Dynamics of 2-Dimensional Soft Particle Flow Through Hopper Open Access
Lonial, Benjamin (Spring 2023)
Abstract
I study the quasi-2d hopper flow of oil-in-water emulsions as they exit an orifice in two
scenarios. First, I look at many particle flow of droplets with diameters smaller than the
opening width For many particle flow, prior work on hopper dynamics has focused on the flow
rate, which is defined as the number of oil droplets exiting per unit time. This has shown a
general power law dependence between flow rate, Q, the ratio of the opening width, w, to the
average diameter of droplet size, d, and the fitting constant κ as such: Q ∼ (w/d−κ)β. Prior
work has seen various values for the exponent β, corresponding to different experimental
conditions. Recent work has suggested that the range of values for the exponent β can
explained by the ratio of the viscous drag force of particles moving in their medium to the
kinetic friction of two particles sliding past each other. In two dimensions, for the low kinetic
friction limit, this exponent should be 1/2. We experimentally verify this claim by studying
the flow rate of silicon oil-in-water emulsions as they pass through an orifice over a range
of w/d values. We find that the flow rate collapses to the general curve with β = 0.49 and
κ = 1.47. I then extend this work to examine the flow of a oil droplet with a diameter
larger than the opening width of the orifice. If the volume of oil is high enough, I find that
droplets can flow through this opening by deforming, even when the droplet diameter is 3°ø
the size of the opening. In this scenario, I compare my results with the common approach to
modelling soft particles: the Durian bubble model. This model predicts that once the droplet
is half-way through the opening, the wall-droplet repulsion assists in pushing the droplet
out of the hopper, so much so that the droplet overshoots its terminal velocity. I find that
my experiment is unable to replicate the velocity overshoot predicted by the Durian bubble
model. I suggest that this occurs because of a regime where viscous dissipation is capable
of depleting the energy required to overshoot, as well as the presence of a non-negligible
depletion force.
Table of Contents
1. Introduction
1.1 Many Particle Flow and the Wandering Exponent . . . . . . . . . . . . . . . 2
1.1.1 Beverloo Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Single Particle Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Surface Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2. Methods
2.1 Emulsion Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Snap Off Through Direct Syringe Injection . . . . . . . . . . . . . . . 10
2.1.2 Microfluidic Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Chamber Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Hopper Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Hopper Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Computational Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.1 Particle Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.2 Measuring Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3. Multiple Particle Results and Analysis
3.1 Trajectory of Droplets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Velocity Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Flux for Soft Particles . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Experimental Data on Flux . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Fitting to the Beverloo Equation . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4. Single Particle Results and Analysis
4.1 Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.1 Durian Bubble Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.2 Surface Energy and Velocity . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.3 Center of Mass Velocity . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.4 Leading and Trailing Edge . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Conclusion 48
Bibliography 51
About this Honors Thesis
School | |
---|---|
Department | |
Degree | |
Submission | |
Language |
|
Research Field | |
Keyword | |
Committee Chair / Thesis Advisor | |
Committee Members |
Primary PDF
Thumbnail | Title | Date Uploaded | Actions |
---|---|---|---|
|
Dynamics of 2-Dimensional Soft Particle Flow Through Hopper () | 2023-04-12 16:21:28 -0400 |
|
Supplemental Files
Thumbnail | Title | Date Uploaded | Actions |
---|