The Development and Mechanistic Studies of Group(IX)Cp*-Catalyzed Allylic C–H Functionalization Reactions Proceeding via a π-allyl Intermediate Open Access
Farmer Nelson, Taylor (Fall 2020)
Published
Abstract
Allylic C–H functionalization has proven to be a simple method to form complex allylic products from their olefin counterparts. However, the traditional palladium-catalyzed allylic C–H functionalization reactions are largely limited to terminal olefins with stabilized nucleophiles. In order to fully realize the potential of allylic C–H functionalization to include a wider olefin and nucleophile scope, a novel catalyst system was deemed necessary. Herein is reported the development and mechanistic studies of novel group(IX)Cp*-catalyzed allylic C–H functionalization reactions that aim to address this problem. First, an intermolecular allylic C–H oxygenation reaction was developed utilizing internal olefins and alcohols or carboxylates as the oxygen nucleophile. Following this study, a full mechanistic investigation of a corresponding allylic C–H amination was performed revealing a novel Rh(III)/(IV)/(II) catalytic cycle followed by a Lewis-acid catalyzed allylic substitution to form the corresponding C–N bond. The mechanism described above precludes the use of an asymmetric metal-catalyst to induce enantioselectivity from direct reductive elimination. For this reason, a second-generation allylic C–H sulfamidation reaction was developed proceeding through an Ir(V) nitrenoid complex providing branched products selectively. In order to develop a regiodivergent protocol based on reagent choice, optimization of the first-generation linear-selective allylic C–H amination was also performed. Following this investigation, we sought to develop novel C–C bond forming methods. Therefore, we set out to determine the mechanism of a previously disclosed allylic C–H arylation reaction. Stoichiometric synthesis and reactivity of putative group(IX)Cp*-π-allyl intermediates afforded a more complete picture confirming a novel Rh(III)/(IV)/(II) catalytic cycle refuting the development of a corresponding allylic C–H alkylation reaction. Development of an enantioselective C–H arylation is currently ongoing.
Table of Contents
Table of Contents
Chapter 1: Introduction and Background: Allylic C–H Functionalization via π-allyl Intermediates Prior to 2018
I. Palladium-Catalyzed Reactions...................................................................... 1
I.1. Introduction and Seminal Work...................................................................... 1
I.2. C–O bond forming reactions...........................................................................4
I.3. C–N Bond forming reactions...........................................................................8
I.4. C–C bond forming reactions........................................................................... 9
I.5. Conclusions and Outlook...............................................................................10
II. Group(IX) catalyzed systems..........................................................................11
II.1. Intramolecular Allylic C–H Aminations.......................................................... 12
II.2. Allylic C–H Electrocyclization to form Heterocycles......................................... 15
II.3. Stoichiometric RhCpE-π-allyl Complex Studies................................................16
II.4. Intermolecular Allylic C–H Amination.............................................................18
II.5. Conclusions and Outlook................................................................................19
III. References.....................................................................................................20
Chapter 2: Rhodium-Catalyzed C–O Bond Formation via Allylic C–H Functionalization of Internal Olefins
I. Introduction: Allylic Ethers............................................................................28
I.1. Synthesis.......................................................................................................28
I.2. Allylic C–H Functionalization......................................................................... 30
II. Optimization Studies......................................................................................33
III. Scope Studies of Allylic C–H Etherification.......................................................35
III.1. Alcohol Coupling Partner................................................................................ 35
III.2. Olefin Coupling Partner.................................................................................. 39
III.3. Terminal Olefins..............................................................................................41
IV. Mechanistic Investigations...............................................................................43
V. Conclusion......................................................................................................44
VI. Experimental Procedures..................................................................................45
VI.1. General Information.........................................................................................45
VI.2. General Procedure A for Reaction Optimization..................................................46
VI.3. General Procedure B for Allylic Etherification.....................................................47
VI.4. General Procedure C for Suzuki Cross-Coupling..................................................47
VI.5. Procedures and Characterization.......................................................................48
VI.6. Deuterium Exchange Experiment......................................................................83
VI.7. Kinetic Isotope Effect........................................................................................83
VI.8. Starting Material Synthesis...............................................................................84
VII. Characterization Data......................................................................................89
VIII. References....................................................................................................163
Chapter 3: The Mechanism of Rhodium-Catalyzed Allylic C–H Amination Proceeding via a Rh(IV)-π-allyl Intermediate
I. Introduction: Mechanisms in C–H Functionalization........................................168
I.1. Rh(III)/Rh(I) Catalytic Cycles...........................................................................168
I.2. Rh(III)/Rh(V) Catalytic Cycles..........................................................................169
I.3. Ir(III)/Ir(IV)/Ir(II) Catalytic Cycles....................................................................171
I.4. Stoichiometric π-allyl Complex Reactivity........................................................173
II. Results and Discussion................................................................................... 174
II.1. Kinetic Analysis and Determination of the Rate-determining Step......................175
II.2. Stoichiometric π-allyl Complex Formation and Reactivity..................................178
II.3. Lewis-acid Catalyst Investigations...................................................................182
II.4. Computational Investigation of the Key Steps in the Catalytic Cycle...................184
II.5. Electrochemical Characterization of 3-32.........................................................185
III. Conclusion.....................................................................................................190
IV. Experimental Procedures: ...............................................................................191
