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Abstract 
  

Flow cytometry (FCM) is a popular technique, in basic and clinical research, for the 
high-throughput characterization of cellular properties. Modern FCM instruments are now 
capable of measuring up to 20 characteristics of an individual cell, resulting in a rich array 
of multidimensional information on hundreds of thousands of cells. Data analysis, however, 
remains a challenging aspect of FCM research; the ability to acquire large multidimensional 
datasets has outpaced the ability to accurately and reproducibly detect expected and novel 
cell populations and efficiently test biological hypotheses.  

The main objective of this work is to develop and validate a mechanistic pipeline 
that addresses the challenges found in high-throughput, multidimensional FCM data 
analysis. My pipeline development employs state-of-the art biomedical informatics 
software that can be integrated with clinical outcomes.  

 The pipeline consists of five key steps: 1) data preprocessing, 2) automated gating, 
3) automated labeling, 4) feature extraction, and 5) feature selection. A robust quality 
assessment step was implemented at every step of the pipeline to account for potential 
sources of systematic error prior to entering a subsequent step in the pipeline. Validation 
against human expert analyses showed good detection of expected cell populations. The 
integration of state-of-the art informatics techniques into a single pipeline shows great 
potential for scalability to hundreds of thousands of events and multiple dimensions. 

 In particular, this pipeline can be used to assess a transplant recipient’s immune 
repertoire over time in single patients and in a cross-sectional patient population with 
diverse diagnostic and demographic characteristics. The main assumption in the proposed 
pipeline is that the mechanisms driving complications in organ transplantation intersect in 
a way that is both anticipatable and measurable. 
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Chapter 1 
 
Introduction  

Flow cytometry (FCM) is a powerful tool for rapidly quantifying the chemical and 

physical properties of up to millions of cells stained with monoclonal antibodies conjugated 

to fluorescent dyes. Flow cytometers employ light sources (lasers) that probe a specific 

property of an individual cell based on light scattering and fluorescence, and detectors that 

measure each property. Today, advancements in FCM technologies, such as the ability to 

process thousands of cells per second (high-throughput) and multiple detectors and lasers, 

have made it suitable for detecting up to twenty properties [1, 2], resulting in a rich array 

of information on a large number of cell events. 

The popularity of FCM in basic and clinical research has led to the discovery of 

interesting links between various pathologies and their underlying molecular mechanisms, 

and has helped to elucidate a network of relationships between different diseases. For 

example, FCM has helped to identify functional antigenic markers associated with stem-

cells [3], graft-versus-host-disease [4], lymphoma subtypes [5], and early progression of 

human immunodeficiency virus (HIV) [6]. It has also been an important tool for 

immunophenotype (i.e. type of cell population) matching during organ transplantation [7]. 

In this chapter, I provide an overview of FCM technology, the current methodology 

for data analysis, and the challenges often encountered in data analysis as perceived by the 

FCM community. Furthermore, I propose a computer-aided analysis pipeline to address 
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these challenges. In Chapter 2, I discuss in detail the individual components of the pipeline. 

Finally, chapter 3 presents the validation of this pipeline using patient FCM data from a 

clinical study investigating the effect of immunotherapy on ragweed-induced allergic 

rhinitis. Furthermore, I discuss the implications of this pipeline for exploratory of analysis 

of viral activation and T-cell repopulation in a longitudinal clinical study of renal transplant 

patients. 

 

1.1 FCM Technology and Data Analysis 
 

1.1.1 Overview  
 

Research utilizing FCM technology generally employs the sequential strategy 

depicted in the schematic below (Figure 1). The process begins with sample preparation of 

the cells (1.1.2). This includes staining procedures to tag cells with fluorescence-antibody 

probes. Data is acquired using a flow cytometer which provides information for each cell 

(1.1.2). Data analysis focuses on identifying and classifying the cells through a cell 

extraction process known as gating (1.1.3). Finally, the results of the analyses can be 

associated with a set of biological hypothesis that drive the data collection. 

 

Figure 1. Basic workflow for FCM analysis. Using FCM in a research framework typically 

includes the above steps: 1) sample preparation (Section 1.1.2), 2) data acquisition via a 

flow cytometer (Section 1.1.2), 3) data analysis (Section 1.1.3), which includes cell 
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population extraction (gating), and 4) correlation of extracted populations to a set of 

biological hypotheses. 

1.1.2 Sample Preparation and Data Acquisition 
 

In FCM, cells expressing a set of desired cell surface or intracellular receptors 

(antigens) are initially suspended in a solution containing a cocktail of fluorochrome-

conjugated antibodies. Fluorochromes (e.g. fluorescein isothiocyanate, FITC) are dyes, 

which absorb light at a certain wavelength, and re-emits light energy at different 

wavelengths. These can be specifically bound to a particular monoclonal antibody, such as 

anti-CD3, which identifies the CD3 antigen present on T-cells. After staining, the cell 

suspension is then forced into the path of laser beams, such that only one cell is illuminated 

at a single time (i.e. a cell event). As the cells pass through the lasers, detectors (channels) 

capture signals corresponding to the scattered and fluoresced light of each cell. Forward 

scatter channels (FSC) measure incident light scattering, which is proportional to the cell’s 

size, while side scatter channels (SSC) measure orthogonal light scattering, which is 

proportional to the cell’s granularity or internal complexity. Light that is absorbed and 

emitted by the cells is captured by additional fluorescent detectors, which are specifically 

configured for particular range of wavelengths. The fluorescence intensity per cell 

corresponds to the detection of fluorochrome-bound antibodies on the cell surfaces. Figure 

2 shows a standard flow cytometer setup, including the sample input and detectors for data 

acquisition. 
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Figure 2. Standard flow cytometer setup. A suspension of stained cells is hydronamically 

focused within the flow cytometer. A laser beam excites the fluorescent dyes attached to a 

cell, which results in light re-emission at different wavelengths. Filters screen out specific 

wavelengths of re-emitted light, which is then passed into detectors that measure 

fluorescence intensity per cell. (Image from http://www.invitrogen.com). 

 

In FCM sample preparation, it is a common practice to separate a single sample of 

peripheral blood from a patient into multiple tubes (also known as aliquots), which can 

then be treated with different antibody cocktails. Typically a certain set of antibodies in a 

cocktail is kept constant for in a multi-tube experiment, while others are adjusted in order 

to accommodate a variety of different cell populations or immunophenotypes (expression 

of antigens). Table 1 shows a typical panel used to describe the possible cell populations, 

http://www.invitrogen.com/
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which can be identified within a set of tubes in an experiment. Not included in the panel in 

Table 1 are the forward and side scatter channels, which are common to all tubes, but are 

not used to detect antigenic markers.  

 

 

Table 1. Panel for studying different cell types in a FCM experiment. Fluorochromes are 

listed on the topmost row, and the antigens (e.g. CD20, HLA-DR, etc.) identified by each 

fluorochome are listed across a row for each tube. The first tube (Comps) is the 

compensation tube, which is used to subtract overlapping fluorescence signatures from 

different fluorochromes during data analysis. FSC and SSC information are excluded from 

the panel. 

