH ′′ is a genus 0 curve endowed with a rational point, hence
isomorphic to P1

Q. The rational points on the curve XH ′′ correspond to
elliptic curves over Q with composite-(2, 3) image conjugate to a subgroup
GL2(F2) × G3 and Q(E[2]) ⊆ Q(ζ3, ∆

1/3
E ). Since these curve have surjective

mod 2 image, the composite-(2, 3) image condition implies that [Q(E[2]) :

Q] = 6 and that [Q(E[3]) : Q] ≤ 12, and the entanglement assumption tells
us that either Q(E[2]) ∼= Q(x(E[3])) or Q(E[2]) ∼= Q(E[3]). We claim that
the latter isomorphism cannot occur.

Suppose that there exists an elliptic curve E/Q with Weierstrass equation
y2 = x3 + Ax + B such that the above (2, 3)-composite image condition
holds and that Q(E[2]) ∼= Q(E[3]). Unraveling the assumptions, we find that
f(x) = x3 + Ax + B is the minimal polynomial of the number field Q(E[2]),
and we claim that the 3-division polynomial ψ3(x) = 3x4+6Ax2+12Bx−A2

is divisible by f(x). Since the roots of ψ3(x) correspond to the x-coordinate
of E(Q)[3] and Gal(Q(E[3]/Q)) ∼= S3, we have that ψ3(x) must factor as into
the product of a cubic and linear polynomial. Moreover, the cubic factor
must be f(x); otherwise, Q(E[3])/Q would not be and S3 extension. Thus,
we have shown that

ψ3(x) = 3x
4 + 6Ax2 + 12Bx−A2

= (x3 +Ax+ B)(3x+ α),

where α ∈ Q. Since the cubic term in ψ3(x) has zero coefficient, α = 0,
which yields a contradiction. Therefore, there cannot exists such an elliptic
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curve E/Q with the above (2, 3)-composite image condition holds and that
Q(E[2]) ∼= Q(E[3]). Moreover, the rational points on XH ′′ classify elliptic
curves with non-abelian entanglement fields

Q(E[2]) ∩ Q(E[3]) = Q(ζ3, ∆
1/3
E ) ∼= Q(x(E[3])).

The latter statement follows from the fact that the only applicable sub-
group of level 3 that has an index 6, normal subgroup are G3, H3,1, and
H3,2. Above, we showed an elliptic curve cannot have (2, 3)-composite level
conjugate to GL2(F2)×H3,1 or to GL2(F2)×H3,2 and (2, 3)-nonabelian en-
tanglement fields. Therefore, XH ′′ is the only cover of XH ′ with infinitely
many Q-rational points.

We now present examples of elliptic curves over Q with both types of
(2, 3)-nonabelian entanglement.

Example 6.1.2.1. Using Theorem 6.1.1, consider the elliptic curve

E : y2 = x3 − 1296/49x+ 2592/49.

Using Magma, we check that E has surjective (2, 3)-composite level image,
meaning that ρE,2(GQ) ∼= GL2(F2) and that ρE,3(GQ) ∼= GL2(F3).

Example 6.1.2.2. Using Theorem 6.1.2, consider the elliptic curve

E ′ : y2 =x3 −
2734532333131273499324113285373243712877318685628639

9972354121163159224616143722472465553279027955033892
x+

2834532333131273499324113285373243712877318685628639

9972354121163159224616143722472465553279027955033892

Using Magma, we check that E has (2, 3)-composite level image con-
jugate to GL2(F2) × G3 and has (2, 3)-nonabelian entanglement Q(E[2]) ∩
Q(E[3]) ∼= Q(x(E[3])).
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Now, we turn our attention to finding non-CM elliptic curves with (2, 3)-
abelian entanglement fields. From Table A.5, there exist 5 possibilities for
simultaneous non-surjective composite-(2, 3) image of Galois excluding the
case where ρE,2(GQ) ∼= G1. By using a similar method to the proof Lemma
6.0.5, an elliptic curve over Q with composite-(2, 3) image conjugate to G3×
G3 or G3×GL2(F3) cannot have (2, 3)-entanglement. Hence to find abelian
entanglements, we must focus on the remaining cases occurring in Table A.5,
where ρE,2(GQ) is conjugate to G2. Ideally, we hoped that finding sequences
as in the proof of Theorem 6.1.2 would lead to other entanglement fields.
However, the condition on the elliptic curves coming from the points on XH ′

proves to be too restrictive.

