Multiple Imputation Method in SAS Exemplified through a Case Study of Programmatic Data from Emergency Nutrition Programs Open Access
Bugli, Dante (2017)
Abstract
Background. Missing data is a problem that all researchers encounter. Historically applied imputation methods expose a study to bias while advanced statistical methodology called multiple imputation (MI) method introduces the smallest amount of bias. Drawing upon a complex theoretical basis, statistical software responded accordingly by providing a sound and rapid application of MI. Few resources exist detailing the application of the method.
Objective. This paper provides a brief explanation of the foundations of MI method and applies it as a sensitivity analysis of a study implemented across three countries. By comparing results of model selection from both analyses, factors of significant impact on programmatic success can be more clearly identified.
Methods. Using a dataset of information from an exit questionnaire of a supplemental feeding program (SFP) implemented in emergency settings, MI was applied to artificially complete the dataset. Bivariate and multivariate regression were used to determine appropriate models to identify important factors that would lead to a patient defaulting from the program.
Results. Missing data was a large problem in this case study's dataset with variables ranging from 14% to 52% missing. MI completed the datasets and produced 10 imputed datasets for multivariate analysis. Models selected based on the imputed datasets were not entirely identical to those from the original analysis but reflected similar adjusted odds ratios with higher precision for those that coincided.
Conclusions. MI was valuable as a sensitivity analysis to identify important modifiable factors to decrease program defaulting. By identifying factors that were significantly influencing or impeding participants' abilities/desire to remain in the SFP future programming may be improved. This paper shows that applying MI to categorical datasets can still confirm the results of a primary analysis and aid in targeting key factors.
Table of Contents
Table of Contents
Introduction 1
Methods 3
Preparation for Imputation 3
Imputation Phase 6
Analysis and Pooling Phase 9
Analysis 10
Ethics Statement 10
Sample 10
Imputation Phase 11
Analysis and Pooling Phase 12
Results 12
Analysis of Missingness 12
Imputation 13
Discussion 15
Limitations 16
Conclusions 17
Acknowledgements 17
References 18
Tables 20
Figures 39
Appendices 41
PROC MI Sample 41
PROC SURVEYLOGISTIC Sample 42
PROC MIANALYZE Sample 43
Sample Code from Case Study 44
About this Master's Thesis
School | |
---|---|
Department | |
Subfield / Discipline | |
Degree | |
Submission | |
Language |
|
Research Field | |
Keyword | |
Committee Chair / Thesis Advisor | |
Committee Members | |
Partnering Agencies |
Primary PDF
Thumbnail | Title | Date Uploaded | Actions |
---|---|---|---|
Multiple Imputation Method in SAS Exemplified through a Case Study of Programmatic Data from Emergency Nutrition Programs () | 2018-08-28 16:02:45 -0400 |
|
Supplemental Files
Thumbnail | Title | Date Uploaded | Actions |
---|