1.1.3 Data Analysis 
 

The traditional approach to analyzing flow cytometry data is first identifying 

biologically similar groups of cells based on physical similarities or a unique expression of 

antigens, a process known as gating, and then comparing these groups of cells with a set of 
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biological hypotheses. The commercial software, FlowJo (http://www.flowjo.com; Tree 

star, Ashland, Oregon) has been widely used in gating, visualization, and analysis of data 

from flow cytometry experiments. FlowJo use is primarily manual and visual, restricting 

the user to analyzing at most two dimensions simultaneously to isolate particular cell 

subsets. Here, we define a dimension to be a single channel that detects either a physical 

(e.g. FSC) or chemical (e.g. FITC) property of a cell. A panel, such as Table 1 above, can be 

used to detect all possible populations for a single tube. A typical gating strategy begins 

with visualizing one-dimensional histograms or two-dimensional dotplots, and proceeds 

with sequential delineation of cell population boundaries based on the light scattering 

properties (FSC and SSC), followed by fluorescent information. A hierarchical strategy is 

employed, by first finding regions of cells with less differentiated surface antigens (e.g. 

lymphocytes) and analyzing these mature cell subsets under additional projections of 

fluorescence dimensions to capture more differentiated cell subpopulations (e.g. effector 

memory T helper cells). Figure 3 shows a typical manual gating pipeline:  

http://www.flowjo.com/
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Figure 3. Sequential manual gating using FlowJo software. Sequential gating follows a 

hierarchical procedure that looks at one or 2-D plots at a single time. a) A typical gating 

analysis first examines a 2-D plot of the the scatter channels to isolate the lymphocyte and 

monocyte population. b) Singlets are then separated from doublets by examining the FSC-H 

vs FSC-A channels. c) CD3+CD14- cells are then identified. d) CD4+ and CD8+ populations 

can then be isolated form the CD3 cells. 

 

 Unfortunately, the ability to rapidly collect multidimensional FCM data and the 

increase in applications for such technology has exceeded the ability of commercially 

available tools, such as FlowJo, and researchers to efficiently discover and test biological 
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and clinical hypotheses in large FCM data [8]. Consequently, FCM data analysis has been a 

major bottleneck in research. The following section discusses the challenges often faced by 

researchers in the analysis of FCM data. 

 

1.2 Challenges in Data Analysis 
 

 While it has been effectively used in smaller FCM data sets with three to five 

dimensions, the traditional manual, qualitative approach may not be feasible for the large 

data sets produced by high-throughput, multidimensional FCM experiments. Visualization 

and analysis of multiple dimensions is difficult, laborious, and subject to the users’ 

expertise. More importantly, multidimensional relationships and features may be missed 

during two-dimensional sequential gating. Several other challenges related to 

multidimensional FCM analysis have also been recognized by the FCM community, 

regarding quality assessment, population gating and labeling, and feature selection [1, 9].  

1.2.1 Quality Assessment 
Quality assessment (QA) is an integral step in any high-throughput FCM analysis 

framework, as it allows the researcher to potentially identify, investigate and remove any 

measurement variability from any experimental, non-biological sources [9, 10]. For 

example, not accounting for changes in instrumentation settings or sample preparation 

may lead to erroneous conclusions regarding cell population identification and tracking.  

Furthermore, the detection of multivariate outliers or boundary events is an 

important step prior to gating and statistical analysis of the data. These events may arise 
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from unusual cell events such as non-viable cells (e.g. debris, red blood cells), doublets or 

those reaching the detection limits of the flow cytometer along any subset of fluorescence 

channels. Outliers may significantly alter the gating results as they may overestimate the 

number of cell populations, particularly in exploratory analyses, where the goal is to 

discover novel cell populations [9]. 

Reliable QA processes should also be able to ensure consistency of cell event 

distribution among tubes with shared antigen profiles (e.g. Alexa700 and V450, which 

detect CD3 and CD4, respectively as seen in Table 1). This is especially true for multi-tube 

experiments in which each tube contains cell events derived from a single sample. 

1.2.2 Population Gating 
 A critical bottleneck in FCM data analysis lies in gating populations. Manual gating 

has been successfully applied to numerous studies analyzing FCM data, and has been useful 

in cases where an expert’s contextual information is needed to account for confounding 

biological and non-biological factors during gating or for gating rare cell populations. 

However, applying it to a high-throughput paradigm is ultimately difficult due to several 

well-recognized drawbacks [11, 12]: 1) the choice of gate regions is subjective and based 

on an analyst’s experience. Informative multivariate features may be missed during the 

gating process, and the resulting variability among analysts may lead to irreproducible 

gating; and 2) the current process is time-consuming and labor-intensive. In addition, with 

multidimensional FCM data, it may be of interest to the researcher to identify novel 

populations for biomarker discovery, rather than define a set of known populations.  
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1.2.3 Population Labeling 
After gating target cell populations (often performed using clustering methods) it is 

often desired to label and compare cell populations across samples, subjects or timepoints. 

While labeling may be accounted for in the gating step, reliable tracking and comparison of 

labeled populations remains a challenging in the analysis of FCM data. The labeling step is 

usually manually done and based on cell locations or mean intensities [13]. This is 

problematic, as a gating that is valid for one sample or timepoint, may not be valid for an 

alternate sample or timepoint. Standardization of FC samples, such in a multi-tube 

experiment, is one way to ensure that similar cell events are well resolved for better 

classification of clusters. This can be accomplished through data normalization, which 

matches the distributions across samples. However, such a procedure may normalize out 

biologically motivated differences across samples. Therefore, a robust checking mechanism 

should also be integrated into the population labeling/matching procedure.  

1.2.4 Feature Selection  
Another recognized challenge in FCM data analysis is the selection of appropriate 

features (e.g. cell population frequencies, antigenic markers, antigenic ratios) for predictive 

analyses and biologically-driven hypotheses. It is often a goal in FCM research to find the 

most informative set of FCM features that relate to a set of clinical outcomes. Inadequate 

feature selection may complicate diagnoses of certain diseases, such as lymphoma, where a 

high number of antigenic markers are used to differentiate between lymphoma sub-types 

[5].  
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1.3 Proposed Solution – A Computer-Aided Analysis 
Pipeline 
 To address the challenges presented in this chapter, I propose an informatics 

approach to the development of a computer-aided analysis pipeline for FCM data with the 

following components: quality assessment, data preprocessing, automated gating, 

automated labeling, feature extraction and feature selection. Quality assessment will be 

embedded at every step of the pipeline to identify upstream sources of non-biological 

errors. It is comprised of error checking procedures to avoid inconsistent results in 

downstream processes.  The goal of data preprocessing is to facilitate automated gating 

and labeling procedures through proper data scaling and removal of biological and 

statistical outliers. Automated gating focuses on clustering the multidimensional space into 

biologically meaningful groups. Labeling assigns cell expression profiles to each cluster by 

analyzing the fluorescence information of each cluster. Feature extraction analyzes 

statistical features of each cluster, such as mean fluorescent intensity, cluster size, or shape. 