Proposition 6.1.3. There do not exist non-CM elliptic curves over Q with
simultaneous non-surjective composite-(2, 3) image andQ(E[2]) ⊆ Q(ζ3, ∆

1/3
E ).

Proof. Let E be a non-CM elliptic curve with composite-(2, 3) image conju-
gate to G2×Gi where Gi is from List 5.1.5. First, we determine whether there
is an index 2, normal subgroups of Gi that is contained in N ; the subgroup
G3 is the only one that does not contain such a subgroup. In the remaining
cases, we can construct a cover of the modular curve XH ′ . We claim that the
rational points on these covers are CM.

If there existed a non-CM rational point on this cover, then we could
find a non-CM elliptic curve with above composite level image of Galois and
division field condition. Unraveling these assumptions, the curve E has the
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following division field diagram–

Q(E[3])

Q(ζ3, ∆
1/3
E )

Q(E[2])

Q

2k

?

2

2n

Moreover, the discriminant of E must be a rational cube, and hence Q(ζ3) ∼=

Q(E[2]). There are only two isomorphism classes of CM elliptic curves (with
j = 0 and j = 1728) with this prescribed 2-torsion. Thus, we have a contra-
diction to our assumption that E does not have CM, and therefore, rational
points on these covers are CM.

Proposition 6.1.3 does not eliminate the possibility of mod 2 and mod
3 abelian entanglement fields, however, it limits the tools we can used to
determine these field. In Table 6.1, we present all the relevant data these
elliptic curve. Finally, we formulate conjectures concerning abelian mod 2
and mod 3 entanglement fields.

Conjecture 6.1.4. There does not exist a non-CM elliptic curve over Q with
composite-(2, 3) level image conjugate to G2×G1 and Q(E[2]) ∩Q(E[3]) 6= Q.

Conjecture 6.1.5. There exist infinitely many non-CM elliptic curves over
Q composite-(2, 3) level image conjugate to G2×G2 and Q(E[2]) ∩Q(E[3]) 6=
Q.

Conjecture 6.1.6. There exist infinitely many non-CM elliptic curves over
Q composite-(2, 3) level image conjugate to G2×G3 and Q(E[2]) ∩Q(E[3]) 6=
Q.
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Conjecture 6.1.7. There exist infinitely many non-CM elliptic curves over
Q composite-(2, 3) level image conjugate to G2×G4 and Q(E[2]) ∩Q(E[3]) 6=
Q.

6.1.8 (4, 3)-entanglement

Using Theorem 5.1.15, we find examples of non-CM elliptic curves over Q

with (4, 3)-abelian entanglement fields. The five possibilities in Theorem
5.1.15 occur when ρE,3(GQ) is conjugate to a subgroup of G3 or G4 where
these subgroups have orders 12 and 16, respectively and when ρE,4(GQ) is
conjugate to a subgroup of order 16. Since the order of the subgroups ap-
pearing in Theorem 5.1.15 are not prime, we cannot utilize Lemma 6.0.4 to
group theoretically sieve out the possibilities for entanglement; hence, we use
brute force for our computations. Below, we present examples of non-CM
elliptic curves with (4, 3)-abelian entanglement fields.

