Local-global principles for hermitian spaces over semi-global fields Open Access

Guhan, Jayanth (Summer 2022)

Permanent URL: https://etd.library.emory.edu/concern/etds/nk322f71d?locale=en
Published

Abstract

This dissertation studies the Hasse principle for projective homogenous spaces under unitary groups over semi-global fields and obtains partial results. We show that a local-global principle holds for the isotropy of hermitian forms over 2-dimensional complete local fields under certain conditions. We also prove a theorem for isotropy of hermitian spaces over odd degree extensions of function fields of p-adic curves.

Table of Contents

1 Preliminaries 1

1.1 Central Simple Algebras . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Involutions and Hermitian Forms . . . . . . . . . . . . . . . . . . . . 3

1.3 Linear Algebraic Groups . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Projective Homogeneous Spaces . . . . . . . . . . . . . . . . . . . . . 10

1.5 Morita Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Hasse Principle 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Division Algebras with an involution of the first kind over two dimensional local fields . . . . . . . . . . . . . . . . 17

2.3 2-torsion division algebras with an involution of the second kind over

two dimensional local fields . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Maximal Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 A local global principle for hermitian forms over two dimensional local

fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Behavior under blowups . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Springer’s problem for odd degree extensions 43

3.1 Complete discretely valued fields . . . . . . . . . . . . . . . . . . . . 44

3.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Bibliography 47

About this Dissertation

Rights statement
  • Permission granted by the author to include this thesis or dissertation in this repository. All rights reserved by the author. Please contact the author for information regarding the reproduction and use of this thesis or dissertation.
School
Department
Degree
Submission
Language
  • English
Research Field
Keyword
Committee Chair / Thesis Advisor
Committee Members
Last modified

Primary PDF

Supplemental Files