Finally, the goal of feature selection is to select informative features that are associated 

with particular clinical outcomes. 

1.4 Organization of Thesis 
 The remainder of this thesis focuses on the development, validation, and application 

of the FCM data analysis pipeline. Chapter 2 discusses the development of the computer-

aided pipeline and describes the software used for quality assessment, data management, 

and data analysis. Chapter 3 presents validation of the pipeline using real data from a 

clinical study on seasonal rhinitis. Automated results are compared to human-generated 

results in the validation. Finally, I present the driving biological project of organ 
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transplantation, and how multidimensional FCM analysis can be used to investigate cross-

sectional and longitudinal patterns in cell types relating to the risk of rejection and viral 

infection, and cell repopulation.  
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Chapter 2 
 

Introduction 
 

 The ability to acquire large multidimensional datasets has outpaced the ability to 

efficiently classify cell types and assign clinical correlates with regard to their implications 

for risk.  Furthermore, manual FCM analysis focuses on at most two dimensions 

simultaneously, potentially missing biological information from other dimensions. This 

highly qualitative and visual approach also has limited ability to accurately and 

reproducibly detect expected as well as novel cell populations. As a result biomedical 

informatics (BMI) software, dedicated to FCM data, have been developed to transition to a 

statistical-based and quantitative approach that can leverage the entire multidimensional 

space, analyze the data in a reasonable amount of time, and reduce variability in results.  

 One such BMI initiative is the Bioconductor Project (http://www.bioconductor.org) 

[21], an open software environment built on R statistical programming language 

(http://www.R-project.org). A suite of state-of-the-art R packages are available in the 

Bioconductor and the Comprehensive R Archive Network (CRAN) repository for a wide 

range of FCM analysis uses: data management in flowCore and flowFlowJo, statistical 

processing in flowStats, quality control in flowFP and flowQ, data visualization in flowViz, 

http://www.bioconductor.org/
http://www.r-project.org/
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gating (known as clustering in a BMI context) in flowClust/flowMerge, flowMeans, and 

SamSPECTRAL, immunophenotyping using flowType, and feature selection using FeaLect. 

 Several other algorithms have also been proposed and presented through the 

FlowCAP project (http://flowcap.flowsite.org), an international collaboration to develop 

and objectively test computational tools for identifying cell populations in FCM data. For 

the past two years, challenges have been held to compare these tools against manual 

findings, and assess their performance in predicting clinical outcomes. 

 

2.1 Overview of Proposed Pipeline 
 

As discussed in Chapter 1, research endeavors utilizing FCM traditionally follows a 

sequence of steps from sample preparation and data acquisition to data analysis and 

relating these analyses to biologically-motivated hypotheses (Figure 1). In this work, I 

focus primarily on the data analysis block, which is a widely recognized bottleneck in 

clinical research. This limitation is particularly pronounced for large, multidimensional 

data. Current methods rely largely on the user’s experience and are inefficient for volumes 

of data. Manual gating of FCM data is time-consuming and can be limiting for exploratory 

analyses or diagnostic studies. Furthermore, the lack of adequate quality control at each 

step of the analysis can potentially waste valuable time and resources and lead to spurious 

conclusions.  

Despite the growing number of biomedical informatics tools for automated 

processing of multidimensional FCM data, there is little published information regarding 

http://flowcap.flowsite.org/


 
 

15 
 

integration, evaluation and validation of the ability of these tools in a clinical context [6, 9, 

22-24]. The main objective of this work is to develop and validate a mechanistic 

pipeline that addresses the challenges found in high-throughput, multidimensional 

FCM data analysis. Furthermore, my pipeline development employs state-of-the art BMI 

software that can be integrated with clinical outcomes. Validation against expert analyses 

ensures proper functionality with respect to the biological problem. 

 The pipeline shown in Figure 4 is divided into two main parts. Quality assessment 

on the right is performed after each of the main steps on the left. To accomplish QA, I utilize 

a cytometric fingerprinting algorithm to identify informative regions in the data. These 

informative regions or “fingerprints” can then be used to compare distributions of cell 

events or quality of gating. Data preprocessing is accomplished through transformation of 

the scatter and fluorescence channels, quantile normalization of fluorescence channels, and 

the removal of non-viable cells and doublets using spectral clustering. Automated 

clustering and labeling are accomplished using k-means partitioning of individual 

fluorescence channels and combining these partitions into multidimensional clusters. 

Feature extraction is performed through statistical analysis of cluster properties. Finally, 

feature selection is accomplished through a robust classifier based on the popular 

regularization technique, LASSO.  

R statistical programming software available in the Bioconductor project facilitated 

the processing of the high-throughput FCM analysis pipeline. All processes are tightly 

integrated through the Bioconductor framework, which allows for such a pipeline to be 

easily merged with clinical ontologies.  
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Figure 4. Proposed FCM analysis pipeline. The left panel shows the main computational 

components – from raw FCM data to feature selection. The output of each component is 

passed to quality assessment prior to entering successive stages of the pipeline. Quality 

assessment serves as intermediate steps, which controls for: 1) compensation, 

boundary/margin events, consistency across tubes in raw data; 2) consistency across tubes 

for viable cells, 3) and 4) biological relevance of desired populations, and 5) statistics of cell 

population proportions (features) 
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2.2 Pipeline Components 

2.2.1 Quality Assessment 
 

Quality assessment (QA) was incorporated 

throughout the analysis pipeline, using the available 

functions in the flowQ and flowFP packages. QA 

processes serve as intermediate steps between the 

main components, and serve to identify upstream, non-

biological sources (e.g. experimental setup, computed 

processing) of error. After data compensation and transformation of fluorescence 

channels, boundary and margin events were visualized using flowQ and potentially 

removed for specific channels. Boundary/margin events are considered potential 

statistical outliers and arise from weak signals, weak protein expression, or saturated 

signal intensity. A large number of boundary events may be due to poor compensation, 

flow cytometer settings, or drifts in cell events. Boundary and margin events were removed 

from any subsequent analyses as they may significantly affect downstream QA and 

preprocessing. A diagnostic report (Figure 5) was created and channels that have at least 

3% boundary/margin events are flagged. This cutoff was selected based on visual 

inspection of univariate and bivariate plots of the data.  
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Figure 5. Boundary/Marginal cell event quality assessment. The above panel shows 

percentage of marginal cell events for each channel (vertical axis) and each tube 

(horizontal axis) for a multi-tube experiment. The color bar on the right shows percentage 

level of cells, and is useful for easy visualization of marginal events. The panel shows that 

the channels associated with QDot 655 , APC, and PE-Cy7 show high concentrations of 

margin events, which should be further investigated and potentially removed. 