Example 6.1.8.1. The following elliptic curves have mod 3 image of Galois
conjugate to a subgroup of G4 and the property that Q(E[4]) ∩ Q(E[3]) ∼= K,
where K is some quadratic number field:

E1 : y
2 + xy = x3 +

1601806640625

109730573419264
x+

177978515625

438922293677056
,

E2 : y
2 + xy = x3 +

9545682734772404224

1825834888917081300825
x+

2386420683693101056

16432514000253731707425
,

E3 : y
2 + xy = x3 −

1224440064

4952850538825
x−

34012224

4952850538825
.

Remark 6.1.9. There exist three families of elliptic curves with simultaneously
non-surjective composite-(4, 3) image of Galois where ρE,3(GQ) is conjugate
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to a subgroup of G3. These curves have potential for mod 4 and mod 3
entanglement fields of degree 2, however, the coefficients of these curves limit
our computation possibilities.

6.2 (2, n)-entanglement

In this section, we look at more general entanglement fields and provide
examples of elliptic curves with interesting entanglement.

6.2.1 (2, 7)-entanglement

From Table A.2, the only possibility for simultaneous non-surjective composite-
(2, 7) image of Galois is G3 × G7 ≤ GL2(F2) × GL2(F7). The subgroup G7
does contain an index 3, normal subgroup, so the points on the modular
curve XG3,G7(14) correspond to j-invariants of elliptic curves with possible
entanglement fields coming from Q(E[2]) ∩ Q(E[7]). Since such an elliptic
curve E has 7-division field of degree 252, it is computationally inefficient to
study the subfields of Q(E[7]) or even Q(x(E[7])). Hence, in order to perform
computations, we need to find a subfield of Q(E[7]) with manageable degree.

Since Z(GL2(F7)) ≤ G7 and #Z(GL2(F7)) = 6, the fixed field L :=

Q(E[7])Z(GL2(F7)) is an index 6 subfield of Q(E[7]). From [Ade01, Table 5.1], L
is a degree 42 number field defined by the 7th-modular polynomial Φ7(X, jE).
For non-CM E coming from XG3,G7(14), we compute degree 3 subfields of
L and check whether they are isomorphic to Q(E[2]); below, we give two
examples of non-CM elliptic curves with (2, 7)-entanglement fields of degree
3.
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Example 6.2.1.1. The non-CM elliptic curves

E1 : y
2 + xy = x3 − 4/129825457969x− 1/1168429121721

E2 : y
2 + xy = x3 − 4/2209x− 1/19881

have abelian entanglement of degree 3 coming from the non-trivial intersec-
tion of Q(E[2]) ∩ Q(E[7]).

6.2.2 (2, pn)-entanglement

In [RS01], Rubin and Silverberg give explicit equations for elliptic curves over
a field of characteristic 6= 2, 3 with prescribed mod 2 image of Galois. By
constructing an elliptic curves over Q with special 2-division field, we exhibit
an infinite family of elliptic curves with (2, pn)-entanglement of degree 3.

Proposition 6.2.3. Let p be a prime ≥ 5 such that 3|p− 1 and n a positive
integer. Then there exist infinitely many elliptic curves over E/Q such that
Q(E[2]) ∩ Q(ζpn) = L, where L is the degree 3 number field of Q(ζp) by our
assumption on p. Furthermore, we give an explicit parametrization of such
elliptic curves.

Proof. Since ϕ(pn) = pn−1(p− 1) where ϕ is the Euler-totient function, the
cyclotomic field Q(ζpn) contains the degree 3 intermediate field L of Q(ζp).
Gauss [Gau66] showed that the minimal polynomial of L is

g(X) = X3 + X2 + (p− 1)X/3− ((p− 1)/3+ kp)/9

where k is uniquely determined by the integral representation 4p = (3k −

2)2 + 27N2.
Let E be the elliptic curve with defining polynomial g(X). Using the

change of variables (X, Y)→ (x− 1/3, y), we find a Weierstrass model of the
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form
E : y2 = x3 −

p

3
x+

p(2− 3k)

27
.

