Abstract
Building complex molecules from simple starting materials is the
heart of organic chemistry. Recently, the functionalization of
generally unreactive C-H bonds has been a common target for such
transformations due to their ubiquity and the atom economy
associated with the transition. A family of ruthenium(II)
2,6-bis(imido)pyridyl complexes was developed for the
intermolecular C-H amination of benzylic C-H bonds using sulfamate
esters in a racemic fashion. A chiral derivative of the
bisimidopyridyl ligand framework was proposed and progress was made
toward its synthesis. Separately, molecular recognition was also
explored as a means of inducing enantioselectivity in C-H amination
reactions. A pyridinebisoxazoline-derived ligand was proposed and
progress was made toward its synthesis. Carbon-carbon bond forming
reactions for coupling aryl rings are of interest to the medicinal
and materials communities. Methodology for the direct coupling of
benzobisthiazoles and aryl halides using a copper/palladium
co-catalytic system was developed and optimized, and the substrate
scope was explored. This was expanded to the synthesis of cruciform
structures and the functionalization of thiazolothiazole.
Dehydrogenative carbon-carbon bond forming methodology for the
synthesis of thiophene substituted benzothiazole derivatives was
developed.
Table of Contents
Table of Contents
1 Ruthenium Bis(imido)pyridyl Complexes as Catalysts for
Achiral and Chiral Intramolecular Amination
................................................................................................1
1.1 Introduction
.............................................................................................................1
1.2 Proposed Ligand Framework
..................................................................................5
1.3 Results and Discussion.
..........................................................................................7
1.4 Optimization ligand design and reaction conditions for
amination ......................11
1.5 Examination of substrate scope in C-H amination using
catalyst 25 ...................15
1.6 Bis(imido)pyridyl Complexes as Catalysts for Chiral
Intramolecular Amination ....................19
1.7 Chiral Ligand Synthesis
........................................................................................20
1.8 Synthesis of Mixed Ferrocenes in a Model System
..............................................24
1.9 Conclusion
............................................................................................................25
2 Intermolecular Amination via a Molecular Recognition
Catalyst ....................27
2.1 Introduction
..........................................................................................................27
2.2 Molecular recognition in enantioselective catalysis
............................................29
2.3 Proposed Molecular Recognition
Catalyst...........................................................33
2.4 Ligand Synthesis
..................................................................................................34
2.5 Conclusion
...........................................................................................................41
3 Benzodipyrrolidone via C-H Functionalization
...................................................42
3.1 Introduction
.........................................................................................................42
3.2 Proposed C-H Functionalization Synthesis
.........................................................49
3.3 Synthesis and Exploration of the Model System
.................................................52
3.4 Synthesis of BDP core via C-H Functionalization
..............................................54
3.5 Conclusion
..........................................................................................................58
4 Synthesis of 2,6-Difunctionalized Benzobisthiazoles via C-H
Functionalization..................................59
4.1 Introduction
.........................................................................................................59
4.2 C-H Functionalization of Benzothiazole
...........................................................62
4.3 Initial Exploration of Difunctionalization of BBT
.............................................66
4.4 Optimization of coupling conditions
.................................................................68
4.5 Probing the Scope of Aryl halides Amenable to the C-H
Functionalization of
14.............................................80
4.6 Synthesis of Cruciform Structures via
2,6-Difunctionalization of Benzobisthiazole
14.............................86
4.7 C-H Functionalization of Thiazolothiazole
.......................................................91
4.8 Conclusions
.........................................................................................................92
5 Dehydrogenative Cross Coupling of Benzothiazole
.............................................94
5.1 Introduction
.........................................................................................................94
5.2 Results and Discussion
.....................................................................................100
5.3 Optimization of dehydrogenative cross coupling of 1 with
2- methylthiophene
................................................................102
5.4 Conclusion
.........................................................................................................117
6 Experimental Procedures and Characterization
...............................................119
6.1 General Information
...........................................................................................119
6.2 Chapter 1 Procedures and Characterization
.......................................................121
6.3 Chapter 2 Procedures and Characterization
.......................................................149
6.4 Chapter 3 Procedures and Characterization
......................................................158
6.5 Chapter 4 Procedures and Characterization
......................................................166
6.6 Chapter 5 Procedures and Characterization
.......................................................187
References
.......................................................................................................................192
About this Dissertation
Rights statement
- Permission granted by the author to include this thesis or dissertation in this repository. All rights reserved by the author. Please contact the author for information regarding the reproduction and use of this thesis or dissertation.
School |
|
Department |
|
Degree |
|
Submission |
|
Language |
|
Research Field |
|
关键词 |
|
Committee Chair / Thesis Advisor |
|
Committee Members |
|