 



 
 

19 
 

Consistency of cell event distribution across tubes was also assessed. Since each 

patient’s sample at each timepoint had been aliquotted into separate tubes, I expect the 

distributions of cells that share morphological characteristics (measured by FSC and SSC) 

and specific cell surface antigens (e.g. CD3, CD4, CD45RA) to be similar across aliquots. I 

also expect more robust comparisons between tubes processed and stained in parallel, and 

analyzed sequentially on the same instrument at the same timepoint.  

This assumption was checked using the function flowFP, which takes in a set a multi-

tube experiments and a set of channels, which can be specified by the user. flowFP uses the 

probability binning (PB) algorithm [25] to recursively subdivide the multidimensional 

space into a set of hyper-rectangular regions (bins) with an equal number of events. The 

process is initialized by applying the PB algorithm to a training set that is randomly 

sampled from the data, thus creating a model of the multidimensional space. Figure 6 

shows a two-dimensional projection of the model along the FSC and SSC channels. The 

algorithm first finds the channel with the highest variance, divides the population at the 

median of the channel, and continues this subdivision process for several recursions, as 

specified by the user. The model is then reapplied to the remainder of the data, resulting in 

feature vectors, or “fingerprints” that describe the multivariate probability distribution for 

each tube. Based on visual inspection of the resulting fingerprints, the algorithm was run 

for a total of 5 recursions, resulting in 25=32 bins. This recursive number resulted in the 

most appropriate resolution of the one-dimensional projection of the fingerprint values 

(Figure 7). The standard deviation of the fingerprint values for each tube provides a 

comparative measure of the degree of similarity between each tube and the norm of all the 

tubes in the experiment. 
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Figure 6. Multidimensional Cytometric Fingerprint Regions. The two-dimensional (SSC-A vs. 

FSC-A) space shown above for a single tube is subdivided into rectangular bins of 

approximately equal events for calculating the multidimensional cytometric fingerprints. 

This visualization process can be used to view bins in tubes that contain excess events 

corresponding to cell location drifts or the presence of new populations. 

 

Checking for consistency of cell events across tubes was also useful for assessing 

whether normalization was needed. Tubes sharing certain antigenic markers should have 

very little variation in the plots produced by flowFP. This check can be performed by 

specifying the channels involved in gating out these markers. Aberrations can be readily 

detected in the QA plots produced by flowFP, as shown in Figure 7b. Panel plots are created 

to assess the magnitude of the gating deviation.  
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(a) 
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(b) 

 



 
 

23 
 

 

(c) 

Figure 7. flowFP QA panel plots. Panel plots can be used to quickly assess consistency of 

gating across tubes or distribution of cell events via the color map. a) The top panel shows 

a multi-tube experiment that has good consistency across tubes for specific channels. b) 

The panel plot can be easily scanned for aberrations, such as Tube 7. The high number of 

yellow and red plots in this multi-tube experiment suggests that normalizeation may be 
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needed across the shared channels. c) The problem in b) is resolved through normalization, 

as seen in the flowFP panel plot. 

2.2.2 Data Preprocessing 

2.2.2.1 Compensation and Boundary Event Removal 
Raw FCM data was first compensated to correct 

measured intensities by removing the overlapping 

emissions shared between fluorochromes. This was 

accomplished by applying the inverse of the spillover 

matrix to the raw data. Boundary events were examined 

and removed for the FSC and SSC channels, as determined 

from QA. 

2.2.2.2 Normalization and Transformation 
In order to better resolve cell populations and reduce the influence of asymmetry 

and heterogeneity issues in the data, transformations along the fluorescence and scatter 

channels were performed (Figure 8) [26]. Additionally, normalization of the data along was 

performed on a per-channel basis [27] to remove effects arising from technical, non-

biological variation and to facilitate downstream matching of cell populations. As suggested 

in Finak, et al. [26], fluorescence and scatter channels were analyzed separately, with the 

data normalized on the scale it would be visualized. Consequently, scatter channel data was 

normalized prior to transformation, and fluorescence channel data was normalized after 

transformation. 
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Figure 8. Logicle transformation of compensated data. The two-dimensional plots above 

correspond to CD45RA vs. CD4. a) Compensated data before transformation. b) Logicle 

transformation allows cell events to be better visualized for downstream gating/clustering 

purposes. 

 

Due to the exponential relationship between fluorochrome intensities and protein 

concentration in the cell, a logicle (biexponential) transformation was used along the 

fluorescence channels [28]. The presence of negative values in the data due to 

compensation also warranted the use of the logicle scaling function, S(x), given by Eq. 1: 

𝑆(𝑥;𝑤) = 𝑇𝑒−(𝑚−𝑤) �𝑒𝑥−𝑤 − 𝑝2𝑒−
𝑥−𝑤
𝑝 + 𝑝2 − 1�     for 𝑥 ≥ 𝑤  (Eq. 1) 
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The parameter, w, gives the range of linearized data about zero, in decades; m represents 

the range of the display, in decades; p is a constant, such that, 𝑤 = 2𝑝 ln𝑝
𝑝+1

; and T represents 

the maximum value of the display. Based on the data, the values, w = 0.5, m = 4.5, and T = 

262144, resulted in good segregation of the data. For the scatter channels, a linear 

transformation was used, such that the display ranged from 0 to 4095. 

Normalization of FCM data for a single multi-tube experiment was accomplished on 

a per-channel basis using quantile normalization, a technique that is widely used in 

microarray analysis, and also successfully applied to FCM analyses in the absence of 

normalization beads [29, 30]. Quantile normalization is a technique that matches the 

empirical distributions of fluorescence intensities for selected channels that identify the 

same set of antigens across all tubes (Figure 9). For each tube in a single multi-tube 

experiment, the untransformed (scatter channels) or transformed (fluorescence channels) 

fluorescence intensities of selected channels are sorted. For a single channel, the sorted 

intensities are then replaced with the mean of the intensities across all the tubes. Because 

not all tubes contained the same number of events, missing values were induced. Based on 

the assumption that these values were missing at random, missing values in each tube were 

replaced with the median intensities of the selected channels. Again, QA helped to make a 

decision on whether normalization is appropriate for the data. In FCM data, it is often 

difficult to ascertain if a variation is due to technical problems or real biological differences. 

Blindly normalizing the data may potentially remove useful information by normalizing out 

real biological differences between two samples. 
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(a) 

(b) 
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Figure 9. Quantile Normalization of Shared Tubes.. a) Transformed data before 

normalization. b) Quantile normalization matches distributions across tubes and allows for 

even comparison and consistent gating processes 

2.2.2.3 Non-Viable Cell Removal 
After normalization and transformation of the compensated FCM data, non-viable 

cells, such as cell debris or red-blood cells, were removed. The removal of these cells is 

important for accurate, reproducible analyses. Non-viable cell events are traditionally 

identified through staining with propidium iodide (PI) and gating on events with high PI 

intensity; however, the available FCM data in this study did not employ this procedure. 

Instead, non-viable cells were removed via clustering in the FSC and SSC dimensions for 

each tube in a multi-tube experiment. Non-viable cells are defined as events with low FSC 

and SSC values.  

