The role of neuroinflammation in motor circuit synaptic plasticity within the spinal cord following peripheral nerve injury Open Access

Rotterman, Travis (Spring 2018)

Permanent URL: https://etd.library.emory.edu/concern/etds/2801pg37r?locale=en%5D
Published

Abstract

Information regarding limb position is transmitted through Ia afferents and is integrated into spinal circuit networks to modulate motor output in response to environmental perturbations. However, following peripheral nerve injuries, a neuroinflammatory response occurs in the ventral horn that coincides with Ia afferent synapse degradation. The outcome after nerve regeneration depends on the type of injury; nerve transection causes permanent loss of Ia synapses and the reflex, while both recover after nerve crush. Our goal was to find causal relationships between spinal neuroinflamation and Ia synaptic losses. We further hypothesized that modulation of neuroinflammation properties could adjust synaptic plasticity to various levels according to injury severity. To test these hypotheses, we performed different types of nerve injuries in transgenic mouse models that allowed us to study resident microglia activation (CX3CR1-GFP mice) and infiltration of peripheral CCR2-expressing macrophages (CCR2-RFP mice), combined with various global and cell-specific knockout models to investigate signaling pathways that triggered the immune response and their relation to Ia synapse loss. Sciatic nerve transection results in long-lasting microglia activation and differentiation towards CCL2-relasing, pro-inflammatory phenotypes. This did not occur after sciatic nerve crush. Only after transection was there significant infiltration of CD45/CCR2 cells, including T-cells, monocyte/macrophages, and dendritic cells. CCL2-CCR2 signaling was especially critical for monocyte infiltration, some of which appear to transform into microglia-like cells by morphology and genetic lineage labeling. Lack of these cells in CCR2 global KOs correlated with better preservation of ventral horn Ia synapses after nerve transection. Moreover, CCR2 cell entry is graded to the location of injury with injuries to more distal nerves causing less CCR2 infiltration and less Ia synapse plasticity. In conclusion, promoting CCR2+ monocyte infiltration amplifies Ia synapse losses, and the properties of spinal neuroinflammation after different nerve injuries is under fine control by signaling between axotomized MNs, microglia and penetrating blood-derived CCR2+ immune cells.    

Table of Contents

Table of Contents

 

 

Chapter 1: Introduction to spinal cord circuitry and plasticity following

peripheral nerve injury……………………………….………………......................1

1.1 Introduction…………………………………………………….……............2

1.2 Organization and function of spinal cord motor circuitry …………........3

            1.2.1 Motoneurons……………………………………..…....................3

            1.2.2 Ia afferent connections…….……………………………………..7

            1.2.3 Stretch reflex and reciprocal inhibition……………..……….....11

1.3 Peripheral nerve injury……………………………..……………………...14

            1.3.1 Type and prevalence of nerve injuries……...…......................16

            1.3.2 Peripheral degeneration and reinnervation……………….......19

            1.3.3 Clinical intervention and patient outcomes.…………..............24

            1.3.4 Functional deficits in the Ia stretch circuit……………………..28

1.4 Synaptic stripping vs axon retraction and transganglionic

 anterograde degeneration of sensory afferents injured in the periphery..35

            1.4.1 History of synaptic stripping………..…………….…................37

            1.4.2 Evidence of anterograde transganglionic degeneration of

           sensory axons and synapses after PNI……………………………..39

            1.4.3 Mechanisms involved…………………………………………...44

1.5 Neuroinflammation…………….…………….…………………………….51

1.5.1 Microglia………………………………………………………….53

1.5.2 Macrophage recruitment and infiltration into the CNS…...….63

1.5.3 Role of macrophages/microglia in synaptic stripping

and retraction……………………………………………………….…..68

1.5.4 Astrocytes…………………………………………………….......71

1.5.5 T-cells in PNI……………………………………………………..75

1.6 Dissertation overview………………………………………….................76

References…………………………………………………………………….. 83

 

 

