Towards Personality Trait Prediction from Chatbot Conversations Using Machine Learning with Domain Adaptation Open Access
Sun, Mingyang (Spring 2019)
Abstract
Accurate personality prediction has been proven to be useful for tasks like solving the
cold-start problem in personalized recommendation[1]. In recent years, a number of
research works have been published in different areas: written texts[2], movie scripts[3]
and social media[4], with natural language processing (NLP) techniques and machine
learning algorithms. In the field of open domain conversations, however, automatic
personality trait detection has only been studies on natural human-human conversations,
but not human-machine conversations. Under this circumstance, we present first study on
personality trait prediction from open-domain conversations with a chatbot.
As intelligent assistants, such as Google Assistant, Apple Siri and Amazon Alexa, have
gained increasing popularity with the development of mobile devices, the potential of
usefulness of personality prediction on human-machine conversations data can be
extensive. News recommendation function in these intelligent assistant systems, for
example, can take users’ personality as a reference: users with positive score on openness
trait tend to be interested in aesthetic activities, so they possibly would like to know
about trending news about new art shows, exhibitions and movies, while users with high
consciousness might be attracted more by things happening in the White House.
Therefore we believe detecting personality traits during conversations with users is a both
challenging and valuable task.
In this thesis, we confirm the feasibility of user personality trait recognition in the opendomain
human-machine conversations. We explore three methods: 1) models learned on
engineered features, 2) models learned on transformed features mapped by linking
functions constructed through heterogeneous domain adaptation, and 3) domain
adaptation approaches applied to transformed features with social media data as the
auxiliary task. The experimental results on real conversations with users support the
feasibility off this task and suggest promising directions for future research.
Table of Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background and Motivation. . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Proposed Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.1 Feature Matrix Construction . . . . . . . . . . . . . . . . . . . 4
1.4.2 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Overview: Personality in Psychology. . . . . . . . . . . . . . . . . . . 8
2.2 Personality Prediction in Texts . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Personality Prediction in Social Media. . . . . . . . . . . . . . . . . . 10
2.4 Personality Prediction in Conversations . . . . . . . . . . . . . . . . . 11
3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 MyPersonality Project Dataset . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Alexa Prize Chatbot Conversation Dataset . . . . . . . . . . . . . . . 13
4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 Feature Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.1 General Feature Engineering . . . . . . . . . . . . . . . . . . . 17
4.1.2 Specific Feature Engineering on Social Media Dataset . . . . . 20
4.1.3 Specific Feature Engineering on Open-domain Human-machine
Conversation Dataset . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.1 Simple Feature Augmentation. . . . . . . . . . . . . . . . . . . 24
4.2.2 Heterogeneous Domain Adaptation. . . . . . . . . . . . . . . . 25
4.2.3 Stacked Denoising Autoencoders . . . . . . . . . . . . . . . . . 28
5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . 30
5.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.1 Overall Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Analysis of Transfer Learning (Domain Adaptation) in Personality
Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.3 Comparison between Feature Augmentation and sDAE . . . . 37
6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . 39
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
About this Honors Thesis
School | |
---|---|
Department | |
Degree | |
Submission | |
Language |
|
Research Field | |
Keyword | |
Committee Chair / Thesis Advisor | |
Committee Members |
Primary PDF
Thumbnail | Title | Date Uploaded | Actions |
---|---|---|---|
Towards Personality Trait Prediction from Chatbot Conversations Using Machine Learning with Domain Adaptation () | 2019-04-09 11:23:45 -0400 |
|
Supplemental Files
Thumbnail | Title | Date Uploaded | Actions |
---|