Automatic active space selection for the driven similarity renormalization group method Open Access
Cai, Chenxi (Summer 2018)
Abstract
We proposed a convenient automatic active space selection scheme for the driven similarity renormalization group truncated to second order (DSRG-PT2) [C. Li and F. A. Evangelista, J.Chem. Theory Comput. 11, 2097 (2015)]. It is based on stateaveraged conguration singles (CIS) natural orbitals and the following DSRG computations become a black-box procedure. The scheme is tested for valence excited states calculations with three DSRG methods: valence CI singles (VCIS) and VCIS with doubles (VCISD) wave functions improved with a second-order perturbation theory (VCIS/VCISD-DSRG-PT2) [C. Li and F. A. Evangelista, J. Chem. Phys. 147, 074107 (2017)], and stateaveraged multireference driven similarity renormalization group [(SA)-MRDSRG] second-order perturbation theory (SA-DSRGPT2) [C. Li and F. A. Evangelista, J. Chem. Phys. 148, 124106 (2018)]. Results are benchmarked on a set of 24 organic molecules. The scheme is also tested for H2O core excitations with the complete-active-space (CAS) DSRG method.
Table of Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Density Matrix and Natural Orbitals . . . . . . . . . . . . . . . . . . 3
1.3 Static and Dynamical Correlation . . . . . . . . . . . . . . . . . . . . 4
1.4 Conguration Interaction Singles (CIS) . . . . . . . . . . . . . . . . . 5
1.5 Automatic Active Space Selection . . . . . . . . . . . . . . . . . . . . 7
1.5.1 Generate State Averaged (SA)-CIS One Body Reduced Density Matrix . . . 7
1.5.2 Active Orbitals Selection Based on NO Occupancy. . . . . . . 8
1.5.3 Construct New Coecient Matrix C . . . . . . . . . . . . . . . 10
2 CIS-NO For Valence Excited States . . . . . . . . . . . . . . 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 VCIS/VCISD-DSRG-PT2 . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 SA-DSRG-PT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Computational Details. . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 Threshold Dependence of Active Space . . . . . . . . . . . . . 18
2.4.2 Comparison with Manual Selection. . . . . . . . . . . . . . . . 22
2.4.3 Comparison with Established Excited State Methods . . . . . 24
2.4.4 Comparison with CAS Space . . . . . . . . . . . . . . . . . . . 26
2.4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3 CIS-NO Work On Core Excitation . . . . . . . . . . . . . . . 34
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Computational Details. . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.1 H2O Core Excitation Energy Calculations with Dierent Methods ...36
3.3.2 H2O Core Excitation Energy Calculations with Dierent Orbitals ... 38
3.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.4 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
About this Master's Thesis
School | |
---|---|
Department | |
Degree | |
Submission | |
Language |
|
Research Field | |
Keyword | |
Committee Chair / Thesis Advisor | |
Committee Members |
Primary PDF
Thumbnail | Title | Date Uploaded | Actions |
---|---|---|---|
Automatic active space selection for the driven similarity renormalization group method () | 2018-07-11 13:54:19 -0400 |
|
Supplemental Files
Thumbnail | Title | Date Uploaded | Actions |
---|