Chapter 2: Normal distribution of VGLUT1 synapses on spinal

motoneuron dendrites and their reorganization after

nerve injury………………………………………..……………….………….....….104

2.1 Abstract…..…………………………………………………….…………105

2.2 Introduction……………….………………………………………………106

2.3 Methods……………………………………………….…………………..108

            2.3.1 Peripheral nerve transection and repair…….……………….108

            2.3.2 Electrophysiology………………………………………………110

            2.3.3 Histological processing and immunohistochemistry………..111

            2.3.4 Confocal imaging and neuron reconstruction……………….113

            2.3.5 Neuron reconstructions………………………………………..114

            2.3.6 Analyses………………………………………………………...114

            2.3.7 Statistics………………………………………………………...117

2.4 Results…………………………………………………..………………...117

2.4.1 Basic physiological and morphological properties do not

differ between control and regenerated motoneurons…………....117

2.4.2 VGLUT1-IR synapses are lost in injured and regenerated

MG motoneurons…………………………………………………..... 121

2.4.3 VGLUT1 contacts accumulate on proximal dendrites……...123

2.4.4 Proximal VGLUT1 contacts are preferentially lost after

 nerve injury……………………………………………………..….....125

2.4.5 VGLUT1 contact groupings are dispersed after peripheral

 nerve injury……………………………………………………………128

2.4.6 VGLUT1-IR contacts show a preference for dendrite territories

 located dorso-medially with respect to the cell body and this

preferred location becomes more apparent after injury…….........130

2.5 Discussion………………………………………………………………...134

 2.5.1 VGLUT1 synapses concentrate in proximal dendrites…….134

 2.5.2 Significance of VGLUT1 synapses remaining after

 nerve injury…………………………………………………….....…..136

 2.5.3 Relationship between synaptic reorganization and Ia afferent

input strength……………………………………………………….....138

References…………………………………………………………….………165

 

 

 

Chapter 3: Motor circuit synaptic plasticity after peripheral nerve injury

depends on a central neuroinflammatory response and a CCR2

mechanism. …………………………………………………….......................….. 169

3.1 Abstract……………………………………………………………………170

3.2 Introduction………………………………………………………….…… 171

3.3 Methods…………………………………………………………............. 173

            3.3.1 Transgenic models……………………………………………..174

            3.3.2 Motoneuron labeling and peripheral nerve injury

           procedures ………………...………………………………………….176

            3.3.3 Harvesting tissue for histological analysis…………………..178

            3.3.4 Histological processing and immunohistochemistry………..178

                        3.3.5 Densitometric analysis of VGLUT1 and GFP

                        fluorescence…………………………………………………………..180

                        3.3.6 Analysis of VGLUT1 synaptic bouton densities on

                        motoneurons…………………………………………………………. 180

                        3.3.7 Quantification of microglia cells……………………………… 181

                        3.3.8 Microglia morphological analysis……………………………..182

                        3.3.9 Motoneuron cell body coverage by microglia cell processes

                        ………………………………………………………………………….182

                        3.3.10 RFP cell quantification……………………………………….183

                        3.3.11 Quantification of Iba1 cells after injury that are not derived

                      from resident microglia…………………………………………...….183

                        3.3.12 Analysis of CCL2 expression inside the spinal cord after

                      nerve injuries………………………………..……………………...…184

                        3.3.13 Statistical analysis for histological analyses……………….185

                        3.3.14 Peripheral blood mononuclear cell (PBMC) isolation and

                      spinal cord tissue dissociation for myeloid cell analysis………….187

                        3.3.15 Flow cytometry………………………………………………..188

3.4 Results…………………………………………………………………….189

            3.4.1 Animal model and experimental design……………………..189

            3.4.2 VGLUT1 synapse depletions on motoneurons following tibial

            or sciatic nerve injury in mice…………………………………..…..192

            3.4.3 Microglia responses differ between tibial and sciatic

           nerve injuries………………………………………………………..…197

            3.4.4 Microglia undergo similar morphological changes after sciatic

           or tibial nerve injuries but become more tightly associated to

           motoneuron cell bodies after sciatic injuries……………………….199

            3.4.5 The number of CCR2-RFP+ cells infiltrating the spinal cord

           ventral horn depends on the type of injury and is tightly correlated to

           overall VGLUT1 loss………………………………………………….201

            3.4.6 Heterogeneity of CCR2+ cells infiltrating the spinal cord after

           nerve injury…………………………………………………………… 203  

            3.4.7 Flow cytometry characterization of CCR2+ cells……………206

            3.4.8 VGLUT1 synapses are preserved on motoneuron dendrites of

           CCR2 knockout mice…………………………………………………209

            3.4.9 CCL2 is upregulated inside the spinal cord by

           axotomized motoneurons and activated microglia but with

           different time courses……………………………………………….. 212

3.5 Discussion……………………………………………………….……......213

            3.5.1 Different mechanisms control plasticity of VGLUT1

          synapses on dendrites and cell bodies of motoneurons and

           the role of microglia……………………………….………………….214

            3.5.2 CCR2 monocyte entry is critical for VGLUT1

            synapse plasticity…………………………...………………………. 217

References…………………………………………………………………… 248

           

 

Chapter 4: The effect of axon regeneration efficiency in spinal motor circuit plasticity following peripheral nerve injury and the role neuroinflammation plays…………………………………………………………………………………...256

