Differential regulation of Peroxisome Proliferator Activating Receptors (PPARs) via host and microbial derived processes Open Access

Druzak, Samuel (Fall 2022)

Permanent URL: https://etd.library.emory.edu/concern/etds/1v53jz26c?locale=en
Published

Abstract

Nuclear receptors (NRs) are a highly conserved group of ligand regulated transcription factors. In

humans there are 48 members with each member playing unique complementary roles that allow

for generation and maintenance of multicellular life. The peroxisome proliferator-activated

(PPARs) subfamily of NRs regulate metabolism, inflammation, and proliferation, making them

attractive targets to modulate metabolic syndrome, inflammatory disease, and cancer. Many drugs

have been successfully developed to target these receptors specifically to treat metabolic disease

(i.e. fibrates and glitazones). While much of the therapeutic potential of PPARs has been realized,

undesired tissue specific effects as well as an inability to treat the underlying cause of metabolic

disease limit the utility of these treatments and have stifled development of new PPAR modulators.

To address these problems, this present work seeks to elucidate novel mechanisms by which host

proteins and microbes regulate PPARs. We began our characterization by investigating the

mechanism by which PPARs acquire ligand. Previously, our lab has demonstrated that FABP5

enhances PPARδ transactivation in a polyunsaturated fatty acid dependent manner. Here we have

uncovered a member of the STARD family capable of regulating PPAR activity. Our

characterization of the STARD2-PPARδ interaction uncovered a previously unknown role of lipid

transport proteins in directly engaging with and repressing PPARδ activity in a ligand dependent

manner. In parallel, we have also characterized the role that gut flora play in regulating PPAR

activity. We identified a gut derived obesogen delta-valerobetaine (VB). Treatment of mice with

VB results in diet induced weight gain and hepatic steatosis. This phenotype was posited to occur

by inhibiting lipid metabolism and influencing the activity of hepatic PPARs. Here we describe

the molecular mechanism the underpins the observed phenotype and show that VB is capable of

altering carnitine biosynthesis and carnitine shuttling, effectively decreasing lipid metabolism.

Taken together we have identified two novel mechanisms by which host and microbial processes

are able to affect PPAR activity and have uncovered several new targets capable of tuning PPAR

transactivation upstream of directly modulating these receptors.

Table of Contents

PEROXISOME PROLIFERATOR

ACTIVATING RECEPTORS VIA HOST AND MICROBIAL DERIVED PROCESSES ..21

1.1 INTRODUCTION TO NUCLEAR RECEPTORS .....................................................................................21

1.2 VARIOUS LIPIDS CONTROL NR FUNCTION ....................................................................................23

1.3 PPAR FAMILY OF NUCLEAR RECEPTORS: .......................................................................................28

1.4 HOW DO PPARS ACQUIRE LIPIDS? ..................................................................................................29

1.5 LIPID TRANSFER PROTEINS ........................................................................................................................29

1.5.1 FABPs .....................................................................................................................................................31

1.6 CASE STUDIES: FABP—PPAR INTERACTION .....................................................................................34

1.6.1 FABP5—PPARδ ..................................................................................................................................34

1.6.2 FABP4—PPARγ ..................................................................................................................................34

1.6.3 FABP1— PPARα ................................................................................................................................35

1.7 STRUCTURAL INSIGHTS INTO LIGAND DRIVEN NUCLEAR IMPORT OF FABPS ............................36

1.8 GUT MICROBIOME REGULATION OF PPARS: .........................................................................................39

1.9 PPARS AND COVID-19: ............................................................................................................................41

2.10 REFERENCES ................................................................................................................................................45

CHAPTER 2: LIGAND-DEPENDENT INTERACTION BETWEEN

PHOSPHATIDYLCHOLINE TRANSFER PROTEIN AND PPARΔ: IMPLICATIONS

FOR METABOLIC SYNDROME ................................................................................................................55

2.1 SUMMARY: .....................................................................................................................................................55

THIS CHAPTER IS CURRENTLY UNDER REVIEW AT NATURE COMMUNICATIONS. ................................55

2.2 INTRODUCTION: ............................................................................................................................................57

2.3 RESULTS: ........................................................................................................................................................59

2.3.1 RNA-seq analysis of liver tissue from Pctp -/- mice ...................................................................59

2.3.2 In vivo characterization of L-Pctp-/- ..............................................................................................63

2.3.3 Defining the PC-TP – PPAR interactome; discovery of a repressive interaction

between PC-TP and PPARδ .......................................................................................................................73