Initially, flowMeans, a model-based clustering method that extends k-means, was 

used to cluster non-viable cells [31]. Unlike traditional k-means, the user does not need to 

predefine the number of clusters in flowMeans and the cluster shapes are not spherical. 

Often it is not possible to predefine the number clusters due to sample intervariability in 

FCM data [31]. Instead, a reasonable maximum based on the kernel density estimation of 

eigenvectors of the data was used to initialize the data. Furthermore, a small uniform noise 

was added to each event to avoid singularity issues that may arise from transformation. 

The algorithm first creates overlapping clusters, which are later merged based on a 

symmetric derivation of the scale-invariant Mahalanobis distance metric: 
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𝐷(𝑿,𝒀) = min �
�(𝑿� − 𝒀�) ∙ 𝑆𝑿−1 ∙ (𝑿� − 𝒀�)𝑇

�(𝑿� − 𝒀�) ∙ 𝑆𝒀−1 ∙ (𝑿� − 𝒀�)𝑇
    (Eq. 2) 

In Eq. 2, X and Y represent two cluster populations and 𝑆𝑿  and 𝑆𝒀 , represent the 

covariance matrix of clusters X and Y, respectively. Finally, a piecewise linear regression 

change-point algorithm (Figure 10) estimated the optimal number of subpopulation based 

on a break point that minimized the error of the regression model. A leave-one-out cross-

validation strategy was used to obtain parameter values (i.e. maximum number of cluster = 

20 and initial number of cluster solutions = 10). 

 

Figure 10. Changepoint detection algorithm in flowMeans. a) Correct changepoint detected 

the right number of clusters corresponding to the iteration number (red dot). b) Incorrect 

changepoint detected using cross-validated parameters. 
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Ultimately, I found that the flowMeans algorithm was not yielding stable results 

when only the scatter channels were specified for multidimensional clustering. The 

changepoint detection algorithm did not always provide the correct number of clusters, 

given the parameters obtained from cross-validation (Figure 10). As a result, the algorithm 

did not adequately separate non-viable cells in these cases, often creating multiple 

subpopulations in this compartment or merging non-viable cells with lymphocyte 

populations (medium FSC and low SSC values) (Figure 11). Prior to cell population 

identification and labeling, it is important to remove as much as possible influence from 

non-viable cells. Therefore for this final stage of data preprocessing, a more robust 

alternative was explored.  
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Figure 11. Inadequate separation of non-viable cells using flowMeans. The flowMeans 

algorithm poorly segregated non-viable cells in several samples. The above example 

corresponds to the incorrect changepoint detection seen in Figure 10b. a) Multivariate 

view of the clusters. Green cells are considered non-viable (low FSC and low SSC). 

However, as seen in b) the algorithm greatly underestimates the non-viable population by 

incorrectly identifying some non-viable cell events as part of the lymphocyte population 

(black). 

 

Spectral clustering is an unsupervised, graph-based technique that has been 

applied to many biological datasets and has low sensitivity to the required parameters (i.e. 

a scaling parameter, σ that controls edge weights and the separation factor) [32]. 
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Furthermore, it is robust to noise, outliers, and cluster shape. A computationally effective 

algorithm, called SamSPECTRAL, has been implemented in Bioconductor framework [33]. 

The algorithm requires a matrix of data points (i.e. a single tube of FCM cells). To mitigate 

the expensive computational cost associated with traditional spectral clustering, 

SamSPECTRAL first performed a data reduction scheme based on faithful sampling, which 

produces a nearly uniform set of representative vertices (data points) and edges that 

preserve density information of the original data. SamSPECTRAL then builds a graph, with 

vertices corresponding to data points (i.e. cell events), and edges connecting all pairs of 

vertices. Edges are weighted based on a similarity criterion between any two vertices. After 

normalizing the adjacency matrix of the graph, the algorithm then computes the eigenspace 

of the normalized graph in order to automatically determine the number of clusters based 

on the “knee point” of the eigenvalue curve (similar to the change-point detection of 

flowMeans. A modified Markov Clustering (MCL) algorithm [34] partitioned the graph 

instead of the traditional spectral clustering method. Finally, k-means is used to partition 

the graph into a set of clusters. The post-processing stage of the algorithm combines 

biological knowledge of FCM data (i.e. similarities between vertices are higher in regions 

with higher densities and tend to exist at the center of cell populations) with the resulting 

clusters. Figure 12 diagrams the SamSPECTRAL process in the successful partitioning of 

non-viable and viable cells in a single tube, using a scaling parameter of σ=100 and a 

separation factor of 1.2, as well as the channels, FSC-A, FSC-H, SSC-A, and SSC-H as input for 

the multidimensional clustering algorithm. The parameter values were selected based on a 

leave-one-out cross validation strategy. 
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Figure 12. Faithful sampling and spectral clustering of FCM data using SamSPECTRAL. For 

comparison with flowMeans, the results above are obtained from the same tube data used 

to generate Figures 11 and 12. a) Faithful sampling successfully preserved dense areas in 

the data. b) SamSPECTRAL clustering provided better separation of non-viable cells (cyan), 

without over extracting the lymphocyte population (red).  

 

At a cost of computational running time, SamSPECTRAL was able to resolve non-

viable cells by considering only the scatter channels in the multidimensional clustering 

algorithm. For a typical FCM sample with 50,000 events, SamSPECTRAL had a running time 

of 2.5 minutes, compared to a run time of 30 seconds for flowMeans. Based on the 

clustering results, I defined non-viable cells as clusters whose centers had transformed FSC 

values less than a determined cutoff point (Figure 13). Proper normalization of the scatter 

channels was needed to set this cutoff, as cells may drift slightly over time. In other 

datasets, this cutoff may need to be set at the discretion of the user. However, the robust 
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performance of SamSPECTRAL should ensure that populations are well-separated at this 

step to specify a reasonable exclusion criterion. Non-viable events were ultimately 

excluded from subsequent steps in the analysis pipeline.  

 

Figure 13. Removal of non-viable cells. The SamSPECTRAL algorithm facilitated 

identification and removal of non-viable cells using the scatter channels (FSC-A, FSC-H, 

SSC-A, and SSC-H) as input for multidimensional clustering. Non-viable cells corresponded 

to clusters that have mean FSC-A value less than 1500. 
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2.2.2.4 Doublet Removal 
In addition to non-viable cells, doublets were excluded by clustering in the scatter 

channels. Doublets often arise when two cells are considered as a single event, as they pass 

through the laser. This is particularly problematic, as the aggregate phenotypic expression 

on both cells may be erroneously considered a type of cell subpopulation. In practice, 

doublets are gated by viewing the data in the area versus height plot of a scatter channel 

(e.g. FSC or SSC). On the area versus height plot, these events are often characterized by a 

broadened height signal and reside above a narrow band (on-axis) of densely clustered 

events. Using this property, SamSPECTRAL was used to remove these off-axis events using 

the same parameters for non-viable cell clustering (i.e. scaling parameter of σ=100 and a 

separation factor of 1.2) (Figure 14). A post-processing step removed the smallest cluster 

corresponding to the doublet events. This heuristic was based on the observation that the 

densely populated areas will be clustered together as the largest clusters, while the sparse 

doublet events will be considered together, forming the smallest cluster.  
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Figure 14. Doublet Gating Procedure. Doublets (dotted ellipse) were identified using 

SamSPECTRAL clustering, by specifying the scatter channels (FSC-A, FSC-H, SSC-A, SSC-H). 