IV.1. General Information........................................................................................191
IV.2. Detailed Catalytic Cycle...................................................................................193
IV.3. Experimental Rate Law Determination..............................................................193
IV.3.1. Representative Procedure for Initial Rate Kinetic Experiments...........................193
IV.3.2. Determination of KIE......................................................................................200
IV.4. Synthesis and Reactivity of Rhodium Complex...................................................201
IV.5. Reactions of Complexes with a halide abstractor, silver oxidant, and base............206
IV.6. Reactivity of Allylic Acetate..............................................................................213
IV.7. General Procedure for Silver (AgSbF6) or Rhodium (RhCp*(MeCN)3(SbF6)2) as the Lewis-Acid
.................................................................................................................................214
IV.8. General procedure for Cyclic Voltammetry Experiments.......................................216
IV.9. General Procedure for Allylic Amination Time Course..........................................219
IV.10. Computational details.......................................................................................220
IV.11. X-ray Crystal Structure Reports..........................................................................223
IV.11.1. RhCp*-π-allyl-acetate (3-32) ..........................................................................223
IV.11.2. RhCp*-π-allyl-Cl (3-27) .................................................................................243
IV.11.3. Rhodium Cp*-π-allyl-NHTs (3-30) ..................................................................264
IV.12. DFT Optimized Geometries and Computed Vibrational Frequencies.....................283
IV.12.1. XYZ coordinates............................................................................................283
IV.12.2. Frequencies...................................................................................................294
V. References.....................................................................................................301
VI. Characterization of Compounds.......................................................................305
Chapter 4: Regiodivergent Allylic C–H Sulfamidation of Allylbenzene Derivatives via a Ir(V)Cp*-π-allyl Nitrenoid Intermediate
I. Introduction..................................................................................................313
I.1. MCp*-catalyzed Allylic C–N Bond Formation...................................................313
I.2. A Novel Allylic C–H Amination Protocol..........................................................316
II. Results and Discussion...................................................................................317
II.1. Branched-selective Optimization.....................................................................317
II.2. Linear-selective Optimization.........................................................................319
II.3. Scope of Linear Selective Sulfamidation...........................................................321
II.4. Scope of Branched-selective Sulfamidation......................................................322
II.5. Proposed Catalytic Cycle of Branched Selective Allylic C–H Amination..............324
II.6. Diversification of Branched Products to form Heterocycles.................................326
III. Conclusion....................................................................................................327
IV. Experimental Procedures: ..............................................................................327
IV.1. General Information...................................................................................... 327
IV.2. Preparation of Olefin Coupling Partners..........................................................329
IV.3. General Procedure for Linear-Selective Reaction Optimization..........................330
IV.4. General Procedure A: Optimization of Allylic C–H Sulfamidation Reaction.........331
IV.5. General procedure B: Allylic C–H Sulfamidation of Allylbenzene Derivatives......332
IV.6. General Procedure C: Linear Selective Amination of Allylbenzene Derivatives....333
IV.7. Characterization of Allylic C–H Sulfamidation Products...................................333
IV.8. Spectra of Compounds...................................................................................348
V. Reference: ...................................................................................................383
Chapter 5: Reactivity of Group (IX)Cp*-π-allyl Complexes as Putative Intermediates in Allylic C–H Arylation and Alkylation Reactions
I. Introduction................................................................................................387
I.1. Allylic C–H Arylation Reactions.....................................................................387
I.2. Previous disclosed Allylic C–H Arylation Mechanistic Investigations................390
II. Results and Discussion: ................................................................................392
II.1. Formation of MCp*-π-allyl Complexes with a Chloro Ligand............................392
II.2. Formation of RhCp*-π-allyl Complexes with a Me or Ph Ligand........................393
II.3. Formation of IrCp*-π-allyl Complexes with a Me or Ph Ligand.........................394
II.4. Characterization of MCp*-π-allyl Complexes..................................................396
II.5. Single-crystal X-Ray Diffractometry of MCp*-π-allyl Complexes......................397
II.6. Stoichiometric Reactivity of MCp*-π-allyl Complexes.....................................399
II.7. Cyclic Voltammetry Studies...........................................................................404
II.8. New Proposed Catalytic Cycle........................................................................405
III. Conclusion................................................................................................407
IV. Experimental Procedures: ..........................................................................408
IV.1. General Information: .................................................................................... 408
IV.2. Synthesis of Complexes: ............................................................................... 409
IV.3. Subjection of Complexes to Heat:....................................................................416
IV.4. Reaction of Complexes with AgSbF6.................................................................418
IV.5. Cyclic Voltammetry General Procedure:...........................................................424
IV.6. Crystallography: ........................................................................................... 434
IV.7. Spectra of Complexes......................................................................................517
References............................................................................................................... 530
About this Dissertation
School | |
---|---|
Department | |
Degree | |
Submission | |
Language |
|
Research Field | |
Keyword | |
Committee Chair / Thesis Advisor |
Primary PDF
Thumbnail | Title | Date Uploaded | Actions |
---|---|---|---|
|
The Development and Mechanistic Studies of Group(IX)Cp*-Catalyzed Allylic C–H Functionalization Reactions Proceeding via a π-allyl Intermediate () | 2020-12-10 14:52:59 -0500 |
|
Supplemental Files
Thumbnail | Title | Date Uploaded | Actions |
---|