2.3.4 Domain mapping of the PPARδ–PC-TP and PPARδ–FABP5 complex ............................76

2.3.5 Altered lipid levels modulate the interaction between PC-TP or FABP5 with PPARδ .79

2.4 DISCUSSION: .................................................................................................................................................85

2.5 MATERIALS AND METHODS: .....................................................................................................................90

2.6 REFERENCE: .................................................................................................................................................107

CHAPTER 3: MOLECULAR MECHANISMS OF THE GUT MICROBIOME-DERIVED

OBESOGEN DELTA-VALEROBETAINE ............................................................................................111

3.1 SUMMARY: ...................................................................................................................................................111

3.3 RESULTS: ......................................................................................................................................................115

3.3.1 Uncovering the biosynthetic pathway of valerobetaine and homocarnitne ....................115

3.3.2 BBOX catalyzes the formation of homocarnitine ....................................................................117

3.3.3 Biochemical and structural characterization of VB-BBOX complex ................................119

3.3.4 Homocarnitne can engage with enzymes to form acyl homocarntines ............................122

3.3.5 Biochemical and structural characterization of VB-CRAT complex ................................124

3.4 DISCUSSION: ................................................................................................................................................129

3.5 MATERIAL AND METHODS: ......................................................................................................................131

3.6 REFERENCES: ...............................................................................................................................................136

CHAPTER 4: DISCUSSION .........................................................................................................................138

4.1 GENERAL DISCUSSION: .............................................................................................................................138

4.2 CAN STARDS MODULATE PPAR ACTIVITY? .....................................................................................138

4.2.1 STARD2—PPARδ .............................................................................................................................141

4.2.3 STARD10–PPARa ............................................................................................................................144

4.2.4 STARD7–PPAR .................................................................................................................................144

4.2.5 StAR -PPARγ ......................................................................................................................................145

4.2.6 Other Examples .................................................................................................................................146

4.3 UTILITY OF LTPS AS DRUG TARGETS ...................................................................................................147

4.4 HOW DOES GUT MICROBIOME ALTER PPAR ACTIVITY? ..................................................................150

4.5 WHAT ROLES DO PPARS PLAY IN VIRAL INFECTIONS? ....................................................................150

4.6 CONCLUSION: ..............................................................................................................................................151

4.7 REFERENCES: ...............................................................................................................................................152

APPENDIX I: MULTIPLATFORM ANALYSES REVEAL DISTINCT DRIVERS OF

SYSTEMIC PATHOGENESIS IN ADULT VERSUS PEDIATRIC COVID-19 ....................156

AI.1 SUMMARY: .................................................................................................................................................157

AI.2 INTRODUCTION .........................................................................................................................................158

AI.3 RESULTS .....................................................................................................................................................160

AI.3.1 Integrated multiomic analyses identify proteomic alterations in coagulation and fluid

shear stress response pathways in adults with COVID-19 .............................................................161

AI.3.2 Fibrinogen mediates red blood cell aggregation under static and physiological flow

conditions .......................................................................................................................................................170

AI.3.3 Fibrinogen-mediated red blood cell aggregation induces endothelial glycocalyx

degradation ...................................................................................................................................................171

AI.3.4 Plasma from patients with COVID-19 induces increased red blood cell aggregation

...........................................................................................................................................................................178

AI.3.5 Differences in RBC membrane deformability between critically ill patients with and

without COVID-19 ......................................................................................................................................179

AI.3.5 COVID-19 plasma interacts with red blood cells to damage the endothelial

glycocalyx in a vessel size-dependent manner ....................................................................................181

AI.3.6 Indicators of endothelial damage are prominent in patients with COVID-19 .............181

AI.3.7 Multiplatform analyses of plasma from pediatric COVID-19 or MIS-C patients

suggests diverging pathophysiology from adult COVID-19 ...........................................................188

AI.4 DISCUSSION ...............................................................................................................................................204

AI.5 MATERIALS AND METHODS ...................................................................................................................209

AI .6 REFERENCES .............................................................................................................................................236

About this Dissertation

Rights statement
  • Permission granted by the author to include this thesis or dissertation in this repository. All rights reserved by the author. Please contact the author for information regarding the reproduction and use of this thesis or dissertation.
School
Department
Subfield / Discipline
Degree
Submission
Language
  • English
Research Field
Keyword
Committee Chair / Thesis Advisor
Committee Members
Last modified

Primary PDF

Supplemental Files