The smallest cluster on the off-diagonal axis was considered the doublet population. 
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2.2.3 Cell Population Identification and Labeling 
After data preprocessing, the Bioconductor 

package, flowType [6] was used to cluster and label cell 

populations. I hypothesized that using the k-means 

algorithm in flowType to partition each channel into a 

set of negative and positive populations, and then 

merging the results to generate multidimensional 

immunophenotypes can lead to an efficient clustering and labeling strategy. The 

assumption is that each antigenic marker identified by each channel is either expressed 

(positive) or unexpressed (negative). Furthermore, using flowType assumes that bright and 

dim marker expressions, which arise from fluorescence-spilling between channels and 

become difficult to accurately quantify, are resolved in other dimensions. flowType takes in 

a single tube experiment and a set of channels, which I have defined as all fluorescence 

channels available in the data. Figure 15 shows successful partitioning of the channels into 

negative and positive populations. 
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Figure 15. Single-dimensional partitions using flowType. The flowMeans  algorithm 

successfully divided univariate distributions into positive and negative cell populations for 

a 9-color FCM experiment.  

 

Bipartitions are then combined for all channels resulting in 2n distinct cell 

immunophenotypes that correspond to different antigenic expressions (e.g. CD3+CD20-

CD4-CD8-). However, because some cell populations are subsets of other populations (e.g. 

CD3+CD20-CD4+CD8-CD197+CD45RA+ is a subset of CD3+CD20-CD4+CD8-), the total 
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number of cell immunophenotypes that can be extracted using flowType is increased to 3n, 

because a marker can be considered neutral or not present in the immunophenotype.  

2.2.4 Feature Extraction   
 flowType was also used to display a list of relative 

cell frequencies corresponding to each 

immunophenotype. Similar to Aghaeepour, et al. [6], the 

total number of resulting immunophenotypes from the 

flowType output was further reduced to a set of 

homogeneous groups using linkage hierarchical 

clustering [35] (hclust function in R stats package) of 

these cell frequencies. The final set of immunophenotypes from the hierarchical clustering 

can then be further reduced via the feature selection procedure of the pipeline.  

2.2.5 Feature Selection 
 It is often the case that the number of resulting 

features or classifiers from the analysis (e.g. 

immunophenotypes) may greatly exceed the number of 

available training instances (e.g. patients in the study) 

(i.e. “large p and small n”), resulting in model 

overfitting and poor predictive performance. To 

prevent overfitting in regression of multidimensional 

features, regularization techniques, such as Lasso[36] and its variant, elastic nets [37], have 

been proposed to introduce regularization parameters or weights that penalize features  
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that are irrelevant. In the proposed study, I leverage an existing package, called FeaLect, 

which presents a robust classifier for feature selection based on Lasso. I hypothesize that 

this feature scoring procedure can yield robust results for exploratory and predictive 

analyses. 
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Chapter 3 
 

3.1 Validation of the Analysis Pipeline 
 

 The innovation in the proposed work lies in the application of biomedical 

informatics techniques to create an analysis pipeline that can reliably anticipate and 

measure cell populations in the clinical domain of organ transplantation. The validation 

strategy carried out in this chapter relies on comparison with human-driven gating. 

Traditionally, human-driven gating is used to capture known cell populations belonging to 

the immune repertoire of interest. Therefore, it is useful in determining the biological and 

clinical relevance of automated results, and evaluating reproducibility of automated 

analyses. I define my pipeline as validated if the features (e.g. cell population frequencies) 

from the automated clustering are statistically similar to human validation.  Successful 

validation can then be used to justify extension of the analytical framework to exploratory 

analyses for detecting novel and uncommon cell populations. In this chapter I present the 

validation results of the proposed pipeline as a proof-of-concept that high-throughput, 

multidimensional flow cytometry analysis is feasible for application in organ 

transplantation studies. 
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3.1.1 Dataset 
 The FCM validation dataset was obtained from the FlowCAP data repository 

(https://www.immport.org/immportWeb/display.do?content=FlowCap) under Challenge 

5. The dataset originated from a clinical study [38] investigating the effect of 

immunotherapy (placebo, omalizumab alone, rush immunotherapy alone, and omalizumab 

and rush immunotherapy combined) on ragweed-induced allergic rhinitis in 145 patients 

over the four treatment arms. Peripheral blood mononuclear cells were isolated in blood 

samples over the various timepoints of the study. Samples were aliquotted into 7 tubes and 

stained with 4 different fluorescent dyes. FSC and SSC parameters were also specified and 

common to all the tubes.  Each tube contained approximately 12,000 to 20,000 cells. The 

following panel in Table 2 summarizes the staining profile. In this validation, only the 

results of the first treatment arm (34 patients) (immunotherapy with anti-IgE) at timepoint 

5 are analyzed with respect to the human-gated results. A single, expert observer 

performed manual analysis, thus eliminating potential interobserver variability. 

 

Table 2. Seven-tube, 4-color staining panel for validation dataset. 

https://www.immport.org/immportWeb/display.do?content=FlowCap
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3.1.2 Methods 
 Using the analysis pipeline, the data was preprocessed prior to automated gating, 

labeling and feature extraction. The QA process ensured that the necessary steps of 

compensation, non-viable cell and doublet removal, and consistency were met prior to 

running downstream analyses.  Parameters for cytometric fingerprinting and spectral 

clustering were determined from a randomly selected training set of 10 patients. Selected 

parameters were then applied generally to the remaining 24 patients. Labeling analyses 

were performed on the lymphocyte compartment, which was automatically clustered with 

SamSPECTRAL using the scatter channel dimensions, a scaling parameter of σ=300, a 

separation factor of 0.9, and by specifying three clusters corresponding to granulocytes, 

monocytes and lymphocytes. Lymphocytes were defined as the cluster with centers located 

in the lower left quadrant of the SSC-H vs. FSC-H plot (Figure 16). 
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Figure 16. Lymphocyte clustering in validation data. SamSPECTRAL successfully divided the 

cell event space into the three main cell populations- lymphocytes (red), granulocytes 

(green) and monocytes (black). The natural biological relative locations of these 

populations were used to extract only the lymphocytes 

 

 After clustering the lymphocyte compartment, each tube was further analyzed using 

flowType to label all possible multidimensional immunophenotypes. Proportions of cell 

populations, expressed as frequency of the population divided by the total number of cells 
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in the sample, were obtained for each immunophenotype and compared to human-gating 

results.  

