MUTUALISM IN NUCLEIC ACID/PEPTIDE DOMAIN ARRAYS: IMPLICATIONS FOR ORIGINS OF LIFE, NANOTECHNOLOGY, AND DISEASE Open Access
Rha, Allisandra Kaeleen (2017)
Abstract
The intricate connections between nucleic acids and proteins in the cell produces a network of spatially and temporally regulated mutualisms. These mutualisms likely preceded cellular life, and are essential to the central dogma. The ribosome, a conglomerate of proteins and ribosomal RNAs is conserved and regarded as the Darwinian threshold for cellular life. Less complex mutualisms are expected to have preceded the ribosome and supported the first cellular networks in protocells. The stabilization and propagation of nucleic acids with homogeneous 5'-3' linkages, a necessary prerequisite to the organization of a replicative system, was likely mediated by proteins or small peptides that served to protect nucleic acids from the harsh prebiotic environment. Peptide assemblies, which may have formed prebiotically upon concentration of peptides as short as two amino acids in a discrete area, are being explored as scaffolds for specific nucleic acid elongation. The use of peptide assemblies as scaffolds is also exploited in nanotechnology where the production of peptide hydrogels for tissue engineering continues. The complementarity of nucleic acids is manipulated in the construction of DNA origami, where its digital-like interactions are fine-tuned for the development of responsive systems. The diversity of DNA secondary structures and their context dependence extends these efforts. Guanine quadruplexes, which demonstrate efficient electron transfer are being explored as wires in bionanocircuitry. Combination of the scaffolding properties of peptide assemblies and the diverse complementary folding landscape of DNA, highlights the fabrication of artificial mutualisms. Extant mutualisms between DNA and RNA binding proteins and their targets in the cell, are responsible for the spatiotemporal regulation of cellular information flow. RNA is processed in membraneless organelles known as ribonucleoprotein granules (RNP). The liquid-liquid phase transitions that characterize the assembly and disassembly of RNP granules is mediated by RNA binding proteins with low complexity domains (LCD). Disruption of transient interactions between LCDs, or seeding of infectious domains by reversible LCD amyloids, is considered a contributor to altered ribostasis in protein misfolding diseases where deposition of RNA at disease lesions has not yet been explained. Here we explore these diverse mutualisms through structural characterization of a novel RNA/peptide co-assembly.
Table of Contents
Table of Contents
Chapter 1: Looked at Life from Both Sides Now..............................................................................1
From up and down and still somehow.......................................................................................1
Biopolymer diversity..................................................................................................................3
Functional assemblies...............................................................................................................7
From both sides now.................................................................................................................9
Conclusions: toward molecular mutualisms............................................................................12
Chapter 2: Altering nanotube groove morphology to promote nucleic acid elongation..................20
INTRODUCTION.....................................................................................................................20
RESULTS................................................................................................................................22
Self-assembly of reactive-neutral nanotubes..........................................................................23
Self-assembly of groove-modified peptide nanostructures.....................................................27
Synthesis of modified adenine nucleotides.............................................................................38
Nucleic acid elongation on nanotubes.....................................................................................40
CONCLUSIONS......................................................................................................................49
METHODS...............................................................................................................................51
Chapter 3: DNA/peptide chimeras: manipulation of mutualisms for functional applications..........58
INTRODUCTION.....................................................................................................................58
RESULTS................................................................................................................................62
Synthesis of DNA/Peptide conjugates.....................................................................................62
Spectroscopic identification of guanine quadruplexes............................................................66
GQPC/Ac-KLVIIAG-NH2 co-assembly....................................................................................69
Guanine quadruplexes form during conical GQPC/peptide co-assembly...............................74
Specific guanine quadruplex recognition..........................................................................76
Creating responsive hydrogels................................................................................................79
Assembly of nucleic acid/peptide conjugates (NAPC)............................................................81
CONCLUSIONS......................................................................................................................86
METHODS...............................................................................................................................87
Chapter 4: Design and global architecture of nucleic acid/peptide co-assemblies........................96
INTRODUCTION.....................................................................................................................96
RESULTS................................................................................................................................98
Sampling of peptide congeners for nucleic acid co-assembly.................................................98
Assembly of homogeneous nucleic acid/peptide nanostructures..........................................103
Particle formation in RNA/peptide nanostructure assembly..................................................107
Cooperative binding of nucleic acids to peptide assemblies.................................................109
Temperature affects global co-assembly architecture...........................................................112
Microscopy confirms co-assembly of peptides and nucleic acid...........................................115
Evaluating the electrostatic contribution to RNA/peptide co-assembly.................................117
RNA/peptide co-assemblies remain dynamic........................................................................121
Co-assembly of dsDNA and pep-KG/RG..............................................................................123
CONCLUSIONS....................................................................................................................125
METHODS.............................................................................................................................126
Chapter 5: Passivation of the cross-b interface by nucleic acids.................................................134
INTRODUCTION...................................................................................................................134
RESULTS..............................................................................................................................134
RNA/peptide co-assemblies maintain cross-b architecture...................................................135
Co-assemblies form homogeneous anti-parallel, in-register b-sheet monolayers................137
DQF-DRAWS identifies parallel component of peptide assembly.........................................145
Nucleic acids passivate the cross-b monolayer interfaces....................................................146
Synthesis and characterization of a 13C/31P calibration standard..........................................149
Molecular dynamics simulations of DNA/pep-KG co-assemblies..........................................154
Co-assembly structural model...............................................................................................158
CONCLUSIONS....................................................................................................................159
METHODS.............................................................................................................................160
Chapter 6: A b /RNA co-assemblies and disease etiology............................................................170
INTRODUCTION...................................................................................................................170
RESULTS..............................................................................................................................171
A b 40 and 42 fibril surfaces are ideal for templating nucleic acids.........................................172
Co-assembly of A b 40 and 42 with RNA................................................................................173
Visualization of co-assembly by fluorescence microscopy....................................................178
Circular Dichroism identifies order in co-assemblies.............................................................180
Powder x-ray diffraction of co-assemblies.............................................................................182
CONCLUSIONS....................................................................................................................184
METHODS.............................................................................................................................186
Chapter 7: Concluding remarks...................................................................................................192
Development of chimeras for bionanotechnology.................................................................193
Engineering homogeneous nucleic acid/peptide co-assemblies...........................................194
Comprehensive models for RNA processing and disease etiology.......................................195
About this Dissertation
School | |
---|---|
Department | |
Subfield / Discipline | |
Degree | |
Submission | |
Language |
|
Research Field | |
Keyword | |
Committee Chair / Thesis Advisor | |
Committee Members |
Primary PDF
Thumbnail | Title | Date Uploaded | Actions |
---|---|---|---|
MUTUALISM IN NUCLEIC ACID/PEPTIDE DOMAIN ARRAYS: IMPLICATIONS FOR ORIGINS OF LIFE, NANOTECHNOLOGY, AND DISEASE () | 2018-08-28 16:24:49 -0400 |
|
Supplemental Files
Thumbnail | Title | Date Uploaded | Actions |
---|