The construction of E forces the 2-division field Q(E[2]) to be isomoprhic to
L. Using [RS01, Theorem 1.1], the elliptic curve

Et : y
2 =x3 +

(1727pt2 + p+ 9/4k2t2 − 9/4k2 − 3kt2 + 3k+ t2 − 1)

(p− 9/4k2 + 3k− 1)
x

(−1727pt3 − 5181pt2 + 3pt+ p− 9/4k2t3 − 27/4k2t2)

(p− 9/4k2 + 3k− 1)
+

(−27/4k2t− 9/4k2 + 3kt3 + 9kt2 + 9kt+ 3k− t3 − 3t2 − 3t− 1)

(p− 9/4k2 + 3k− 1)

has 2-torsion subgroup isomorphic to that of E for t ∈ Q. The existence of
the Weil pairing implies that elliptic curves of the form Et have a degree 3,
abelian entanglement field L.

Remark 6.2.4. Above, we present the general equation for Et. For a specific
prime p and unique k, the defining equation for Et can be quickly computed
using the Magma instrinsic RubinSilverbergPolynomials(2,j), where j
is the j-invariant of the elliptic curve E.
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Chapter 7

Future Work

In this final section, we propose questions for future work.

7.0.5 Torsion in number fields

In combination with work of Maarten Derickx, we complete the classification
of isomorphism classes of torsion subgroups that occur for elliptic curves E
defined over cubic number fields K using the four-fold Mordell-Weil sieve (see
Section 3.2.4). A natural question to our result is how far can we push our
four-fold Mordell-Weil sieve technique.

Let K be some number field of degree d. Suppose we have some modular
curve X of composite level N with gonality γ. The guiding question is to
determine whether Symd X(Q) is all cuspidal or not. Recall that the opti-
mal situation to utilize our four-fold Mordell-Weil sieve is when rk J(X) = 0

and d < γ. If our curve X satisfies these conditions, then our four-fold
Mordell-Weil sieve will either prove that Symd X(Q) = ∅ or provide evidence
supporting the existence of a sporadic point of degree d.

A more concrete goal is to compute Φ(4), which is the set of isomorphism
classes for of torsion subgroups for elliptic curves E over some number field K
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of degree ≤ 4. In [JKP06, Theorem 3.6], Jeon, Park, and Kim determine the
38 group structures for E(K)[tors] which appear infinitely often as K varies
over all quartic fields. The authors remark that all of these torsion structures
already occur infinitely often as K varies over all bi-quadratic number fields.

In a recent work [Cho16], Chou classified the torsion structures that
can occur for EK := E ×Q K when K is Galois with Gal(K/Q) ∼= Z/4Z or
Gal(K/Q) ∼= Z/2Z × Z/2Z. His results show that torsion subgroup Z/15Z

only appears finitely often as K ranges over all Galois quartic number fields.
This finiteness is attributed to the fact that there are only finitely many
j-invariants of E/Q having a Q-rational 15 isogeny. In the case of cubic tor-
sion, Najman found the sporadic point on the symmetric cube of the modular
curve X1(21) in his analysis of ΦQ(3). Since Chou restricts to Galois num-
ber fields, his results do not completely eliminate the possibility of sporadic
quartic point occurring in analogous fashion as they do in the cubic case.
Despite this assumption, we make the following conjecture:

Conjecture 7.0.6. There exist 38 possible torsion structures, coming from
[JKP06, Theorem 3.6], that appear for E(K)[tors] where K ranges over all
quartic number fields. Furthermore, all of these torsion subgroups occur in-
finitely often and over a biquadratic extension of Q.

7.0.7 Composite level images of Galois

In Theorem 5.1.12, we required the discriminant of E to be a rational square
or equivalently that ρE,2(GQ) is conjugate to a subgroup of G3. Recall from
Section 5.1.17, this assumption allowed us to construct models for our com-
posite level modular curves as hyperelliptic curves. From List 5.1.4, there are
two (non-trivial) mod 2 images of Galois. We propose the following problem
concerning the other possible image.
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Problem 7.0.8. Let E be a non-CM elliptic curve over Q with rational 2-
torsion. Find the possible indicies (and their frequencies) for simultaneously
non-surjective composite-(2, `) level image of Galois for ` = 5, 7, 11, 13.