3.1.3 Statistical Analyses 
 First, I aimed to evaluate the extracted lymphocyte populations, which was assessed 

statistically by performing a repeated measure factor ANOVA test to measure the 

intrapatient variation of lymphocyte proportions across all tubes. One major assumption 

that must be checked is the consistency of cell distributions across tubes containing the 

same sample of blood from a given timepoint. Evaluating this assumption gives an idea of 

the pipeline’s ability to reproducibly gate shared populations between tubes in an 

experiment. Using the standard ANOVA to test consistency was not appropriate as it fails to 

model the dependency between each tube, therefore violating the independence 

assumption of the ANOVA test. The sphericity, (i.e equality of variances of the differences in 

between the various tubes) assumption of the repeated measure factor ANOVA was 

determined using Mauchly’s test, which formulates a test-statistic based on the sample 

covariance matrix. The F-test statistic is corrected using the Greenhouse-Geisser ε if 

sphericity is violated. 

 Secondly, my validation strategy examined the agreement between manual and 

automated results using Bland-Altman (BA) analysis [39], in which the differences (defined 

in the plots to be the automated results subtracted from the manual results) in measured 

proportions for a particular subpopulation is plotted against the average proportion 

obtained from the two methods. BA analyses were carried out for abundant and rare cell 

populations in the lymphocyte compartment. The correlation coefficient measured the 

linear relationship between the manual and automated results for a single cell population. 
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All values reported are mean ± standard deviation, unless otherwise indicated. Statistical 

significance is considered at the 0.05 level.  

3.1.4 Results 
 

3.1.4.1 Lymphocyte Extraction 
 The repeated measure factor ANOVA test did not support the null hypothesis of 

consistency of lymphocyte cell events across tubes (unadjusted F = 3.52, df = 6, p=0.0029), 

while Mauchly’s test showed violation of the sphericity assumption (W = 0.09, χ2 = 73.95, p 

< 0.001). Afterm the Greenhouse-Geisser ε (0.523) correction for sphericity, the adjusted p-

value remained significant (p=0.026), which suggests intrapatient differences in the 

proportion means among the tubes. However, as seen in Figure 17, there is a strong, 

significant linear relationship (r = 0.91, p<0.001) between the manually-determined and 

automatically-extracted lymphocyte population proportions, and the matched points fall 

roughly on the identity line, suggesting good accuracy. The BA plot of lymphocytes (Figure 

18a) also shows generally good agreement between the manual and automated gating 

process. The automated gating method has an average bias of about 5% lower compared to 

the manual gating, suggesting that the automated pipeline tends to slightly over-extract the 

lymphocyte population. All, but one data point, fall within the 95% limits of agreement (-

15% to +5%).  
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Figure 17. High correlation between manual and automated gating methods. The 

automated pipeline resulted in significant and strong linear relationship with manual 

gating results. Cell proportions for lymphocytes are plotted above. The black line 

represents the identity line.  

3.1.4.1 Agreement Assessment 
Bland-Altman analyses for a diverse set of cell populations are shown in Figures 19 

and 20. Populations range from abundant immunophenotypes, such as lymphocytes and 

CD3+CD4+lymphocytes to more uncommon and rare immunophenotypes, such as CD3-

CD4-CD25-CD45RO- All plots showed good agreement between manual and automated 

analyses, with biases less than 3.5%, and nearly all observations contained within the 95% 

limits of agreement. In all, but the measurement for CD3-CD56-CCR5-CXCR3-, the 

automated algorithm overextracted the cells. The best agreement was observed for 
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CD3+CD4+CD25+CD161 (Figure 19), with bias < 0.5%. The correlation coefficient for this 

population was only moderate, but highly significant (r=0.75, p<0.01). 
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Figure 18. Bland-Altman analyses for intermediate-frequency and rare cell populations. Differences are expressed as manual 

minus automated

(a) (b) 

(c) 
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Figure 19. Bland-Altman analyses for intermediate-frequency and rare cell populations. Differences are expressed as manual 

minus automated

(a) (b) 

(c) 
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3.1.5 Discussion  
 

 The results of this validation study suggest a multidimensional, automated analysis 

pipeline can be used in lieu of the manual gating traditionally employed in FCM data 

analysis. Although the repeated measure factor ANOVA test resulted in rejecting the 

assumption of consistency among extracted lymphocyte events, the average variation 

across tubes for all patients is only 3%, which may be clinically acceptable for most studies. 

Furthermore, this error is similar to the 2% average intraobserver variation due to the 

manual analysis of a single individual. This error is likely to be much higher if multiple 

individuals or an inexperienced individual gated the data; manual, visual based cell 

population identification is often a highly subjective task and depends on the analyzer’s 

expertise. Nevertheless, there was very significant, strong correlation and good agreement 

between the two methods for extracting lymphocytes. 

 The validation study also shows extensibility of the pipeline to reliably measure not 

just abundant cells, but even intermediate-frequency and rare populations in the data. 

From BA analyses of several, diverse cell populations, the rare populations often had the 

lowest bias between manual and automated methods. . Theses biases were also within 5%, 

which may not be clinically important. Correlations between the two methods for these 

populations were also highly significant. These findings have important implications for 

exploratory analyses, where one may be interested in finding all possible cell populations 

associated with a particular clinical outcome.  

 Human validation is only the first step in determining the biological and clinical 

relevance of the analysis pipeline. Here, I have shown that for expected cell populations, the 
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automated methods show good agreement with manual results. For novel or unexpected 

cell populations, a prospective experimental validation can be performed. The aim is to first 

purify these novel populations using FCM and then test their ability to mediate certain 

biological processes as anticipated from clinical relationships.  

 This study is not without limitations. While flowType provided a good initial step for 

labeling similar clusters across tubes, the algorithm at the moment only uses hard 

constraints to define positive and negative expressions of an antigen, with the assumption 

that less discernible expression levels, such as dim and bright, for an antigen, will be 

resolved in other channels. The use of a hard constraint may have resulted in the consistent 

overextraction of cell populations when compared to the manual results. An alternative 

would be to extend flowType to incorporate more than 2 populations for a single dimension 

or a fuzzy k-means implementation where cells can belong to more than one population.  

 Overall, this validation study has shown that the results from the automated 

pipeline are as reproducible and accurate as the traditional manual approach. Potentially, 

this can lead to more efficient FCM data analysis and lead to quicker tests of biological 

hypotheses in clinical studies. I aim to use this pipeline to further analyze the functional 

characteristics of a transplant recipient’s immune repertoire with respect to several clinical 

outcomes. 
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3.2 Ongoing and Future Work 
 

 Ongoing and future work aims to leverage the proposed FCM analysis pipeline to 

study two main objectives associated with renal transplant patients enrolled in an ongoing 

clinical trial to study the safety and effectiveness of a new investigational drug combination 

consisting of alemtuzumab, belatacept, and sirolimus. 1) The first objective aims to 

characterize immune repertoire these patients who have all undergone BK virus 

reactivation. 2) A second objective aims to characterize T-cell repopulation in these 

patients receiving alemtuzumab depletional induction and belatacept/sirolimus 

maintenance therapy. 

