The Quantum McKay Correspondence: Classifying "Finite Subgroups" of a Quantum Group with Graphs Open Access

Vienhage, Paul (Spring 2018)

Permanent URL: https://etd.library.emory.edu/concern/etds/bn999675p?locale=pt-BR%2A
Published

Abstract

The McKay Correspondence classifies finite subgroups of the rotation group of 3-space via graphs. In this paper we explore a quantum version of this correspondence. Specifically, we will cover the needed background on category theory, vertex operator algebras, and quantum groups to explain a powerful technique used by Kirillov and Ostrik to develop a quantum analog to the McKay correspondence.

Table of Contents

1 Background 1

1.1  LiegroupsandLieAlgebras ........................... 1

1.2  RepresentationTheory .............................. 4

1.3  TheMcKayCorrespondence........................... 5

1.4  CategoryTheory ................................. 6

1.5  CategoricalGraphicalCalculus ......................... 10

1.6  QuantumGroups................................. 13

1.7  VertexOperatorAlgebras ............................ 15

2 Kirillov and Ostrick’s q-Analogue 16

2.1  Preliminaryresults ................................ 16

2.2  SanityCheck: RepresentationsofFiniteGroups . . . . . . . . . . . . . . . . 20

2.3  ResultsonVertexOperatorAlgebras ...................... 21

2.4  TheMainProof.................................. 23

2.4.1 Case:A .................................. 24 2.4.2 Case:D .................................. 24 2.4.3 Case:T .................................. 24 2.4.4 Case:E6.................................. 25 2.4.5 Case:E7.................................. 25 2.4.6 Case:E8.................................. 25 2.4.7 DiagramRepresentationComposition.................. 26

3 Conclusion 27 List of Figures

1  TheClassificationofSemisimpleLieAlgebras . . . . . . . . . . . . . . . . . 3

2  TheClassificationofAffineLieAlgebras .................... 5

3  TheExplicitformoftheMcKayCorrespondence . . . . . . . . . . . . . . . 6

4  Acommutingdigraminacategorywithzeromorphisms . . . . . . . . . . . 7

5  Dnwithneven.................................. 26

6  E8 ......................................... 26

7  E6 ......................................... 26

About this Master's Thesis

Rights statement
  • Permission granted by the author to include this thesis or dissertation in this repository. All rights reserved by the author. Please contact the author for information regarding the reproduction and use of this thesis or dissertation.
School
Department
Degree
Submission
Language
  • English
Research Field
Keyword
Committee Chair / Thesis Advisor
Committee Members
Last modified

Primary PDF

Supplemental Files