4.1 Abstract…………………………………………………………………...257

4.2 Introduction………………………………………………………….…… 258

4.3 Methods…………………………………………………………..............261

            4.3.1 Transgenic mouse models…………………………………… 261

            4.3.2 Motoneuron labeling and peripheral nerve injury

           procedures …………………...……………………………………….262

            4.3.3 Harvesting tissue for histological analysis……………….…..263

            4.3.4 Histological processing and immunohistochemistry………..264

            4.3.5 Densitometric analysis of VGLUT1 and GFP immune-

                       fluorescence………………………………………………….…265

            4.3.6 Neuromuscular junction analysis……………………………..266

            4.3.7 Motoneuron reinnervation……………………………………..266

            4.3.8 Edu injections and Ki-67 labeling……….…………………….267

            4.3.9 Quantification of microglia cells……………………………….268

            4.3.10 CCR2-RFP cell quantification……………………………….269

            4.3.11 Experimental design and statistical analysis………………269

4.4 Results…………………………………………………………………….270

4.4.1 VGLUT1 synapse depletion on motoneurons following

sciatic nerve cut-repair or sciatic nerve crush……………….……..270

4.4.2 Rate and specificity of peripheral nerve regeneration

and reinnervation predict the permanency of VGLUT1 loss……..274

4.4.3 The activation and proliferation of microglia cells in the ventral

horn of the spinal cord after nerve injury…….…………..……….. 278

4.4.4 The release of CCL2 and the recruitment of peripheral

CCR2+ myeloid cells following sciatic injury……………..………..281

4.5 Discussion.…………………………………………………………..…...283

4.5.1 Success of peripheral regeneration determines

permanency of VGLUT1 loss……………………………………….283

4.5.2 CCL2 release from microglia results in a robust infiltration of

peripheral CD45+ cells……………………………………………....286

            References…………………………………………………………………… 305

 

Chapter 5: General Discussion and Future Directions……………………….309

5.1 Discussion……………………………………………………………….. 310

5.1.1 Distribution of VGLUT1 synapses on motoneurons

and their permanent loss after nerve injur..……………………….. 312

5.1.2 The permanent removal of Ia afferents is dependent

on CCR2 mechanisms……………………………………………….316

5.1.3 The importance of peripheral nerve regeneration efficiency

and the permanency of Ia synaptic loss……………………………321

5.2 Future directions…………………………………………………….……324

5.2.1 CCL2 Removal from MNs and microglia…………………….324

5.2.2 Microglia activation by CSF1………………………………….325

5.2.3 CCR2 lineage tracing experiments…………………………..327

5.2.4 Live cell imaging………………………………………………..327

5.2.5 Physiology………………………………………………………328

References…………………………………………………………………… 331

 

 

Appendix I- VGLUT1 synapses and p-boutons on regenerating motoneurons

after nerve crush…………………………………………………………………... 335

                                                                                                                                    6.1 Abstract……………………………………………………………………336

6.2 Introduction………………………………………………………….…… 337

6.3 Methods…………………………………………………………............. 342

            6.3.1 Nerve injury and injections of retrograde tracers………….. 342

            6.3.2 Histology and immunocytochemistry……………………….. 343

            6.3.3 Antibody characterization……………………………………..344

            6.3.4 Confocal imaging and neuron reconstruction……………….345

            6.3.5 Surface-to-surface analysis…………………………………...346

            6.3.6 Statistical analyses…………………………………………….347

            6.3.7 Figure composition…………………………………………….347

6.4 Results…………………………………………………………………….348

6.4.1 Technical considerations and data interpretation…………..348

6.4.2 Nerve crush causes only a small loss of VGLUT1 contacts on

proximal dendrites and cell bodies of regenerating motoneuron

………………………………………………………………………….350

6.4.3 Reduction in P-bouton coverage of VGLUT1 boutons following

nerve crush……………………………………………………………354

6.5 Discussion………………………………………………………………...358

            6.5.1 Differences in stretch reflex synaptic circuit plasticity after

           different kinds of nerve injury………………………………………..359

            6.5.2 Presynaptic inhibition of Ia afferents after nerve crush injuries

            ………………………………………………………………………….362

References…………………………………………………………………… 380

 

 

Appendix II- Two-photon live imaging of microglia dynamics after nerve

 injury in an adult spinal cord slice ………………………………………...…...384

                                                                                                                                    7.1 Abstract……………………………………………………………………385

7.2 Introduction………………………………………………………….…… 386

7.3 Methods…………………………………………………………............. 389

            7.3.1 Animals………………………………………………………… 389

            7.3.2 Injury model……………………………………………………  390

            7.3.3 aCSF preparation………………………………………………390

            7.3.4 Spinal cord dissection………………………………………….391

            7.3.5 Sectioning……………………………………………………… 391

            7.3.6 Imaging parameters……………………………………………392

            7.3.7 Analysis…………………………………………………………393

            7.3.8 Statistics……………………………………………………….. 394

            7.3.9 Tips and tricks………………………………………………….394

7.4 Results…………………………………………………………………….394

7.5 Discussion………………………………………………………………...398

References…………………………………………………………………… 408

 

About this Dissertation

Rights statement
  • Permission granted by the author to include this thesis or dissertation in this repository. All rights reserved by the author. Please contact the author for information regarding the reproduction and use of this thesis or dissertation.
School
Department
Subfield / Discipline
Degree
Submission
Language
  • English
Research Field
Keyword
Committee Chair / Thesis Advisor
Committee Members
Last modified

Primary PDF

Supplemental Files