3.3 Biological Motivation - Organ Transplantation 
 

3.3.1 Significance 
 

 The adverse side-effects of immunosuppressive treatments in organ transplantation 

constitutes an important clinical problem due to the markedly lower survival rate in 

transplant patients compared to age-matched healthy controls [14], and the associations of 

immunosuppressive drugs with long-term infection and comorbidities of vascular diseases 

[15-18]. Immunosuppressive drugs are administered to transplant recipients to reduce the 

risk of acute organ rejection by impairing the helper, activation, proliferation, and effector 

functions of T-cells. This reduction of acquired immunity, however, may also result in 

higher susceptibility to viral infection. Therefore, immunologic monitoring is an important 

part of the clinical workup for transplant individuals. 
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3.3.2 Intrinsic Risk Profile  
 

 Decreased acquired immunity is further compounded by an individual’s intrinsic 

risk profile (Figure 4), which is a function of age, environmental factors, and past exposure 

to pathogens. Over time, environmental antigen exposure provokes a patient’s T-cell 

repertoire to be memory enriched, resulting in a decreasing risk of primary viral infection, 

and concomitant increasing risk of allograft rejection due to the effect of heterologous 

alloreactivity [19]. During aging, persistent exposure to environmental challenges drives 

the T-cell repertoire into one dominated by exhausted and senescent immunophenotypes. 

This exposure increases the risk of viral reactivation, lessens risk of rejection, but increases 

risk of immunosuppressive drug toxicity. The dynamic changes across the T-cell repertoire 

are highly individualistic. Therefore, understanding these phenotypic and functional 

changes may require a personalized approach that considers these fluctuations with 

regards to a patient’s clinical outcomes and risk for rejection and infection. 
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Figure 20. Intrinsic risk profile. Owing to heterologous alloreactivity, an individual’s 

intrinsic risk for rejection or opportunistic infection is a function of age, environmental 

factors, and past pathogen exposure. (Image courtesy of Dr. Alan Kirk) 

 

3.4 Role of Multidimensional FCM Analysis 
 
Characterizing a transplant recipient’s immune repertoire is critical to 

understanding the mechanisms behind immunologic transplant failure and potential viral 

infection.  Mutidimensional FCM is frequently used to quantify the immune repertoire 

during the course of transplantation and recovery. Based on the information in Section 3.3, 

I define immune repertoire to be the diverse group of cells involved in the mediation of risk 

of rejection in organ transplantation or risk of opportunistic viral infection. These cells 

predominantly include naïve T-cells, which are activated upon initial exposure to foreign 
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substances, and proliferate and expand to effector and memory T-cell populations [20]. As 

previously mentioned, chronic exposure to viral infection and age-related decline of the 

thymus function also leads to exhausted and senescent T-cell types. FCM The data analysis 

pipeline can be applied to assess a transplant recipient’s immune repertoire over time in 

single patients and in a cross-sectional patient population with diverse diagnostic and 

demographic characteristics. The main assumption in using such a pipeline is that the 

mechanisms driving complications in organ transplantation intersect in a way that is both 

anticipatable and measurable. 

 

3.5 Study Descriptions 
 

3.5.1 Patient Cohort 
 
 The patient cohort currently consists of 19 patients, aged 18 and older, undergoing 

non-HLA-identical living donor renal transplantation. Patients receive an infusion of 

alemtuzumab prior to transplantation as a T-cell depletion therapy, followed by a 

combination of belatacept and sirolimus for immune maintenance therapy post-transplant. 

To date, a total of 19 patients have been recruited and followed-up to five years.  

3.5.2 Dataset 
 

 Peripheral blood mononuclear cells (PBMCs) were obtained from eighteen of the 

nineteen renal transplant patients, for 5-10 time points, during a period of 24-36 months. 
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Each timepoint consisted of 14 individual tubes. For each tube, 8 fluorescent channels were 

used to measure the expression of cell surface receptors, in addition to 4 scatter channels 

(2 each corresponding to the area and height pulse of FSC and SSC channel). Therefore, 

each tube yielded 12-dimensional data with 100,000-300,000 cells. 

3.5.3 BK Virus Study 
 

 The BK virus (BKV) is a widespread pathogen commonly affecting renal transplant 

recipients. Aggressive immunosuppressive therapies have been known to impair BKV-

specific immunity, predisposing an individual to viral reactivation. Among transplant cases 

with reactivated BKV, 1-10% potentially develops BKV-associated nephropathy, leading to 

progressive renal injury and acute allograft rejection [40, 41]. BKV is often asymptomatic 

and detected in the blood through PCR and through histological examination of the kidneys 

[42]. To date, there is no standard treatment for BKV.  

 Using BKV as a driving biological project, I aim to identify and quantify longitudinal 

patterns (e.g. shape, count, rate of growth) of all possible cell populations. Comparing the 

degree of immunosuppression in BKV patients with non-BKV patients could also yield 

interesting information regarding immune repertoire unique to BKV and risk for BKV-

associated nephropathy. The feature selection portion, utilizing a variant of the 

regularization procedure, Lasso, will be important in determining which subset of features 

can best predict and explain viral activation. 
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3.5.4 T-cell Repopulation Study 
 

 Numerous phenotypes are being discovered in relation to maturation, exhaustion, 

and senescence, which naturally occur as an immune system expands and contracts to 

meet environmental needs. In the clinical study, patients are administered the drug, 

alemtuzumab, which impairs T-cell functionality. It is expected that T-cell activation will 

burst following depletion. However, the kinetics and functional characteristics following 

this event are poorly understood. Using the automated analysis pipeline, this study will 

quantify patterns among T-cell activation states upon repopulation and compare 

longitudinal trends with baseline (pre-transplant). Findings will be compared to a control 

group (e.g. patients administered alternative immunosuppressive regimens). 
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Concluding Remarks 

 The work proposed in this thesis is significant in two aspects: 1) it presented the 

development of an objective quantitative framework for analyzing high-throughput 

multidimensional FCM data, and 2) a validation study showed that the results of the 

analysis pipeline have good agreement with traditional, manual methods.  

 The pipeline consisted of five key steps: 1) data preprocessing, 2) automated gating, 

3) automated labeling, 4) feature extraction, and 5) feature selection. A robust quality 

assessment step was implemented at every step of the pipeline to account for potential 

source of systematic error prior to entering a subsequent step in the pipeline. My approach 

to this pipeline was aimed at addressing the challenges facing the FCM data analysis 

bottleneck. The integration of state-of-the art informatics techniques into a single pipeline 

shows great potential for scalability to hundreds of thousands of events and multiple 

channel dimensions. 

 Secondly this pipeline showed good performance against human validation. Cell 

populations obtained from a clinical study were similar to those obtained with the 

automated pipeline. Furthermore, results were reproducible and accurate.  

 Future studies will examine hypotheses with respect to the driving biological 

problem of risk of rejection and viral activation in organ transplantation. Studies will 

investigate longitudinal patterns of the immune repertoire of these patients as it relates to 

their clinical characteristics.
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