In Problem 7.0.8, the condition on the defining polynomial is equivalent to
ρE,2(GQ) being conjugate to a subgroup of G2 ∼= Z/2Z. From List 5.1.4, the
modular curve parametrizing such elliptic curves does not have a particularly
useful form. Moreover, the composite-(2, `)modular curves XG2,G have higher
genus than we previously encountered. For example, the composite-(2, 5)
modular curve XG2,G9 has genus 5, which is higher than that of any curve we
computed in Table A.1. We remark that curves with such composite level
image of Galois possess more potential for abelian entanglement fields from
a group theoretic perspective.

From conversations with David Zureick-Brown and Andrew V. Suther-
land, there has been recent work in progress on determining the possible
3, 5, and 7-adic images of Galois. In joint work with Jeremy Rouse and David
Zywina, the authors have constructed maps to the j-line for all the genus 0
and some of the genus 1 with positive rank modular curves of 3, 5, and 7
power level. This recent works leads to the following problem.

Problem 7.0.9. Let E be a non-CM elliptic curve over Q with square dis-
criminant. Find the possible indicies (and their frequencies) for simulata-
neously non-surjective composite-(2, `n) level image of Galois for ` = 3, 5, 7

and n sufficiently large.

Using the above data, one could construct modular curves as we previ-
ously did and attempt to classify their rational points. These composite-
(2, `n) level modular curves will have models as hyperelliptic curves of high
genera. Although the genera grows, this geometric property allows one to
use more computational tools such as: bounds on rk Jac(Q), evaluation of
Weil-zeta functions, counting local points on Jacobians, and étale descent.
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7.0.10 Entanglements

Finally, we pose problems relating to entanglement fields. As mentioned
in the Remark in Section 6.1.8, we encounter computational hurdles in our
analysis of mod 4 and mod 3 entanglement fields. One way to ameliorate
this problem would be to construct a cover of our composite-(4, 3) level mod-
ular curves whose rational points classify ellipitic curves over Q with such
entanglement. We also remark that when searching for mod 8 and mod 3
entanglement fields, we confront the same computational problems. Further-
more, we ask the following question.

Problem 7.0.11. Determine if there exists a cover of the composite-(4, 3)
level modular curves from Theorem 5.1.15 whose points correspond to elliptic
curves over Q with mod 4 and mod 3 entanglement fields. If so, then de-
termine the rational points on said curve. Furthermore, determine if there
exists such covers of the composite-(8, 3) and composite-(16, 3) level modular
curves.

With solutions to Problem 7.0.9, we could ask a more “horizontally" fla-
vored question, namely

Problem 7.0.12. Determine the non-CM elliptic curves over Q that have
mod 2 and mod `n abelian entanglement fields of degree 2 for ` = 3, 5, 7.

The technique for Problem 7.0.12 is analogous to that of Section 6.1,
however, the computations will once again grow in difficulty. Using [Ade01],
we can find smaller subfields of the `n-division fields and proceed as we did
in Section 6.2.1.
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Appendix

A.1 Tables for Theorem 5.1.12

In this appendix, we present the relevant tables for Theorem 5.1.12

Table A.1: Computations for composite (2, 5)-level modular curves

G Type Equation for Model Rational Points

G9 P1
Q ∞

G4
Genus 2 hyper-
elliptic curve y2 = (x+ 2)(x2 − 20)(x2 + 5x+ 5) (−2, 0)

G2
Genus 3 hyper-
elliptic curve Not necessary Not computed

G1
Genus 5 hyper-
elliptic curve Not necessary Not computed

G7
Genus 1 curve
(not elliptic) y2 = (8x2 − 12x+ 7)(x2 + x− 1) ∅

G3
Genus 3 hyper-
elliptic curve Not necessary Not computed

G8
Elliptic curve with

rank zero y2 = x3 + 22x2 + 125x (0, 0)

G6
Elliptic curve with

rank zero y2 = x3 − 11x2 − x (0, 0)

G5
Elliptic curve with

rank zero y2 = x3 − 11x2 − x (0, 0)
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Table A.2: Computations for composite (2, 7)-level modular curves

G Type Equation for Model Rational Points

G2
Genus 3 hyper-
elliptic curve

y2 = (x3 − 2x2 − x+ 1)
(x4 + 2x3 − 9x2 − 10x− 3)

∅

G1 Genus 0 curve Not necessary ∅

G7 P1
Q ∞

G5
Genus 2 hyper-
elliptic curve

y2 = −7(x3 − 2x2 − x+ 1)
(x3 − x2 − 2x+ 1)

∅

G4
Genus 2 hyper-
elliptic curve y2 = x(x+ 1)(x3 − 5x2 − 8x− 1) (0, 0), (0,−1)

G3
Genus 2 hyper-
elliptic curve y2 = x(x− 1)(x3 − 5x2 − 8x− 1) (0, 0), (0,−1)

G6
Genus 3 hyper-
elliptic curve

y2 = (64x4 − 8x3 + 3x2 + 10x+ 2)
(8x3 + 8x2 − 2x− 1)

(0, 3)

Table A.3: Computations for composite (2, 13)-level modular curves

G Type Equation for Model Rational Points

G6
Elliptic curve with

zero rank y2 = x3 + 6x2 + 13x (0, 0)

G1
Genus 5 hyper-
elliptic curve Not necessary Not computed

G2
Genus 5 hyper-
elliptic curve Not necessary Not computed

G3
Genus 5 hyper-
elliptic curve Not necessary Not computed

G4
Elliptic curve with

rank zero Not necessary Not computed

G5
Elliptic curve with

rank zero Not necessary Not computed
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Table A.4: Computations for composite (2, 11)-level modular curves

G Type Equation for Model Rational Points

G1 Genus 0 curve x2 + 1849 ∅

G2 Genus 0 curve x2 + 24730729 ∅

G3 Genus 7 curve (5.6.1) (2, 0, 0), ?

A.2 Tables for Theorem 5.1.15

In this appendix, we present tables of data for Theorem 5.1.15 For Tables
A.6 and A.8 we define the following elliptic curves:

E1 :
y2 = x3 − 64902253044453104425107456x+

191986392954657660058087864385226670080
,

E2 :
y2 = x3 + 1340410876989014016x2 + 17710646772600825250202981−

24369854464x+ 2018322201536472957239010458119323901282219700722335744
,

E3 :
y2 = x3 + 4307188636534349758464x2 + 547590358450441031984211000819−

2919253549056x+ 21616888950779940925123976146397158102058265250894

80501104738304

,

E4 :
y2 = x3 + 4946594365440x2 + 7631805891307949160136704x−

3508935577021794989273844232759541760
,

E5 :
y2 = x3 + 230650788126150x2 + 14276716154406903848692297500x−

130307013348668239100583626244805469625000
,

E6 :
y2 = x3 + 6651780443200512x2 + 8949606026287889572565747761152x−

2056123209630619523671986243916488426274160640
,

E7 :
y2 = x3 + 207868138850016x2 + 8739849635046767160708738048x−

62747900684528183705810127072646741524480
,
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E8 :
y2 = x3 + 12991758678126x2 + 34140037636901434221518508x−

15319311690558638600051300554845395880
,

E9 :
y2 + 2176782336xy− 7285712098316488542945017856y = x3−

19517792472536186880x2 + 11388425733770658803807773720788231782x−

200018945425033944257247874598631859440366327398620200960

,

E10 :
y2 = x3 + 956871269597628x2 − 18685767889415846670551494416x−

17879874443751930964575847005712682408845248
.

Table A.5: Computations for composite (2, 3)-level modular curves

(H,G) Type Equation for Model Rational Points

(G3, G3) P1
Q ∞

(G3, G4)
Elliptic curve with

rank zero y2 = x3 − 1728 (12, 0)

(G3, G2)
Elliptic curve with

rank zero y2 = x3 − 72x2 − 432x ∅

(G3, G1)
Elliptic curve with

rank zero Not necessary Not computed

(G2, G2) P1
Q ∞

(G2, G1) P1
Q ∞

(G2, G4) P1
Q ∞

(G2, G3) P1
Q ∞

(G1, G3) P1
Q ∞

(G1, G4)
Elliptic curve with

rank zero Not necessary Not computed

(G1, G2)
Elliptic curve with

rank zero Not necessary Not computed

(G1, G1)
Elliptic curve with

rank zero Not necessary Not computed
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Table A.6: Computations for composite (4, 3)-level modular curves

(Hn, G) Type Equation for Model Rational Points

(H9,G)
Elliptic curve with

rank zero y2 = x3 − 3
8
x2 + 3

64
x− 9

4095
(12, 0)

(H9, G3) P1
Q ∞

(H10,G)
Elliptic curve with

rank zero y2 = x3 − 8916100448256 ∅

(H10, G3) P1
Q ∞

(H11, G3)
Elliptic curve with

rank zero E1
(−9,−4), (−1, 4),
(1, 16), (−1,−4),
(1,−16), (−9, 4)

(H11, G4) P1
Q ∞

(H11, G2)
Elliptic curve with

rank zero E2 (−1, 4), (−1,−4),
(3,−4), (3, 4)

(H11, G1)
Genus 3 hyper-
elliptic curve Not necessary Not computed

(H12, G3)
Elliptic curve with

rank zero E3 ∅

(H12, G4) P1
Q ∞

(H12, G2)
Elliptic curve with

rank zero E4 (−1/3,−8), (−1/3, 8),
(9,−8), (9,−8)

(H12, G1)
Genus 3 hyper-
elliptic curve Not necessary Not computed

(H13, G3) P1
Q ∞

(H13,G)
Elliptic curve with

rank zero
y2 = x3 + 96x2+

3072x+ 36864

(66,−24), (66,−24),
(12, 0)

(H23, G3)
Elliptic curve with

rank zero Not necessary Not computed

(H23,G)
Elliptic curve with

rank zero
y2 + 16xy− 3072y =
x3 + 96x2 + 3072x+

36864

(−15, 3), (−15,−3),
(12, 0)

(H24, G3)
Elliptic curve with

rank zero E5 ∅
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(H25, G3)
Elliptic curve with

rank zero Not necessary Not computed

(H26, G3)
Elliptic curve with

rank zero Not necessary Not computed

(H26,G)
Elliptic curve with

rank zero y2 = x3 + 27x2 + 243x
(0,−1), (0, 1),

(12, 0)

(H27, G3)
Elliptic curve with

rank zero Not necessary Not computed

(H27,G)
Elliptic curve with

rank zero Not necessary Not computed

(H60, G3) Genus 39 curve Not necessary Not computed

(H60,G) Genus 16 curve Not necessary Not computed

Table A.7: Computations for XHn,G4(24)

(Hn, G) Type Equation for Model Rational Points

(H28, G4)
Elliptic curve with

rank zero y2 = x3 − 46656 (12, 0)

(H29, G4)
Genus 2 hyper-
elliptic curve y2 = −2x6 + 2 (12, 0)

(H35, G4)
Elliptic curve with

rank zero y2 = x3 − 5832 (12, 0)

(H39, G4)
Elliptic curve with

positive rank y2 = x3 − 8303765625
32768

∞
(H41, G4)

Genus 2 hyper-
elliptic curve y2 = 2x6 − 2 (12, 0)

(H43, G4)
Elliptic curve with

rank zero y2 = x3 + 46656
(255,−6), (255, 6),

(12, 0)

(H45, G4)
Elliptic curve with

positive rank y2 = x3 + 20179187015625
2097152

∞
(H47, G4) P1

Q ∞
(H49, G4)

Elliptic curve with
rank zero y2 = x3 − 5832 (12, 0)

(H50, G4) P1
Q ∞

(H30, G4) P1
Q ∞
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(H31, G4) P1
Q ∞

(H40, G4)
Genus 2 hyper-
elliptic curve y2 = 2x6 + 2

(20,−1/2), (20, 0),
(20,−1/4)

(H70, G4)
Genus 2 hyper-
elliptic curve y2 = 2x6 − 2 (12, 0)

(H89, G4)
Genus 2 hyper-
elliptic curve y2 = x6 − 4x3 + 8 ∅

(H91, G4)
Genus 2 hyper-
elliptic curve y2 = x6 + 8

(255, 2), (225,−2)
(255, 1), (255,−1)

(H93, G4)
Genus 2 hyper-
elliptic curve y2 = x6 − 4x3 + 8 ∅

(H97, G4)
Genus 2 hyper-
elliptic curve y2 = x6 − 4x3 + 8

(12,−1/2), (12, 0),
(12, 1/2)

Table A.8: Computations for XHn,G3(24)

(Hn, G) Type Equation for Model Rational Points

(H37, G3)
Elliptic curve with

rank zero ∅

(H42, G3)
Elliptic curve with

rank zero ∅

(H32, G3)
Elliptic curve with

rank zero E6 (0, 0)

(H33, G3)
Elliptic curve with

rank zero E7 (0, 0)

(H34, G3)
Elliptic curve with

rank zero E8 (0, 0)

(H36, G3)
Elliptic curve with

rank zero E9 (0, 4), (0, 0),
(0,−4)

(H44, G3)
Elliptic curve with

rank zero E10 (0, 0)

(H48, G3)
Elliptic curve with

rank zero E10 (0, 0)
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A.3 Applicable subgroup diagrams for Theo-

rem 5.1.12

In this appendix, we give diagrams depicting the lattice of applicable sub-
groups for GL2(F`) for the primes ` = 2, 3, 5, 7, 11, 13. We decorate the cases
where we cannot provably analyze the rational points on the modular curve
XG3,G(2·`) with a tilde. Also the subgroups are hyperlinked to their definition
given in Section 5.1.

G1

G2 G3

GL2(F2)

2 3

23

Figure A.1: Applicable subgroup lattice for GL2(F2)
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{I}

H1,1

H3,1 H3,2 G1

G4 G3 G2

GL2(F3)

2

3
3

2

16

2
2

2

63

12

4

Figure A.2: Applicable subgroup lattice for GL2(F3)
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{I}

H1,1 H1,2

H5,1 H5,2 H6,1 H6,2 G1

G3 G5 G6 G2

G8 G4

G7 G9

GL2(F5)

4

4

20

20

20

5
5

2

2

16

2
2

2
2

2

2
2

10

2

3

3

6

10 5

15

Figure A.3: Applicable subgroup lattice for GL2(F5)
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{I}

H4,1 H4,2

H1,1 H5,2 H5,1 H3,2 H3,1

G1 G5 H7,2 G4 H7,1 G3

G2 G7 G6

GL2(F7)

42 42
18

42

42 42

42

2 2

2

3

3

2

22

3

3

2

2

2

2
3

3
3

22

96

2128 8

Figure A.4: Applicable subgroup lattice for GL2(F7)
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{I}

H2,1 H2,2 H1,1 H1,2

G2 G̃3 G1

GL2(F11)

110

110 110

110

2
2

240

2
2

55
6060

Figure A.5: Applicable subgroup lattice for GL2(F11)
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{I}

H5,1 H5,2 H4,1 H4,2

G3 G5 G2 G4 G1

G̃7 G6

GL2(F13)

468

468 468

468

624
2

2

624

2
2

624

288

3
3

3

22

91
14

Figure A.6: Applicable subgroup lattice for GL2(F13)
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